
A Trajectory-Based Bayesian Approach to Multi-Objective Hyperparameter
Optimization with Epoch-Aware Trade-Offs

Wenyu Wang1 Zheyi Fan2,3 Szu Hui Ng1

1Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore
2Academy of Mathematics and System Sciences, Chinese Academy of Sciences, China
3School of Mathematical Sciences, University of Chinese Academy of Sciences, China

Abstract

Training machine learning models inherently in-
volves a resource-intensive and noisy iterative
learning procedure that allows epoch-wise mon-
itoring of the model performance. However, the in-
sights gained from the iterative learning procedure
typically remain underutilized in multi-objective
hyperparameter optimization scenarios. Despite
the limited research in this area, existing meth-
ods commonly identify the trade-offs only at the
end of model training, overlooking the fact that
trade-offs can emerge at earlier epochs in cases
such as overfitting. To bridge this gap, we pro-
pose an enhanced multi-objective hyperparame-
ter optimization problem that treats the number
of training epochs as a decision variable, rather
than merely an auxiliary parameter, to account for
trade-offs at an earlier training stage. To solve this
problem and accommodate its iterative learning,
we then present a trajectory-based multi-objective
Bayesian optimization algorithm characterized by
two features: 1) a novel acquisition function that
captures the improvement along the predictive tra-
jectory of model performances over epochs for any
hyperparameter setting and 2) a multi-objective
early stopping mechanism that determines when
to terminate the training to maximize epoch effi-
ciency. Experiments on synthetic simulations and
hyperparameter tuning benchmarks demonstrate
that our algorithm can effectively identify the desir-
able trade-offs while improving tuning efficiency.

1 INTRODUCTION

With the expanding complexity of machine learning (ML)
models, there is a significant surge in the demand for Hy-
perparameter Optimization (HPO). This surge is not only

in pursuit of model prediction accuracy but also for ensur-
ing the computational efficiency and robustness of mod-
els in real-world scenarios, which leads to the optimiza-
tion task of finding the trade-off hyperparameter settings
among multiple competing objectives f = {f1, . . . , fk},
known as Multi-Objective Hyperparameter Optimization
(MOHPO) [Eggensperger et al., 2021, Karl et al., 2023,
Morales-Hernández et al., 2023]. While MOHPO focuses
solely on tuning hyperparameters x, we extend this frame-
work at its core by jointly tuning x and training epochs t,
i.e., effectively optimizing objectives f(x, t), to uncover
superior trade-offs that emerge during iterative training (see
Section 2 for more details).

Addressing HPO has long been challenging as it involves
resource-intensive model training that prevents optimizers
from exhaustively exploring the hyperparameter space. In
this context, Bayesian Optimization (BO) has become in-
creasingly popular [Srinivas et al., 2009, Bergstra et al.,
2011, Lévesque et al., 2016, Foldager et al., 2023]. This
approach builds a probabilistic surrogate model, e.g., Gaus-
sian Process (GP) [Rasmussen and Williams, 2005], for the
objective and samples a new solution by maximizing an
acquisition function formulated by the prediction and un-
certainty of the surrogate model. Nevertheless, traditional
BO methods require observing the model performance that
is fully trained after a maximum number of epochs, which
could potentially lead to a waste of computational resources
if early indications suggest sub-optimal performance. In
general, the training behind many ML models is an itera-
tive learning procedure where a gradient-based optimizer
updates the model epoch by epoch. This procedure allows
users to delineate a learning curve for any hyperparameter
setting by epoch-wisely monitoring the intermediate model
performance (see Figure 1(A) and (B)), benefiting from
which prior research has introduced a set of epoch-efficient
single-objective BO methods [Swersky et al., 2014, Dai
et al., 2019, Nguyen et al., 2020, Belakaria et al., 2023] to
avoid computational waste.

The concept of leveraging iterative learning to achieve more

0 1 2 3 4 5 6 7 8 9 10 11
Epoch t

0.3

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

Lo
ss

 L
(x

,t) L(x1, 1)

L(x1, 10)

(A) Learning Curve for Loss

x1
x2
x3

0 1 2 3 4 5 6 7 8 9 10 11
Epoch t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 C
os

t
C

(x
,t)

1e4

C(x1, 1)

C(x1, 10)

(B) Learning Curve for Cost

x1
x2
x3

2 4 6 8
Minimizing Objective 1 - Training Cost C(x, t) 1e3

0.3

0.4

0.5

0.6

0.7

0.8

M
inim

izing O
bjective 2 - V

alidation Loss L(x,t)

[C(x1, 1), L(x1, 1)]

[C(x1, 2), L(x1, 2)]

[C(x1, 3), L(x1, 3)]

[C(x1, 10), L(x1, 10)]

Observations on
Trajectory of x1
from t = 7 to 10

Observations on
Trajectory of x1
from t = 7 to 10

Observations on
Trajectory of x2
from t = 5 to 8

Observations on
Trajectory of x2
from t = 5 to 8

Observations on
Trajectory of x3
from t = 1 to 6

Observations on
Trajectory of x3
from t = 1 to 6

(C) Trajectory for Loss vs. Cost

Trajectory of x1

Trajectory of x2

Trajectory of x3

Partially-Trained
Model Performance
Fully-Trained
Model Performance
Trade-Offs over
Trajectories

2 4 6 8
Minimizing Objective 1 - Training Cost C(x, t) 1e3

0.3

0.4

0.5

0.6

0.7

0.8

M
inim

izing O
bjective 2 - V

alidation Loss L(x,t)Contributed
Segment of x
Contributed

Segment of x
Non-Contributed

Segment of x
Non-Contributed

Segment of x

Ideal Stopping Position

(D) Trajectory Improvement and Early Stopping

Trajectory of x1

Trajectory of x2

Trajectory of x3

Trajectory of new x
Trade-Offs over
Trajectories
Become Dominated
 by New Trajectory

Figure 1: (A) and (B): Learning curves of three hyperparameter settings x1, x2, and x3 ∈ Rd; (C): Trajectories of x1, x2,
and x3 and trade-offs over their model performances; (D) Trajectory-based improvement and early stopping when a new
x′ ∈ Rd is sampled. L(x, t) (or C(x, t)) denotes the validation loss (or cost) of training with x ∈ Rd for t epochs. The
maximum number of epochs is 10.

granular control over training epochs can also be extended to
MOHPO. Existing methods in multi-fidelity MOHPO [Be-
lakaria et al., 2020, Schmucker et al., 2021] offer a relevant
perspective by treating training epoch as an auxiliary pa-
rameter and aim to use the information obtained from lower
fidelities (i.e., fewer training epochs) to facilitate the search
for the trade-offs at the highest fidelity (i.e., the maximum
training epoch). The key assumption underlying this stream
of research is that higher fidelity levels generally lead to
more desirable model performance. However, this assump-
tion does not always hold in the context of ML training. For
example, in the case of overfitting, a model trained for fewer
epochs can outperform a fully-trained model, making it the
desired outcome. This further leads to a critical question:
does a trade-off among multiple objectives emerge when
the number of training epochs is fewer than the maximum
allowed?

Figure 1(C) depicts the objective space of an HPO with two
objectives (training cost and validation loss), where each
d-dimensional hyperparameter setting x is trained for up to
10 epochs, with its fully-trained model performance denoted
by a star symbol. To better capture these dynamics, we ex-
tend the concept of the learning curve by introducing the
notion of a “trajectory” to describe the evolution of model
performance across epochs during the iterative training pro-
cedure. For instance, the trajectory of x1 ∈ Rd (denoted by
the pink curve) consists of its model performances observed
from epoch t = 1 to 10. The emergence of trajectories high-
lights the limitation of multi-fidelity MOHPO in that their
optimality is limited to fully-trained model performances
only, ignoring a large amount of partially-trained model
performances (t < 10) that can also contribute to trade-offs.

To address the aforementioned limitation, in this study, we
propose to jointly tune the hyperparameter setting and train-

ing epoch in the context of iterative learning, and formu-
late a novel Enhanced MOHPO (i.e., EMOHPO) whose
optimization target is to uncover the trade-offs across all
partially- and fully-trained model performances, or equiv-
alently, the trade-offs over trajectories (depicted by the
shaded points in Figure 1(C)). In fact, one important appli-
cation of EMOHPO is to avoid the overfitting issue. The
trade-offs of EMOHPO provide valuable insights for deter-
mining how many epochs should be allocated to achieve
better generalization. Additionally, in scenarios where ML
models are periodically retrained on similar datasets and
need rapid deployment, such as recurrent data analyst jobs
in the cloud [Casimiro et al., 2020, Mendes et al., 2020]
and data drift detection in self-adaptive systems [Mahadevan
and Mathioudakis, 2024, Casimiro et al., 2024], the decision
maker can benefit from the trade-offs of EMOHPO to gain a
better understanding of the optimal hyperparameter setting
and training epoch to strike the desired balance between
objectives while avoiding repetitive and costly tuning for
each retraining cycle.

Meanwhile, it is important to note that while the training
epoch in EMOHPO can be interpreted as a fidelity level, it
is explicitly treated as a decision variable. This distinction
makes the optimization methods designed for multi-fidelity
MOHPO incompatible with EMOHPO, as they seek op-
timal hyperparameter settings at the highest fidelity level
only and do not take training epoch as part of the decision-
making process. To this end, we introduce a Trajectory-
based MOBO (i.e., TMOBO) algorithm, which is designed
to fully leverage the trajectory information for sequential
sampling and granular control over training epochs. More
specifically, TMOBO samples a hyperparameter setting in
each iteration, as is common in BO methods; however, we
introduce a specialized acquisition function that accounts
for the contribution of the entire trajectory of model per-

formances, instead of any single one of them, associated
with a hyperparameter setting. This extension is crucial as
each trajectory may contribute to multiple trade-offs (illus-
trated in Figure 1(C)). Then, during the iterative learning of
the sampled hyperparameter setting, TMOBO epoch-wisely
updates predictions for the unobserved segment of the tra-
jectory and decides on termination to improve algorithm
efficiency. The proposed early stopping mechanism addi-
tionally ensures that the iterative learning continues until
sufficient trade-offs along the trajectory have been collected,
making it significantly different from the stopping criteria
used in previous studies.

Contributions: (1) For the first time we formulate
EMOHPO to account for the evolution of model perfor-
mance across epochs and hence uncover trade-offs over
trajectories which are often overlooked in multi-fidelity
MOHPO studies. (2) We introduce a trajectory-based
MOBO method to solve EMOHPO. The proposed method
samples the next hyperparameter setting using a novel ac-
quisition function that encapsulates trajectory information
and determines when to terminate the iterative learning
by a conservative early stopping mechanism. (3) Through
comprehensive experiments on synthetic simulations and
machine learning benchmarks, we demonstrate the effective-
ness and efficiency of our method in identifying trade-offs
while conserving computational resources.

2 ENHANCED MULTI-OBJECTIVE
HYPERPARAMETER OPTIMIZATION

Throughout the paper, we consider the sequential minimiza-
tion of an Enhanced Multi-Objective Hyperparameter Opti-
mization problem (EMOHPO) formulated as follows,

min
(x,t)∈X×T

f(x, t) = [f1(x, t), . . . , fk(x, t)] , (1)

where f comprises k objective functions, each of which
represents a distinct performance measure of an ML model,
e.g., validation loss and training cost. Each x denotes a d-
dimensional hyperparameter setting within a compact set
X ⊂ Rd, and t ∈ T = {1, . . . , tmax} the number of epochs
used for training. Due to the iterative learning procedure,
querying any feasible pair (x, t) in EMOHPO requires op-
timizers to sequentially observe the noisy performances
y(x, t′) = [y1(x, t

′), . . . , yk(x, t
′)] for each epoch t′ = 1

to t, where yi(x, t
′) = fi(x, t

′) + εi and εi ∼ N (0, σ2
i)

with variance σ2
i for any i ∈ {1, . . . , k}. (For simplicity,

we adopt the common assumption that the noise terms are
i.i.d. across both hyperparameter settings and epochs [Dai
et al., 2019, Klein et al., 2022].) In order words, querying
(x, t) results in a sequence of t queries from (x, 1) to (x, t),
which necessitates the design of a more sample-efficient
strategy to avoid redundant queries of the same hyperpa-
rameter setting with different epoch numbers, especially in
decreasing order.

In the context of iterative learning, each objective function
fi(x, ·) with fixed hyperparameter setting x is generally
viewed as a learning curve. However, a learning curve only
allows for the analysis of one performance measure at a
time. To comprehensively analyze multiple performance
measures, we introduce the concept of trajectory for any
hyperparameter setting x as the collection of all noise-free
model performances during the training with x, i.e.,

Trj(x) := {f(x, t)}tmax

t=1 = {[f1(x, t), . . . fk(x, t)]}tmax

t=1 .

A trajectory inherently encapsulates the information pro-
vided by multiple learning curves. For notational conve-
nience, let z = (x, t) and Z = X × T. We then adopt the
standard definitions of Pareto optimality for multi-objective
minimization problems.

Definition 1. A solution f(z) dominates another solution
f(z′), denoted by f(z) ≺ f(z′), if and only if (1) fi(z) ≤
fi(z

′) for all i ∈ {1, . . . , k} and (2) fj(z) < fj(z
′) for

some j ∈ {1, . . . , k}.

Definition 2. The Pareto-optimal set of Z, denoted by Z∗, is
composed of z ∈ Z whose f(z) is not dominated by f(z′)
of any other z′ ∈ Z, i.e., Z∗ = {z ∈ Z | ∄z′ ∈ Z,f(z′) ≺
f(z)}. The corresponding set of solutions F ∗ = {f(z) |
z ∈ Z∗} is referred to as Pareto-optimal front.

As per Definitions 1 and 2, minimizing the EMOHPO in
(1) is equivalent to locating the Pareto-optimal set over the
entire search space, except that this space is composed of
all feasible pairs of hyperparameter settings and training
epochs. This aligns with the purpose of this study of finding
the trade-offs over trajectories.

Finally, it is important to highlight that, beyond incorpo-
rating iterative learning, EMOHPO fundamentally differen-
tiates itself from multi-fidelity MOHPO by including the
training epoch as a decision variable. Compared to (1), multi-
fidelity MOHPO confines its search to trade-offs among the
fully-trained model performances (at the highest fidelity)
only and can be expressed as,

min
x∈X

f(x, tmax) = [f1(x, tmax), . . . , fk(x, tmax)] , (2)

where the training epoch tmax is a fixed constant. In contrast,
EMOHPO broadens the search domain from X × {tmax}
in multi-fidelity MOHPO to X × T and thus accounts for
all observations on the trajectories. As a consequence, the
Pareto-optimal front of EMOHPO is always superior to or
at least equivalent to that of multi-fidelity MOHPO because
the former additionally captures trade-offs that may emerge
during iterative learning (see Figure 1(C)). This broader
perspective enables more efficient decision-making in hy-
perparameter tuning, particularly for scenarios requiring
model retraining.

3 RELATED WORK IN BAYESIAN
OPTIMIZATION

Bayesian Optimization for Iterative Learning: By appro-
priately characterizing the learning curve, epoch-efficient
BO aims to predict the fully-trained model performance
based on a partially observed learning curve to avoid in-
effective epochs of training. Freeze-Thaw BO [Swersky
et al., 2014] introduces GP with an exponential decaying
kernel to model the validation loss over time and allows
the training to be paused and later resumed under hyperpa-
rameter settings that show promise. BOHB [Falkner et al.,
2018], a BO extension of HyperBand [Li et al., 2018], allo-
cates training epochs through random sampling and utilizes
successive halving to eliminate suboptimal hyperparameter
settings. Instead of dynamically allocating computational
budget among hyperparameter settings, BO-BOS [Dai et al.,
2019] combines BO with Bayesian optimal stopping to early
stop the training with a hyperparameter setting predicted
to yield poor model performance. Similarly, both BOIL
[Nguyen et al., 2020] and BAPI [Belakaria et al., 2023]
incorporate strategies for early stopping with a particular
focus on considering the learning curve of the training cost.
BOIL integrates the cost into the acquisition function to
prioritize cost-effective ML training procedures, whereas
BAPI imposes a fixed total budget over cost. Unfortunately,
there has been no epoch-efficient multi-objective BO.

Multi-Objective Bayesian Optimization: Many MOBO
methods have been developed for multi-objective HPO by
extending the vanilla BO framework. These methods gen-
erally build a surrogate model for each objective to min-
imize the necessity of actual resource-intensive objective
evaluations, and they differ in the implementation of acqui-
sition function. A straightforward approach is to convert
a multiple-objective problem into a single-objective prob-
lem through techniques like random scalarization, which
allows a direct application of standard acquisition func-
tions. For example, ParEGO [Knowles, 2006] and TS-TCH
[Paria et al., 2020] respectively apply Expected Improve-
ment (EI) [Jones et al., 1998] and Thompson Sampling (TS)
[Thompson, 1933]. However, this approach often encoun-
ters limitations in adequately exploring the Pareto-optimal
front. Therefore, acquisition functions biased towards the
Pareto-optimal front, such as Expected Hypervolume Im-
provement (EHVI) [Emmerich et al., 2006], have been de-
signed. Despite the effectiveness and popularity of EHVI,
its computational intensity presents a significant challenge
in the development of BO methods [Hupkens et al., 2015].
More recently, qEHVI [Daulton et al., 2020] and qNEHVI
[Daulton et al., 2021] have extended EHVI for parallel multi-
point selection and batch optimization through Monte Carlo
(MC) integration [Emmerich et al., 2006], and they have
demonstrated notable empirical performance. Alternatives
to EHVI can be found in [Hernández-Lobato et al., 2016,
Belakaria et al., 2019, Suzuki et al., 2020, Yang et al., 2022,

Daulton et al., 2022].

Multi-Fidelity Bayesian Optimization: Multi-fidelity BO
has a rich research history [Kandasamy et al., 2016, 2017,
Sen et al., 2018, Wu et al., 2020, Fan et al., 2024] and it facil-
itates the optimization of fully-trained model performance
by utilizing its low-fidelity approximations, which can be
obtained either by using a partial training dataset or by lim-
iting the number of training epochs. Although multi-fidelity
BO shares similarities with epoch-efficient BO, it predeter-
mines the fidelity level before initiating the iterative learning
procedure and therefore ignores the observations during the
procedure. For example, FABOLAS [Klein et al., 2017]
considers the data subset size as the fidelity level and jointly
selects the hyperparameter setting and the data subset for
model training. BOCA [Kandasamy et al., 2017] expands
the discrete fidelity space to continuous for a more general
setting. Multi-fidelity MOBO has also been studied in the
literature [Belakaria et al., 2020, Schmucker et al., 2021];
however, it is not applicable to solving EMOHPO as defined
in (1). This is because multi-fidelity MOBO treats the train-
ing epoch merely as an additional degree of freedom, rather
than part of the decision variables. Consequently, its objec-
tive remains focused on solving multi-fidelity MOHPO as
defined in (2).

4 GAUSSIAN PROCESS FOR
TRAJECTORY PREDICTION

Assume a black-box function f is sampled from a GP de-
fined by a constant zero mean function and a kernel function
K(z,z′). According to GP theory, the prior distribution
over any finite set of n inputs Z = {zi}ni=1 is a multivariate
Gaussian distribution,

f(Z) ∼ N (0,K(Z,Z)),

where matrix K(Z,Z) ∈ Rn×n with [K(Z,Z)]i,j =
K(zi, zj). Conditioning on the corresponding observations
Y = {yi}ni=1 at Z, the posterior predictive distribution at
any input z ∈ Z is also a Gaussian distribution given by

f(z) | Z, Y ∼ N (µ(z),Σ(z)) , (3)

with

µ(z) = K(z, Z)
[
K(Z,Z) + σ2I

]−1
Y,

Σ(z) = K(z, z)−K(z, Z)
[
K(Z,Z) + σ2I

]−1
K(Z,z),

where K(z, Z) = K(Z,z)T ∈ Rn with [K(z, Z)]i =
K(z,zi). Refer to [Rasmussen and Williams, 2005] for a
comprehensive review of GPs. In each iteration of the vanilla
BO method, a new input z′ ∈ Z is selected by optimizing
an acquisition function derived from the predictive mean µ
and uncertainty Σ. Upon observing y′ at z′, BO advances
to the next iteration with the updated input and observation
sets Z = Z ∪ {z′} and Y = Y ∪ {y′}.

As each input z = (x, t), we define the kernel func-
tion K ((x, t), (x′, t′)) as the product of a standard kernel
K(x,x′) over hyperparameter setting and a temporal kernel
K(t, t′) over epochs, with the latter capturing relationships
across different epochs for a fixed hyperparameter setting.
For instance, Swersky et al. [2014] proposed an exponen-
tial decaying kernel to account for the validation loss that
exponentially decreases over t. Belakaria et al. [2023] used
a linear kernel when modeling learning curves related to
training costs. Given that learning curves for different per-
formance measures may exhibit different characteristics,
in this study we employ specific temporal kernels if their
behavior is known a prior. See Appendix B.1 for an illus-
trative example of GP prediction. By fitting a GP model for
each objective function fi, i ∈ {1, . . . , k}, we can predict
the trajectory Trj(x) for any hyperparameter setting x and
further improve the accuracy of its trajectory prediction by
continuously monitoring the changes in model performance
during iterative learning.

5 TRAJECTORY-BASED BAYESIAN
OPTIMIZATION APPROACH

Now we introduce an epoch-efficient algorithm named
Trajectory-based Multi-Objective Bayesian Optimization
(i.e., TMOBO) for solving the EMOHPO as defined in
(1). This algorithm is particularly designed to efficiently
navigate the trade-off model performances across multiple
epochs by leveraging the insights obtained from trajectories.
At its core, TMOBO features a trajectory-based acquisition
function to sample hyperparameter settings and a trajectory-
based early stopping mechanism to determine the number
of epochs to train with each hyperparameter setting. The
pseudo-code of TMOBO is presented in Algorithm 1.

We initiate the algorithm by generating a set of uniformly
distributed hyperparameter settings X = {xi}n0

i=1. The
training datasets, including the set of query pairs Z and
the set of noisy multi-objective observations Y , are then
obtained by training the ML model with each x ∈ X for
up to tmax epochs. Due to the unavailability of noise-free
objective values, we consider the front F of the noisy ob-
servations in Y as an approximate representation of the
Pareto-optimal front, which is continuously updated with
each new observation.

Each iteration of TMOBO is centered around a two-level
sampling strategy where a hyperparameter setting x′ and its
corresponding number of epochs t′ are determined succes-
sively. The iteration starts with fitting µ = [µ1, . . . , µk] and
Σ = [Σ1, . . . ,Σk], with µi and Σi representing the predic-
tive mean and uncertainty for the i-th objective function. An
unvisited setting x′ is then selected by maximizing an ac-
quisition function that measures the potential improvement
made by the trajectory of a hyperparameter setting as if it
were to be fully trained. Thereafter, we train the ML model

Algorithm 1 Framework of TMOBO
Input: Initial sets of inputs Z and observations Y , and initial
Pareto-optimal front F identified from Y .

1: while computational budget has not been exceeded do
2: Fit k GPs with µ and Σ based on sets Z and Y .
3: Sample a new x′ by maximizing the TEHVI acqui-

sition function.
4: Initialize Z ′ ← ∅ and Y ′ ← ∅.
5: for t′ = 1 to tmax do
6: Continue model training for the t′-th epoch to

obtain observation y(x′, t′).
7: Let Z ′ ← Z ′ ∪ {(x′, t′)} and Y ′ ← Y ′ ∪
{y(x′, t′)} and update front F .

8: Fit k GPs with µ and Σ based on sets Z ∪ Z ′

and Y ∪ Y ′.
9: if EarlyStopping(x′, t′,µ,Σ, F) triggered then

10: Break;
11: end if
12: end for
13: Augment Z ′ and Y ′ into Z and Y respectively.
14: end while

with x′, monitor the model performance, and predict its fu-
ture trajectory epoch by epoch. Once the criterion for early
stopping is met, the training for x′ is terminated to conserve
the computational budget. Finally, TMOBO augments the
primary datasets Z and Y by selecting the most informative
observations associated with x′.

5.1 TRAJECTORY-BASED ACQUISITION
FUNCTION

As per Definition 3, Hypervolume (HV) evaluates the quality
of a set of solutions in the objective space without any prior
knowledge of actual Pareto-optimal front. The maximization
over HV yields a set of solutions that are converged to
and well-distributed along the Pareto-optimal front, which
makes HV one of the most popular indicators used in multi-
objective optimization. As per Definition 4, Hypervolume
Improvement (HVI) is built upon HV and quantifies the
increase in HV as the gain brought by a solution.

Definition 3. The Hypervolume of a set of solutions F ⊂
Rk is the k-dimensional Lebesgue measure λ of the sub-
space dominated by F and bounded from above by a
reference point r ∈ Rk, denoted by HV (F | r) =
λ(∪y∈F [y, r]), where [y, r] denotes the hyper-rectangle
bounded by y and r.

Definition 4. The Hypervolume Improvement of a solution
y′ with respect to a set of solutions F and a reference point
r ∈ Rk is the increase in hypervolume caused by including
y′ in set F , denoted by HV I(y′ | F, r) = HV (F ∪ {y′} |
r)−HV (F | r).

Given that the objective values of any out-of-sample z are
unknown ahead of time, the direct computation of HVI for
z is infeasible. Therefore, Expected Hypervolume Improve-
ment (EHVI) [Zitzler et al., 2007, Daulton et al., 2020]
has been used in the BO framework to estimate the gain
of z by taking the expectation of HVI over the predictive
distribution of its objective values, i.e.,

EHV I(z | F, r) = E [HV I(f(z) | F, r)]

=

∫
HV I(f(z) | F, r)P(f(z) | Z, Y)df .

Recall that in our study each z is composed of a hyperpa-
rameter setting x and a specific epoch number t. Obviously,
EHVI determines a hyperparameter setting x purely based
on its model performance after t epochs without considering
any valuable insights from the past observed or future po-
tential model performance on the trajectory Trj(x). Mean-
while, due to its joint sampling of hyperparameter setting
and training epochs, EHVI ignores the fact that model per-
formances at z1 = (x, t1) and z2 = (x, t2) can be observed
in a single query in EMOHPO. In order words, this means
that redundant model training with the same hyperparame-
ter setting is allowed, which can cause inefficiencies in the
optimization of EMOHPO.

Lemma 1. Let X∗
Trj denote the set of hyperparameter set-

tings that belong to the Pareto-optimal set of EMOHPO, i.e.,
X∗

Trj := {x ∈ X | ∃t ∈ T, ∄(x′, t′) ∈ X× T,f(x′, t′) ≺
f(x, t)}. Then, the Pareto-optimal set of EMOHPO is equiv-
alent to the Pareto-optimal set of X∗

Trj × T.

The above lemma (see proof in Appendix A) inspires the
idea of solving EMOHPO by identifying the set X∗

Trj ,
which consists of hyperparameter settings whose trajec-
tories are “best”, or more precisely, contribute to Pareto
optimality, rather than directly searching for Z∗. By focus-
ing on X∗

Trj and subsequently observing the trajectory of
each x∗ ∈ X∗

Trj , we effectively reduce the search space
to a lower-dimensional domain, allowing us to determine
x independently of t. Within the BO framework, it can be
achieved by iteratively finding the trajectory that makes the
most significant improvement. To this end, we introduce the
Trajectory-based EHVI (TEHVI) that operates over x only
and wraps t into the trajectory Trj(x),

TEHV I(x | F, r) := E [HV I (Trj(x) | F, r)]

= E
[
HV I

({
f(x, t)

}tmax

t=1
| F, r

)]
.

By maximizing TEHVI across the hyperparameter space,
we attempt to locate the hyperparameter setting that has the
best trajectory regarding the current front F . However, it is
worth noting that TEHVI is equivalent to the joint EHVI of
multiple positions along a trajectory, which has no known
analytical form and becomes particularly complicated when

tmax is large. Therefore, following the previous studies
on the fast computation of EHVI [Emmerich et al., 2006,
Daulton et al., 2020], we resort to the Monte Carlo (MC)
integration for approximating TEHVI, i.e.,

TEHV I(x | F, r) ≈ 1

M

M∑
m=1

HV I
(
T̂ rjm(x) | F, r

)
,

where T̂ rm(x) := {f̂m(x, t)}tmax
t=1 denotes a predictive tra-

jectory of x sampled from the joint posterior of GPs and
M denotes the total number of samples. To further alleviate
the computational burden, we adopt the candidate search
strategy that maximizes the approximated TEHVI over a
fixed-size set of candidate hyperparameter settings. Each
candidate is generated by adding a Gaussian perturbation
to the evaluated hyperparameter setting whose trajectory
has contributed to the current front the most. It has been
shown that such a candidate search guarantees asymptotic
convergence to the global optimum [Regis and Shoemaker,
2007, Wang et al., 2023]. More importantly, it enables the si-
multaneous computation of TEHVI for multiple candidates
in a batch to significantly improve efficiency. Please refer to
Appendix B for more details.

5.2 EARLY STOPPING AND AUGMENTATION

The Pareto-optimal front of EMOHPO is generally com-
posed of trajectory segments of different hyperparameter
settings because trajectories can intertwine within the ob-
jective space. As illustrated by Figure 1(D), the trajectory
of a newly sampled hyperparameter setting x′ is split into
contributed and non-contributed segments where the former
pushes the front forward while the latter falls into the area
already dominated by the front. Intuitively, during the itera-
tive learning procedure, as we move from the contributed
towards the non-contributed segment, the procedure should
be immediately terminated at the end of the contributed
segment, i.e., the ideal stopping position.

However, the complete trajectory Trj(x′) cannot be ob-
served until the ML model has been fully trained with the
hyperparameter setting x′. To this end, we estimate a con-
servative stopping epoch by considering both predictive
mean and uncertainty associated with the positions along
the trajectory,

t∗ = sup
{
t ∈ T | µ(x′, t)− β

1
2Σ(x′, t) ≺ y, ∃y ∈ F

}
,

where β is a predetermined constant controlling the confi-
dence level. Inspired by the Lower Confidence Bound (LCB)
[Srinivas et al., 2009], the conservative stopping epoch is the
maximum number of epochs after which any future model
performance is unlikely to improve the current front with
a high probability. As the iterative learning procedure pro-
ceeds by epoch, the trajectory prediction is progressively
updated based on the new observations on Trj(x′) and so is

the conservative stopping epoch. The iterative learning pro-
cedure terminates once the current training epoch t′ exceeds
the conservative stopping epoch t∗.

Consequently, at the end of each iteration of TMOBO,
we obtain the temporary datasets Z ′ = {(x′, t)}t′t=1 and
Y ′ = {y(x′, t)}t′t=1, where the actual stopping epoch t′

can take any value from {1, . . . , tmax}. However, retaining
all new observations in Z ′ and Y ′ for training GP mod-
els in subsequent iterations is inefficient, especially when
tmax is large. Following the active data augmentation used
in [Nguyen et al., 2020, Belakaria et al., 2023], we opt to
augment only a subset of Z ′ to the primary dataset Z by
sequentially selecting an input (x′, t) ∈ Z ′ at which the
GP predictive uncertainty is highest. As more than one GP
models are used to approximate the objectives, similar to the
scenario considered in [Belakaria et al., 2023], the model
uncertainty of (x′, t) is computed as the sum of normalized
variances predicted by each GP model at (x′, t). Through
this method, we can effectively control the increase in the
size of the training set while ensuring the accuracy and
training efficiency of GP models.

6 NUMERICAL EXPERIMENTS

In this section, we conduct a comprehensive empirical anal-
ysis of the performance of TMOBO on several synthetic
and real-world benchmark problems that are formulated
as EMOHPO. Recall that EMOHPO is essentially a multi-
objective optimization problem defined over the combined
space of hyperparameter settings and training epochs. There-
fore, we compare TMOBO with several state-of-the-art
MOBO methods, namely ParEGO [Knowles, 2006], qEHVI
[Daulton et al., 2020], and qNEHVI [Daulton et al., 2021].
Notably, as discussed in Sections 1 and 3, we exclude multi-
fidelity optimization algorithms from the comparison be-
cause they do not consider the possibility that earlier epochs
(or lower fidelity levels) could contribute to Pareto-optimal
set or front. As a result, these methods are not applicable
to solving EMOHPO. To ensure a fair comparison, we fur-
ther enhance selected MOBO methods by collecting all the
observations {y(x, 1), . . . ,y(x, t)} into their results when
sampling at the pair (x, t). For clarity, in the following
discussion, we use ParEGO-T to represent the enhanced ver-
sion of ParEGO, and similarly for qEHVI-T and qNEHVI-T.

Considering that all algorithms are stochastic, we perform
20 independent trial runs of each algorithm on each test prob-
lem. The logarithm of the HV difference between the front
found by an algorithm and the true Pareto-optimal front
is computed to measure the performance [Daulton et al.,
2020, 2021]. Since the true Pareto-optimal front is generally
unknown in practice, we approximate it by aggregating all
observed solutions across all algorithms and trials and ex-
tracting the non-dominated set to form an empirical Pareto
front. Although the empirical front may not fully capture

the true Pareto front, this ensures an unbiased comparison,
as no algorithm is favored a priori, and each method’s per-
formance is evaluated relative to the best-known solutions
discovered collectively. Similarly, the reference point is set
as the least favorable solution with each dimension corre-
sponding to the worst observed value of an objective so that
it upper bounds all observations in the objective space for
HV computation. Further details on algorithm configura-
tions and corresponding sensitivity analyses are provided in
Appendices C.1 and D, respectively. In the rest of this sec-
tion, we showcase and analyze the main numerical results
of this study but refer interested readers to Appendix E for
detailed results and additional experiments.

6.1 SYNTHETIC SIMULATIONS

The numerical experiments start with running TMOBO
and alternative algorithms on a set of synthetic prob-
lems, through which we assess TMOBO’s capability to
leverage the trajectory information under different trajec-
tory characteristics. Each synthetic problem (with objec-
tives [f1(x, t), . . . , fk(x, t)]) is formulated as an epoch-
dependent counterpart of a standard multi-objective bench-
mark problem (with objectives [f̄1(x), . . . , f̄k(x)]), where
fi(x, t) = f̄i(x) · gi(t) and curve function gi(t) emulates
the iterative learning procedure. This construction approach
enables us to diversify the trajectory characteristics of a
synthetic problem by specifying the shape of gi(t) associ-
ated with each objective. In this study, we define the curve
function gi(t) as either monotonic (M), quadratic (Q), or
periodic (P) and constrain gi(t) to be positive to preserve the
challenges posed by the original multi-objective benchmark
problem (see Appendix C.2).

We select five widely used multi-objective benchmark prob-
lems from ZDT [Zitzler et al., 2000] and DTLZ [Deb et al.,
2002] test suites with d = 5 and add Gaussian noise with
a standard deviation of 1% of the range of each objective.
Each subplot of Figure 2 depicts the box plots over four
synthetic problems with different trajectory characteristics
derived from the same multi-objective benchmark. For in-
stance, “ZDT1(M-P)” refers to the synthetic test problem
derived from ZDT1 with the first objective multiplied by the
monotonic curve function and the second objective by the
periodic curve function. It can be observed that with a maxi-
mum budget of 150 iterations (or the number of times the
iterative learning procedure is executed), TMOBO consis-
tently achieves the lowest HV difference among all synthetic
problems, and the solutions obtained by TMOBO generally
dominate a large proportion of those obtained by alternative
algorithms that do not exploit trajectory information. After
being enhanced by trajectory observations, the performance
of two HV-based methods, qNEHVI-T and qEHVI-T, is
comparable to TMOBO on ZDT2(M-M) and ZDT2(M-Q)
while ParEGO-T has the worst performance. These findings

M - M' M - Q M - P Q - P
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

g
HV

 D
iff

ZDT1

M - M' M - Q M - P Q - P
0.0

0.2

0.4

0.6

0.8

1.0

ZDT2

M - M' M - Q M - P Q - P
0.0

0.2

0.4

0.6

0.8

1.0

DTLZ1

M - M' M - Q M - P Q - P
0.0

0.2

0.4

0.6

0.8

1.0

DTLZ2

M - M' M - Q M - P Q - P
0.0

0.2

0.4

0.6

0.8

1.0

DTLZ7

TMOBO qNEHVI-T qEHVI-T PAREGO-T

Figure 2: Box plots for 20 problems derived from ZDT1, ZDT2, DTLZ1, DTLZ2, and DTLZ7. Each algorithm runs for 20
independent trials. The logarithm of Hypervolume difference is computed at the end of each trial and is normalized in [0, 1].

0 1 2 3 4 5 6

Time
1e3

1.0

1.2

1.4

1.6

1.8

2.0

Lo
g

HV
 D

iff

blood-transfus

0.0 0.5 1.0 1.5 2.0 2.5

Time
1e4

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

higgs

0 2 4 6 8

Time
1e3

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
jungle-chess-2pcs

0 1 2 3 4

Time
1e3

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

kc1

0 2 4 6

Time
1e3

0.75

1.00

1.25

1.50

1.75

2.00

2.25

bank-marketing

TMOBO qNEHVI-T qEHVI-T PAREGO-T TMOBO-nES

Figure 3: Average log Hypervolume difference against time for each algorithm on five different hyperparameter tuning tasks.
Each algorithm runs for 20 independent trials. The shaded region indicates two standard errors of the mean.

indicate that the trajectory information is beneficial to the
optimization of EMOHPO and that TMOBO is able to main-
tain its advantages when processing trajectories with even
complicated characteristics.

6.2 HYPERPARAMETER TUNING BENCHMARKS

Five different Multi-Layer Perceptron (MLP) hyperparame-
ter tuning tasks obtained from LCBench [Zimmer et al.,
2021] are first utilized to examine the performance of
TMOBO, where each task aims to optimize five hyper-
parameters (i.e., learning rate, momentum, weight decay,
max dropout rate, and max number of units) by minimiz-
ing validation loss and training cost simultaneously on a
specific training dataset. Following previous work [Falkner
et al., 2018, Martinez-Cantin, 2018, Daxberger et al., 2019,
Perrone et al., 2018], we utilize the surrogate version of
LCBench implemented in YAHPO Gym [Pfisterer et al.,
2022] and HPOBench [Eggensperger et al., 2021], where
the performance metrics (i.e., objectives) are approximated
by a high-quality surrogate. This approach avoids biased im-
plementation errors, enables extensive testing, and ensures
reproducibility across any environments (see Appendix C.2).
On each dataset, we observe epoch-wise model performance
for any feasible hyperparameter settings up to 50 epochs.

Figure 3 compares algorithm performance over 20 inde-
pendent replications, measured against cumulative model
training time (excluding algorithm overhead) since model

training is generally more computationally expensive and
dominates hyperparameter optimization costs. This ensures
a clearer understanding of how optimization efforts scale
with the model complexity, thereby facilitating a more in-
sightful comparison across different models and optimiza-
tion methods. Besides the enhanced MOBO methods, we
also implement a variant of TMOBO, named TMOBO-nES,
which does not have an early stopping mechanism and trains
each sampled setting for the maximum number of epochs.
We note that TMOBO and TMOBO-nES spend more time
in initialization as they train the initial settings thoroughly to
capture the trajectory characteristics. Despite the initializa-
tion, given the same time budget, TMOBO achieves signifi-
cantly lower HV difference than the other enhanced MOBO
methods across all tasks. Meanwhile, the average perfor-
mance of TMOBO surpasses TMOBO-nES, which shows
the advantage of using an early stopping mechanism. While
TMOBO-nES aims to learn better about trajectory char-
acteristics through full model training, the early stopping
mechanism enables TMOBO to save effort by terminating
non-contributed training to explore more regions of interest.

We further apply TMOBO, TMOBO-nES, and qNEHVI-
T to a more challenging CNN-based task: tuning Mo-
bileNetV2 [Sandler et al., 2018] on CIFAR-10 image dataset
by optimizing learning rate, momentum, weight decay, batch
size, and training epochs. However, unlike LCBench exper-
iments, here we measure total wall-clock time, including
CNN training and algorithm overhead. Figure 4 shows that

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Wall-Clock Time (×104 sec)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Lo
g

HV
 D

iff
CIFAR10

TMOBO-nES
TMOBO
qNEHVI-T

Figure 4: Average log HV difference against wall-clock time
for each algorithm on the hyperparameter tuning task of
MobileNetV2 on the CIFAR-10 dataset. The shaded region
indicates two standard errors of the mean.

after 35,000 seconds, both TMOBO and TMOBO-nES sur-
pass qNEHVI-T in HV difference, with TMOBO converging
faster early on due to early stopping. Though TMOBO-nES
eventually matches TMOBO’s performance, the latter’s effi-
ciency in the initial phase highlights its practical advantage
for computationally expensive tasks. Given the inherent
complexity of this CNN-based task, we believe these results
provide strong evidence for the scalability and practical
applicability of TMOBO.

7 CONCLUSIONS

In this study, we consider multi-objective hyperparameter
optimization with iterative learning procedures. Our interest
centers on how trajectory information affects the distribution
of trade-offs and on how to leverage this information to
perform an effective and efficient search for trade-offs. To
this end, we extend the conventional MOHPO problem to
EMOHPO by including the training epoch as an explicit
decision variable so as to reveal the trade-offs that may
occur along trajectories. These frequently overlooked trade-
offs play a beneficial role in decision-making for addressing
overfitting issue and optimizing ML model deployment with
retraining schemes. As there are no algorithms specially
designed to handle EMOHPO, we then propose the TMOBO
algorithm to first sample the hyperparameter setting with
the largest trajectory-based contribution and then determine
when to early stop the training with it based on the trajectory
predictions of GP models.

Through experiments on synthetic simulations and hyperpa-
rameter tuning benchmarks, TMOBO has demonstrated its
advantage in locating better solutions by exploiting the tra-
jectory information compared to traditional multi-objective
optimization methods. Considering that the iterative process-
ing procedure inherent in many real-world simulations or

experiments, such as drug design and material engineering,
shares similar characteristics with the training of ML mod-
els, it is meaningful to explore the formulation of EMOHPO
problems across a variety of practical scenarios and to ex-
tend the success of TMOBO algorithm in this study. How-
ever, optimizing the TEHVI acquisition function remains
challenging. Therefore, further exploitation is needed to
derive an analytical form of TEHVI or to develop more
efficient approximations.

Acknowledgements

We gratefully acknowledge the anonymous reviewers for
their valuable feedback and constructive suggestions. We
would also like to thank Songhao Wang and Haowei Wang
for their helpful discussions regarding this study. Szu Hui
Ng’s work is supported in part by the Ministry of Education,
Singapore (Grant: R-266-000-149-114).

References

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao
Doppa. Max-value entropy search for multi-objective
bayesian optimization. In Advances in Neural Informa-
tion Processing Systems, volume 32, 2019.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao
Doppa. Multi-fidelity multi-objective bayesian optimiza-
tion: An output space entropy search approach. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 10035–10043, 2020.

Syrine Belakaria, Janardhan Rao Doppa, Nicolo Fusi, and
Rishit Sheth. Bayesian optimization over iterative learn-
ers with structured responses: A budget-aware planning
approach. In Proceedings of The 26th International Con-
ference on Artificial Intelligence and Statistics, pages
9076–9093, 2023.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. Algorithms for hyper-parameter optimization. In
Advances in Neural Information Processing Systems, vol-
ume 24, 2011.

Maria Casimiro, Diego Didona, Paolo Romano, Luis Ro-
drigues, Willy Zwaenepoel, and David Garlan. Lynceus:
Cost-efficient tuning and provisioning of data analytic
jobs. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pages 56–66,
2020.

Maria Casimiro, Diogo Soares, David Garlan, Luís Ro-
drigues, and Paolo Romano. Self-adapting machine
learning-based systems via a probabilistic model check-
ing framework. ACM Transactions on Autonomous and
Adaptive Systems, 2024.

Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and
Patrick Jaillet. Bayesian optimization meets bayesian op-
timal stopping. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages
1496–1506, 2019.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy.
Differentiable expected hypervolume improvement for
parallel multi-objective bayesian optimization. In Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 9851–9864, 2020.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy.
Parallel bayesian optimization of multiple noisy objec-
tives with expected hypervolume improvement. In Ad-
vances in Neural Information Processing Systems, vol-
ume 34, pages 2187–2200, 2021.

Samuel Daulton, David Eriksson, Maximilian Balandat, and
Eytan Bakshy. Multi-objective bayesian optimization
over high-dimensional search spaces. In Proceedings of
the 38th Uncertainty in Artificial Intelligence Conference,
pages 507–517, 2022.

Erik Daxberger, Anastasia Makarova, Matteo Turchetta, and
Andreas Krause. Mixed-variable bayesian optimization.
arXiv preprint arXiv:1907.01329, 2019.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and
Eckart Zitzler. Scalable multi-objective optimization test
problems. In Proceedings of the 2002 Congress on Evo-
lutionary Computation. CEC’02 (Cat. No. 02TH8600),
volume 1, pages 825–830, 2002.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik,
Matthias Feurer, René Sass, Aaron Klein, Noor Awad,
Marius Lindauer, and Frank Hutter. Hpobench: A collec-
tion of reproducible multi-fidelity benchmark problems
for hpo. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Michael TM Emmerich, Kyriakos C Giannakoglou, and
Boris Naujoks. Single-and multiobjective evolutionary
optimization assisted by gaussian random field metamod-
els. IEEE Transactions on Evolutionary Computation, 10
(4):421–439, 2006.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Ro-
bust and efficient hyperparameter optimization at scale.
In Proceedings of the 35th International Conference on
Machine Learning, volume 80, pages 1437–1446, 2018.

Mingzhou Fan, Byung-Jun Yoon, Edward Dougherty, Fran-
cis Alexander, Nathan Urban, Raymundo Arroyave, and
Xiaoning Qian. Multi-fidelity bayesian optimization with
multiple information sources of input-dependent fidelity.
In Proceedings of the 40th Uncertainty in Artificial Intel-
ligence Conference, 2024.

Jonathan Foldager, Mikkel Jordahn, Lars K Hansen, and
Michael R Andersen. On the role of model uncertainties
in bayesian optimisation. In Proceedings of the 39th
Uncertainty in Artificial Intelligence Conference, pages
592–601, 2023.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David
Bindel, and Andrew G Wilson. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu accel-
eration. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien
Poirier, Bernd Bischl, and Joaquin Vanschoren. An
open source automl benchmark. arXiv preprint
arXiv:1907.00909, 2019.

Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar
Shah, and Ryan Adams. Predictive entropy search for
multi-objective bayesian optimization. In Proceedings of
the 33rd International Conference on Machine Learning,
volume 48, pages 1492–1501, 2016.

Iris Hupkens, André Deutz, Kaifeng Yang, and Michael Em-
merich. Faster exact algorithms for computing expected
hypervolume improvement. In Proceedings of the In-
ternational Conference on Evolutionary Multi-Criterion
Optimization, pages 65–79, 2015.

Donald R Jones, Matthias Schonlau, and William J Welch.
Efficient global optimization of expensive black-box func-
tions. Journal of Global optimization, 13:455–492, 1998.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva,
Jeff Schneider, and Barnabás Póczos. Gaussian process
bandit optimisation with multi-fidelity evaluations. In
Advances in Neural Information Processing Systems, vol-
ume 29, 2016.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider,
and Barnabás Póczos. Multi-fidelity bayesian optimisa-
tion with continuous approximations. In Proceedings of
the 34th International Conference on Machine Learning,
volume 70, pages 1799–1808, 2017.

Florian Karl, Tobias Pielok, Julia Moosbauer, Florian Pfis-
terer, Stefan Coors, Martin Binder, Lennart Schneider,
Janek Thomas, Jakob Richter, Michel Lang, et al. Multi-
objective hyperparameter optimization in machine learn-
ing — an overview. ACM Transactions on Evolutionary
Learning and Optimization, 3(4):1–50, 2023.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,
and Frank Hutter. Fast bayesian optimization of machine
learning hyperparameters on large datasets. In Proceed-
ings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54, pages 528–536,
2017.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and
Frank Hutter. Learning curve prediction with bayesian
neural networks. In International Conference on Learn-
ing Representations, 2022.

Joshua Knowles. Parego: A hybrid algorithm with on-line
landscape approximation for expensive multiobjective op-
timization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, 2006.

Julien-Charles Lévesque, Christian Gagné, and Robert
Sabourin. Bayesian hyperparameter optimization for en-
semble learning. In Proceedings of the 32nd Uncertainty
in Artificial Intelligence Conference, 2016.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research, 18(185):1–52,
2018.

Ananth Mahadevan and Michael Mathioudakis. Cost-aware
retraining for machine learning. Knowledge-Based Sys-
tems, 293:111610, 2024.

Ruben Martinez-Cantin. Funneled bayesian optimization for
design, tuning and control of autonomous systems. IEEE
Transactions on Cybernetics, 49(4):1489–1500, 2018.

Pedro Mendes, Maria Casimiro, Paolo Romano, and David
Garlan. Trimtuner: Efficient optimization of machine
learning jobs in the cloud via sub-sampling. In 28th Inter-
national Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MAS-
COTS), pages 1–8, 2020.

Alejandro Morales-Hernández, Inneke Van Nieuwenhuyse,
and Sebastian Rojas Gonzalez. A survey on multi-
objective hyperparameter optimization algorithms for
machine learning. Artificial Intelligence Review, 56(8):
8043–8093, 2023.

Vu Nguyen, Sebastian Schulze, and Michael Osborne.
Bayesian optimization for iterative learning. In Advances
in Neural Information Processing Systems, volume 33,
pages 9361–9371, 2020.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póc-
zos. A flexible framework for multi-objective bayesian
optimization using random scalarizations. In Proceedings
of the 35th Uncertainty in Artificial Intelligence Confer-
ence, volume 115, pages 766–776, 2020.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and
Cédric Archambeau. Scalable hyperparameter transfer
learning. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Mar-
tin Binder, and Bernd Bischl. Yahpo gym-an efficient
multi-objective multi-fidelity benchmark for hyperparam-
eter optimization. In Proceedings of the First Interna-
tional Conference on Automated Machine Learning, vol-
ume 188, pages 1–39, 2022.

Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian processes for machine learning. The MIT Press,
11 2005.

Rommel G Regis and Christine A Shoemaker. A stochastic
radial basis function method for the global optimization
of expensive functions. INFORMS Journal on Computing,
19(4):497–509, 2007.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

Robin Schmucker, Michele Donini, Muhammad Bilal Za-
far, David Salinas, and Cédric Archambeau. Multi-
objective asynchronous successive halving. arXiv
preprint arXiv:2106.12639, 2021.

Rajat Sen, Kirthevasan Kandasamy, and Sanjay Shakkottai.
Multi-fidelity black-box optimization with hierarchical
partitions. In Proceedings of the 35th International Con-
ference on Machine Learning, volume 80, pages 4538–
4547, 2018.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In
Proceedings of the 27th International Conference on
International Conference on Machine Learning, page
1015–1022, 2009.

Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki
Shitara, and Masayuki Karasuyama. Multi-objective
bayesian optimization using pareto-frontier entropy. In
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119, pages 9279–9288, 2020.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams.
Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

William R Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285–294, 1933.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and
Luis Torgo. Openml: networked science in machine
learning. ACM SIGKDD Explorations Newsletter, 15
(2):49–60, 2014.

Wenyu Wang and Christine A Shoemaker. Reference vector
assisted candidate search with aggregated surrogate for
computationally expensive many objective optimization
problems. INFORMS Journal on Computing, 35(2):318–
334, 2023.

Wenyu Wang, Taimoor Akhtar, and Christine A Shoemaker.
Efficient multi-objective optimization through parallel
surrogate-assisted local search with tabu mechanism and
asynchronous option. Engineering Optimization, pages
1–17, 2023.

Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and An-
drew Gordon Wilson. Practical multi-fidelity bayesian
optimization for hyperparameter tuning. In Proceedings
of the 35th Uncertainty in Artificial Intelligence Confer-
ence, pages 788–798, 2020.

Kaifeng Yang, Michael Affenzeller, and Guozhi Dong. A
parallel technique for multi-objective bayesian global
optimization: Using a batch selection of probability of
improvement. Swarm and Evolutionary Computation, 75:
101183, 2022.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-
pytorch: Multi-fidelity metalearning for efficient and ro-
bust autodl. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(9):3079–3090, 2021.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Compar-
ison of multiobjective evolutionary algorithms: Empirical
results. Evolutionary computation, 8(2):173–195, 2000.

Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The
hypervolume indicator revisited: On the design of pareto-
compliant indicators via weighted integration. In Proceed-
ings of the 4th International Conference on Evolutionary
Multi-Criterion Optimization, pages 862–876, 2007.

A PROOF FOR LEMMA 1

Recall that Lemma 1 claims that the Pareto-optimal set of X∗
Trj × T is equal to the Pareto-optimal set of EMOHPO, where

X∗
Trj = {x | x ∈ X, ∃t ∈ T, ∄(x′, t′) ∈ X× T,f(x′, t′) ≺ f(x, t)}. We start by establishing the following lemma.

Lemma 2. Let Z ⊂ Rd and Z∗ denote its Pareto-optimal set. If ZU is a subset of Z such that Z∗ ⊆ ZU ⊆ Z, the
Pareto-optimal set of ZU , denoted by Z∗

U , is equal to Z∗, i.e., Z∗
U = Z∗.

Proof. As per Definition 2, we have,

Z∗ = {z | z ∈ Z, ∄z′ ∈ Z,f(z′) ≺ f(z)} (4)

and

Z∗
U = {z | z ∈ ZU , ∄z′ ∈ ZU ,f(z

′) ≺ f(z)}. (5)

(a) Let z ∈ Z∗ ⊆ ZU . There does not exist z′ ∈ Z such that f(z′) ≺ f(z). Since ZU ⊆ Z, there does not exist z′ ∈ ZU

such that f(z′) ≺ f(z). By (5), z ∈ Z∗
U and hence Z∗ ⊆ Z∗

U .

(b) Assume that Z∗
U ̸⊆ Z∗. Then, there exists z satisfying

1. z ∈ Z∗
U ⇒ ∄z′ ∈ ZU such that f(z′) ≺ f(z);

2. z ̸∈ Z∗ ⇒ ∃z′′ ∈ Z such that f(z′′) ≺ f(z).

Therefore, ∃z′′ ∈ Z \ ZU such that f(z′) ≺ f(z). Since Z∗ ⊆ ZU , Z∗ ∩ (Z \ ZU) = ∅ and z′′ ̸∈ Z∗. Then,
∃z′′′ ∈ Z∗ ⊆ ZU such that f(z′′′) ≺ f(z′′) ≺ f(z), which contradicts to the first condition z ∈ Z∗

U . Therefore,
Z∗
U ⊆ Z∗.

Combining these two inclusions together, we conclude that Z∗
U = Z∗.

As each query pair z = {x, t}, the Pareto-optimal set Z∗ of EMOHPO, i.e., the trade-offs over trajectories, can be
equivalently expressed as,

Z∗ = {(x, t) | (x, t) ∈ X× T,∄(x′, t′) ∈ X× T,f(x′, t′) ≺ f(x, t)}. (6)

Then, we have,

Z∗ ⊆ {(x, t′′) | x ∈ X, ∃t ∈ T, (x, t) ∈ Z∗, t′′ ∈ T}
= {x | x ∈ X, ∃t ∈ T, (x, t) ∈ Z∗} × {t′′ | t′′ ∈ T} = X∗

Trj × T. (7)

Since Z∗ ⊆ X∗
Trj × T ⊂ X× T, we complete the proof by applying Lemma 2.

B ALGORITHM DETAILS

B.1 GAUSSIAN PROCESS PREDICTION IN TMOBO

We begin by visualizing GP’s capability of predicting learning curve at a single iteration while running TMOBO on a real
hyperparameter tuning benchmark kc1. The prediction results are illustrated in Figure B.1. Initially, even though the learning
curve (depicted by orange stars) follows an uncommon shape and remains entirely unobserved, the GP model, which has
been trained on data from the first 35 iterations, provides a high-quality approximation of the learning curve (depicted by the
green curve) of the selected hyperparameter setting x. This allows TMOBO to establish a solid foundation for trajectory
prediction by leveraging multiple GP models simultaneously and computing a reliable TEHVI acquisition value before the
algorithm decides to start the iterative learning process at x.

As the iterative learning process progresses for the selected setting x, true but noisy observations are revealed to the GP
model epoch by epoch. These observations continuously enhance the predictive quality of the GP model. As shown in
Figure B.1, after incorporating the revealed observations (depicted by red stars) from the learning curve, the updated GP

predictions align more closely with the true data. This refinement leads to a substantial reduction in prediction uncertainty,
enabling TMOBO to make more informed decisions for early stopping.

Figure B.1: An illustrative example of GP prediction obtained after running TMOBO on the kc1 hyperparameter tuning task
for 35 iterations. [Left] GP prediction (green curve) of validation loss for the selected hyperparameter setting over epochs 1
to 50 before any true observations (orange stars) from its learning curve are known. [Right] Updated GP predictions after
some observations (red stars) on the learning curve are revealed and incorporated into the GP model.

B.2 CANDIDATE SEARCH STRATEGY

Acquisition function plays a critical part in the BO framework but maximizing it presents inherent challenges. As discussed
in Section 5.1, the TEHVI acquisition function extended from EHVI has no known analytical form and is multi-modal.
Furthermore, approximating TEHVI by the MC method incurs significant computational overhead, making it hard to
optimize efficiently. To this end, our algorithm TMOBO adopts a candidate search to determine new hyperparameter settings
by strategic sampling instead of iterative optimization of the acquisition function. The candidate search first proposed
by Regis and Shoemaker [2007] aims to generate a set of random settings (termed as “candidates”) around a previously
visited high-quality hyperparameter setting (termed as “center”). The new hyperparameter setting is then selected from these
candidates by comparing their respective acquisition function values. This approach has demonstrated its effectiveness in
global optimization [Regis and Shoemaker, 2007] and has been extended to multi-objective cases in [Wang et al., 2023,
Wang and Shoemaker, 2023]. The specific implementation details of the candidate search in TMOBO are provided below:

Center Selection. The effectiveness of a candidate search largely depends on the quality of the center chosen from previously
visited hyperparameter settings. Intuitively, the trajectories of candidates near a high-quality center have a high chance of
improving the current front F . However, it is inappropriate to directly use TEHVI to distinguish the best hyperparameter
setting that has been visited, as trajectories of the visited hyperparameter settings have already contributed to constructing
the front. Instead, similar to Def 4, we evaluate the contribution of a visited hyperparameter setting x by the difference
between the HV of the front F and it excluding the observed trajectory of x. Therefore, the center is selected as,

xc = argmax
x∈X

[
HV

(
F | r

)
−HV

(
F \

{
y(x, t)

}t′max

t=0
| r

)]
, (8)

where r denotes the reference point and {y(x, t)}t
′
max
t=1 denotes the observed trajectory when training the model with x up

to t′max epochs. Note that t′max ≤ tmax due to the early stopping mechanism.

Candidate Generation. After selecting the center xc, we generate a candidate x̄ by adding Gaussian perturbation with zero
mean and covariance matrix γ2(xc)Id to the center, i.e., x̄ ∼ N (xc, γ2(xc)Id), where γ(xc) denote the search radius
specified for xc with γmax being the initial value. Let X̄ denote the set of q independently generated candidates. Moreover,
to dynamically balance exploration and exploitation, if the candidate search led by center xc finally fails to yield a new
setting to improve the front F , we halve its search radius so as to prioritize the points closer to it, and if the search fails
for multiple times, we exclude xc as a center in the subsequent iterations. Finally, we calculate the TEHVI value for each
candidate in X̄ and select the one with the highest TEHVI value to train the ML model in the current iteration.

C EXPERIMENT SETUP

C.1 ALGORITHM CONFIGURATIONS

As discussed in Section 4, the kernel of GP models in TMOBO is implemented by the product of a Matérn kernel (with
smoothness parameter ν = 2.5) over the hyperparameter space and a temporal kernel over epochs. In real-world benchmarks,
where some prior knowledge of the objective’s characteristics is available, we use informed temporal kernels: an exponential
decay kernel when the objective is validation loss and a linear kernel when the objective is training cost. However, in
synthetic simulations, which are designed to reflect more general settings, we default to a Matérn temporal kernel with
ν = 2.5, providing a general-purpose modeling choice. The GP models are implemented using the GPyTorch library
[Gardner et al., 2018] and fitted via standard maximum likelihood estimation with gradient-based optimization of kernel
hyperparameters.

Furthermore, within the candidate search strategy of TMOBO, the initial search radius γmax associated with any visited
hyperparameter setting is set to 0.2 as recommended by [Regis and Shoemaker, 2007]. Moreover, to ensure a sufficiently
dense neighborhood around the center, the number of candidates q generated around a center is set to 100d. Then, in the early
stopping mechanism, we determine the conservative stopping epoch in a way similar to computing the lower confidence
bound and maintain a fixed value of β, which controls the confidence level, at 2.0. Finally, at the end of each iteration,
TMOBO takes an active data augmentation method to minimize the prediction uncertainty of the GP model by using only a
subset of trajectory observations. To maintain the GP training efficiency, we limit the size of this subset to a maximum of 10.

We use the open-source Python implementations for ParEGO, qEHVI, and qNEHVI from the BoTorch library (accessible at
https://github.com/pytorch/botorch under MIT License) and adhere to the default algorithm configurations.
The enhanced versions of the alternative algorithms, namely ParEGO-T, qEHVI-T, and qNEHVI-T, are implemented by
collecting all the intermediate observations {y(x, 1), . . . ,y(x, t)} to refine the current front whenever a query pair (x, t) is
sampled.

In each experimental trial, we initialize each algorithm with 2(d + 1) samples drawn from a Sobol sequence. For the
approximation of the acquisition function by Monte Carlo integration, we consistently employ 128 MC samples across all
iterations. HV-based acquisition functions in qEHVI, qNEHVI, and TMOBO are inherently sensitive to the choice of the
reference point r. However, determining an appropriate reference point generally requires prior knowledge of the problem,
which is unrealistic for real-world applications. Thus, we adopt an adaptive strategy for all algorithms where each element
of the reference point is continuously updated to the corresponding worst values encountered thus far. All experiments are
run on a GeForce RTX 2080 Ti GPU with 11GB RAM.

C.2 PROBLEMS AND BENCHMARKS

The classical multi-objective optimization benchmarks used to formulate the synthetic test problems in numerical experiments
are provided below:

ZDT1 Benchmark [Zitzler et al., 2000]:

min
x

[f1(x), f2(x)],

f1(x) = x1, (9)

f2(x) = u(x)
[
1−

√
x1/u(x)

]
,

where

u(x) = 1 +
9

d− 1

d∑
i=2

xd,

and x = [x1, . . . , xd] ∈ [0, 1]d. This benchmark has a convex Pareto-optimal front with Pareto-optimal solutions being
0 ≤ x∗

1 ≤ 1 and x∗
i = 0 for i = 2, . . . , d.

https://github.com/pytorch/botorch

ZDT2 Benchmark [Zitzler et al., 2000]:

min
x

[f1(x), f2(x)],

f1(x) = x1, (10)

f2(x) = u(x)
[
1− (x1/u(x))

2
]
,

where

u(x) = 1 +
9

d− 1

d∑
i=2

xd,

and x = [x1, . . . , xd] ∈ [0, 1]d. This benchmark has a concave Pareto-optimal front with Pareto-optimal solutions being
0 ≤ x∗

1 ≤ 1 and x∗
i = 0 for i = 2, . . . , d.

DTLZ1 Benchmark [Deb et al., 2002]:

min
x

[f1(x), . . . , fk(x)],

f1(x) =
1

2
x1x2 · · ·xk−1(1 + u(xk)),

f2(x) =
1

2
x1x2 · · · (1− xk−1)(1 + u(xk)), (11)

...

fk−1(x) =
1

2
x1(1− x2)(1 + u(xk)),

fk(x) =
1

2
(1− x1)(1 + u(xk)),

where

u(xk) = 100

[
|xk|+

∑
xi∈xk

(xi − 0.5)2 − cos(20π(xi − 0.5))

]
,

x = [x1, . . . , xd] ∈ [0, 1]d and xk denotes the last (d− k + 1) variables of x. The search space of this benchmark contains
multiple local Pareto-optimal fronts. The global Pareto-optimal front is a linear hyperplane with Pareto-optimal solutions
being x∗

i = 0.5 for xi ∈ xk.

DTLZ2 Benchmark [Deb et al., 2002]:

min
x

[f1(x), . . . , fk(x)],

f1(x) = cos(πx1/2) cos(πx2/2) · · · cos(πxk−1/2)(1 + u(xk)),

f2(x) = cos(πx1/2) sin(πx2/2) · · · cos(πxk−1/2)(1 + u(xk)), (12)
...

fk−1(x) = cos(πx1/2) sin(πx2/2)(1 + u(xk)),

fk(x) = sin(πx1/2)(1 + u(xk)),

where

u(xk) =
∑

xi∈xk

(xi − 0.5)2,

x = [x1, . . . , xd] ∈ [0, 1]d and xk denotes the last (d− k+1) variables of x. This benchmark has a concave Pareto-optimal
front with Pareto-optimal solutions being x∗

i = 0.5 for xi ∈ xk.

DTLZ7 Benchmark [Deb et al., 2002]:

min
x

[f1(x), . . . , fk(x)],

f1(x) = x1,

... (13)
fk−1(x) = xk−1,

fk(x) = h(f1, f2, . . . , fk−1, u)(1 + u(xk)),

where

u(xk) = 1 +
9

|xk|
∑

xi∈xk

xi,

h(f1, f2, . . . , fk−1, u) = k −
k−1∑
i=1

[
fi

1 + u
(1 + sin(3πfi))

]
,

x = [x1, . . . , xd] ∈ [0, 1]d and xk denotes the last (d− k + 1) variables of x. The Pareto-optimal front of this benchmark
is composed of 2k−1 disconnected regions with Pareto-optimal solutions being x∗

i = 0 for xi ∈ xk.

Given the i-th objective function fi(x) of any benchmark above, we construct its epoch-dependent counterpart as fi(x, t) =
fi(x) · gi(t) to simulate the training procedure by the curve function gi(t). In our experiments, we utilize different curve
functions to diversify the learning curve characteristics, and these functions are,

• Monotonically Increasing Curve: gM (t | tmax) = 0.5 + 1/
(
1 + e(−0.2(t−tmax/2))

)
,

• Monotonically Decreasing Curve: gM
′
(t | tmax) = 0.3 + 1/

(
1 + e(0.1(t−tmax/3))

)
,

• Quadratic Curve: gQ(t | tmax) = 0.5 + 2 (t/tmax − 2/3)
2,

• Periodic Curve: gP (t | tmax) = 1 + 0.5 sin(4πt/tmax),

where t ∈ T = [1, 2, . . . , tmax] and tmax = 50.

LCBench [Zimmer et al., 2021]: This benchmark is designed to give insights on multi-fidelity optimization with learning
curves for Auto Deep Learning. LCBench was originally developed upon tabular data. Benefitting from the surrogate
implementation by HPOBench (under Apache License 2.0) [Eggensperger et al., 2021] and YAHPO Gym (under Apache
License 2.0) [Pfisterer et al., 2022], we are allowed to observe the intermediate model performance for any feasible
hyperparameter setting after each epoch. The maximum number of epochs for training MLP is set to 50. We choose to
minimize validation loss and training time, which are commonly considered in many MOHPO studies. For a demonstration,
we focus on tuning the five hyperparameters (i.e., d = 5) of MLP including learning rate in [1×10−4, 1×10−1], momentum
in [0.10, 0.99], weight decay in [1× 10−5, 1× 10−1], maximum dropout rate in [0.0, 1.0], and maximum number of neurons
in [64, 1024]. LCBench utilizes diverse datasets from AutoML Benchmark [Gijsbers et al., 2019] hosted on OpenML
[Vanschoren et al., 2014]. For experimentation, we select “blood-transfus”, “higgs”, “jungle-chess-2pcs”, “kc1”, and
“banck-marketing”, each of which has at least two attributes and between 500 and 1,000,000 data points.

CNN: This benchmark provides insights into hyperparameter optimization for modern computer vision applications. The
convolutional neural network model MobileNetV2 is implemented in PyTorch and optimized for both validation accuracy
and training efficiency. Following standard computer vision practices, we optimize four key hyperparameters (i.e., d = 4),
including learning rate in [1 × 10−4, 1 × 10−1], momentum in [0.0, 0.99], weight decay in [1 × 10−5, 1 × 10−2], and
batch size in [128, 512]. The model is trained for up to 50 epochs on CIFAR-10 dataset, which consists of 60,000 32 × 32
color images across 10 classes. This configuration represents a more complex and computationally intensive optimization
scenario compared to LCBench tasks, allowing us to assess our method’s scalability to challenging real-world deep learning
applications.

D SENSITIVITY ANALYSIS ON ALGORITHM CONFIGURATIONS

In this section, we conduct a series of sensitivity analyses to demonstrate how TMOBO’s performance responds to its key
algorithmic configurations. These configurations include the parameters for candidate search, Monte Carlo approximation,
data augmentation strategy, and early stopping.

D.1 PARAMETERS FOR CANDIDATE SEARCH

Regarding the candidate search, we examine both the number of candidates and the search radius. Intuitively, a larger
candidate set increases the likelihood of getting promising hyperparameter settings; however, it can impose unnecessary
computational costs at the same time. As shown in the third row of Figure D.2, using 100d to 200d candidates generally
leads to a lower (better) overall distribution in the boxplots (where d is the dimension of the domain of hyperparameter
settings), especially when the objectives become more complex. Therefore, we choose a default setting of 100d candidates
to balance effectiveness and efficiency. This choice is further supported by the statistical analysis in Table D.1, which
indicates that our default setting is statistically comparable to or better than other settings, except in scenario Q-P where
200d outperforms.

For the search radius r, we can observe from the last row of Figure D.2 that a larger value of radius generally leads to a
lower distribution in the boxplots; however, the marginal gains diminish gradually, and performance can even deteriorate
beyond r = 0.2 in some cases. This behaviour is expected because the radius controls the balance between exploration and
exploitation, and a larger radius biases the algorithm toward exploration by increasing the chance of selecting hyperparameter
settings further from the center, which can slow convergence. Statistical results in Table D.1 indicate that r = 0.2
is significantly better than settings below 0.2 in half of the cases and comparable to higher settings across all cases.
Consequently, we adopt it as our default.

D.2 PARAMETER FOR MONTE CARLO APPROXIMATION

Regarding the Monte Carlo approximation, we showcase the algorithm’s performance with the number of MC samples M
being 32, 64, 128, 256, and 512. It can be observed from the second row of Figure D.2 that the algorithm’s performance
is relatively insensitive to changes in M within this range. While increasing the number of MC samples can improve
the integration of predictive uncertainty, this improvement does not necessarily translate into better overall algorithm
performance, but it raises the computational burden due to the expensive TEHVI acquisition function. Considering the
added computational cost associated with significantly larger values of M , we believe that 128 samples provide a good
balance, capturing sufficient information for accurate TEHVI approximation without incurring excessive computational
expense. Moreover, the statistical tests in Table D.1 indicate that the algorithm performance using default setting of 128 is
comparable to both lower and higher sample sizes across all tested cases.

D.3 PARAMETER FOR DATA AUGMENTATION STRATEGY

We first compare data augmentation strategies by evaluating the impact of retaining 5, 10, or 15 observations per trajectory
in the GP model. This analysis helps us assess whether a careful selection of augmented observations can manage GP
complexity effectively while making reasonable prediction for optimization. Our findings in Figure D.2 indicate that the
algorithm’s performance is relatively insensitive to changes in this parameter across the four problems under study; in
some cases, augmenting fewer data points even leads to a lower distribution in the boxplots. Considering the computational
complexity of training a GP model, we maintain 10 observations per trajectory as our default setting, with the results in
Table D.1 showing that this choice yields performance statistically comparable to other settings.

In parallel, we explore scalable GP models as an alternative to manual data augmentation. To this end, we implement a
sparse GP with inducing points using the GPyTorch library [Gardner et al., 2018] and compare its performance against
the data augmentation strategy. The Sparse GP (SGP) approach avoids the need for manual data curation and, as shown in
Table D.1, typically achieves performance comparable to the 10-observation strategy in most cases. This indicates that both
a careful selection of augmented observations and the use of sparse approximations are effective means of managing GP
complexity in TMOBO. Moreover, as more algorithm iterations are executed, scalable GP models can serve as a suitable
alternative.

5 10 15 SGP

Data Augmentation Strategy

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

g
HV

 D
iff

ZDT1(M-M')(d=10)

5 10 15 SGP

Data Augmentation Strategy

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1(M-Q)(d=10)

5 10 15 SGP

Data Augmentation Strategy

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1(M-P)(d=10)

5 10 15 SGP

Data Augmentation Strategy

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1(Q-P)(d=10)

32 64 128 256 512

Number of MC Samples M

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

g
HV

 D
iff

32 64 128 256 512

Number of MC Samples M

0.0

0.2

0.4

0.6

0.8

1.0

32 64 128 256 512

Number of MC Samples M

0.0

0.2

0.4

0.6

0.8

1.0

32 64 128 256 512

Number of MC Samples M

0.0

0.2

0.4

0.6

0.8

1.0

10d 50d 100d 150d 200d

Number of Candidates q

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

g
HV

 D
iff

10d 50d 100d 150d 200d

Number of Candidates q

0.0

0.2

0.4

0.6

0.8

1.0

10d 50d 100d 150d 200d

Number of Candidates q

0.0

0.2

0.4

0.6

0.8

1.0

10d 50d 100d 150d 200d

Number of Candidates q

0.0

0.2

0.4

0.6

0.8

1.0

0.05 0.1 0.2 0.3 0.4

Radius r

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

g
HV

 D
iff

0.05 0.1 0.2 0.3 0.4

Radius r

0.0

0.2

0.4

0.6

0.8

1.0

0.05 0.1 0.2 0.3 0.4

Radius r

0.0

0.2

0.4

0.6

0.8

1.0

0.05 0.1 0.2 0.3 0.4

Radius r

0.0

0.2

0.4

0.6

0.8

1.0

Figure D.2: Sensitivity analysis on key parameters and components of TMOBO on synthetic problems generated from ZDT1
after 100 algorithm iterations. Each row varies one factor, namely (1) data augmentation strategy, using GP trained with 5,
10, or 15 observations per trajectory, or using Sparse GP (SGP); (2) number of MC samples M ∈ {32, 64, 128, 256, 512};
(3) number of candidates q ∈ {10d, 50d, 100d, 150d, 200d}, where d is the problem dimension; and (4) search radius
r ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. Each box plot shows the logarithm of HV difference computed over 10 trials and is normalized
to [0, 1]. (A lower value indicates better performance.)

Table D.1: Mean (standard deviation) of normalized log HV differences for key parameters and components of TMOBO
on synthetic problems generated from ZDT1 after 100 algorithm iterations. For each parameter, performance is evaluated
against the default algorithm setting (in bold) using Wilcoxon rank-sum test at a 95% confidence level. “+” sign indicates
that the parameter option performs significantly better than the baseline, “−” indicates significantly worse performance, and
“≈” denotes statistically comparable results.

ZDT1(M-M’) ZDT1(M-Q) ZDT1(M-P) ZDT1(Q-P)
Mean (std) Sign Mean (std) Sign Mean (std) Sign Mean (std) Sign

Data augmentation strat-
egy

5 0.589 (0.277) ≈ 0.603 (0.172) ≈ 0.613 (0.244) ≈ 0.587 (0.190) ≈
10 0.528 (0.234) ≈ 0.659 (0.179) ≈ 0.602 (0.191) ≈ 0.628 (0.206) ≈
15 0.682 (0.219) n.a. 0.666 (0.240) n.a. 0.586 (0.214) n.a. 0.430 (0.230) n.a.

SGP 0.686 (0.282) ≈ 0.722 (0.203) ≈ 0.554 (0.111) ≈ 0.684 (0.157) −

Number of MC samples
M

32 0.493 (0.298) ≈ 0.597 (0.289) ≈ 0.496 (0.206) ≈ 0.593 (0.220) ≈
64 0.552 (0.147) ≈ 0.587 (0.182) ≈ 0.470 (0.153) ≈ 0.460 (0.197) ≈
128 0.417 (0.225) n.a. 0.583 (0.231) n.a. 0.486 (0.232) n.a. 0.603 (0.217) n.a.
256 0.734 (0.155) − 0.616 (0.212) ≈ 0.542 (0.213) ≈ 0.498 (0.278) ≈
512 0.558 (0.154) ≈ 0.631 (0.136) ≈ 0.535 (0.183) ≈ 0.651 (0.241) ≈

Number of candidates q

10d 0.600 (0.194) − 0.761 (0.156) − 0.545 (0.202) ≈ 0.707 (0.194) ≈
50d 0.475 (0.196) ≈ 0.622 (0.167) ≈ 0.464 (0.142) ≈ 0.595 (0.171) ≈

100d 0.366 (0.192) n.a. 0.605 (0.157) n.a. 0.395 (0.183) n.a. 0.549 (0.201) n.a.
150d 0.329 (0.123) ≈ 0.526 (0.129) ≈ 0.406 (0.129) ≈ 0.429 (0.122) ≈
200d 0.314 (0.144) ≈ 0.538 (0.194) ≈ 0.356 (0.084) ≈ 0.349 (0.212) +

Search radius r

0.05 0.808 (0.162) − 0.686 (0.181) − 0.701 (0.225) − 0.775 (0.152) −
0.1 0.529 (0.205) ≈ 0.536 (0.119) ≈ 0.593 (0.132) − 0.484 (0.132) ≈
0.2 0.463 (0.120) n.a. 0.420 (0.167) n.a. 0.412 (0.190) n.a. 0.405 (0.175) n.a.
0.3 0.535 (0.097) ≈ 0.392 (0.162) ≈ 0.429 (0.135) ≈ 0.415 (0.129) ≈
0.4 0.458 (0.177) ≈ 0.532 (0.183) ≈ 0.363 (0.142) ≈ 0.311 (0.152) ≈

D.4 PARAMETER FOR EARLY STOPPING

Regarding the early stopping mechanism, we present a separate sensitivity analysis in Figure D.3 and Table D.2, because the
changes in β affect the number of training epochs via early stopping, and it is more meaningful to compare the results after a
fixed number of training epochs. As shown in Figure D.3, a moderate value of β (between 0.1 and 0.3) generally results in a
lower median in the boxplots; while β = 0.05 or 0.4 results in a higher median, especially in the first three cases. Intuitively,
a lower β accounts for less predictive uncertainty and may cause premature termination of training, thereby encouraging
exploration of more hyperparameter settings; conversely, a higher β is likely to prolong training along a given trajectory,
leading to excessive exploitation and reduced exploration. This balance between exploitation and exploration is crucial
for algorithm performance. The statistical results in Table D.2 show that algorithm performance using the default setting
β = 0.2 is statistically comparable to the other settings. Based on these insights, we recommend choosing a moderate β
value for a general TMOBO application.

0.5 1.0 2.0 3.0 4.0

Early Stopping Parameter

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

g
HV

 D
iff

ZDT1(M-M')(d=10)

0.5 1.0 2.0 3.0 4.0

Early Stopping Parameter

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1(M-Q)(d=10)

0.5 1.0 2.0 3.0 4.0

Early Stopping Parameter

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1(M-P)(d=10)

0.5 1.0 2.0 3.0 4.0

Early Stopping Parameter

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1(Q-P)(d=10)

Figure D.3: Sensitivity analysis on early stopping parameter β ∈ {0.5, 1.0, 2.0, 3.0, 4.0} of TMOBO on synthetic problems
generated from ZDT1 after 3000 training epochs. Each box plot shows the logarithm of HV difference computed over 10
trials and is normalized to [0, 1]. (A lower value indicates better performance.)

Table D.2: Mean (standard deviation) of normalized log HV differences for early stopping parameter β of TMOBO on
synthetic problems generated from ZDT1 after 3000 training epochs. For each parameter, performance is evaluated against
the default algorithm setting (in bold) using Wilcoxon rank-sum test at a 95% confidence level. “+” sign indicates that the
parameter option performs significantly better than the baseline, “−” indicates significantly worse performance, and “≈”
denotes statistically comparable results.

ZDT1(M-M’) ZDT1(M-Q) ZDT1(M-P) ZDT1(Q-P)
Mean (std) Sign Mean (std) Sign Mean (std) Sign Mean (std) Sign

Early stopping (β)

0.5 0.802 (0.178) ≈ 0.658 (0.225) ≈ 0.606 (0.158) ≈ 0.498 (0.268) ≈
1.0 0.758 (0.156) ≈ 0.460 (0.238) ≈ 0.525 (0.138) ≈ 0.404 (0.229) ≈
2.0 0.735 (0.131) n.a. 0.496 (0.208) n.a. 0.502 (0.234) n.a. 0.530 (0.211) n.a.
3.0 0.751 (0.272) ≈ 0.459 (0.282) ≈ 0.525 (0.161) ≈ 0.481 (0.235) ≈
4.0 0.805 (0.115) ≈ 0.761 (0.198) − 0.501 (0.159) ≈ 0.618 (0.210) ≈

E NUMERICAL EXPERIMENTS AND RESULTS

E.1 ADDITIONAL RESULTS FOR SECTION 6.1

In this subsection, we evaluate TMOBO and alternative algorithms on 20 synthetic problems derived from standard multi-
objective benchmarks, as discussed in Section 6.1. Figures E.4 and E.5 illustrate the average log HV difference of each
algorithm against the number of iterations. Each row of subplots represents problems generated from the same benchmark
but with varying trajectory complexities.

On the ZDT benchmarks (Figure E.4), TMOBO achieves rapid convergence, reaching a low HV difference value within
a few iterations. It maintains this advantage throughout the optimization process and outperforms the alternatives. While
qNEHVI-T and qEHVI-T demonstrate competitive performance on the first two instances of ZDT2, their ability to handle
increasing trajectory complexity is limited. In such cases, TMOBO significantly dominates these methods.

0 25 50 75 100 125 150

Iteration

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Lo
g

HV
 D

iff

ZDT1(M-M')

0 25 50 75 100 125 150

Iteration

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

ZDT1(M-Q)

0 25 50 75 100 125 150

Iteration

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

ZDT1(M-P)

0 25 50 75 100 125 150

Iteration

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

ZDT1(Q-P)

0 25 50 75 100 125 150

Iteration

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Lo
g

HV
 D

iff

ZDT2(M-M')

0 25 50 75 100 125 150

Iteration

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
ZDT2(M-Q)

0 25 50 75 100 125 150

Iteration

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
ZDT2(M-P)

0 25 50 75 100 125 150

Iteration

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

ZDT2(Q-P)

TMOBO qNEHVI-T qEHVI-T PAREGO-T

Figure E.4: Average log Hypervolume difference against iterations for each algorithm on synthetic problems generated from
ZDT1 and ZDT2. Each algorithm runs for 20 independent trials. The shaded region indicates two standard errors of mean.

In contrast, the variants of the DTLZ benchmarks (Figure E.5) present greater challenges. On synthetic problems derived
from DTLZ1, all algorithms struggle to converge adequately within 150 iterations, primarily due to the existence of multiple
local optima. However, TMOBO achieves noticeably better HV difference values, which highlights its robustness in handling
complex landscapes. DTLZ7 benchmark challenges the capability of optimizers to maintain a diverse set of solutions as it

has a disconnected Pareto-optimal front. Notably, TMOBO emerges as the best choice for handling this type of challenge, as
the alternatives tend to stagnate at relatively high HV difference values at an early stage.

0 25 50 75 100 125 150

Iteration

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Lo
g

HV
 D

iff

DTLZ1(M-M')

0 25 50 75 100 125 150

Iteration

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

DTLZ1(M-Q)

0 25 50 75 100 125 150

Iteration

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

DTLZ1(M-P)

0 25 50 75 100 125 150

Iteration

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

DTLZ1(Q-P)

0 25 50 75 100 125 150

Iteration

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Lo
g

HV
 D

iff

DTLZ2(M-M')

0 25 50 75 100 125 150

Iteration

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

DTLZ2(M-Q)

0 25 50 75 100 125 150

Iteration

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
DTLZ2(M-P)

0 25 50 75 100 125 150

Iteration

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

DTLZ2(Q-P)

0 25 50 75 100 125 150

Iteration

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
g

HV
 D

iff

DTLZ7(M-M')

0 25 50 75 100 125 150

Iteration

0.25

0.00

0.25

0.50

0.75

1.00

1.25

DTLZ7(M-Q)

0 25 50 75 100 125 150

Iteration

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

DTLZ7(M-P)

0 25 50 75 100 125 150

Iteration

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

DTLZ7(Q-P)

TMOBO qNEHVI-T qEHVI-T PAREGO-T

Figure E.5: Average log Hypervolume difference against iterations for each algorithm on synthetic problems generated from
DTLZ1, DTLZ2, and DTLZ7. Each algorithm runs for 20 trials. The shaded region indicates two standard errors of mean.

0 25 50 75 100 125 150

Iteration

0.8

1.0

1.2

1.4

1.6

1.8

Lo
g

HV
 D

iff

blood-transfus

0 25 50 75 100 125 150

Iteration

0.5

1.0

1.5

2.0

2.5

higgs

0 25 50 75 100 125 150

Iteration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

jungle-chess-2pcs

0 25 50 75 100 125 150

Iteration

0.6

0.8

1.0

1.2

1.4

1.6

kc1

0 25 50 75 100 125 150

Iteration

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

bank-marketing

TMOBO qNEHVI-T qEHVI-T PAREGO-T

Figure E.6: Average log Hypervolume difference against iterations for each algorithm on five different hyperparameter
tuning tasks. Each algorithm runs for 20 independent trials. The shaded region indicates two standard errors of the mean.

E.2 ADDITIONAL RESULTS FOR SECTION 6.2

Next, we assess TMOBO and alternative algorithms on five hyperparameter tuning tasks from LCBench, as described in
Section 6.2. These tasks involve optimizing validation loss and training cost for an MLP model. Figure E.6 compares the
algorithms in terms of average log HV difference against the number of iterations.

TMOBO consistently outperforms the alternatives across all tasks, achieving better-converged and more diversified Pareto-
optimal fronts. Its trajectory-based acquisition function enables it to extract valuable insights from partially trained models.
In contrast, qNEHVI-T and qEHVI-T fail to match TMOBO’s performance in maintaining convergence speed and solution
quality; and ParEGO-T performs the worst. Overall, these results highlight TMOBO’s effectiveness in hyperparameter
tuning scenarios, particularly in balancing computational efficiency and optimization performance.

E.3 IMPACT OF EARLY STOPPING

On the CNN benchmark, we further take this opportunity to provide readers with a clearer understanding of our algorithm’s
early stopping mechanism as well as the computational complexity. Figure E.7 first shows that TMOBO and its non-
early-stopping variant, TMOBO-nES, achieve comparable performance throughout the trial, from initialization to the end
of 100 algorithm iteration. Notably, TMOBO requires less overall runtime (including CNN training time and algorithm
overhead) than TMOBO-nES (as reflected by the “Total” boxplots) primarily because its early stopping mechanism prevents
unnecessary training of the CNN model, thereby reducing the number of epochs per trajectory and conserving the wall-clock
time. This efficiency is evident in the lower “Train” boxplot of TMOBO. The trade-off is that the early stopping mechanism
introduces additional computational overhead, since TMOBO needs to determine in real time when to terminate training.
However, when compared with the overall time required to train the CNN model, the overhead for both TMOBO and
TMOBO-nES is negligible.

0 20 40 60 80 100

Iteration

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Lo
g

HV
 D

iff

CIFAR10

Total Train Overhead
0.0

0.8

1.6

2.4

3.2

4.0

W
al

l-C
lo

ck
 T

im
e

(×
10

4 s
ec

)

CIFAR10

0.104

0.112

0.120

0.128

0.136

0.144

W
al

l-C
lo

ck
 T

im
e

(×
10

4 s
ec

) Overhead (Zoom)

TMOBO-nES TMOBO

Figure E.7: Comparison of the computational efficiency of TMOBO and TMOBO-nES on the hyperparameter tuning task of
MobileNetV2 on the CIFAR-10 dataset. [Left] Average log HV difference against algorithm iterations for each algorithm
across 10 independent trials. The shaded region indicates two standard errors of the mean. [Right] Boxplots of wall-clock
time for each algorithm, where “Total” indicates the overall runtime, “Train” the overall CNN training time, and “Overhead”
the algorithm additional processing time.

E.4 IMPACT OF OBJECTIVE COMPLEXITY

In different ML applications, practitioners may consider optimizing hyperparameters for varying objectives. This makes
it essential to evaluate TMOBO’s performance across diverse scenarios. To explore this, we modified the LCBench
hyperparameter tuning tasks by replacing the training cost objective with validation cross-entropy, while retaining validation
accuracy as the other objective. This modification introduces a more complex, non-linear relationship between objectives.

Figure E.8 shows the performance of TMOBO and three alternative algorithms in terms of the average log HV difference
against the total number of epochs. As the trajectory characteristics become more complex, each algorithm takes more effort
to converge. However, TMOBO consistently outperforms the alternatives in both convergence speed and final HV difference,
except for the second task on “higgs” where TMOBO and qNEHVI-T demonstrate comparable performance. Despite the
changes in objective complexity, TMOBO maintains its advantage over the alternatives by leveraging information from
partially trained models and dynamically adjusting training durations. This capability allows it to efficiently navigate the
more challenging optimization tasks.

0 200 400 600 800 1000 1200

Epoch

1.4

1.2

1.0

0.8

0.6

Lo
g

HV
 D

iff

blood-transfus

0 250 500 750 1000 1250

Epoch

1.8

1.6

1.4

1.2

1.0

0.8

higgs

0 1000 2000 3000 4000 5000

Epoch

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25
jungle-chess-2pcs

0 500 1000 1500

Epoch

1.6

1.4

1.2

1.0

0.8

0.6

0.4

kc1

0 1000 2000 3000 4000 5000 6000

Epoch

2.5

2.0

1.5

1.0

0.5

bank-marketing

TMOBO qNEHVI-T qEHVI-T PAREGO-T

Figure E.8: Average log Hypervolume difference against the number of epochs for each algorithm on five different
hyperparameter tuning tasks (with first objective being validation accuracy and the second objective validation cross entropy).
Each algorithm runs for 10 independent trials. The shaded region indicates two standard errors of the mean.

E.5 IMPACT OF NOISY LEVELS

We then investigate the impact of stochasticity on the performance of TMOBO. To this end, for each synthetic problem
generated from DTLZ, we add to each objective a Gaussian noise with standard deviations of 10%, 1%, and 0.1% of the
objective range. Figure E.9 highlights TMOBO’s adaptability and performance across different noise scenarios.

At lower noise levels (0.1% and 1%), TMOBO demonstrates stable and consistent performance. The algorithm quickly
converges to a low HV difference, showcasing its ability to reliably predict trajectories and identify Pareto-optimal trade-offs.
As the noise level increased to 10%, the optimization becomes more challenging due to the amplified variability in objective
evaluations, which TMOBO inherently inherits as part of the trade-off modeling. Despite these challenges, TMOBO
continues to converge and achieves reasonably low HV differences by the end of trials.

0 25 50 75 100 125 150

Iteration

2.0

2.5

3.0

3.5

4.0

4.5

Lo
g

HV
 D

iff

DTLZ1(M-M')

0 25 50 75 100 125 150

Iteration

2.5

3.0

3.5

4.0

4.5

DTLZ1(M-Q)

0 25 50 75 100 125 150

Iteration

2.5

3.0

3.5

4.0

4.5

DTLZ1(M-P)

0 25 50 75 100 125 150

Iteration

2.5

3.0

3.5

4.0

4.5

DTLZ1(Q-P)
TMOBO(0.1) TMOBO(0.01) TMOBO(0.001)

Figure E.9: Average log Hypervolume difference against iterations for TMOBO on synthetic problems generated from
DTLZ1 with noise level 0.1, 0.01, and 0.001. For each noise level, TMOBO runs for 10 independent trials. The shaded
region indicates two standard errors of the mean.

E.6 IMPACT OF REPLICATION STRATEGY

As a result of the analysis on noise levels, replicated observations at a query (x, t) might be needed to achieve adequate
accuracy, especially in the presence of significant noises. While this particular scenario is not the focus of our current
study, we outline a straightforward method to extend the proposed TMOBO to accommodate the requirement for replicated
observations when the computational budget is sufficient. It is essential to recognize that with each noisy observation
obtained at (x, t), the training process must start from scratch and will also output noisy observations from (x, 1) up to
(x, t − 1). As a consequence, careful maintenance of multiple training procedures for replications is needed to ensure
algorithmic efficiency. The pseudo-code for TMOBO-P , a modified version of TMOBO, is presented in Algorithm E.1.

With an additional input P denoting the number of replications, TMOBO-P intends to include P replicated observations at
any visited query pair to mitigate the influence of noises. In each iteration, different from TMOBO, TMOBO-P concurrently
tracks P independent training procedures for the ML model with the same sampled hyperparameter setting x′ and ensures

their progress remains consistent at the same epoch. Therefore, upon visiting a query pair (x, t′), we can obtain P replicated
observations of it. Intuitively, the collection of sample means {

∑P
p=1 yp(x

′, 1)/P, . . . ,
∑P

p=1 yp(x
′, tmax)/P} form a

compressed trajectory of x′, i.e., average of P observed trajectory of x′. Then, the early stopping mechanism is applied to
the compressed trajectory to determine when to stop all P training procedures at the same time. Since the replicated training
procedures are independent, TMOBO-P can leverage parallel computing by assigning each training procedure to a specific
processor.

Algorithm E.1 Framework of TMOBO-P
Input: Initial sets of inputs Z and observations Y , number of replications P , and initial Pareto-optimal front F identified
from Y .

1: while the computational budget has not been exceeded do
2: Fit k GP models with µ and Σ based on sets Z and Y .
3: Sample a new x′ by maximizing the TEHVI acquisition function.
4: Initialize Z ′ ← ∅ and Y ′ ← ∅.
5: for t′ = 1 to tmax do
6: for p = 1 to P do
7: Continue model training for the t′-th epoch to obtain observation yp(x

′, t′) on the p-th processor.
8: end for
9: Let Z ′ ← Z ′ ∪ {(x′, t′)} and Y ′ ← Y ′ ∪ {

∑P
p=1 yp(x

′, t′)/P} and update front F .
10: Fit k GP models with µ and Σ based on sets Z ∪ Z ′ and Y ∪ Y ′.
11: if EarlyStopping(x′, t′,µ,Σ, F) is triggered then
12: Break;
13: end if
14: end for
15: Augment Z ′ and Y ′ into Z and Y respectively.
16: end while

Figure E.10 shows the performance of TMOBO-P with P = 1, 4, 16, and 64 on the synthetic problems derived from
ZDT1. TMOBO proposed in the main paper can be considered a special case of TMOBO-P with P = 1. This time, we add
Gaussian noise to each objective with a standard deviation of 10% of the objective range in order to emphasize the influence
of noises. It can be observed that the performance of TMOBO-P improves significantly in terms of the HV difference as
more replications are allowed. This improvement is evident not only in rapid convergence during the initial stages but also in
obtaining high-quality results at the end when comparing TMOBO with P ≥ 16 to TMOBO with P < 16. In the meantime,
benefiting from a large number of replications, TMOBO-64 has stable performance and its standard error is relatively small.

0 25 50 75 100 125 150

Iteration

2.0

1.5

1.0

0.5

0.0

0.5

Lo
g

HV
 D

iff

ZDT1(M-M')

0 25 50 75 100 125 150

Iteration

2.0

1.5

1.0

0.5

0.0

0.5

ZDT1(M-Q)

0 25 50 75 100 125 150

Iteration

2.0

1.5

1.0

0.5

0.0

0.5

ZDT1(M-P)

0 25 50 75 100 125 150

Iteration

2.0

1.5

1.0

0.5

0.0

0.5

ZDT1(Q-P)

TMOBO TMOBO-4 TMOBO-16 TMOBO-64

Figure E.10: Average log Hypervolume difference against iterations for each algorithm on synthetic problems generated
from ZDT1 with 10% noise level. Each algorithm runs for 20 independent trials. The shaded region indicates two standard
errors of the mean.

	Introduction
	Enhanced Multi-Objective Hyperparameter Optimization
	Related Work in Bayesian Optimization
	Gaussian Process for Trajectory Prediction
	Trajectory-Based Bayesian Optimization Approach
	Trajectory-Based Acquisition Function
	Early Stopping and Augmentation

	Numerical Experiments
	Synthetic Simulations
	Hyperparameter Tuning Benchmarks

	Conclusions
	Proof for Lemma 1
	Algorithm Details
	Gaussian Process Prediction in TMOBO
	Candidate Search Strategy

	Experiment Setup
	Algorithm Configurations
	Problems and Benchmarks

	Sensitivity Analysis on Algorithm Configurations
	Parameters for Candidate Search
	Parameter for Monte Carlo Approximation
	Parameter for Data Augmentation Strategy
	Parameter for Early Stopping

	Numerical Experiments and Results
	Additional Results for Section 6.1
	Additional Results for Section 6.2
	Impact of Early Stopping
	Impact of Objective Complexity
	Impact of Noisy Levels
	Impact of Replication Strategy

