
OSWORLD: Benchmarking Multimodal Agents for
Open-Ended Tasks in Real Computer Environments

Tianbao Xie h Danyang Zhang h Jixuan Chen h Xiaochuan Li h Siheng Zhao h Ruisheng Cao h

Toh Jing Hua h Zhoujun Cheng h Dongchan Shin h Fangyu Lei h Yitao Liu h Yiheng Xu h

Shuyan Zhou c Silvio Savarese s Caiming Xiong s Victor Zhong w Tao Yu h

h The University of Hong Kong c Carnegie Mellon University
sSalesforce Research wUniversity of Waterloo

Abstract

Autonomous agents that accomplish complex computer tasks with minimal human
interventions can significantly enhance accessibility and productivity of human-
computer interactions. Existing benchmarks either lack interactive environments
or are limited to specific applications/domains, failing to reflect the diversity and
complexity of real-world computer use and limiting agent scalability. We introduce
OSWORLD, the first-of-its-kind scalable real computer environment for multimodal
agents, supporting task setup, interactive learning, and execution-based evaluation
of open-ended computer tasks across arbitrary applications in Ubuntu, Windows,
and macOS. Using OSWORLD, we create a benchmark of 369 tasks involving
real web and desktop apps in open domains, OS file I/O, and multi-app workflows.
Each example derives from real-world use cases and includes detailed setup and
execution-based evaluation for reproducibility. Extensive evaluation of state-of-the-
art LLM/VLM agents on OSWORLD reveals deficiencies in their ability to serve
as computer assistants. While humans accomplish 72.4% of the tasks, the best
agents achieve <12.2%, struggling with GUI grounding and operational knowledge.
Comprehensive analysis using OSWORLD provides valuable insights for develop-
ing multimodal generalist agents that were not possible with previous benchmarks.
Implementation and experiments are at https://os-world.github.io.

1 Introduction

Humans interact with computers to perform essential tasks in the digital realm, including web
browsing, video editing, file management, data analysis, and software development. These task
workflows often involve multiple applications through graphical user interfaces (GUI) and command
line interfaces (CLI). Autonomous agents powered by large vision-language models (VLMs) can
revolutionize how we interact with computer environments [32, 48, 1]. By following natural language
instructions, these agents can make computers more accessible and vastly increase human productivity.

A major challenge in developing multimodal agents is the absence of a benchmark that covers
interactive, diverse, and complex real-world computer use across operating systems, interfaces, and
applications. Prior benchmarks that provide demonstration datasets without executable environ-
ments [12, 44, 25] assume a single solution for each task and limit potential research in interactive
learning and real-world exploration. Prior work with executable environments simplify the obser-
vation and action spaces of agents and limit task scopes to specific applications/domains such as
navigation of specific websites [48, 34, 63, 71], coding [62] and the combination [36, 59, 38]. These
restricted environments do not fully reflect real-world computer use, as they do not evaluate scenarios
that require navigating between applications and interfaces in open domains (Fig. 1).

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://os-world.github.io

Task Instruction
(See examples above)

input Agent
(e.g., GPT-4V)

a11y-treescreenshot

keyboardmouse

Action

Observation

input

predict

OSWorld Environment
InterfacesOS

Task instruction 2: ...some details about snake game omitted… Could you help me tweak the code so the snake can actually eat the food?

Task instruction 1: Update the bookkeeping sheet with my recent transactions over the past few days in the provided folder.

Arbitrary Apps

Task Initial State Setup Config task initial env state setup

Final State

get env state

Execution-based
Evaluation

Virtual Machine(s)

Figure 1: OSWORLD is a first-of-its-kind scalable real computer env for multimodal agents, support-
ing task setup, execution-based evaluation, and interactive learning across systems. It is a unified
environment for evaluating open-ended computer tasks that involve arbitrary apps. Using OSWORLD,
we create a benchmark of 369 real-world tasks with reproducible setup and evaluation scripts.

To address this gap, we introduce OSWORLD, the first-of-its-kind scalable, real computer environ-
ment for developing multimodal agents capable of executing a wide range of real computer tasks
beyond isolated interfaces and applications. This executable environment allows free-form raw
keyboard and mouse control of real computer applications and supports initial task state configu-
ration, execution-based evaluation, and interactive learning across mainstream operating systems
(Ubuntu, Windows, macOS). OSWORLD enables evaluation of open-ended computer tasks that
involve arbitrary applications, ranging from image viewing to software functionality integration and
programming (Fig. 1). OSWORLD serves as a unified, real computer environment that allows users to
define their agent tasks without the need to build application/domain-specific simulated environments.

Building upon OSWORLD, we create a benchmark with 369 real-world tasks that involve widely-used
web and desktop apps in open domains, OS file I/O, and multi-app workflows through both GUI and
CLI. Each example is based on real-world use cases and often requires interactions with multiple ap-
plications and interfaces. To ensure reliable, reproducible evaluation, 9 authors with computer science
backgrounds carefully annotate each example with an initial state setup configuration to simulate
in-progress human work and a custom execution-based evaluation script to verify task completion.
Our benchmark has 134 unique evaluation functions — significantly larger than prior work [71] —
showcasing the complexity, diversity, and evaluation challenges of tasks in our benchmark. The
human performance study indicates that task examples from OSWORLD are more time-consuming
and challenging compared to those in prior work.

We evaluate state-of-the-art LLM and VLM agent baselines, including GPT-4V [43], Gemini [54, 45],
Claude-3 Opus [3] and Qwen-Max [5], as well as Mixtral [23], Llama-3 [39] and CogAgent [21]
from the open-source community. The performance of these experiments ranges from 0.99% to
12.24%, with subsets of applications reaching 0%, for workflow tasks that involve cooperation from
multiple apps, the highest performance of the baseline agent is 6.57%. This indicates that current
LLMs and VLMs are far from capable of serving as computer assistants (§4.2). Results also show
that while additional knowledge such as the accessibility tree and Set-of-Mark (§4.1) can be helpful,
it can also lead to potential misguidance and varies across models. Finally, we find that VLM-based
agents struggle to ground screenshots to predict precise coordinates for actions, tend to predict
repetitive actions, are unable to handle noise from unexpected application windows and exhibit
limited knowledge of basic GUI interactions and domain-specific features of apps (§5, §D.4).

2

Virtual Machine
Control Receiver

Virtual Machine Platform

Task
Manager

Setup
Interpreter

Evaluation
Interpreter

Simulator

screen capture
accessibility tree

Getter

Metrics

Set-up

Virtual Machine
Control Receiver

VM 1

…

Agent

Coordinator

Reward

Config

by executing eval scripts

vmrun commands,
Flask commands

status, files, infos…

{ "instruction": "Please update my bookkeeping sheet with
the recent transactions from the provided folder, detailing
my expenses over the past few days.",

"config": [{"type": "download",
"parameters": {"files": [

{"path": "/home/user/Desktop/my_bookkeeping.xlsx",
"url": "https://drive.google.com/uc?id=xxxx"},

{"path": "/home/user/Desktop/receipt_0.jpeg",
"url": "https://drive.google.com/uc?id=xxxx"},…]}},

{"type": "open",
"parameters": { "path":

"/home/user/Desktop/my_bookkeeping.xlsx"}}],
"evaluator": {"postconfig": [{"type": "activate_window",

"parameters": {"window_name": "my_bookkeeping.xlsx -
LibreOffice Calc",...],

"result": {"type": "vm_file",
"path": "/home/user/Desktop/my_bookkeeping.xlsx",
"dest": "my_bookkeeping.xlsx"},

"expected": {"type": "cloud_file",
"path": "https://drive.google.com/uc?id=xxx",
"dest": "my_bookkeeping_gold.xlsx" },

"func": "compare_table",
"options": {

"rules": [{
"type": "sheet_fuzzy",
"sheet_idx0": "RNSheet1",
"sheet_idx1": "ENSheet1",
"rules": [{"range": ["A1:A8",... }]}]

}

observations

actions

VM
Postprocess

Virtual Machine
Controller

Figure 2: Overview of OSWORLD infrastructure. The environment uses a config file for initializing
tasks (red), agent interaction, post-processing upon agent completion (orange), retrieving files and
information (yellow), and executing the evaluation function (highlighted in green). Environments can
run in parallel on a single host machine for learning or evaluation. Headless operation is supported.

2 OSWORLD Environment

In this section, we will introduce the task definition of autonomous agents, the components and
implementation of the OSWORLD environment, and the supported observation and action spaces.

2.1 Task Definition

An autonomous digital agent task can be formalized as a Goal-Augmented Partially Observable
Markov Decision Process (GA-POMDP) (S,O,A, T ,Ω, r, γ, ρ0,G, pg, ϕ) where S is the full state
space (including hidden system states), O is the observation space (§2.3, what’s visible or accessible
to the agent), A is the action space (§2.4), T : S × A → S is the transition function, Ω is the
observation function, r : S ×A× G → R is the reward function, γ is the discount factor, ρ0 is the
initial state distribution, G is the space of goals (instructions in our case), pg is the distribution of
desired goals (instructions), and ϕ : O → G is a mapping function from observations to goals. Given
current observation ot ∈ O (a natural language instruction observation and a screenshot, accessibility
a11y tree, or their combination according to facilities available), an agent generates executable action
at ∈ A (e.g., clicking on the certain pixel of the screen — .click(300, 540, button=‘right’),
press key combination — .hotkey(‘ctrl’, ‘alt’, ‘t’)), which results in a new state st+1 ∈ S
(e.g., current computer state) and a new partial observation ot+1 ∈ O. The interaction loop repeats
until an action that marks termination (DONE or FAIL, see Sec. 2.4) is generated or the agent reaches
the max number of steps (e.g., 15 in our experiments). OSWORLD implements an execution-based
reward function r : S × A × G → [0, 1]. The reward function awards a value of 1 or a positive
decimal under 1 at the final step if the state transitions meet the expectations of the task objective
(i.e., the goal is successfully achieved or partially achieved), or if the agent accurately predicts failure
for an infeasible task. In all other scenarios, it returns 0.

2.2 Real Computer Environment Infrastructure

OSWORLD is an executable and controllable environment that supports task initialization, execution-
based evaluation, and interactive learning in real operating systems (e.g., Ubuntu, Windows, macOS)
using virtual machines (VMs), shown in Fig. 2. VMs offer safe, isolated, and resettable/reversible
(via snapshotting) environments that prevent irreversible damage to the real host machine.

Initialization Prior to agent interactions, we initializing the VM environment via config file. This
includes downloading files, opening software, and adjusting interface layout. Many real-world
assistance scenarios occur not at the beginning of digital activities, such as right after launching an
application or starting the computer, but rather at intermediate stages, such as when certain software

3

Table 1: Examples of annotated evaluation scripts, which involve retrieving data from configuration
files, environment, and cloud, and executing functions to obtain results and assess correctness.

Initial State Task Instruction Evaluation Script (Simplified)

Can you help me clean up my com-
puter by getting rid of all the cook-
ies that Amazon might have saved?

cookie_data = get_cookie_data(env)
rule = {"type":"domains",
"domains":[".amazon.com"]}
is_cookie_deleted(cookie_data, rule)

Rename “Sheet 1” to “LARS Re-
sources”. Then make a copy of
it. Place the copy before “Sheet
2” and rename it by appending a
suffix “(Backup)”, ...

result = get_file(env)
expected = get_file(cloud)
rules = [{"type":"sheet_name"},

{"type":"sheet_data",
"sheet_idx0":0,
"sheet_idx1":1}...]

compare_table(result, expected, rules)

I’ve drafted an e-mail reminder
for those who haven’t paid tuition.
Please help me to check out their e-
mails from the payment record and
add to the receiver field.

tree = get_a11y_tree(env)
rules = [{"selectors":

["tool-bar[attr|id=MsgHeadersToolbar]
label[name=To]
[attr|class=\"address-pill\"]>
label[attr|class=\"pill-label\"]
[name*=\"fox@someuniversity.edu...]

check_a11y_tree(tree, rules)

is already open or the computer has experienced a crash. Therefore, we reproduce these intermediate
states during the initialization to replicate real-world scenarios. See B.5 for more details.

Evaluation After agent interactions, we post-process the environment during the evaluation phase.
This includes activating certain windows, saving some files for easy retrieval of information, and
acquiring files and information for evaluation such as the final spreadsheet file for spreadsheet tasks,
cookies for Chrome tasks. Finally, we apply the appropriate evaluation functions and parameters.
We construct a vast collection of functions that make final wrangling and retrieve files and data
information of varying types, categories, and granularities from the cloud and software from virtual
machines as well as evaluation functions covering different aspects and their combinations, inputting
this information as parameters to assess the outcomes. Tab. 1 illustrates evaluation processes including
extracting cookie data, fetching files from both virtual machines and cloud services, retrieving the
current interface’s accessibility tree, and validating success by checking cookie deletions, table
accuracy, and interface access. See more in B.6.

2.3 Observation Space

The observation space in OSWORLD contains the same desktop screenshot that human users perceive.
This includes the mouse’s position and shape, application windows, files, and folders that are opened
in different sizes and orders. Also, similar to previous agent-building web and mobile research [34, 31,
12, 71] that provide and support the use of the webpage’s DOM and app’s view hierarchy, OSWORLD
also provides accessibility (a11y) tree which can support additional information for modeling. These
raw observations allow rich interactions between multiple applications but induce challenges in
long-horizon decision-making from high-resolution images (e.g., 4k screenshots) and structured long
text (e.g., accessibility trees). A.2 describes observation space in more detail.

2.4 Action Space

Action space A in OSWORLD encompasses all mouse and keyboard actions, including movement,
clicks (left-key, right-key, multiple clicks), dragging, keystrokes, hotkeys, and others, covering all
human-computer action space. Some action examples are shown on the left and the complete action
list can be found in A.3. Timing is also crucial, as highlighted in previous studies on mobile de-
vices [55], as well as the ability to determine whether a task is infeasible or completed. Therefore, we
add three special actions named WAIT, FAIL, and DONE to enhance the aforementioned action spaces.

4

Table 2: Example mouse and keyboard actions A in OSWORLD.
See App. A.3 for the complete list.

Function Description

moveTo(x, y) Moves the mouse to the specified coordinates.
click(x, y) Clicks at the specified coordinates.
write(‘text’) Types the specified text at the current cursor location.
press(‘enter’) Presses the Enter key.
hotkey(‘ctrl’, ‘c’) Performs the Ctrl+C hotkey combination (copy).
scroll(200) Scrolls up by 200 units.
dragTo(x, y) Drags the mouse to the specified coordinates.
keyDown(‘shift’) Holds down the Shift key.
keyUp(‘shift’) Releases the Shift key.
WAIT Agent decides it should wait.
FAIL Agent decides the task is infeasible.
DONE Agent decides the task is finished.

Previous efforts towards creat-
ing domain-specific agents, such
as MiniWoB++ [48, 34], CC-
Net [22], and WebArena [71, 26],
have defined action spaces that
include clicks and typing, as well
as some actions specially de-
signed for web browsing. How-
ever, they do not model all possi-
ble actions on a computer, lead-
ing to limitations when attempt-
ing actions like right-clicking
and clicking with the ctrl key
held to select items. This im-
poses an upper bound on agent
learning capabilities.

3 OSWORLD Benchmark

The OSWORLD benchmark encompasses 369 real computing tasks defined and executed on Ubuntu,
as well as 43 tasks on Windows. The environment preparation, annotation process, data statistics, and
human performance are described in this section.

3.1 Operating System and Software Environments

OSWORLD supports the development of automated computer agents across real operating systems
like Windows, macOS, and Ubuntu, focusing on Ubuntu for its open-source advantages and accessible
APIs for comprehensive example creation and task evaluation. For Windows, we provide annotated
examples targeting similar application functionalities. This framework is designed for open-domain
tasks involving multiple applications and interfaces, such as GUIs and CLIs. It prioritizes a balanced
benchmark across eight key applications: Chrome, VLC, Thunderbird, VS Code, LibreOffice suite
(Calc, Writer, Impress), GIMP, and essential OS utilities (terminal, file manager, image viewer,
PDF viewer), highlighting the need for varied operational skills, including commonsense reasoning,
software navigation, and precise input control. Further details are available in B.1 and B.2.

3.2 Tasks

Files 2.2%
Settings 2.4%Terminal 1.9%

Visualization 1.9%
Proc

es
sin

g 7
.0%

Ta
b.

 fo
rm

at
tin

g
3.

8%

Sl
id

e
se

tti
ng

s
4.

1%

Slide editing 8.7%

Doc. settings 1.6%

Doc. editing 4.6%Image ops 7.0%

Configuration 3.8%

Code assist 2.4%

File ops 8.1%

Mult
im

ed
ia

4.6
%

D
at

a
an

al
ys

is
 8

.9
% M

isc. 5.7%

Settings 5.7%
Info query 4.1%

Shopping 2.7%

Account ops 1.6%

Email ops 2.4%

Video control 4.6%

OS 6.5%

31.7%

13.3%

Workflow

27.4%

Daily

21.1%

Office

Professional

Figure 3: Distribution of task instructions in OS-
WORLD by app domains and operation types.

We create a suite of 369 real-world computer
tasks on Ubuntu from diverse sources such as
forums, tutorials, and guidelines to demonstrate
open-ended task creation within OSWORLD.
Each example is carefully annotated with a nat-
ural language instruction, a setup configuration
with corresponding files and setup actions for en-
vironment initialization, and a manually crafted
evaluation script to check if the task is success-
fully executed. We also adapt 43 tasks from
the Ubuntu set for analytic usage on Windows.
Overall, it took 9 computer science students
(all student authors) over 3 months, consuming
approximately 1800 man-hours (650 hours on
single-app tasks, 750 hours on workflow tasks
and 400 hours for double-checking).

Task instructions and scenarios We collect
realistic examples from diverse sources includ-
ing official guidelines & tutorials, video pieces
giving tips and tutorials on the Internet (TikTok,

5

YouTube), how-to websites (WikiHow), Q&A forums (Reddit, Quora, Superuser, StackOverflow),
formal video courses (Coursera, Udemy), and publicly-available personal blogs & guidelines. B.3 de-
tails resources used in our benchmark. We select examples by their popularity, helpfulness, and
diversity, revealed by view counts and votes. While descriptions of single-application tasks are easily
found, those of tasks that involve the coordination of multiple applications are scarce. Therefore, we
authors combine existing examples and designed examples inspired by daily-life scenarios to compile
the tasks. The instructions and task-related files are then crafted from these real-world guidelines
and questions by the authors. After selection, each example is cross-checked by two other authors
on the feasibility, ambiguity, and alignment with the source. We not only collect feasible tasks, but
also tasks inherently infeasible due to feature deprecation or hallucinated features raised by real
users, which results in 30 infeasible examples in our benchmark. Additionally, to demonstrate the
unification ability of OSWORLD for the creation of open-ended computer tasks, we also integrate 84
examples from other benchmarks focusing on single-application or domain-specific environments
such as NL2Bash [33], Mind2Web [12], SheetCopilot [29], PPTC [18], and GAIA [40]. Refer to B.4
for more details and B.7 for sampled examples for the showcase. A total of about 400 man-hours
were spent to collect these examples. §2.2 outlines the procedure for creating config and evaluation
for tasks. Initial state design took 1 man-hour per example and is detailed in B.5. Evaluation design
took two man-hour per example and is detailed in B.6.

Quality control After annotation, each example is attempted by two authors who did not participate
in its annotation, acting as agents to complete the task. This process evaluates the current example’s
quality and provides feedback to the annotators (such as unclear instructions or inability to complete
the task, crashes in corner cases, serious instances of false positives and negatives, etc.), and involves
joint revisions and supplements. During experiments for human performance and baselines, we
further fixed examples found to have issues, dedicating over 400 man-hours for four rounds of checks.

3.3 Data Statistics

Table 3: OSWORLD statistic. Supp.
refers to Windows tasks that are usable
only after activation due to copyright.

Statistic Number

Total tasks (Ubuntu) 369 (100%)
- Multi-App Workflow 101 (27%)
- Single-App 268 (73%)
- Integrated 84 (23%)
- Infeasible 30 (8%)
Supp. tasks (Windows) 43

Initial States 302
Eval. Scripts 134

Statistics To facilitate analysis, we cluster the examples
into software categories. Specifically, these categories in-
clude OS, Office (LibreOffice Calc, Impress, Writer), Daily
(Chrome, VLC Player, Thunderbird), Professional (VS Code
and GIMP), and Workflow (tasks involving multiple apps).
The main statistics of OSWORLD are presented in Tab. 3
and Fig. 3, showcasing the outline and a broad spectrum of
tasks. Specifically, OSWORLD contains a total of 369 tasks
(and an additional 43 tasks on Windows for analysis), with
the majority (268 tasks or 72.6%) aiming at single applica-
tion functionalities and a section of workflow-related tasks
(101 tasks or 27.4%). We also consider infeasible examples,
totaling 30 tasks or 8.1% of the dataset. Additionally, a total
of 84 tasks (22.8%) are integrated from related datasets. The
final dataset incorporates 302 distinct initial states and 134 different evaluation scripts, underscoring
the comprehensive approach towards evaluating the tasks’ complexity and requirements. More
statistic details are available in B.4.

Comparison with existing benchmarks Tab. 4 compares OSWORLD to prior benchmarks. First,
instead of focusing on specific computer applications such as a browser [71, 12], OSWORLD utilizes
raw multimodal observations and keyboard/mouse actions used by humans, which are universal
across different applications and allows the development of generalizable agents. Second, instead of
providing static demonstrations, OSWORLD executable environment supports agent exploration
during learning and evaluation — behavior critical in generalizing to new applications. Third, instead
of focusing on interactions within a single application, OSWORLD considers cross-app interactions
found in real-world computer usage. Fourth, instead of limiting to a single task type with a success
definition, OSWORLD provides example-wise, execution-based evaluation for tasks. Specifically,
the total of 134 unique execution-based evaluation functions in our benchmark is significantly more
than previous work, demonstrating the complexity, diversity, and evaluation challenges of OSWORLD
tasks. Finally, instead of focusing on clean initialization, OSWORLD tasks require operation from
intermediate initialization, as is typical in realistic computer usage.

6

Table 4: Comparison of different environments for benchmarking digital agents.
Instances

(# Templates)
Control.

Exec. Env.?
Environment
Scalability?

Multimodal
Support?

Cross-
App?

Intermediate
Init. State?

Exec.-based
Eval. Func.

GAIA [40] 466 ✗ - ✗ ✗ ✗ 0
MIND2WEB [12] 2350 ✗ - ✓ ✗ ✓ 0
WEBLINX [37] 2337 ✗ - ✓ ✗ ✓ 0
PIXELHELP [31] 187 ✗ - ✓ ✗ ✗ 0
METAGUI [52] 1125 ✗ - ✓ ✗ ✗ 0
AITW [44] 30k ✗ - ✓ ✗ ✓ 0
SCREENAGENT [42] 70 ✗ - ✓ ✗ ✓ 0
OMNIACT [25] 9802 ✗ - ✓ ✗ ✓ 0

AGENTBENCH [36] 1091 Multi-isolated ✗ ✗ ✗ ✗ 7
INTERCODE [62] 1350 (3) Code ✗ ✗ ✗ ✗ 3
MINIWOB++ [34] 125 Web ✗ ✓ ✗ ✗ 125
WEBSHOP [63] 12k (1) Web ✗ ✓ ✗ ✗ 1
WEBARENA [71] 812 (241) Web ✗ ✓ ✗ ✗ 5
VWEBARENA [26] 910 (314) Web ✗ ✓ ✗ ✗ 6
WORKARENA [13] 23k (29) Web ✗ ✓ ✗ ✓ 7
WIKIHOW [66] 150 (16) Mobile ✗ ✓ ✗ ✗ 16
ASSISTGUI [17] 100 ✗ ✗ ✓ ✗ ✓ 2

OSWORLD 369 Computer ✓ ✓ ✓ ✓ 134

3.4 Human Performance

0

100

200

300

400

500

600

700

800

900
Hu

m
an

 O
pe

ra
tio

n
Ti

m
e

(s
)

Ours median: 111.94s
WebArena median: 35.38s

WebArena Ours
30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Figure 4: Human operation time and accuracy on
OSWORLD and WebArena.

We conduct human evaluations on each example
in our dataset, with annotators being computer
science major college students who possess ba-
sic software usage skills but have not been ex-
posed to the samples or software before. We
recorded the time required to complete each ex-
ample and whether their completion of the ex-
ample was correct. For comparison, we also
sampled 100 examples from WebArena [71] un-
der the same evaluation setup.

As illustrated, tasks from our dataset generally
required more time to complete, with a median
completion time of 111.94 seconds (compared
to 35.38 seconds in WebArena), and a significant
number of examples distributed at 900 seconds
or even more. In terms of accuracy, the human
performance on our tasks was approximately 72.36%, significantly lower than the 88% observed
on the pure web task dataset. These findings highlight the complexity and challenge of tasks in our
dataset, which demand more time and effort. The lower accuracy rate further indicates that our tasks
require a higher level of understanding and proficiency, underscoring the need for advanced models
and techniques to tackle them effectively.

4 Benchmarking LLM and VLM Agent Baselines

In this section, we present the implementation details and experimental settings for several state-of-
the-art LLM and VLM agent baselines on OSWORLD benchmark, as well as their performance.

4.1 LLM and VLM Agent Baselines

We evaluate state-of-the-art open-source LLMs and VLMs such as Mixtral [23] and Llama-3 [39],
and closed-source ones such as GPT, Gemini, Claude on OSWORLD. We also explore methods
such as the Set-of-Marks aided approach [61, 14], which has been demonstrated to improve spatial
capabilities for visual reasoning. For each method, we provide the 3 most recent observation-action
pairs and generate actions with the temperature of 1.0 and top-p of 0.9. The prompts used in the
experiments are provided in C.1. We request the agents to complete the tasks within a max step limit
of 15, which is enough for most tasks. We present a summary of the results in Tab. 5 and analysis in

7

Table 5: Success rates of baseline LLM and VLM agents on OSWORLD, grouped by task categories:
OS, Office (LibreOffice Calc, Impress, Writer), Daily (Chrome, VLC Player, Thunderbird), Profes-
sional (VS Code and GIMP) and Workflow (tasks involving multiple apps), for gaining insights from
interfaces and operation logic. See C.1 and C.6 for more details.

Inputs Model Success Rate (↑)
OS Office Daily Profess. Workflow Overall

A11y tree Mixtral-8x7B 12.50% 1.01% 4.79% 6.12% 0.09% 2.98%
Llama-3-70B 4.17% 1.87% 2.71% 0.00% 0.93% 1.61%

GPT-3.5 4.17% 4.43% 2.71% 0.00% 1.62% 2.69%
GPT-4 20.83% 3.58% 25.64% 26.53% 2.97% 12.24%

Gemini-Pro 4.17% 1.71% 3.99% 4.08% 0.63% 2.37%
Gemini-Pro-1.5 12.50% 2.56% 7.83% 4.08% 3.60% 4.81%

Qwen-Max 29.17% 3.58% 8.36% 10.20% 2.61% 6.87%
GPT-4o 20.83% 6.99% 16.81% 16.33% 7.56% 11.36%

Screenshot CogAgent 4.17% 0.85% 2.71% 0.00% 0.00% 1.11%
GPT-4V 12.50% 1.86% 7.58% 4.08% 6.04% 5.26%

Gemini-ProV 8.33% 3.58% 6.55% 16.33% 2.08% 5.80%
Gemini-Pro-1.5 12.50% 6.99% 2.71% 6.12% 3.60% 5.40%
Claude-3-Opus 4.17% 1.87% 2.71% 2.04% 2.61% 2.42%

GPT-4o 8.33% 3.58% 6.07% 4.08% 5.58% 5.03%

Screenshot CogAgent 4.17% 0.85% 2.71% 0.62% 0.09% 1.32%
+ A11y tree GPT-4V 16.66% 6.99% 24.50% 18.37% 4.64% 12.17%

Gemini-ProV 4.17% 4.43% 6.55% 0.00% 1.52% 3.48%
Gemini-Pro-1.5 12.50% 3.58% 7.83% 8.16% 1.52% 5.10%
Claude-3-Opus 12.50% 3.57% 5.27% 8.16% 1.00% 4.41%

GPT-4o 41.67% 6.16% 12.33% 14.29% 7.46% 11.21%

Set-of-Mark CogAgent 4.17% 0.00% 2.71% 0.00% 0.53% 0.99%
GPT-4V 8.33% 8.55% 22.84% 14.28% 6.57% 11.77%

Gemini-ProV 4.17% 1.01% 1.42% 0.00% 0.63% 1.06%
Gemini-Pro-1.5 16.67% 5.13% 12.96% 10.20% 3.60% 7.79%
Claude-3-Opus 12.50% 2.72% 14.24% 6.12% 4.49% 6.72%

GPT-4o 20.83% 3.58% 3.99% 2.04% 3.60% 4.59%

Human Performance 75.00% 71.79% 70.51% 73.47% 73.27% 72.36%

Sec. 4.2. We implement the following four types of input settings on LLM and VLM: Accessibility
tree, Screenshot, Screenshot + accessibility tree, and Set-of-Marks. Details see App. C.3.

4.2 Results

LLMs and VLMs are still far from being digital agents on real computers. Table 5 shows
that screenshots-only agents that generate keyboard/mouse actions via pyautogui achieve 5.26%
to 5.80% success rate (VLMs GPT-4V, Gemini-Pro-vision) while the text-only agents using using
a11y tree as input achieve 2.37% to 12.24% (LLMs GPT-4, GPT-4o). These results from state-of-the-
art VLMs and LLMs significantly trail the performance of humans not familiar with the software
(72.36%), which indicates further research is required to develop capable digital assistants. While
Claude-3 Opus is competitive with GPT-4V on common benchmarks [2], it underperforms GPT-4V
significantly as a digital agent in OSWORLD. D.4 present qualitative analysis and infer reasons.

Agents have much higher variance than humans in different types of computer tasks. Tab. 5
shows that agent performance varies significantly across different software types, performing better
on CLI-oriented interfaces (such as OS-type tasks) compared to GUI-oriented interfaces (such
as Office tasks involving clicks on spreadsheet interfaces and document processing). Moreover,
the CLI vs. GUI gap between models and settings is inconsistent, with some >20%. Similarly,
performance on workflow-type tasks involving multiple software (<5%) significantly trails single
software performance. Unlike agent performance, human performance is consistent across these

8

tasks, fluctuating around 70% with <5% deviation. This suggests that the way humans understand
and complete tasks may differ significantly from the current logic and methods based on LLMs and
VLMs.

A11y tree and SoM’s effectiveness varies by models. The a11y tree contains some attribute
information of visible elements, including window position and size, as well as some semantic labels
of the window. The performance gap illustrated in Table 5 between GPT-4V and Claude-3 with
additional a11y tree information and under a pure screenshot setup suggests that it still has significant
room for improvement in accurately perceiving and reasoning GUI elements. Conclusions are
reversed for Gemini-Pro. While applying SoM setting, there is a decline for GPT-4V in performance
compared to directly providing the model with screenshots and a11y tree inputs, which contradicts
the widely shown effectiveness of SoM in classic image understanding tasks [61], as well as in
application areas like web agents [70, 20]. We speculate that this is due to the tasks performed within
operating systems having higher resolution and much more elements, (e.g., the cells in a spread table),
leading to a significant amount of noise that counteracts the auxiliary role of bounding boxes. Some
tasks also require coordinate-level operations, which cannot be modeled by SoM bounding boxes.

VLM agents with screenshot-only setting show lower performance, but it should be the ul-
timate configuration in the long run. The setting that relies solely on screenshots exhibits the
lowest performance, at only 5.26%, among all. Despite the performance, it is worth mention-
ing that this is the only configuration that does not require additional information, such as an
a11y tree, making it concise and in alignment with intuitive human perception since the a11y
tree may not be well-supported across all software or cannot be obtained under noisy condi-
tions (e.g., when the agent is restricted to viewing the computer through peripheral screens),
and the massive amount of tokens contained in the a11y tree (even just the leaf nodes can have
tens of thousands of tokens) can also impose an additional inference burden on the model. Fu-
ture work on purely vision-based agents could lead to stronger generalization capabilities, effi-
ciency, and, ultimately, the potential for integration with the physical world on a larger scale.

0.2 0.4 0.6 0.8 1.0

10

20

Ratio

Su
cc

es
s

R
at

e
(%

) GPT-4V SoM
GPT-4V Screenshot5 Analysis

Higher resolution typically improves performance
Despite the availability of high-res displays, most VLMs
are trained on far lower resolutions. We evaluate perfor-
mance using screenshot-only and SoM by down-sampling
the original resolution by 0.2-0.8 (Figure for 10% of exam-
ples on the right). The output coordinates of the model for
the screenshot setting are still expected to align with the original resolution (i.e., 1080P). Resolution
impact on performance is shown on the right (for a subset of 10% of examples). Screenshot-only
performance improves with higher resolution, which may arise from the discrepancy between the
downsampled input resolution and the coordinates of the output (which is for the original resolution).
In contrast for SoM, a reduction to 768×432 (down-sampling 0.4) improves performance and further
reduction in resolution to 0.2 noticeably degrades performance.

1 2 3 >3

5

10

15

History Trajectory Length

Su
cc

es
s

R
at

e
(%

)

GPT-4V SoM
GPT-4V Screenshot

Longer text-based trajectory history context improves
performance, unlike screenshot-only history, but poses
efficiency challenges We include current and past N
rounds of observations and actions in the constructed
prompts (see App. C.1 for more details) to explore the
impact of context length on agent performance. We set
N to 1, 2, 3, and all where we put as much context as we
can. The results (on 10% of examples) on the right show
the performance increase with more history context for
SoM. Future work on constructing models with enhanced capabilities for longer context support
and understanding reasoning, improving model efficiency, and designing new agent architectures for
efficient memory storage will have a significant impact on digital agents. However, we also note that
the inclusion of additional trajectory history does not enhance performance under the pure screenshot

9

setting. This suggests that contemporary advanced VLMs might not be as adept at extracting robust
contextual information from images as they are from textual data.

Position Size ClutterOriginal

20

40 36.5

15.04

25.39

50.79

Su
cc

es
s

R
at

e
(%

)VLM agents struggle with perturbation of application
windows size/position and irrelevant information We
consider the best SoM setting and a subset of 28 OS-
WORLD tasks that agents perform well on (with a success
rate of 50.79%). At the beginning of each task, we in-
troduce disturbances to the windows by 1) changing the
position of the window; 2) changing the size of the win-
dow to the minimal; 3) opening some irrelevant software
and maximizing them to clutter the screen. We find that
current agents are not robust to these superficial changes,
which lead to performance drops of 60% and even 80%. Surprisingly, agents are able to switch
windows to a certain degree but fail to maximize the window as an intermediate step. This suggests
that while agents possess some capability to navigate between windows, they lack a comprehensive
strategy for managing window states effectively.

6 Related Work

Benchmarks for multimodal agents Recent research has made significant progress in evaluating
multimodal agents, including physical world [49, 11, 8] and digital world [48, 15]. In the digital
realm, interactive evaluation of agents primarily spans coding, web scenarios, and mobile applications.
Prior work on coding provides frameworks and datasets for evaluating agents across programming
languages and software engineering activities [62, 24, 28, 50]. Prior work on web agents develop
platforms for interacting with websites through keyboard and mouse actions, as well as datasets
focusing on open-ended web tasks and realistic web navigation [48, 34, 63, 12, 71, 26, 13]. Mobile
device interaction research develop simulators for mobile UI interactions and platforms dedicated to
InfoUI tasks [31, 52, 56, 55, 44, 66, 58, 65, 57]. Further, environments connecting to real computers
and datasets for GUI grounding, albeit without interactive capability, have emerged [17, 10, 42, 25, 53].
Comprehensive task evaluation across different aspects also sees innovations [36, 40]. In contrast to
prior work that address specific domains/applications/datasets, OSWORLD facilitates the development
of general-purpose digital agents that openly interact with OS. See Tab. 4 for comparison.

Vision-language models for multi-modal agents Many existing works on GUI interaction utilize
structured data such as HTML, accessibility trees, and view hierarchies as a grounding source [12, 19,
31, 41, 69, 51, 67, 71]. However, source code often tends to be verbose, non-intuitive, or inaccessible,
which necessitates multi-modal/visual understanding. Prior work on multimodal models consider
screenshots for interaction with websites [4, 16, 22, 27, 47] and mobile devices [21, 68]. Additionally,
general-purpose foundation models [5, 30, 35, 72, 9] also demonstrate potential for multi-modal
digital agents. Prompt-based reasoning methods [17, 20, 60, 70] have further improved digital agents
for web pages, mobile apps, and desktops. This work evaluates state-of-the-art text, vision, and
multi-modal methods, demonstrating that existing multi-modal models are far from capable computer
agents.

7 Conclusion

OSWORLD addresses critical gaps in existing interactive learning environments to advance the
development of autonomous digital agents. By providing a rich, realistic setting that spans multiple
operating systems, interfaces, and applications, OSWORLD broadens the scope of tasks digital agents
can perform, and enhances their potential for real-world applications. Despite the promise shown by
advancements in vision-language models, evaluations within OSWORLD reveal notable challenges in
agents’ abilities, particularly in GUI understanding and operational knowledge, pointing to essential
areas for future research and development.

10

Acknowledgements

We thank Sida Wang, Peter Shaw, Alane Suhr, Luke Zettlemoyer, Chen Henry Wu, Pengcheng Yin,
Shunyu Yao, Xing Han Lu, Siva Reddy, Ruoxi Sun, Zhiyuan Zeng, Chengyou Jia, Haoyuan Wu, Jiaqi
Deng, Yuhao Yang and Lei Li for their helpful feedback on this work.

References
[1] Adept. ACT-1: Transformer for Actions. https://www.adept.ai/act, 2022.

[2] Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/
claude-3-family, 2023. Accessed: 2024-03-26.

[3] Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-
cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf,
2024.

[4] Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter,
Victor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
model for ui and infographics understanding. arXiv preprint arXiv:2402.04615, 2024.

[5] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[8] Liang Chen, Yichi Zhang, Shuhuai Ren, Haozhe Zhao, Zefan Cai, Yuchi Wang, Peiyi Wang,
Xiangdi Meng, Tianyu Liu, and Baobao Chang. Pca-bench: Evaluating multimodal large
language models in perception-cognition-action chain. arXiv preprint arXiv:2402.15527, 2024.

[9] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei
Guo, Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li,
Wenjian Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu,
Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. How far are we to
gpt-4v? closing the gap to commercial multimodal models with open-source suites, 2024. URL
https://arxiv.org/abs/2404.16821.

[10] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

[11] Sijie Cheng, Zhicheng Guo, Jingwen Wu, Kechen Fang, Peng Li, Huaping Liu, and Yang
Liu. Can vision-language models think from a first-person perspective? arXiv preprint
arXiv:2311.15596, 2023.

[12] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023.

[13] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme,
Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena:
How capable are web agents at solving common knowledge work tasks? arXiv preprint
arXiv:2403.07718, 2024.

11

https://www.adept.ai/act
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2404.16821

[14] D. Dupont. GPT-4V-Act: GPT-4 Variant for Active Learning. GitHub repository, 2023. URL
https://github.com/ddupont808/GPT-4V-Act.

[15] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. Advances in Neural Information Processing
Systems, 35:18343–18362, 2022.

[16] Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

[17] Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu,
Weichen Zhang, Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical
user interface automation. arXiv preprint arXiv:2312.13108, 2023.

[18] Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, and Duan Nan. Pptc benchmark: Evalu-
ating large language models for powerpoint task completion. arXiv preprint arXiv:2311.01767,
2023.

[19] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding, and
program synthesis. arXiv preprint arXiv:2307.12856, 2023.

[20] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. arXiv preprint arXiv:2401.13919, 2024.

[21] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
arXiv preprint arXiv:2312.08914, 2023.

[22] Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia,
Alistair Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A
data-driven approach for learning to control computers. In International Conference on Machine
Learning, pages 9466–9482. PMLR, 2022.

[23] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[24] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[25] Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem
Alshikh, and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal
generalist autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

[26] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena:
Evaluating multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

[27] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisensch-
los, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct:
Screenshot parsing as pretraining for visual language understanding. In International Confer-
ence on Machine Learning, pages 18893–18912. PMLR, 2023.

[28] Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software
development. arXiv preprint arXiv:2403.08604, 2024.

12

https://github.com/ddupont808/GPT-4V-Act

[29] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. arXiv preprint
arXiv:2305.19308, 2023.

[30] Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng Yang, Benyou
Wang, and Lingpeng Kong. Silkie: Preference distillation for large visual language models.
arXiv preprint arXiv:2312.10665, 2023.

[31] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

[32] J. C. R. Licklider. Man-computer symbiosis. IRE Transactions on Human Factors in Electronics,
HFE-1(1):4–11, 1960. doi: 10.1109/THFE2.1960.4503259.

[33] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. Nl2bash: A corpus
and semantic parser for natural language interface to the linux operating system. arXiv preprint
arXiv:1802.08979, 2018.

[34] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

[35] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

[36] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

[37] Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

[38] Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. arXiv preprint arXiv:2401.13178, 2024.

[39] Meta AI. Introducing meta Llama 3: The most capable openly available LLM to date, April
2024. URL https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-04-18.

[40] Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

[41] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[42] Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang,
and Qi Wang. Screenagent: A vision language model-driven computer control agent. arXiv
preprint arXiv:2402.07945, 2024.

[43] R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2:13, 2023.

[44] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android
in the wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088,
2023.

[45] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[46] Andrew Searles, Yoshimichi Nakatsuka, Ercan Ozturk, Andrew Paverd, Gene Tsudik, and
Ai Enkoji. An empirical study & evaluation of modern {CAPTCHAs}. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 3081–3097, 2023.

13

https://ai.meta.com/blog/meta-llama-3/

[47] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu,
Urvashi Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning
to follow instructions via graphical user interfaces. arXiv preprint arXiv:2306.00245, 2023.

[48] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In International Conference on Machine
Learning, pages 3135–3144. PMLR, 2017.

[49] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mot-
taghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded
instructions for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10740–10749, 2020.

[50] Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How
far are we from automating front-end engineering?, 2024.

[51] Abishek Sridhar, Robert Lo, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation. arXiv preprint arXiv:2305.14257, 2023.

[52] Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. arXiv preprint arXiv:2205.11029, 2022.

[53] Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong
Xia, Jiechuan Jiang, Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A
multimodal agent for red dead redemption ii as a case study. arXiv preprint arXiv:2403.03186,
2024.

[54] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[55] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali
Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning
platform for android. arXiv preprint arXiv:2105.13231, 2021.

[56] Sagar Gubbi Venkatesh, Partha Talukdar, and Srini Narayanan. Ugif: Ui grounded instruction
following. arXiv preprint arXiv:2211.07615, 2022.

[57] Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and
Jitao Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception.
arXiv preprint arXiv:2401.16158, 2024.

[58] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang,
Yunhao Liu, Yaqin Zhang, and Yunxin Liu. Empowering llm to use smartphone for intelligent
task automation. arXiv preprint arXiv:2308.15272, 2023.

[59] Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing
Hua, Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan
Shin, Caiming Xiong, and Tao Yu. Openagents: An open platform for language agents in
the wild. CoRR, abs/2310.10634, 2023. doi: 10.48550/ARXIV.2310.10634. URL https:
//doi.org/10.48550/arXiv.2310.10634.

[60] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang,
Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal
models for zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

[61] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

[62] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. arXiv preprint arXiv:2306.14898,
2023.

14

https://doi.org/10.48550/arXiv.2310.10634
https://doi.org/10.48550/arXiv.2310.10634

[63] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

[64] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang,
Qingwei Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction.
arXiv preprint arXiv:2402.07939, 2024.

[65] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang
Yu. Appagent: Multimodal agents as smartphone users. arXiv e-prints, pages arXiv–2312,
2023.

[66] Danyang Zhang, Lu Chen, and Kai Yu. Mobile-env: A universal platform for training and
evaluation of mobile interaction. arXiv preprint arXiv:2305.08144, 2023.

[67] Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language
models are semi-parametric reinforcement learning agents. Advances in Neural Information
Processing Systems, 36, 2024.

[68] Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action
agents. arXiv e-prints, pages arXiv–2309, 2023.

[69] Zihan Zhao, Lu Chen, Ruisheng Cao, Hongshen Xu, Xingyu Chen, and Kai Yu. Tie: Topological
information enhanced structural reading comprehension on web pages. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1808–1821, 2022.

[70] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist
web agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

[71] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

[72] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

15

A Details of OSWORLD Environment

A.1 Environment Infrastructure

As compared to core commonly used techniques like Docker 1, virtual machines can operate their
own kernel and system, enabling compatibility with a wide variety of operating systems (such as
Windows, macOS, Linux, etc.) across different CPU hardware types (x64, ARM, etc.), and supports
training and evaluation in a multiprocess manner on both headless servers and personal computers.

A.2 Observation Space

We implement three kinds of observation: complete screenshot, accessibility tree and terminal
output. We also implement a video recorder of the environment but don’t put it into our modeling
due to the agent’s ability limitations. OSWORLD supports observation refactoring and extending if
needed, such as getting data from certain opening applications that we want to focus on.

A.2.1 Screenshot

To align with the perception of a human user, we capture a screenshot of the entire computer screen.
Including the mouse cursor also proves helpful in certain cases where mouse information is crucial.
For screen resolution, we default to 1920×1080, as it is the most commonly used screen resolution
according to Internet Users Screen Resolution Realtime Statistics for 20232. This resolution also
offers a 16:9 aspect ratio. OSWORLD also supports modifying the resolution of virtual machines to
avoid potential memorization of absolute pixel values and to assist studies on topics like generalization
across different resolutions.

A.2.2 Accessibility Tree

An accessibility tree (or a11y tree, same logic to kubernetes and k8s), refers to an intricate structure
generated by the browser or OS accessibility APIs that renders a representative model of the web
content, providing a means of interaction for assistive technologies. Each node within the accessibility
tree hosts important information about a UI element. This could range from the nature of the object
(a button, checkbox, or paragraph of text), its current state (checked or unchecked, for checkboxes),
and even its spatial orientation on the screen.

Different operating systems employ varied accessibility APIs and tools to construct and manipulate
the accessibility tree. These include Microsoft Active Accessibility (MSAA) and User Interface
Automation (UIA) for Windows, NSAccessibility Protocol and macOS Accessibility Inspector for
macOS, and Assistive Technology Service Provider Interface (ATSPI) 3 for GNOME dekstop used
on Ubuntu. We adopt pyatspi to get the accessibility tree on Ubuntu and pywinauto on Windows.
We further convert it into XML format for message passing. Partial pieces of the XML formatted
accessibility tree are shown in Figure 5.

Tools such as Accerciser can help visualize the corresponding relationship of tree nodes and GUI
components in the accessibility tree as shown in Figure 6.

A.3 Action Space

We implement two kinds of action space: pyautogui and computer_13. We mainly use pyautogui
action space, since it saves tokens for describing action space definition in prompting, compared with
self-designed actions.

A.3.1 PYAUTOGUI

pyautogui is an open-source, cross-platform Python module utilized for programmatically control-
ling the mouse and keyboard. It can control simple movements, clicks, as well as keyboard inputs,
and can provide screen capture features or locate where the screen-specific images reside that can be

1https://www.docker.com/
2https://www.screenresolution.org/year-2023/
3https://docs.gtk.org/atspi2/

16

https://www.docker.com/
https://www.screenresolution.org/year-2023/
https://docs.gtk.org/atspi2/

Figure 5: Raw XML formatted accessibility tree visualization.

Figure 6: Use Accerciser to visualize components in accessibility tree. This example shows the
corresponding relationship between the “Print” button (which is a printer icon on the bar of the
LibreOffice app as shown on the left) and the “Print” tree node (which is the “Print” of the Accerciser
Accessibility Explorer as shown on the right).

useful for GUI automation. Compared with other Python packages such as xdotool 4, mouse 5 and
keyboard 6, pyautogui has better compatibility across different OSes as found in our early attempts,
so that we adapt that as our core component of computer controlling as well as an official valid action
space.

Herein, we will demonstrate some use cases of pyautogui and illustrate how it can be wielded as an
action space.

Mouse Controlling Functions

import pyautogui

move mouse to XY coordinates over num_second seconds
pyautogui.moveTo(x, y, duration=num_seconds)

drag mouse to XY
pyautogui.dragTo(x, y, duration=num_seconds)

4https://github.com/jordansissel/xdotool
5https://github.com/boppreh/mouse
6https://github.com/boppreh/keyboard

17

https://github.com/jordansissel/xdotool
https://github.com/boppreh/mouse
https://github.com/boppreh/keyboard

pyautogui.click(x=moveToX, y=moveToY, clicks=num_of_clicks, button='left')
pyautogui.rightClick(x=moveToX, y=moveToY)
pyautogui.middleClick(x=moveToX, y=moveToY)
pyautogui.doubleClick(x=moveToX, y=moveToY)
pyautogui.tripleClick(x=moveToX, y=moveToY)
pyautogui.scroll(amount_to_scroll, x=moveToX, y=moveToY)
pyautogui.mouseDown(x=moveToX, y=moveToY, button='left')
pyautogui.mouseUp(x=moveToX, y=moveToY, button='left')

Keyboard Controlling Functions

import pyautogui

useful for entering text, newline is Enter
pyautogui.typewrite('Hello world!\n', interval=secs_between_keys)

pyautogui.typewrite(['a', 'b', 'c', 'left', 'backspace', 'enter', 'f1'], interval=secs_between_keys)
pyautogui.hotkey('ctrl', 'c') # ctrl-c to copy
pyautogui.hotkey('ctrl', 'v') # ctrl-v to paste
pyautogui.keyDown(key_name)
pyautogui.keyUp(key_name)

pyautogui as an Action Space Given the various controls it provides, pyautogui can readily be used as
an action space in building automation software or testing interfaces with minor adjustments. More formally, an
action is within the action space when it meets the syntax of pyautogui or is one of three special actions WAIT,
FAIL, and DONE. This might include actions like clicking at a certain location, entering text or key sequences,
or even resting for a span (Pause). Each action could be mapped to an identifying label or number, forming a
discrete action space. For example:

import pyautogui

def perform_action(action):
if action == 0:

pyautogui.moveTo(100, 100)
elif action == 1:

pyautogui.write('Hello world!', interval=0.25)
else:

pyautogui.pause(1)

In this scheme, the "perform_action" function constitutes the action space, where each unique action is associated
with a unique integer (its action ID). The function interprets these action IDs and performs the corresponding
action, forming a rudimentary discrete action space.

One interesting finding is that language models generate screenshot locate functions like:

pyautogui.locateOnScreen('Apple.png')

When there is insufficient grounding evidence (such as when no screenshot is inputted, the accessibility tree lacks
a specific element, or the multimodal model cannot comprehend the user interface), employing this function to
retrieve the correct icon image could present an interesting method.

A.3.2 COMPUTER_13

To facilitate potential reinforcement learning applications, we have created a variant of pyautogui, which
we named computer_13. In this variant, we wrap pyautogui into a finite action class with parameterized
enumeration, such that it features 13 action types, excluding three special ones for task process control. Utilizing
this structured approach allows more effective reinforcement learning by providing a distinct and finite set of
actions to be learned and optimized. As summarized in Table 6, each action type has certain parameters, detailed
in the collection, confirming the type, range, and whether each parameter is optional for that action.

18

Table 6: Action types and parameters defined in action space computer_13, a variance we created
for the potential reinforcement learning research based on our environment.

Action Type Parameters Note
MOVE_TO x, y Move the cursor to the specified position
CLICK button,

x, y,
num_clicks

Click the left button if the button not specified, otherwise click
the specified button; click at the current position if x and y
are not specified, otherwise click at the specified position

MOUSE_DOWN button Press the left button if the button not specified, otherwise press
the specified button

MOUSE_UP button Release the left button if the button not specified, otherwise
release the specified button

RIGHT_CLICK x, y Right click at the current position if x and y are not specified,
otherwise right click at the specified position

DOUBLE_CLICK x, y Double click at the current position if x and y are not specified,
otherwise double click at the specified position

DRAG_TO x, y Drag the cursor to the specified position with the left button
pressed

SCROLL dx, dy Scroll the mouse wheel up or down
TYPING text Type the specified text
PRESS key Press the specified key and release it
KEY_DOWN key Press the specified key
KEY_UP key Release the specified key
HOTKEY keys Press the specified key combination
WAIT - Wait until the next action
FAIL - Decide the task cannot be performed
DONE - Decide the task is done

B Details of OSWORLD Benchmark

B.1 Operating System Selection

As of 2023, the most popular desktop operating systems are Windows (69.5%), macOS (20.4%), ChromeOS
(3.2%), and Linux (3.1%) 7. While Windows and macOS dominate the market share and boast the richest
software ecosystems, their closed-source nature raises potential copyright concerns for direct usage. ChromeOS,
being a web-based operating system, heavily depends on a Google account for its functionalities, rendering it
less suitable for a public benchmark.

In contrast, Linux desktops offer a wealth of open-source software for most daily tasks, supported by an active
community for both basic and advanced use. Essential applications such as Office Suite, browsers, email clients,
multimedia apps, and thousands of games and applications are either pre-installed or readily available through the
software center of the distribution. Consequently, we select Ubuntu, the most representative Linux desktop OS,
as the foundation for the main part of our benchmark intended for public use. Additionally, we have developed
components to facilitate agent interaction on a Windows virtual machine and have created a relatively small set
of examples focusing on the Microsoft Office suite, including Excel, PowerPoint, and Word. This serves as a
counterpart to the LibreOffice suite available on Ubuntu. These components can be utilized in-house or officially
with the purchase of a license. Regarding macOS, theoretically, it is illegal to install macOS on non-Apple
devices, which leads us to refrain from developing our benchmark on this platform to avoid copyright issues.

B.2 Software Selection

Due to the high cost of obtaining operation and evaluation script annotation data, we have chosen a representative
set of software for the examples of Ubuntu part. We adopt standards that consider: 1) Availability - the software
must be available on Ubuntu 22.04; 2) Open-source - the software should be open-sourced with an appropriate
license to prevent copyright issues; 3) Popularity - the software should take a high download number and
frequency of recommendations in blogs and tutorials; 4) Strong user community and good support resources
- it is preferable to have an active and robust user community as well as official documents, which can serve
as ample resources for task collection and agent learning; 5) Diversity of categories - the software should be
diverse to adequately represent and cover a wide range of real-world cases.

7https://www.statista.com/statistics/218089/global-market-share-of-windows-7/

19

https://www.statista.com/statistics/218089/global-market-share-of-windows-7/

As a result, we have shortlisted the software into two categories: general usage and professional usage. For
general usage, we have VLC for media playback, Chrome for web browsing, and Thunderbird for email
management. For professional usage, we have VS Code as a coding IDE, and LibreOffice (Calc, Writer, and
Impress) for handling spreadsheets, documents, and presentations respectively, along with GIMP for image
editing. This brings our total to eight different types of software.

B.3 Task Example Sources

We detail the task example sources in Table 7.

Table 7: Task Example Resources

App Resources Link

OS

Ubuntu Documentations https://help.ubuntu.com/
Ask Ubuntu https://askubuntu.com/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
YouTube https://www.youtube.com/

Calc

LibreOffice Help https://help.libreoffice.org/
Microsoft Tech Community https://techcommunity.microsoft.com/
libreofficehelp.com https://www.libreofficehelp.com/
Reddit r/LibreOfficeCal https://www.reddit.com/r/LibreOfficeCalc/
Reddit r/Excel https://www.reddit.com/r/Excel/
Super User https://superuser.com/
Medium https://medium.com/
Quora https://www.quora.com/
YouTube https://www.youtube.com/
Ryan and Debi & Toren Personal Site https://www.ryananddebi.com/

Writer

LibreOffice Help https://help.libreoffice.org/
LibreOffice Forum https://ask.libreoffice.org/
libreofficehelp.com https://www.libreofficehelp.com/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Ask Ubuntu https://askubuntu.com/
Quora https://www.quora.com/
YouTube https://www.youtube.com/
SearchStar Personal Site https://seekstar.github.io/

Impress

LibreOffice Help https://help.libreoffice.org/
libreofficehelp.com https://www.libreofficehelp.com/
Reddit r/LibreOffice https://www.reddit.com/r/LibreOffice/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Technical Tips https://technical-tips.com/
Just Click Here https://justclickhere.co.uk/
TikTok https://www.tiktok.com/

VLC

VLC Documentation https://docs.videolan.me
VLCHelp.com https://www.vlchelp.com/
VideoLAN’s Wiki https://wiki.videolan.org/
Ubuntu Documentations https://help.ubuntu.com/
Reddit r/Fedora https://www.reddit.com/r/Fedora/
Super User https://superuser.com/
Medium https://medium.com/
YouTube https://www.youtube.com/
Dedoimedo https://www.dedoimedo.com/index.html

Thunderbird

Thunderbird Support https://support.mozilla.org/en-US/products/thunderbird
Reddit r/Thunderbird https://www.reddit.com/r/Thunderbird/
Reddit r/Automation https://www.reddit.com/r/automation/
Super User https://superuser.com/
WikiHow https://www.wikihow.com/
Quora https://www.quora.com/
BitRecover https://www.bitrecover.com/
AdSigner https://www.adsigner.com/

Chrome Google Chrome Help https://support.google.com/chrome
Continued on next page

20

https://help.ubuntu.com/
https://askubuntu.com/
https://superuser.com/
https://stackoverflow.com
https://www.youtube.com/
https://help.libreoffice.org/
https://techcommunity.microsoft.com/
https://www.libreofficehelp.com/
https://www.reddit.com/r/LibreOfficeCalc/
https://www.reddit.com/r/Excel/
https://superuser.com/
https://medium.com/
https://www.quora.com/
https://www.youtube.com/
https://www.ryananddebi.com/
https://help.libreoffice.org/
https://ask.libreoffice.org/
https://www.libreofficehelp.com/
https://superuser.com/
https://stackoverflow.com
https://askubuntu.com/
https://www.quora.com/
https://www.youtube.com/
https://seekstar.github.io/
https://help.libreoffice.org/
https://www.libreofficehelp.com/
https://www.reddit.com/r/LibreOffice/
https://superuser.com/
https://stackoverflow.com
https://technical-tips.com/
https://justclickhere.co.uk/
https://www.tiktok.com/
https://docs.videolan.me
https://www.vlchelp.com/
https://wiki.videolan.org/
https://help.ubuntu.com/
https://www.reddit.com/r/Fedora/
https://superuser.com/
https://medium.com/
https://www.youtube.com/
https://www.dedoimedo.com/index.html
https://support.mozilla.org/en-US/products/thunderbird
https://www.reddit.com/r/Thunderbird/
https://www.reddit.com/r/automation/
https://superuser.com/
https://www.wikihow.com/
https://www.quora.com/
https://www.bitrecover.com/
https://www.adsigner.com/
https://support.google.com/chrome

Table 7 – continued from previous page
App Resources

Reddit r/Chrome https://www.reddit.com/r/Chrome/
Super User https://superuser.com/
WikiHow https://www.wikihow.com/
in5steps.com https://in5stepstutorials.com/
How-To Geek https://www.howtogeek.com/
Medium https://medium.com/
Quora https://www.quora.com/
YouTube https://www.youtube.com/
Laptop Mag https://www.laptopmag.com

VS Code

Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Quora https://www.quora.com/
YouTube https://www.youtube.com/
Campbell Muscle Lab GitHub https://campbell-muscle-lab.github.io/

GIMP

Reddit r/GIMP https://www.reddit.com/r/GIMP/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Quora https://www.quora.com/
Make-Use-Of https://www.makeuseof.com/
YouTube https://www.youtube.com/

Workflow

UniPath Marketplace https://marketplace.uipath.com/
sync.blue https://www.sync.blue/
Device Tests https://devicetests.com/
Make Tech Easier https://www.maketecheasier.com/
Unix & Linux Stack Exchange https://unix.stackexchange.com/
Geeks for Geeks https://www.geeksforgeeks.org/
I Love Free Software https://www.ilovefreesoftware.com/
The Geek Diary https://www.thegeekdiary.com/
Zyxware https://www.zyxware.com/
GNOME Discourse https://discourse.gnome.org/
It’s FOSS https://itsfoss.com/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
LibreOffice Forum https://ask.libreoffice.org/
ImpressExtractNotes https://github.com/danielrcollins1/ImpressExtractNotes
Medium https://medium.com/
YouTube https://www.youtube.com/
Kelvin Smith Library https://case.edu/library/

B.4 Task Examples Collection

Here we show the detailed statistics of OSWORLD benchmark, including the main set on Ubuntu (369 in total)
and the analytic set on Windows (43 in total).

Table 8: Detailed statistics of OSWORLD benchmark suite about examples number, average instruc-
tion tokens, infeasible instructions and integrated instructions.

OS Calc Impress Writer VLC Thunderbird Chrome VSCode GIMP Workflow Overall
Examples 24 47 47 23 17 15 46 23 26 101 369
Avg. Inst. Tokens 22.38 33.30 25.19 35.30 35.82 34.07 22.07 20.78 16.23 51.24 33.36
#Infeasible 5 1 0 1 3 1 3 5 10 1 30
#Integrated 7 19 30 0 0 0 26 0 0 2 84

Table 9: Detailed statistics of Windows analytic set benchmark suite. This set contains no infeasible
tasks and integrated tasks.

Excel Word PPT Workflow Overall
Examples 11 9 7 16 43
Avg. Inst. Tokens 19.45 21.44 21.86 47.57 32.48

21

https://www.reddit.com/r/Chrome/
https://superuser.com/
https://www.wikihow.com/
https://in5stepstutorials.com/
https://www.howtogeek.com/
https://medium.com/
https://www.quora.com/
https://www.youtube.com/
https://www.laptopmag.com
https://superuser.com/
https://stackoverflow.com
https://www.quora.com/
https://www.youtube.com/
https://campbell-muscle-lab.github.io/
https://www.reddit.com/r/GIMP/
https://superuser.com/
https://stackoverflow.com
https://www.quora.com/
https://www.makeuseof.com/
https://www.youtube.com/
https://marketplace.uipath.com/
https://www.sync.blue/
https://devicetests.com/
https://www.maketecheasier.com/
https://unix.stackexchange.com/
https://www.geeksforgeeks.org/
https://www.ilovefreesoftware.com/
https://www.thegeekdiary.com/
https://www.zyxware.com/
https://discourse.gnome.org/
https://itsfoss.com/
https://superuser.com/
https://stackoverflow.com
https://ask.libreoffice.org/
https://github.com/danielrcollins1/ImpressExtractNotes
https://medium.com/
https://www.youtube.com/
https://case.edu/library/

Figure 7: Comparison of instructions distribution. All datasets are sampled to 300 to make a fair
comparison. The hyper-parameters of t-SNE are randomly sampled for each plot.

We also visualize the intent distribution (We obtain sentence embeddings for instructions using OpenAI’s
embedding model, and then apply t-SNE to reduce the dimensionality to two dimensions for visualization.) and
compare it with other benchmarks which also focus on the digital agent. We randomly sample 300 examples
from each dataset and randomly choose three different hyperparameters for t-SNE. Visualization results are
shown in Figure 7. From the figure, we can observe that the semantic distribution of the instructions alone
has reached the most comprehensive level. Additionally, our environment remains controllable and executable,
offering a more reliable evaluation. It is also noticeable that the clustering centers of the other three are closely
positioned, whereas the points in our distribution approaches are inconsistent with theirs, indicating that we can
serve as a unique choice for a more comprehensive assessment of the capabilities of future intelligent agents.

B.5 Initial State Setup Details

The setup of the initial state contains three stages: 1) Start emulator. The specified virtual machine is activated
and automatically reverted to the corresponding snapshot, which records the initial system settings of the
machine. 2) Prepare files (Optional). The file or software that specifies the initial state of the task to be executed
is downloaded to the virtual machine and opened. The system is configured to first download the files to the
host through a direct link and then upload them to the VM via a LAN connection. Specifically, some initial
files are set up for OS-related tasks by manipulating the file system directly from the command line. 3) Execute
reprocessing commands (Optional). For tasks that require additional preprocessing, task-specific operations
are executed after the completion of the first two phases. For example, taking the currently open LibreOffice
Impress file to page five, clicking in the center of the screen to return to the main interface, etc. We provide
convenient APIs to configure initial conditions and world settings, standardizing our tasks to make this process
user-friendly and easily extendable.

B.6 Evaluation Configuration Details

In this section, we will show details of preparations for the evaluation of the selected apps (LibreOffice – Calc,
Writer and Impress, Thunderbird, VLC Media Player, Chrome, VS Code, GIMP) and OS (Ubuntu and Windows).

B.6.1 Ubuntu

LibreOffice: Calc, Writer, and Impress LibreOffice is a popular open-source fully-featured office suite
for Linux desktops. Our benchmark is built upon version 7.3.7.2, the version pre-installed in Ubuntu 22.04. Calc,
Writer, and Impress are selected to build tasks on them. As the majority of tasks are to conduct a little revision
to a file, we evaluate these tasks mainly by checking the final result file (in xlsx, docx, or pptx format). The
check can be done by comparing the result file with a golden reference, or inspecting some particular attributes
or settings of the file, e.g.,, page style, freezing, and locale. Usually, the xlsx, docx, and pptx files are mainly
accessed through openpyxl8, python-docx9, and python-pptx10. For some properties not supported by the
current libraries, we also look them up directly via parsing the Office Open XML format11.

Thunderbird Thunderbird is a popular open-source fully-featured email client for Linux desktops. Version
115.6.0 of Thunderbird is pre-installed in Ubuntu 22.04. We crafted an account profile to set up a feasible initial
state. Evaluation for Thunderbird configurations is mainly performed by reading various configurations or data

8https://openpyxl.readthedocs.io/en/stable/
9https://github.com/python-openxml/python-docx

10https://github.com/scanny/python-pptx
11https://learn.microsoft.com/en-us/office/open-xml/about-the-open-xml-sdk

22

https://openpyxl.readthedocs.io/en/stable/
https://github.com/python-openxml/python-docx
https://github.com/scanny/python-pptx
https://learn.microsoft.com/en-us/office/open-xml/about-the-open-xml-sdk

files in the profile folder. An open-source reverse engineering tool Firefox Decrypt12 is adopted to decrypt the
stored account information for evaluation. The involved account information is just for examples and contains
no information about the real person. Besides, there are tasks instructing to help to compose a new email. In
these cases, the accessibility tree is leveraged to inspect the contents in the composing window before really
sending it.

VLC Media Player VLC Media Player is a popular open-source cross-platform multimedia player and
framework that plays most multimedia files. The evaluation for VLC Media Player is multifold, ranging from
utilizing VLC HTTP interface13, reading the VLC configuration file, comparing final result files, and leveraging
accessibility tree to inspect the desired content.

Chrome Google Chrome is one of the most popular and powerful cross-platform web browsers developed
on Google’s free and open-source software project Chromium. The evaluation of Chrome is mainly based on
the utilization of Playwright14, a browser automation library to control Chromium, Firefox, and WebKit with
a single API. To connect Playwright running on host machine with Chrome running on virtual machine, port
transferring tool socat15 is leveraged. Additional information such as the HTML source codes of websites is also
leveraged in the evaluation of some tasks.

VS Code VS Code is a popular open-source multi-functional cross-platform editor for source-code editing.
The evaluation of VS Code tasks is primarily divided into two different categories. One subset of tasks is
predominantly oriented towards file manipulation. In the context of these tasks, a comparative analysis is
conducted between the resultant file and an anticipated reference gold file. Another subset of tasks is centered
around how to utilize the intrinsic functionalities of the VS Code software itself, such as modifying color themes,
initiating workspace sessions, and modifying settings. In these instances, it becomes important to extract relevant
internal information and configurations from the VS Code environment.

In the course of this research, we principally leverage the capabilities offered by the VS Code Extension API16

and information in the settings JSON file17 to obtain the requisite internal signal for the evaluation process. Our
methodology involves the development of a custom VS Code extension, its installation within the VS Code
software deployed on our virtual machine, and the subsequent invocation of the extension’s command each time
an evaluation is required, as well as checking whether the settings JSON has the correct value for a specific key.

GIMP GIMP is an open-source raster graphics editor used for image manipulation, editing, free-form drawing,
format transcoding, and more specialized tasks. The evaluation for GIMP tasks is also mainly divided into two
different categories, just like the VS Code evaluation. One type of task is mainly oriented to file operations.
In these tasks, the resulting files are compared and analyzed with the expected reference golden files, mainly
relying on some powerful image processing libraries such as pillow18. Another category of tasks revolves
around taking advantage of the inherent capabilities of the GIMP software itself. In these instances, we primarily
read GIMP’s configuration files to obtain internal information to evaluate the tasks.

B.6.2 Windows

Microsoft Office: Excel, Word, and PowerPoint Microsoft Office is the most popular office suite
on Windows desktops. These three components share the same functions with the corresponding LibreOffice
components by and large. They are used to edit xlsx, docx, and pptx files, respectively. Thus, the evaluation for
LibreOffice tasks can be reused for Microsoft Office tasks.

Thunderbird Thunderbird is a cross-platform email client. Only the structure of profile folder on Windows
is sightly different from that on Linux. We thus revised the account profile and reuse it to set up the same initial
state on Windows.

Chrome Chrome is a cross-platform web browser. To evaluate tasks on Chrome, only the port transferring
tool needs to be replaced with Ncat19. Other configurations and the evaluations can be shared with Linux-version
tasks.

12https://github.com/unode/firefox_decrypt
13https://wiki.videolan.org/Control_VLC_via_a_browser/
14https://playwright.dev/
15http://www.dest-unreach.org/socat/,https://linux.die.net/man/1/socat
16https://code.visualstudio.com/api
17https://code.visualstudio.com/docs/getstarted/settings#_settingsjson
18https://pypi.org/project/pillow/
19http://www.dest-unreach.org/socat/

23

https://github.com/unode/firefox_decrypt
https://wiki.videolan.org/Control_VLC_via_a_browser/
https://playwright.dev/
http://www.dest-unreach.org/socat/
https://linux.die.net/man/1/socat
https://code.visualstudio.com/api
https://code.visualstudio.com/docs/getstarted/settings#_settingsjson
https://pypi.org/project/pillow/
http://www.dest-unreach.org/socat/

B.7 More Task Examples

In this section, we curate a collection of examples from various app sets, each characterized by distinct operational
logic and requiring different capabilities. These examples are carefully chosen to illustrate the diverse challenges
and requirements encountered when interacting with different types of applications.

Table 10: More Example Showcase from Each Subset of Domains.

Related
App(s) Instruction(s) Screenshot Abilities

Needed

OS
I want to install Spotify on
my current system. Could you
please help me?

knowledge
of OS; omit
distractions

Calc

Check the names in column
“Names with duplicates” and
put the unique ones in column

“Unique Names”. Keep the origi-
nal order.

massive
elements;
knowledge
tricks or
reasoning
over long
actions

Calc

I have a lookup table for the of-
ficers of each branch. Please,
here is another table in which
I need to fill with the officer
names according the headoffice
(i.e., the branch name). Help me
to complete this.

massive
elements;
knowledge of
formulas and
functions

Calc

Given a partial calendar, please
highlight all the weekends (Sat-
urday & Sunday) by setting
the cell background as red
(#ff0000).

massive
elements;
commonsense
reasoning;
software
tricks

Impress
I closed the slide pannel on the
left and idk how to get it back
please help

software
knowledge;
imagine
about UI
layouts;
overcome
typos in
instruction

Continued on next page

24

Table 10 – continued from previous page
Related
App(s) Task Instruction Screenshot of Initial State Abilities

Needed

Impress

On it Whenever I launch a Li-
breOffice Impress, it uses both
screens, one for current slide
and next slide and another for
actual presentation. What I
want is to use only one moni-
tor which shows presentation. I
dont want the screen with Cur-
rent slide and Next slide so that
it can be used for other purposes.
How should I achieve this?

reason from
unprofessional
phenomenon
expression

Writer
Copy the screenshot 1.png from
the desktop to where my cursor
is located

locate the
position
of cursor;
switch from
desktop and
app

Chrome

Can you help me clean up my
computer by getting rid of all
the tracking things that Amazon
might have saved? I want to
make sure my browsing is pri-
vate and those sites don’t re-
member me.

understanding
the
unprofessional
expression

VLC

I am reading lecture note in
PDF while a music video is
running in VLC media player.
But I find I need to switch to
the player every time I need to
pause/start.Could you help me
change the setting to allow paus-
ing the video using keyboard
shortcut without minimizing the
PDF reader? I want to focus
on the lecture note and don’t be
disturbed by the app switching.

understanding
the
reference
from
unprofessional
expression;
software
knowledge

VLC

Hey, could you turn this video
the right way up for me? And
once it’s flipped around, could
you save it for me with the name

‘1984_Apple.mp4’ on the main
screen where all my files are?

software
knowledge;
spatial
judgment
ability

Continued on next page

25

Table 10 – continued from previous page
Related
App(s) Task Instruction Screenshot of Initial State Abilities

Needed

Thunderbird

Create a local folder called
"Promotions" and create a filter
to auto move the inbox emails
whose subject contains “dis-
count” to the new folder

software
knowledge

Thunderbird

Attach the my AWS bill to the
email. The bill is stored at /aws-
bill.pdf. Don’t close it or send it.
I haven’t finish all the contents.

file
management;
extra
requirement

Thunderbird

I’ve got a bunch of email ac-
counts in Thunderbird, and it’s
a hassle to check them one by
one. Can you show me how to
set up a unified inbox so I can
see all my emails in one place?

deep-hided
feature,
need to be
explored
even by
human users;
pop-up
window

VS Code
Please modify VS Code’s set-
tings to disable error reporting
for Python missing imports.

software
knowledge
to deal with
settings;
reasoning to
understand
the cause
and solution
of the error

VS Code
Please help me install the
autoDocstring extension in VS
Code.

software
knowledge
to deal with
Extensions;
reasoning to
search and
install the
extension
successfully

GIMP
Could you make the background
of this image transparent for
me?

precise and
intricate
operations

Continued on next page

26

Table 10 – continued from previous page
Related
App(s) Task Instruction Screenshot of Initial State Abilities

Needed

GIMP
Help me choose the yellow trian-
gle and position it at the center
of my picture.

spatial
perception
and
reasoning,
as well
as precise
control of
actions

Multiple
(VLC+GIMP)

Could you help me create an
Animated GIF from a video file
using VLC and GIMP from the
source of video “src.mp4”, 5-
second clip beginning at 00:03?

software
knowledge
to undergo
sophisticated
processes
and ability
to process
multi-step
procedure
successfully

Multiple

(ThunderBird+

Writer+Chrome)

Help me export charts, graph or
other images from docx files re-
ceived in email “Lecture Docu-
ment” in Notes folder and up-
load these png files to the fig-
ures/ folder in Google Drive for
later use (use numbers to name
them).

ability to
selectively
export
charts,
graphs and
images from
docx file;
software
knowledge
for google
drive file
upload

Multiple
(Chrome+Calc)

Could you help me extract data
in the table from a new invoice
uploaded to my Google Drive,
then export it to a Libreoffice
calc .xlsx file in the desktop?

ability
to do
table data
extraction;
export data
to .xlsx
file

C Details of Baseline Methods

C.1 Hyper-Parameter of the Baseline Agents

We utilize the versions of gpt-3.5-turbo-16k, gpt-4-0125-preview, and gpt-4-vision-preview, re-
spectively for GPT results, need to be noted that result could be changed from time since it is close-sourced.
We also employ the gemini-pro and gemini-pro-vision versions for the Gemini models For all language
models, we set the temperature parameter to 1.0, and top_p to 0.9, and the maximum number of tokens for
generation is set to 1500. We set the maximum steps of interaction to 15 and the maximum time limits to 30
minutes for all tasks since the agent could lead to a stuck environment under some unexpected cases.

27

C.2 Prompt Details

C.2.1 Prompt for A11y Tree, Screenshot and their Combination Setting

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.↪→

You have good knowledge of computer and good internet connection and assume
your code will run on a computer for controlling the mouse and keyboard.↪→

For each step, you will get an observation of an image, which is the
screenshot of the computer screen and you will predict the action of the
computer based on the image.

↪→
↪→

You are required to use `pyautogui` to perform the action grounded to the
observation, but DONOT use the `pyautogui.locateCenterOnScreen` function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DONOT USE `pyautogui.screenshot()`
to make screenshot.

↪→
↪→
↪→
↪→
Return one line or multiple lines of python code to perform the action each

time, be time efficient. When predicting multiple lines of code, make
some small sleep like `time.sleep(0.5);` interval so that the machine
could take; Each time you need to predict a complete code, no variables
or function can be shared from history

↪→
↪→
↪→
↪→
You need to to specify the coordinates of by yourself based on your

observation of current observation, but you should be careful to ensure
that the coordinates are correct.

↪→
↪→
You ONLY need to return the code inside a code block, like this:
```python
# your code here
```
Specially, it is also allowed to return the following special code:
When you think you have to wait for some time, return ```WAIT```;
When you think the task can not be done, return ```FAIL```, don't easily say

```FAIL```, try your best to do the task;↪→
When you think the task is done, return ```DONE```.

My computer's password is 'password', feel free to use it when you need sudo
rights.↪→

First give the current screenshot and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.

↪→
↪→

For a11y tree setting and a11y tree + screenshot setting, the prompts are basically the same, just replace the
screenshot words with a11y tree words.

C.2.2 Prompt for SoM Setting

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.↪→

You have good knowledge of computer and good internet connection and assume
your code will run on a computer for controlling the mouse and keyboard.↪→

For each step, you will get an observation of the desktop by 1) a screenshot
with interact-able elements marked with numerical tags; and 2)
accessibility tree, which is based on AT-SPI library. And you will
predict the action of the computer based on the image and text
information.

↪→
↪→
↪→
↪→

You are required to use `pyautogui` to perform the action grounded to the
observation, but DONOT use the `pyautogui.locateCenterOnScreen` function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DONOT USE `pyautogui.screenshot()`
to make screenshot.

↪→
↪→
↪→
↪→

28



You can replace x, y in the code with the tag of the element you want to
operate with. such as:↪→

```python
pyautogui.moveTo(tag_3)
pyautogui.click(tag_2)
pyautogui.dragTo(tag_1, button='left')
```
When you think you can directly output precise x and y coordinates or there

is no tag on which you want to interact, you can also use them directly.↪→
But you should be careful to ensure that the coordinates are correct.
Return one line or multiple lines of python code to perform the action each

time, be time efficient. When predicting multiple lines of code, make
some small sleep like `time.sleep(0.5);` interval so that the machine
could take; Each time you need to predict a complete code, no variables
or function can be shared from history

↪→
↪→
↪→
↪→
You need to to specify the coordinates of by yourself based on your

observation of current observation, but you should be careful to ensure
that the coordinates are correct.

↪→
↪→
You ONLY need to return the code inside a code block, like this:
```python
your code here
```
Specially, it is also allowed to return the following special code:
When you think you have to wait for some time, return ```WAIT```;
When you think the task can not be done, return ```FAIL```, don't easily say

```FAIL```, try your best to do the task;↪→
When you think the task is done, return ```DONE```.

My computer's password is 'password', feel free to use it when you need sudo
rights.↪→

First give the current screenshot and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.

↪→
↪→

C.3 Input Settings

Accessibility tree We evaluate reasoning capabilities of LLM agents on textual descriptions of the observa-
tion in the form of accessibility trees. To make accessibility trees (usually millions of tokens) tractable for LLM
contexts, we filter out non-essential elements by their tag, visibility, availability, etc as described in C.4. Only
the tag, name, text, position, and size of the remaining elements are kept and concatenated by tab character in the
input. As the raw coordinates are provided within the accessibility tree, the LLM is required to ground its action
predictions to accurate coordinates.

Screenshot To evaluate the visual reasoning ability of VLMs, we give the raw screenshot of the VM directly
to the VLM, which is understand the screenshot and predict correct actions with precise coordinates. The raw
resolution of the screen is set to 1920 × 1080. To investigate robustness to resolution changes, we perform
ablation studies by manually downsampling the screenshot.

Screenshot + accessibility tree We test whether the combination of screenshots with the accessibility tree
can improve the capacity of VLM for spatial grounding.

Set-of-Marks Set-of-Marks (SoM) [61] enhances the grounding capabilities of VLMs marking image seg-
ments with annotations like alphanumerics, masks, or boxes. We leverage the information from the filtered
accessibility tree and mark the elements on the screenshot with a numbered bounding box. Following VisualWe-
bArena [26] and UFO [64], we further combine the annotated screenshot with the text metadata from accessibility
tree, including the index, tag, name, and text of the elements. Instead of predicting precise coordinates, the VLM
is supposed to specify the action object by its number index, which will be mapped into our action space by
post-processing. Ablation studies are also conducted with different resolutions for SoM setting.

29

C.4 Accessibility Tree Filtering

Since the original tree is large (usually over 1 million tokens in XML format), we filter the accessibility tree
nodes by their tags, visibilities, availabilities, etc. The concrete rules are illustrated in the following Table 11.

Table 11: Criteria for keeping a11y tree nodes on Ubuntu and Windows platforms

Condition Ubuntu Windows

Node Tags document∗, ∗item, ∗button,
∗heading, ∗label, ∗scrollbar,
∗searchbox, ∗textbox, ∗link,
∗tabelement, ∗textfield, ∗textarea,
∗menu, alert, canvas, check-
box, combo-box, entry, icon,
image, paragraph, scroll-bar,
section, slider, static, table-cell,
terminal, text, netuiribbontab,
start, trayclockwclass, tray-
dummysearchcontrol, uiimage,
uiproperty, uiribboncommandbar

Same as Ubuntu

Showing True Not Applicable

Visible True True

Enabled or Editable or Expand-
able or Checkable

True True

Has Name or Text or Image True True

Position >= 0 >= 0

Size > 0 > 0

C.5 Set-of-Mark Implementation Details

Our methodology involves an initial transformation of the original observational image acquired from our
environment into the standardized SoM format and be putted into VLMs together with a table of the marks
with metadata information such as tags and names. This format consists of bounding boxes that bound the
sub-images of interest, each associated with a corresponding integer mark. Notably, our approach incorporates
the utilization of the accessibility tree to identify the bounding boxes associated with all clickable buttons within
the current image observation, instead of using segmentation models like the original SoM paper. Some examples
of screenshots after applying SoM are shown in Figure 8. We can observe the emergence of some low-quality,
unmodelable tasks, and even misleading bounding boxes, depending on the level of support from the software
ecosystem. This could be another reason for the poor performance of SoM. Future improvements could be made
in this regard.

Figure 8: Showcase of example screenshots marked by SoM across different app GUI.

30

Table 12: Success rates of more baseline LLM and VLM agents on OSWORLD, grouped by task
categories: OS, Office (LibreOffice Calc, Impress, Writer), Daily (Chrome, VLC Player, Thunderbird),
Professional (VS Code and GIMP) and Workflow (tasks involving multiple apps), for gaining insights
from interfaces and operation logic. See C.1 and C.6 for more details.

Inputs Model Success Rate (↑)
OS Office Daily Profess. Workflow Overall

Screenshot GPT-4o-mini 12.50% 3.58% 3.99% 4.08% 1.62% 3.77%
InternVL2 12.50% 1.87% 2.71% 8.16% 0.99% 3.33%

MiniCPM-V-2.6 8.33% 2.72% 1.42% 0.00% 0.63% 1.88%
Llava-OneVision 8.33% 2.72% 2.71% 0.00% 1.62% 2.42%

Human Performance 75.00% 71.79% 70.51% 73.47% 73.27% 72.36%

C.6 Full Results of Baseline Methods

Here we show the break-down results of baseline methods from different LLMs and VLMs for follow-up
reference.

We have also compiled the distribution of steps taken by the GPT-4V model under our four settings: Accessibility
Tree (A11y Tree), Screenshot, Screenshot combined with Accessibility Tree (Screenshot+A11y Tree), and
Set-of-Mark. This data (as shown in Fig. 9) provides potential clues for future work. Overall, there are observable
differences in how many steps the agent chooses to execute and when it decides to terminate under different
settings. More detailed control and analysis of these behaviors can be explored in subsequent research efforts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

20

40

60

80

100

Co
un

t

A11y Tree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

50

100

150

200

Co
un

t

Screenshot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

20

40

60

80

100

120

Co
un

t

Screenshot+A11y Tree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

25

50

75

100

125

150

175

200

Co
un

t

Set-of-Mark

Figure 9: Distribution of steps taken by the GPT-4V based agents across four different settings.

C.7 Running Time and Cost

We calculate and monitor the running time and cost for a portion of our experiments, which use the APIs of
GPT-4V, Gemini-ProV, and Claude-3 Opus under different settings in April 2024. These results are shown in
Table 14.

D Further Analysis

D.1 Performance by Task Difficulty, Feasibility and App Involved

We analyze the success rate across several additional subsets of tasks, as summarized in Tab. 15 and will be
discussed in the following sections.

31

Table 13: Detailed success rates of baseline LLM and VLM agents on OSWORLD, divided by apps
(domains): OS, LibreOffice Calc, LibreOffice Impress, LibreOffice Writer, Chrome, VLC Player,
Thunderbird, VS Code, GIMP and Workflow which is comprehensive with multiple apps, for gaining
insights from interfaces and operation logics.

Inputs Model Success Rate (↑)
OS Calc ImpressWriter VLC TB ChromeVSC GIMP Workflow

A11y Mixtral-8x7B 12.50 0.00 0.39 4.34 10.22 6.67 2.17 8.69 3.85 0.10
GPT-3.5 4.17 2.13 6.77 4.35 6.53 0.00 2.17 0.00 0.00 1.62

Gemini-Pro 4.17 0.00 2.13 4.35 12.41 0.00 2.17 0.00 7.69 0.63
GPT-4 20.83 0.00 6.77 4.35 23.53 26.67 26.09 30.43 23.08 2.97

Gemini-Pro-1.5 12.50 2.13 2.13 4.35 6.53 0.00 10.87 8.70 0.00 3.60
Llama-3-70B 4.17 0.00 0.39 8.70 6.53 0.00 2.17 0.00 0.00 0.63

GPT-4o 20.83 6.38 6.77 8.69 12.41 20.00 17.39 21.74 11.54 7.56
Qwen-Max 29.17 0.00 2.52 13.04 8.95 0.00 10.87 8.70 11.54 2.61

Screen CogAgent 4.17 0.00 0.00 4.34 6.53 0.00 2.17 0.00 0.00 0.00
Gemini-ProV 8.33 0.00 6.77 4.35 12.41 0.00 6.52 8.70 23.08 2.08

GPT-4V 12.50 0.00 2.52 4.35 18.34 0.00 6.52 0.00 7.69 6.04
Claude-3-Opus 4.17 0.00 2.52 4.34 6.53 0.00 2.17 0.00 3.84 2.61
Gemini-Pro-1.5 12.50 0.00 13.16 8.70 6.53 0.00 2.17 0.00 11.54 3.60

GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58

Screen CogAgent 4.17 2.17 0.00 4.35 6.53 0.00 2.17 0.00 0.00 0.10
+ A11y Gemini-ProV 4.17 2.13 6.77 4.35 18.30 0.00 4.35 0.00 0.00 1.52

GPT-4V 16.67 0.00 6.77 21.73 24.18 33.33 21.74 21.74 15.38 4.59
Claude-3-Opus 12.50 2.13 4.65 4.34 18.30 0.00 2.17 8.69 7.69 0.99
Gemini-Pro-1.5 12.50 0.00 4.65 8.70 12.41 0.00 8.70 4.35 11.54 1.56

GPT-4o 41.67 4.26 6.81 8.70 9.50 6.67 15.22 30.43 0.00 7.46

SoM CogAgent 4.17 2.17 0.00 4.34 6.53 0.00 2.17 0.00 0.00 0.00
Gemini-ProV 4.17 0.00 0.39 4.34 6.53 0.00 0.00 0.00 0.00 0.63

GPT-4V 8.33 8.51 6.38 13.04 10.66 33.33 23.91 17.39 11.54 6.57
Claude-3-Opus 12.50 2.13 0.39 8.70 6.53 13.33 17.39 0.00 11.54 4.49
Gemini-Pro-1.5 16.67 0.00 10.64 4.35 24.18 13.33 8.70 4.35 15.38 3.60

GPT-4o 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60

Human Performance 75.00 61.70 80.85 73.91 70.59 46.67 78.26 73.91 73.08 73.27

Table 14: Summary of expected time and budget cost for different settings. Calculated in April 2024;
these values may change with updates from the API providers.

Setting Expected Time Budget Cost (Full Test Set/Small Test Set)
GPT-4V (screenshot) 10h $100 ($10)
Gemini-ProV (screenshot) 15h $0 ($0)
Claude-3 Opus (screenshot) 15h $150 ($15)
GPT-4V (a11y tree, SoM, etc.) 30h $500 ($50)

Table 15: Success rate (SR) of GPT-4V
(SoM) across different types of tasks.

Task Subset % of Total SR (↑)

Easy 28.72% 16.78%
Medium 40.11% 13.12%
Hard 30.17% 4.59%

Infeasible 8.13% 16.67%
Feasible 91.87% 13.34%

Single-App 72.63% 13.74%
Multi-App Workflow 27.37% 6.57%

Task difficulty We categorize the tasks based on the time
required for human completion into three groups: 0∼60s
(Easy), 60s∼180s (Medium), and greater than 180 seconds
(Hard), as an indicator of difficulty. Across these groups, the
model’s success rate drops as the required time increases, with
tasks taking longer than 180 seconds becoming almost impos-
sible to complete (considering we have infeasible examples
for agent’s luckiness), whereas human performance across
these three groups is 84.91%, 81.08% and 49.57%, showing a
slight decline of the same trend but not to the extent of being
unachievable.

32

Feasibility We also divide tasks into groups of tasks in-
feasible (e.g., deprecated features or hallucinated features)
and tasks feasible, which requires the agents to have the ability to judge based on their own knowledge and
exploration results. As shown in Tab. 15, we observe that agents currently perform slightly better in terms of
infeasibility (16.67% to 13.34%), but overall, they are at a relatively low level. It is noteworthy that we also
observe in some methods and settings (such as under the pure screenshot setting with the Gemini-Pro model),
agents tend to easily output FAIL and refuse to continue trying. This situation leads to some false positives in
infeasible tasks. The focus needs to be on improving overall performance.

Number of apps involved We also examined the performance based on whether the task involved apps
software or within a single app. As shown in Tab. 15, the average performance for tasks involving a single app is
low, at 13.74%, but still more than double the 6.57% observed for subsets of tasks involving workflows across
multiple apps. Within single-app scenarios, tasks involving GUI-intensive Office apps generally performed the
worst, with subsets such as LibreOffice Calc often scoring zero (we show more detailed results in App. C.6).
These findings highlight the need for improved collaboration capabilities between software and enhanced
proficiency in specific scenarios.

D.2 A11y tree-based Observation Length Distribution

The main experiment revealed the decisive role of the a11y tree in performance within the current technological
context. Even when we retain key attribute elements based on heuristic rules (keep nodes with tags of the
document, item, button, heading, label, etc.), LLMs still require a sufficiently large context to process this
information effectively. To further understand this, we sample some a11y tree observations from OSWORLD
and conducted the statistical analysis, as shown in Figure 10. The analysis indicates that a context length of
6000 is needed to accommodate about 90% of cases for a single observation.

0 2000 4000 6000 8000 10000 12000
Tokens

0.00

0.02

0.04

0.06

Fr
eq

ue
nc

y
De

ns
ity

 (%
)

90th Percentile: 6343.60

Figure 10: The length distribution of a11y tree as observation from sampled trajectories.

D.3 Performance across Different Operating Systems

Table 16: Comparison of model perfor-
mance and correlation across operating sys-
tems.

OS SR (%) Correlation Coefficient

Ubuntu 4.88 0.7Windows 2.55

Another key challenge in building universal digital agents
is ensuring that these agents can maintain efficient and con-
sistent performance across different operating system envi-
ronments. The differences between OS and their software
ecosystems can significantly impact an agent’s observation
and action spaces, leading to performance uncertainties. Here,
we explore and analyze the correlation between the success
of agents in completing tasks on Windows after migrating
from Ubuntu using examples from OSWORLD.

We enhance the functionality of the OSWORLD environment to support setting up initial experiment states, final
evaluations, and obtaining observations such as the a11y tree and screenshots in Windows OS. Additionally,
we have made example-wise fine-tuning modifications to the existing subset in OSWORLD for migration to
Windows. We conduct evaluations using the GPT-4V screenshot-only method and present the correlation of
performance across the two operating systems. As shown in Tab. 16, the model’s performance on Ubuntu and
Windows is 4.88% and 2.55%, respectively, with a correlation coefficient of 0.7, despite the differences in their
observation spaces. This implies that insights and methodologies developed within the OSWORLD framework
can be effectively transferred to Windows environments with a high degree of reliability.

D.4 Qualitative Analysis

In this section we highlight representative examples of success, failure, and surprising outcomes, alongside a
comparative study between GPT-4V and Claude-3 agents, to elucidate the unique challenges and insights our
environment introduces. See App. D.5 for more details.

33

Success and failure cases We find agents, particularly based on GPT-4V, can successfully solve tasks that
involve complex problem-solving or creative thinking, showcasing the advanced understanding and processing
capabilities of the model already. One successful task is shown in the first row of Figure 11. The agent is
requested to extract subtitle files from the video stream and save them locally. The agent first divides the screen
into two parts, with the VLC application window on the left and the terminal window open on the right, and uses
the ffmpeg command twice. The first use removes the subtitles embedded in the original video, and the second
use saves the extracted subtitles locally.

Task Instruction: I downloaded an episode of Friends to practice listening, but I don't know how to remove the subtitles. Please
help me remove the subtitles from the video and export it as "subtitles.srt" and store it in the same directory as the video.

Step1: pyautogui.click(activities_x, activities_y) Step 3: pyautogui.click(focus_x, focus_y)

Step 4: pyautogui.typewrite('ffmpeg -i video.mp4 -map
0:s:0 subtitles.srt', interval=0.5)

Step 5: pyautogui.typewrite('ffmpeg -i video.mp4 -c copy
-sn no_subtitles_video.mp4', interval=0.5) Step 6: Done

Step 2: pyautogui.typewrite('terminal', interval=0.5)

Figure 11: The agent successfully understood the complex task instructions, extracted the subtitle file
from the video, and generated a pure video without embedded subtitles.

Despite the successes, there are notable failures that highlight the limitations of current models. In the task
of “center-aligning the title of the document” (Fig. 12 line 1), the agent fails to ground the relatively simple
requirement of “center alignment of texts”, performing many useless actions such as selecting irrelevant words,
opening irrelevant menus, etc.

Moreover, we find that the agent lacks prior knowledge in using software, performing poorly in many specialized
tasks (as shown in Fig. 13, with GIMP, LibreOffice Calc, and Chrome selected). Taking GIMP as an example,
for the instruction “reduce brightness” the agent does not know which menu in the toolbar is for brightness
adjustment and instead randomly tries until exhausting the maximum number of steps.

Common errors by GPT-4V agents Among the 550 failed examples from different settings in our
sample, more than 75% exist mouse click inaccuracies, which is the most common error. The agent fails to
click the correct coordinates despite planning detailed and accurate steps in their code comments, indicating
strong planning but weak execution capabilities. Mouse click inaccuracies lead to two other frequent errors:
repetitive clicks and environmental noise dilemma. Repetitive clicks occur when the agent repeatedly misclicks,
adjusts, and fails, consuming too many steps. Environmental noise arises from clicking unintended objects,
causing pop-ups, or opening unrelated applications. Due to a lack of prior knowledge about most professional
software, it falls into a mismatch dilemma between the actions taken and the current state, and don’t know how
to get back to normal. Moreover, the agent lacks basic human-like cognition of web pages, such as not closing
pop-ups in real-world web pages or being attracted by advertisement content, which affects its original correct
judgment. Failures also arise from misinterpretation of instructions and visual oversight, highlighting the need
for improvement in language and visual processing. See App. D.5.2 for the specific execution process.

Discrepancies in task difficulty between agent and human We identify notable disparities in the
perceived difficulty of tasks between humans and AI agents. Tasks that are intuitively simple for humans
often present substantial challenges to agents, and conversely, tasks that humans find demanding can be more
straightforward for agents to execute. You can find more details in Fig. 16 and App. D.5.3.

Tasks where humans outperform agents These tasks mainly involve text-based and design-related
work, such as “bold the font on this slide and add notes” or “erase all the highlighted marks in this document”
(Fig. 12 Line 2). Since the Internet lacks such fine-grained data as the software execution process, the agent also
lacks the corresponding training process, so its grounding ability is not good enough. The lack of understanding
of GUI logic also causes poor performance on operations like selecting and scrolling.

34

Task Instruction: help me center align the heading in LibreOffice.

Task Instruction: erase all the highlighted marks in this document

Task Instruction: use GIMP to cut out the 2s to 4s part of a video

Step 1: pyautogui.click(focux_x, focus_y) Step 2: pyautogui.moveto(coor_x, coor_y) Step 3: pyautogui.click(menu_x, menu_y) Step 4: Failed (Meaningless actions)

Step 2: pyautogui.mouseDown() Step 3: pyautogui.hotkey('ctrl', 'a') Step 4: Failed (Did not find the right entrance)Step 1: pyautogui.click(libreoffice_writer)

Step 2: pyautogui.click(focus_x, focus_y) Step 3: pyautogui.typewrite('ffmpeg -ss …',
interval=0.05)

Step 4: Done, but doesn't follow the
instruction

Step 1: pyautogui.hotkey('ctrl', 'atl', 't')

Figure 12: Screenshots of the three examples mentioned in the quality analysis. The first line is an
example of GPT-4V failing at a very simple task, the second line is one example where agents face
more difficulty than humans, and the third line is one example that is more difficult for humans than
for agents.

Tasks where agents outperform humans Tasks that the agent considers simple but humans find difficult
are concentrated in “code solvability tasks”, such as “monitor the system CPU for 30s and output the results”
and “force close a process”. These tasks require little or no GUI interaction and can be completed by executing
complex codes and instructions. It’s worth noting that completing through code sometimes mismatches with
human instructions. In the task "use GIMP to cut out the 2s to 4s part of a video,(Fig. 12 Line 3)" the agent used
“ffmpeg” command to complete the video cropping, ignoring the “use GIMP” requirement in the instructions.

Surprisingly, we discovered that agents are as prone to inefficiency in mechanically repetitive tasks, such as
copying, pasting, and batch editing of Excel sheets, as humans. Humans frequently commit careless errors during
execution. The shortcomings in agents stem either from the absence of an API or from insufficient training data
related to the API, hindering their ability to efficiently process tasks in batches. Furthermore, sluggish response
times can cause tasks to either time out or surpass the maximum allowed steps.

Comparative analysis: Claude-3 vs. GPT-4V Although Claude outperforms GPT-4 in many benchmarks
such as GSM8K, HumanEval, etc., in our main experiment, we find that Claude has an average lower accuracy
rate compared to GPT-4V by 2.84% to 7.76%. We find that Claude can provide satisfactory high-level solutions,
but its grounding ability contains hallucinations in detail. For instance, Claude would interpret double-clicking a
file as selecting it instead of opening it, treat column B in LibreOffice Calc software as column C, and enter
text in the VS Code text replacement box without clicking on global replace. This shows that Claude can align
well with human planning in problem-solving, but lacks excellent grounding ability when it comes to execution.
Details can be seen in Fig. 17 and App. D.5.4.

D.5 Qualitative Analysis Examples

Here we give the specific code execution process for the examples in the qualitative analysis in §D.4 and add
more error cause analysis, trying to get insights for further improvement.

35

D.5.1 Success and Failure Cases

Success Task: I downloaded an episode of Friends to practice listening, but I don’t know how
to remove the subtitles. Please help me remove the subtitles from the video and export it as
"subtitles.srt" and store it in the same directory as the video.

Action 1
import pyautogui
import time
Move the mouse to the top bar of the media player window to access the menu
pyautogui.moveTo(800, 10)
Assuming the menu is at the top of the screen
pyautogui.click()
time.sleep(0.5)

Action 2
Move the mouse to the Activities corner to open the GNOME Activities Overview
pyautogui.moveTo(10, 10)
Assuming the Activities corner is at the top-left
pyautogui.click()
Type `terminal' to search for the Terminal application
pyautogui.write(`terminal')
time.sleep(0.5)
Press Enter to open the Terminal application
pyautogui.press(`enter')

Action 3
Focus the Terminal window and type the command to extract subtitles
pyautogui.click(640, 360)
Clicking in the center of the screen to focus the Terminal
time.sleep(0.5)
pyautogui.write(`ffmpeg -i video.mp4 -map 0:s:0 subtitles.srt')
pyautogui.press(`enter')

Action 4
Focus the Terminal window and type the command
to create a new video without subtitles

pyautogui.click(1100, 350)
Clicking inside the Terminal window to focus it
pyautogui.write(`ffmpeg -i video.mp4 -c copy -sn no_subtitles_video.mp4')

Done!

Failure Task: Help me center align the heading in LibreOffice.

Action 1
import pyautogui
import time
Move the mouse to the LibreOffice Writer document icon and double-click
pyautogui.moveTo(1100, 720, duration=1)
pyautogui.doubleClick()

Action 2
Move the mouse to the beginning of the heading text
and click and drag to select the heading
pyautogui.moveTo(200, 230, duration=1)
pyautogui.mouseDown()
pyautogui.moveTo(800, 230, duration=1)
pyautogui.mouseUp()
Move the mouse to the center align button in the toolbar and click
pyautogui.moveTo(400, 150, duration=1)

36

pyautogui.click()

Action 3
Assuming the text is still selected,
move the mouse to the center align button in the toolbar and click
pyautogui.moveTo(400, 150, duration=1)
pyautogui.click()

Action 4
Move the mouse to the center align button in the toolbar and click
pyautogui.moveTo(340, 80, duration=1)
pyautogui.click()

Failed.

Task Instruction: tone down the brightness of the photo

Task Instruction: fill in the location of these meetings in the form

Task Instruction: make Bing the main search engine

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.click(color_x, color_y) Step 3: pyautogui.click(cancel_x, cancel_y) Step 4: pyautogui.click(x, y), Failed

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.typewrite('Scottsdale', interval=0.5)
…

Step 3: pyautogui.select(c11_x, c11_y) … Step 4: Failed

Step 1: pyautogui.click(google_x, google_y) Step 2: pyautogui.click(settings_x,
settings_y)

Step 3 :pyautogui.typewrite(
'chrome://settings/searchEngines')

Step 4: pyautogui.hotkey('tab', 'enter'), Failed

+

+

Figure 13: The figure shows examples of usage errors in three types of software. The first row is for
GIMP, the second row is for LibreOffice Calc, and the third row is for Google Chrome. Detailed code
execution processes are provided below.

GIMP Task: Could you tone down the brightness of my photo?

Action 1
import pyautogui
import time
Coordinates for the image icon on the desktop
Adding half of the width and height to get the center
image_icon_x, image_icon_y = 1793 + 60, 920 + 17
Double-click on the image icon
pyautogui.doubleClick(image_icon_x, image_icon_y)

Action 2
Coordinates for the `Colors' menu
Adding half of the width and height to get the center
colors_menu_x, colors_menu_y = 344 + 28, 64 + 12
Click on the `Colors' menu
pyautogui.click(colors_menu_x, colors_menu_y)

37

Action 3
Coordinates for the `Brightness-Contrast...' option in the `Colors' dropdown
Assuming each menu item is approximately 28 pixels apart
brightness_contrast_option_x, brightness_contrast_option_y
= 344 + 28, 64 + 12 + 28 * 6
Click on the `Brightness-Contrast...' option
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 4
Coordinates for the `Cancel' button in the `Shadows-Highlights' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y = 375 + 42, 625 + 16
Click the `Cancel' button
pyautogui.click(cancel_button_x, cancel_button_y)
Coordinates for the `Brightness-Contrast...' option in the `Colors' dropdown
Adjusted index for Brightness-Contrast option
brightness_contrast_option_x, brightness_contrast_option_y
= 344 + 28, 64 + 12 + 28 * 5
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 5
Coordinates for the `Cancel' button in the `Exposure' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y
= 375 + 42, 391 + 16
pyautogui.click(cancel_button_x, cancel_button_y)
Coordinates for the `Brightness-Contrast...' option in the `Colors' dropdown
Adjusted index for Brightness-Contrast option
brightness_contrast_option_x, brightness_contrast_option_y
= 344 + 28, 64 + 12 + 28 $*$ 6
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 6
Coordinates for the `Cancel' button in the `Color Balance' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y
= 375 + 42, 588 + 16
pyautogui.click(cancel_button_x, cancel_button_y)
Since the `Brightness-Contrast...' option was not correctly opened before,
we will use an estimated position based on the dropdown menu.
Assuming `Brightness-Contrast...' is the second option in the `Colors' menu.
brightness_contrast_option_x, brightness_contrast_option_y
= colors_menu_x, colors_menu_y + 28 * 2
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 7
Coordinates for the `Cancel' button in the `Color Temperature' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y = 375 + 42, 403 + 16
pyautogui.click(cancel_button_x, cancel_button_y)
Since the `Brightness-Contrast...' option was not correctly opened before,
we will use an estimated position based on the dropdown menu.
Assuming `Brightness-Contrast...' is the second option in the `Colors' menu.
brightness_contrast_option_x, brightness_contrast_option_y
= colors_menu_x, colors_menu_y + 28 * 2
Click on the `Brightness-Contrast...' option
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

... More Wrong Duplicate Actions; Can not find the right coordination.

Failed

38

Libreoffice calc Task: I now want to count the meeting cities of the three machine learning
conferences in the past ten years from 2013 to 2019(including 2013 and 2019). I have listed
the names and years of the conferences in excel. Please fill in the vacant locations.

Action 1
Move to cell C2 which is the first empty cell under `City' for ICLR 2013
pyautogui.click(319, 222)
Coordinates of cell C2
time.sleep(0.5)
Type the city name for ICLR 2013
pyautogui.write(`Scottsdale')
Press Enter to move to the next cell
pyautogui.press('enter')

Action 2
Move to cell C3 which is the city cell for ICML 2013
pyautogui.click(319, 268)
Coordinates of cell C3
Type the city name for ICML 2013
pyautogui.write(`Atlanta')
Press Enter to move to the next cell
pyautogui.press('enter')

Action 3
Move to cell C4 which is the city cell for NeurIPS 2013
pyautogui.click(319, 289)
Coordinates of cell C4
Type the city name for NeurIPS 2013
pyautogui.write(`Lake Tahoe')
Press Enter to move to the next cell
pyautogui.press('enter')"

... More copy-and-paste operations

Action 15
Move to cell C16 which is the city cell for NeurIPS 2017
pyautogui.click(319, 541)
Coordinates of cell C16
Type the city name for NeurIPS 2017
pyautogui.write(`Long Beach')
Press Enter to move to the next cell
pyautogui.press('enter')

Failed.

Chrome Task: Can you make Bing the main search thingy when I look stuff up on the internet?

Action 1
pyautogui.click(x=1280, y=50)
Approximate coordinates for the `More' button
pyautogui.move(0, 150)
Moving the cursor down to `Settings' in the drop-down menu
pyautogui.click()
Clicking on `Settings'

Action 2
pyautogui.click(tag_31)
Click on the `Finish update' button to
approximate the location of `More' button
pyautogui.move(-50, 0)
Move left from the `Finish update' button to approximate the `More' button

39

pyautogui.click()
Click on the `More' button
time.sleep(0.5)
pyautogui.move(0, 150)
Move down to the `Settings' option in the drop-down menu
pyautogui.click()
Click on `Settings'

Action 3
Click on the `Customise Chrome' button which should be the `More' button
time.sleep(1)
Wait for the dropdown menu to appear
The `Settings' option is usually located towards the bottom of
the dropdown menu, so I'll move the cursor down to reach it
pyautogui.move(0, 200)
Move down to the `Settings' option in the drop-down menu
pyautogui.click()
Click on `Settings'

Action 4
pyautogui.click(tag_47)
Click on the `Close' button to close the `Customise Chrome' menu
pyautogui.click(tag_25)
Click on the `New Tab' button to open a new tab
time.sleep(1)
Wait for the new tab to open
pyautogui.typewrite(`chrome://settings/searchEngines')
Type the direct URL to the search engine settings page
pyautogui.press(`enter')

Action 5
Simulate pressing the `Tab' key multiple times to navigate through the options
for _ in range(10):
Assuming it might take around 10 tabs to reach the search engine list

pyautogui.press(`tab')
time.sleep(0.5)

Wait for the focus to move to the next element
Simulate pressing the `Enter' key to select an option,
which would be done once we reach the Bing option
pyautogui.press('enter')

Action 6
pyautogui.click(tag_42)
Click on the `Cancel' button to exit the edit mode for the '360' search engine

Failed.

40

D.5.2 Common Errors by GPT-4V Agents

In the following two figures (Figure 15 and Figure 14), we take the web page tasks as examples to show the two
most common types of errors in GPT4-V: mouse click inaccuracies and inadequate handling of environmental
noise.

Task Instruction: On next Monday, look up a flight from Mumbai to Stockholm.

Figure 14: The error shown in the figure is due to mouse click inaccuracies. The agent was supposed
to click on the product category images of the Nike official store and follow the instructions to
search for women’s jerseys priced over 60 dollars. However, due to a coordinate calculation error, it
mistakenly clicked on the favorite button, creating a significant discrepancy between the current state
and the target state. Under these circumstances, the agent is unable to backtrack to the previous state
and start over.

Task Instruction: Browse the list of women's Nike jerseys over $60.

Figure 15: The error shown in the figure is due to inadequate handling of environmental noise. When
the agent encounters web pages with cookies or pop-up ads, its unfamiliarity with the structure of
such pages leads to attempts to interact directly with the web page without bypassing the cookies or
pop-ups. Since the pop-ups or cookie requests are not closed, all actions are ineffective.

41

D.5.3 Discrepancies in Task Difficulty between Agent and Human

 Task Instruction: bold the font on this slide and add note

Task Instruction: monitor the system CPU for 30s and output the results

Task Instruction: force close a process

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.click(bold_x, bold_y) Step 3: pyautogui.typewrite('Team Members') Step 4: pyautogui.click(bold_x, bold_y) , Failed

Step 2: pyautogui.click(focus_x, focus_y) Step 4: DoneStep 1: pyautogui.click(terminal_x, terminal_y)

Step 2: pyautogui.click(focus_x, focus_y) Step 3: pyautogui.typewrite('pkill soffice.bin') Step 4: DoneStep 1: pyautogui.hotkey('ctrl', 'alt', 't')

Step 3: pyautogui.typewrite('sar 1 30 > …')

Figure 16: Supplementary examples of tasks performed by humans and agents.

Human > Agent Task: erase all the highlighted marks in this document

Action 1
import pyautogui
import time
Move to the `Character Highlighting Color' button and click
pyautogui.moveTo(1020, 122)
pyautogui.click()

Action 2
Assuming the `No Color' option is the first option in the dropdown
Move the mouse slightly below the `Character Highlighting Color' button
to click on `No Color'
pyautogui.moveTo(1020, 180)
time.sleep(0.5)
pyautogui.click()

Action 3
Move to the `Save' button and click
pyautogui.moveTo(184, 108)
time.sleep(0.5)
pyautogui.click()

Failed.

Human > Agent Task: On page 2, add a note same to the title into the slide. Make the font of
title bold.

Action 1
Click on the vertical scrollbar to scroll down and reveal more slides
pyautogui.click(tag_43)

Action 2
Click on the second slide thumbnail to select it

42

pyautogui.click(tag_2)

Action 3
Click on the text box to add text
pyautogui.click(tag_42)
pyautogui.typewrite(`Team Members', interval=0.1)
Type the title
pyautogui.hotkey(`ctrl', `a')
Select all text
pyautogui.hotkey(`ctrl', `b')
Make the text bold

Action 4
Click on the Bold button to apply bold formatting
pyautogui.click(tag_68)

Failed.

Agent > Human Task: use GIMP to cut out the 2s to 4s part of a video

Action 1
import pyautogui
import time
Move the mouse to the assumed terminal icon position
at the bottom of the dock and click to open it
Assuming the terminal icon is at the bottom of the dock
pyautogui.moveTo(70, 1350, duration=1)
pyautogui.click()
Type the command to use ffmpeg to trim the video
ffmpeg_command = `ffmpeg -ss 00:00:02 -to 00:00:04 -i /home/user/fullvideo.mp4
-c copy /home/user/trimmedvideo.mp4'
pyautogui.write(ffmpeg_command, interval=0.05)
pyautogui.press('enter')

Action 2
Close the search dialog
pyautogui.press('esc')
Open the terminal using a keyboard shortcut (Ctrl+Alt+T is a common shortcut
for opening a terminal in many Linux distributions)
pyautogui.hotkey('ctrl', 'alt', 't')

Action 3
Move the mouse to the terminal and click to focus on the terminal window
pyautogui.moveTo(260 + 722/2, 103 + 434/2, duration=1)
pyautogui.click()
Type the command to use ffmpeg to trim the video
pyautogui.write(ffmpeg_command, interval=0.05)
pyautogui.press(`enter')

Done, but not follow the demanding in instruction.

Agent > Human Task: I want to understand the resource usage of my Ubuntu system under
normal workloads. Please use the ‘sar‘ command in the ‘sysstat‘ toolkit to monitor system
activity, evaluate the status once every second for 30 seconds, output the results to "System
Resources Report.txt" under Desktop.

Action 1
import pyautogui
import time

43

Press the keyboard shortcut to open the terminal
pyautogui.hotkey(`ctrl', `alt', `t')
time.sleep(1)
Wait a moment for the terminal to open

Action 2
Click inside the terminal to focus on it
pyautogui.click(600, 300)
Assuming the terminal is in the upper left area of the screen
n# Type the command to monitor system activity
pyautogui.typewrite(`sar 1 30 > ~/Desktop/System Resources Report.txt')

Action 3
Click on the `System Resources Report.txt' file to select it
pyautogui.click(1850, 940)
Coordinates taken from the label position and size
time.sleep(0.5)
Right-click to open the context menu
pyautogui.click(1850, 940, button=`right')
Move to the `Open With Other Application' option in the context menu
pyautogui.move(0, 70)
Assuming `Open With Other Application' is 70 pixels
down from the right-click position
Click on `Open With Other Application'
pyautogui.click()
time.sleep(0.5)
Type `gedit' to select the text editor
pyautogui.typewrite(`gedit')
Press `Enter' to open the file with gedit
pyautogui.press(`enter')

Action 4
Click inside the terminal to ensure it's in focus
pyautogui.click(500, 200)
Coordinates are estimated to be within the terminal window
Type the command to open the file with gedit
pyautogui.typewrite(`gedit ~/Desktop/System Resources Report.txt')

Done!

Agent > Human Task: Hey, my LibreOffice Writer seems to have frozen and I can’t get it to
close normally. Can you help me force quit the application from the command line? I’m on
Ubuntu and I don’t want to restart my computer or lose any other work I have open.

Action 1
import pyautogui
import time
Open a terminal window
pyautogui.hotkey(`ctrl', `alt', `t')
time.sleep(1)
Type the command to kill all instances of LibreOffice Writer
pyautogui.typewrite(`killall soffice.bin')

Action 2
Open a terminal window
pyautogui.hotkey(`ctrl', `alt', `t')
time.sleep(1)
Type the command to kill all instances of LibreOffice Writer
pyautogui.typewrite(`killall soffice.bin')

Action 3

44

Ensure the terminal window is focused
pyautogui.click(500, 200)
Assuming the terminal is at this position
Type the pkill command to forcefully kill the LibreOffice Writer application
pyautogui.typewrite(`pkill -9 soffice.bin')

Done!

D.5.4 Comparative Analysis: Claude-3 vs. GPT-4V

Task Instruction: find the path of the file named "secret.docx" and copy it to the clipboard.

copy the data in Cell B6 in this Libreoffice Calc file and search it in the Chrome browser.

change all the places in this document that say \"text\" to \"test\".

Step 1: pyautogui.click(folder_x, folder_y) Step 2: pyautogui.click(grid_x, grid_y) Step 3: pyautogui.typewrite('secret.docx') Step 4: pyautogui.doubleClick(x, y), Failed

Step 1: pyautogui.click(C6_x, C6_y) Step 2: pyautogui.click(chrome_x, chrome_y)
…

Step 3: pyautogui.click(C6_x’, C6_y’) … Step 4: pyautogui.typewrite('Dewitt'), Failed

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.hotkey('control', 'f') … Step 3: pyautogui.hotkey('control', 's') … Step 4: 'Wait', Failed

Figure 17: Screenshots of error example analysis of Claude-3 Opus.

Claude3 Failed Task1: I remember there is a file named "secret.docx" on this computer, but I
can’t remember where it is. Please find the path where this file is stored and copy it to the
clipboard.

Action 1
pyautogui.click(tag_10)
click the Files icon to open the file manager

Action 2
pyautogui.click(tag_21)
click the search icon to open the search bar

Action 3
pyautogui.typewrite(`secret.docx')
type the file name to search for
pyautogui.press(`enter')
press enter to start the search

Action 4
pyautogui.doubleClick(tag_52)
double click the secret.docx file to select it
pyautogui.hotkey(`ctrl', 'c')
press Ctrl+C to copy the selected file path to clipboard

Failed.

45

Claude3 Failed Task2: copy the data in Cell B6 in this Libreoffice Calc file and search it in
the Chrome browser.

Action 1
import pyautogui
import time
Scroll down to view more search results if needed
pyautogui.press(`pagedown')
time.sleep(1)
pyautogui.press(`pagedown')
time.sleep(2)
The answer appears to be in the snippet under the first search result
`TV 31. u76f4u64adu4e2d.' which translates to `TV 31. Live.'
So channel 31 in Hong Kong is RTHK TV 31
print(`Found the answer. Channel 31 in Hong Kong is RTHK TV 31.')
The original task of copying cell B36 from the spreadsheet
and searching it in the browser is complete
print(`Task complete.')

Action 2
Activate the Chrome browser window
pyautogui.click(tag_3)
time.sleep(1)
Click on the address/search bar
pyautogui.click(tag_30)
Paste the copied value `Dewitt'
pyautogui.hotkey(`ctrl', `v')
Press Enter to perform the search
pyautogui.press(`enter')
print(`Searched for `Dewitt' in the Chrome browser.')

Action 3
print(`DONE')

Action 4
print(`DONE')

Failed.

Claude3 Failed Task3: Please help me change all the places in this document that say ‘text’
to ‘test’.

Action 1
pyautogui.hotkey(`ctrl', `h')
pyautogui.write(`text')
pyautogui.press(`tab')
pyautogui.write(`test')
pyautogui.press(`enter')

Action 2
pyautogui.press(`enter')

Action 3
pyautogui.hotkey(`ctrl', `s')

Failed.

46

D.6 Analysis on SoM Effectiveness

Task w/o SoM: turning off the code checking function of the python plugin in vscode

Action 1
import pyautogui
import time
Move the mouse to the gear icon (Manage) and click it
pyautogui.moveTo(472, 1034, duration=0.5)
pyautogui.click()

Action 2
Move the mouse to the S̈ettings¨ menu item and click it
A rough central point of the `Settings' menu item
pyautogui.moveTo(497 + 385/2, 832 + 25/2, duration=0.5)
pyautogui.click()

Action 3
Move the mouse to the search settings bar and click it
A rough central point of the search settings bar
pyautogui.moveTo(783 + 587/2, 390 + 19/2, duration=0.5)
pyautogui.click()
Type the query to search for Python-related settings
pyautogui.write('python', interval=0.05)

Action 4
Move the mouse to the `Edit in settings.json' button and click it
A rough central point of the button
pyautogui.moveTo(990 + 116/2, 624 + 15/2, duration=0.5)
pyautogui.click()

Action 5
Move the cursor to the correct position
pyautogui.moveTo(889 + 1/2, 432 + 1/2, duration=0.5)
pyautogui.click()
Type the configuration to disable Python missing imports error reporting
pyautogui.write(`reportMissingImports: `none'', interval=0.05)
pyautogui.press(`enter')
Save the changes
pyautogui.hotkey(`ctrl', `s')

Done

Task w/ SoM: turning off the code checking function of the python plugin in vscode

Action 1
import pyautogui
import time
pyautogui.hotkey(`ctrl', `shift', `p')

Action 2
pyautogui.write(`Preferences: Open Settings (UI)', interval=0.05)
time.sleep(0.5)
pyautogui.press(`enter')

Action 3
Click on the search settings input field
pyautogui.click(x=600, y=175)
These coordinates may need to be adjusted for your screen resolution
Type `Python' into the search field
pyautogui.write(`Python', interval=0.05)

47

pyautogui.press(`enter')

Action 4
Click on the search settings bar and type in the query again
pyautogui.click(x=800, y=150)
Click on the search bar, the coordinates may need adjustment
pyautogui.typewrite(`Python missing imports', interval=0.25)

... Can not find the right click area

Failed

D.6.1 Analysis on SoM Effectiveness

The SoM, effective for web tasks focusing only on labeled bounding boxes, did not excel in our diverse tasks
that required more expertise and flexibility. It shortens the action space of the agent and thus hinders the
agent’s exploration and adaptability. For example in Figure 18, in the task of "turning off the code checking
function of the python plugin." in VS Code, agents without SoM succeeded by editing the settings.json, whereas
SoM-equipped agents struggled with finding and deselecting the checkbox in the settings. The latter has a longer
action path and fails due to incorrect mouse clicks. Furthermore, SoM’s labeling of elements in professional
software also has such errors, that agents without SoM can use a11y tree to calculate and adjust coordinates,
while the elements’ blocks under SoM can be hard to change during the task.

Task Instruction: turning off the code checking function of the python plugin in vscode

(w/ SoM)

(w/o SoM)

Step 1 Step 2 Step 3

Step 1 Step 2 Step 3

Figure 18: A task showcase where the SoM-equipped agent tried to find interactive settings, while
the screen-a11ytree-equipped agents directly modified the value in the setting.json file.

E Limitations and Future Work

We identify several potential directions for community development and progress toward general-purpose agents
for computer operation:

Enhancing VLM capabilities for efficient and robust GUI interactions For foundation model
development, we need to boost the efficiency of our models, enabling them to process much longer contexts and
perform inference computations efficiently, akin to the robotics community [6, 7] to better handle real-world
cases. Enhancements in VLMs’ GUI grounding capabilities that is robust to application windows changes and
are also sought, focusing on the accurate understanding and generation of precise actions aligned with given
instructions. Moreover, amplifying VLMs’ ability to comprehend context in the form of images is a pivotal goal,
since it is crucial to enable history encoding using images so that we can build memory and reflection upon that.
These improvements may require more efforts in the upstream pre-training stage, downstream fine-tuning stage,
and even in the model structure itself, as pointed out in previous work [12, 21, 37].

Advancing agent methodologies for exploration, memory, and reflection The next-level approach
encompasses designing more effective agent architectures that augment the agents’ abilities to explore au-
tonomously and synthesize their findings. The agents face challenges in leveraging lengthy raw observation and

48

action records. It’s fascinating to explore novel methods for encoding this history, incorporating efficient memory
and reflection solutions to condense contextual information and aid the agent in extracting key information.
Additionally, integrating knowledge grounding into (V)LLM agents through memory mechanisms is a promising
avenue as well. Moreover, practice GUI assistants also require features of personalization and customization.
These features rely on techniques such as user profiling and retaining memories from long-term user-assistant
interactions. Additionally, crafting protocols specifically for digital agents operating within GUI and CLI
interfaces aims at facilitating efficient actions is also an essential thing for the feasibility of general-purpose
digital agents in the mid-short term.

Addressing the safety challenges of agents in realistic environments The safety of agents is a
critical issue if applying a built agent in fully realistic environments, the developed universal digital agent could
potentially be used to bypass CAPTCHA systems in the future, as noted in [46]. However, due to the currently
limited capabilities of agents, we have not observed any harmful and damaging behaviors during our experiments,
an automatic agent has the opportunity to damage patent rights, abuse accounts, attempt to exploit software
vulnerabilities to create viruses, or engage in attacks. Currently, we adopt virtual machines to make it difficult
for developing digital agents to cause irreversible damage to our host machines. However, there still lacks a
reliable metric to assess the safety of an agent developed in an isolated environment. The current evaluation
functions mainly focus on the results closely regarding the task instructions, assess only the correctness of
task completion, and pay little attention to potential unnecessary damaging actions of agents. Owing to the
complexity of a complete computer environment, we didn’t work out an efficient way to detect the latent side
effects of the agent. Consequently, how to assess and control potential behaviors in open and real environments
through environmental constraints and agent training is an important further direction of research.

Expanding and refining data and environments for agent development In terms of datasets and
environments, we can broaden the scope to cover more specialized domains, including real-sector needs in
healthcare, education, industry, transportation, and personalized requirements. Efforts can be made to ensure our
environment’s seamless deployment across various hardware and software settings. The variance of a11y tree
quality across different applications is also noticed. Although the problem is not remarkable in the applications
currently included, there is no guarantee of that the application developers obey the a11y convention and offer
clear and meaningful descriptions for GUI elements. More intelligent approaches to filter redundant a11y tree
elements and to handle latently missing elements deserve careful investigation as well. We also highlight the
necessity of a painless data collection method, allowing for the effortless acquisition of computer operation data
and its transformation into agent capabilities.

F Distribution & License

The proposed OSWORLD platform and task set are open-sourced under the Apache-2.0 license and are available
at https://os-world.github.io/ and https://github.com/xlang-ai/OSWorld. The authors claim
that OSWORLD will be permanently maintained for future environments.

A non-exhaustive list of artifacts used in the development of OSWORLD environment includes: pyautogui 20,
flask 21, python-pptx 22, python-docx 23, OpenCV 24, EasyOCR 25, etc. They are released under licenses
BSD-3-Clause, MIT, and Apache-2.0. A non-exhaustive list of artifacts used in the experiments includes:
openai-python 26, google-generativeai 27, groq-python 28, etc. They are released under licenses Apache-2.0. The
authors claim that the usage completely obeys the licenses.

G Datasheet

G.1 Motivation
• For what purpose was the dataset created? Was there a specific task in mind? Was there a specific

gap that needed to be filled? Please provide a description.

20https://github.com/asweigart/pyautogui
21https://github.com/pallets/flask
22https://github.com/scanny/python-pptx
23https://github.com/python-openxml/python-docx
24https://github.com/opencv/opencv-python
25https://github.com/JaidedAI/EasyOCR
26https://github.com/openai/openai-python
27https://github.com/GoogleCloudPlatform/generative-ai
28https://github.com/groq/groq-python

49

https://os-world.github.io/
https://github.com/xlang-ai/OSWorld
https://github.com/asweigart/pyautogui
https://github.com/pallets/flask
https://github.com/scanny/python-pptx
https://github.com/python-openxml/python-docx
https://github.com/opencv/opencv-python
https://github.com/JaidedAI/EasyOCR
https://github.com/openai/openai-python
https://github.com/GoogleCloudPlatform/generative-ai
https://github.com/groq/groq-python

The environment and dataset for OSWORLD are created to address a critical need for a comprehensive
benchmark capable of evaluating the performance and capabilities of universal digital agents across
real-world, operating system-level tasks. The motivation stemmed from the recognized gaps in existing
benchmarks focusing predominantly on isolated applications or single-domain tasks. No existing
dataset adequately represents the range of actions, coupled with real-world complexities, faced by
operational software agents in a truly interactive operating system environment. This dataset enables
the holistic assessment of agents in multi-application contexts and multi-modal interactions, with tasks
requiring both comprehension and navigation of complex user interfaces across various commonly
used software and operating systems.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?
Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese,
Caiming Xiong, Victor Zhong, and Tao Yu from the XLANG Lab 29 from University of Hong Kong,
Carnegie Mellon University, Salesforce Research and University of Waterloo create the environment
and the task set.

G.2 Composition
• What do the instances that comprise the dataset represent (e.g., documents, photos, people,

countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description.
The instances within the OSWORLD dataset comprise a diverse collection of tasks simulated within
real operating system environments, specifically focusing on Ubuntu and Windows systems. These
tasks represent a variety of real-world computer usage scenarios, encompassing multiple applications
and interfaces. Each instance includes detailed natural language instructions, setup configurations with
corresponding files, and setup actions for environment initialization. The instances further encompass
a variety of operation types such as document editing, file operations, email activities, and multimedia
management. This design ensures a comprehensive evaluation of digital agents’ ability to perform
highly integrated, multi-modal interactions across different software applications and user interfaces.
The dataset, therefore, offers a rich milieu of complex tasks requiring both cognitive understanding
and interaction capabilities from the executing agents.

• How many instances are there in total (of each type, if appropriate)?
There are a total of 369 tasks for the Ubuntu operating system and 43 tasks designed for Windows
within the OSWORLD benchmark. These tasks encompass a variety of task types including multi-app
workflow tasks, single-application tasks, and integrated tasks from related datasets. Specifically,
the dataset includes 268 single-app tasks (72.6%), 101 multi-app workflow tasks (27.4%), and 30
infeasible tasks (8.1%). Additionally, 84 tasks (22.8%) are integrated from other datasets.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this representa-
tiveness was validated/verified. If it is not representative of the larger set, please describe why not
(e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).
The dataset in OSWORLD is a curated sample from a larger set of potential real-world tasks. These
samples were selected based on their popularity, helpfulness, and diversity, as judged by view counts
and user votes on various platforms including official guidelines, tutorials, forums, and educational
courses. This selection process intends to cover a broad spectrum of typical and critical tasks that
users perform using computer systems across different operating systems and software environments.
While this dataset aims to cover various practical and high-impact scenarios, it does not claim to
represent all possible tasks due to the vastness and evolving nature of computer operations. It
emphasizes tasks with significant educational and practical utility to ensure that the benchmark
provides both comprehensive and challenging objectives for developing advanced digital agents. The
representativeness has not been systematically verified statistically due to the qualitative selection
criteria based on task relevance and utility rather than mere statistical representation.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features?
In either case, please provide a description.
Each instance within the OSWORLD dataset consists of both "raw" data and structured annotations.
The main components of each task instance are:

– Natural language instruction: Each task is accompanied by a natural language description
that guides the agent on how to execute the task. These instructions are crafted from real-world
guidelines and scenarios.

29https://www.xlang.ai/

50

https://www.xlang.ai/

– Setup configuration: This includes necessary files and setup actions required for initializing the
task environment as the cases of the real world.

– Evaluation scripts: Scripts designed to programmatically assess whether the task has been
successfully completed by the agent. These scripts function as objective measures of task
performance.

– Accessibility Trees and Screenshots: For GUI-based tasks, environments from instances include
accessibility trees that provide structured data regarding the GUI elements, and screenshots that
offer visual context. These components are crucial for agents that rely on visual and structural
interpretations to navigate and interact within the tasks.

These data elements combine raw and processed formats to deliver comprehensive task-specific
information that supports both the execution and the evaluation of automated agents across varied
operating systems and interfaces.

• Is there a label or target associated with each instance? If so, please provide a description.
Yes, each task in the OSWORLD benchmark is associated with a specific label describing the objective
of the task. The label is a natural language instruction that indicates what the computer agent needs
to achieve. Additionally, each task is accompanied by a setup configuration and an evaluation script,
which are used to verify if the task has been accomplished successfully according to the predefined
criteria. This structured approach ensures that agents are assessed accurately on their ability to perform
a variety of real-world computing tasks.

• Is any information missing from individual instances? If so, please provide a description, explaining
why this information is missing (e.g., because it was unavailable). This does not include intentionally
removed information, but might include, e.g., redacted text.
Yes, some instances may lack certain details that were not available from the source materials. These
sources include forums, tutorials, how-to websites, and video content from platforms like YouTube
and TikTok. This missing information could be due to incomplete guidelines or advice given in the
source materials, which were not exhaustively detailed. Additionally, although extensive efforts were
made to create comprehensive annotations, some specifics might be inherently unobtainable due to the
nature of the source content.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.
Yes, our dataset may include various sources of noise or redundancies which typically arise from
the variety of different real-world sources used for task examples, such as forums, tutorials, and
guidelines. Additionally, the dataset includes deliberately collected infeasible tasks due to feature
deprecation or hallucinated features, as highlighted in the design process. These instances are used to
test the robustness and error-handling capabilities of digital agents but may be perceived as noise if
not correctly accounted for in training. Redundancies may occur as multiple tasks may involve similar
applications or operations, albeit with different specific instructions or end goals.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees
that they will exist, and remain constant, over time; b) are there official archival versions of the
complete dataset (i.e., including the external resources as they existed at the time the dataset was
created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources
that might apply to a dataset consumer? Please provide descriptions of all external resources and any
restrictions associated with them, as well as links or other access points, as appropriate.
The OSWORLD dataset is not entirely self-contained as it integrates tasks and guidelines derived from
various external resources such as forums, tutorials, how-to websites, and public guidelines. These
include websites like WikiHow, Reddit, Quora, StackOverflow, and video tutorials from platforms like
YouTube and TikTok, among others.

a) There are no guarantees that the external resources will exist indefinitely or remain constant over
time, which could impact the dataset’s reliability and the reproducibility of the tasks.

b) There are no official archival versions of the complete dataset that include external resources as
they existed at the time the dataset was created. Consumers of the dataset will need to rely on
the current versions of these resources, which may be subject to changes.

c) Some of the external resources may have their own copyright or licensing restrictions which
might apply to a dataset consumer. Each resource’s terms of service and copyright laws should
be reviewed prior to use to ensure compliance.

External resources vary in nature and can often have different terms of use; it is advised for users of
the OSWORLD dataset to verify any potential restrictions or licensing requirements individually.

• Does the dataset contain data that might be considered confidential (e.g., data that is protected by
legal privilege or by doctor–patient confidentiality, data that includes the content of individuals’
non-public communications)? If so, please provide a description.

51

No, the dataset does not contain any data that could be considered confidential. The tasks and
examples within the OSWORLD dataset are created from widely accessible sources such as public
forums, official tutorials, and openly available guidelines. All data in use, including task instructions
and configurations, are derived from non-confidential, non-privileged, and public communications
aimed at demonstrating real-world computer usage scenarios.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.
No, the dataset primarily consists of tasks defined and executed on operating systems using data
from tutorials, guides, and how-to information that is publicly available and widely considered to be
educational and informational. Therefore, it is unlikely to contain content that could be viewed as
offensive, insulting, or threatening.

• Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions within
the dataset.
No, the dataset does not identify or differentiate any subpopulations based on age, gender, or other
demographic factors. The focus is on the diversity of tasks related to computer usage across different
operating systems and software environments.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly
(i.e., in combination with other data) from the dataset? If so, please describe how.
No, it is not possible to identify individuals directly or indirectly from the dataset. The tasks and
examples in OSWORLD are derived from general public sources such as forums, tutorials, and
guidelines that are widely accessible and do not contain personal information. Furthermore, any
task setup or descriptive data is specifically designed or curated to avoid inclusion of any personal
identifiers or sensitive information that could lead to the re-identification of individuals.

• Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of govern-
ment identification, such as social security numbers; criminal history)? If so, please provide a
description.
The OSWORLD dataset does not contain data that might be considered sensitive. The dataset is
constructed from publicly available sources such as forums, tutorials, and guidelines and solely
focuses on operational tasks within computer environments. It does not include any personal data
categories or information related to individuals. The tasks are generated and anonymized without
incorporating any sensitive or personal data elements.

G.3 Collection Process
• How was the data associated with each instance acquired? Was the data directly observable (e.g.,

raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If the data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If
so, please describe how.
The data for each task in OSWORLD was meticulously collected from a variety of credible sources
including forums, official tutorials, instructional video content from platforms like YouTube and
TikTok, and Q&A websites such as Reddit and Quora. The tasks were inspired by real-world computer
usage scenarios which are often discussed in these sources. Each example was carefully annotated
with natural language instructions, and detailed setup configurations, and included manually crafted
evaluation scripts to ensure the task accurately represents real-world functionalities. To validate the
realism and feasibility of these tasks, every task was cross-verified by at least two other authors.
In particular, these reviewers checked the instructions for clarity, the setup for correctness, and the
evaluation scripts for comprehensiveness. Additionally, some tasks inherently deemed infeasible
due to outdated features or user misconceptions were also included to represent the full spectrum of
real-world challenges.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)? How were these
mechanisms or procedures validated?
Data collection for the OSWORLD benchmark involved a combination of manual human curation and
usage of software programs. Specifically, task instructions and scenarios were gathered from diverse
sources including official guidelines, online tutorials, how-to websites, public forums, and personal
blogs. These were then annotated manually by the authors and supplemented with setup actions and
evaluation scripts using software tools designed for task setup and verification.

52

The validation of these mechanisms and procedures was conducted through a rigorous peer-review
process within the research team. Each task and its associated data were cross-checked by multiple
authors to ensure feasibility, clarity, and alignment with the baseline sources. Additionally, the
examples gathered were tested by independent evaluators not involved in the initial annotation,
acting as agents to execute the tasks, and providing feedback which was used to refine the tasks and
annotations further.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?
The tasks in the OSWORLD represent a carefully curated subset of potential real-world computing
tasks. The selection was made based on a combination strategy that included both deterministic and
probabilistic elements. We chose examples based on their popularity, helpfulness, and diversity, with
popularity assessed by view counts and votes on various platforms such as forums, tutorials, and online
courses. This involved deterministic selection of application types to ensure coverage across a broad
spectrum of daily, professional, and workflow scenarios. Additionally, we incorporated tasks that were
inherently challenging or infeasible due to software limitations or feature deprecations, enhancing the
dataset’s practical relevance and complexity.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?
All the development of platform, app data collection, and task definition creation are completed by the
authors.

• Over what timeframe was the data collected? Does this timeframe match the creation timeframe of
the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe
the timeframe in which the data associated with the instances was created.

• Did you collect the data from the individuals in question directly, or obtain it via third parties or
other sources (e.g., websites)?
The data for OSWORLD were primarily collected via third parties and other sources. This included
a diverse array of platforms such as official guidelines and tutorials, video tutorials on TikTok and
YouTube, how-to websites like WikiHow, Q&A forums such as Reddit, Quora, Superuser, and
StackOverflow, formal online courses from Coursera and Udemy, and publicly available personal
blogs and guidelines.

• Were the individuals in question notified about the data collection? If so, please describe (or show
with screenshots or other information) how notice was provided, and provide a link or other access
point to, or otherwise reproduce, the exact language of the notification itself.
No, the nature of the data collected for the OSWORLD benchmark did not involve any individual-based
data that would require the notification of individuals. The tasks and environment setups used in
OSWORLD were sourced from publicly available materials such as forums, tutorials, and guidelines,
which do not contain personally identifiable information. Thus, notification to individuals was not
applicable in this context.

• Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and provided,
and provide a link or other access point to, or otherwise reproduce, the exact language to which the
individuals consented.
The data collected for the OSWORLD includes tasks sourced from publicly accessible forums, tutorials,
and community-driven platforms, which inherently involve contributions from public individuals.
However, the paper does not specify that these individuals provided direct consent for the use of such
data in the context of creating the benchmark. Typically, these public platforms have their own terms
of service that users agree to, which may cover data usage for research, but exact consent for this
specific study was not detailed. Hence, more explicit consent mechanisms would potentially enhance
ethical compliance.

• If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a link
or other access point to the mechanism (if appropriate).
As the data collection involved publicly available sources and no specific documentation of direct
consent is provided, there is also no mention of a mechanism for the individuals to revoke their consent
in the future or for certain uses of the data. Implementing a consent revocation mechanism would be
an important step towards enhancing the ethical handling of the data used in OSWORLD.

G.4 Uses
• Has the dataset been used for any tasks already? If so, please provide a description.

53

Yes, the OSWORLD dataset has been utilized to support the development and evaluation of automated
computer agents across various operating systems. It includes a set of 369 tasks on Ubuntu and 43
tasks on Windows, which are designed to assess various capabilities such as commonsense reasoning,
software navigation, and precise input control. These tasks have been employed in comprehensive
testing and performance evaluation scenarios, which have involved comparing different LLM and
VLM agents’ abilities to handle multi-app workflows and other operation types within real computing
environments. Consequently, the dataset has facilitated research into creating more effective and
versatile digital agents. Detailed results and analyses stemming from these uses are documented in the
paper.

• Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.
Yes, the OSWORLD dataset is accompanied by a repository that includes links to all papers and systems
utilizing the dataset for research and development purposes. It serves as a comprehensive resource for
tracing the impact and applications of the dataset across various studies and implementations. The
repository can be accessed via https://github.com/xlang-ai/OSWorld.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? For example, is there anything that a dataset
consumer might need to know to avoid uses that could result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g., legal risks, financial
harms)? If so, please provide a description. Is there anything a dataset consumer could do to mitigate
these risks or harms?
No.

G.5 Distribution
• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,

organization) on behalf of which the dataset was created? If so, please provide a description.
Yes, the dataset created as part of the OSWORLD project is made available publicly in https:
//github.com/xlang-ai/OSWorld. It is open-sourced under the Apache-2.0 license, and it can
be accessed via the official project URLs provided on GitHub and the OSWORLD website. This
facilitates wide accessibility and utilization across different sectors and by various entities beyond the
originating organization, promoting broader research and development in digital agent technology.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?
The platform and dataset are open-sourced at GitHub. We do not apply for a DOI.

• When will the dataset be distributed?
Both the environment and the task set have already been made public.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as
well as any fees associated with these restrictions.
Both the environment and dataset are open-sourced under Apache-2.0 license.

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any relevant licensing terms, as well as any fees associated with these restrictions.
No third-party IP-based or other restrictions are imposed on the primary data utilized by the OS-
WORLD benchmark. The components comprising the tasks are derived from widely accessible and
openly available sources, such as forums, tutorials, and free-to-use websites. All efforts have been
made to ensure the tasks do not infringe upon proprietary data. However, the platform for virtual
machines and tasks adapted for Windows require activation due to copyright considerations post-
implementation, which can involve associated fees, although optional. For more detailed licensing
terms and specific conditions, refer to the original sources and legal advice where relevant.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.
No.

G.6 Maintenance
• Who will be supporting/hosting/maintaining the dataset?

The authors will support, host, and maintain permanently.

54

https://github.com/xlang-ai/OSWorld
https://github.com/xlang-ai/OSWorld
https://github.com/xlang-ai/OSWorld

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Issues and discussions on GitHub and Hugging Face are welcome. One can also seek help from
Tianbao Xie (tbxie@cs.hku.hk), Danyang Zhang (zhang-dy20@sjtu.edu.cn), and Tao Yu
(taoyds@hku.hk).

• Is there an erratum? If so, please provide a link or other access point.
Currently, no. Errata will be announced if there is any in the future.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to dataset
consumers (e.g., mailing list, GitHub)?
Yes, the OSWORLD dataset will be periodically updated to correct any labeling errors, add new
instances, and delete outdated or incorrect instances as necessary. The updates will be conducted
annually by the core team of maintainers comprising computer science researchers and student
contributors. Notice of updates, including details of changes made, will be communicated to dataset
consumers through a dedicated mailing list and updates will be posted on the project’s GitHub
repository at https://github.com/xlang-ai/OSWorld.

• If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were the individuals in question told that their data would be retained
for a fixed period of time and then deleted)? If so, please describe these limits and explain how they
will be enforced.
No.

• Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to dataset consumers.
Older versions of the OSWORLD dataset will be available for use, but they may not receive updates
or support once a new version is released. We aim to keep archival versions available for research
reproducibility and comparison purposes. However, these archival versions will be hosted without
active maintenance, meaning that issues or bugs identified in these versions will only be addressed in
new releases. Obsolescence of any version will be communicated through our official website and
version-release notes associated with the OSWORLD dataset.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for communicating/distributing these
contributions to dataset consumers? If so, please provide a description.
Yes, the OSWORLD framework encourages the academic and developer community to extend, augment,
and contribute to the dataset. Contributions can be made via GitHub, where the project and its datasets
are hosted. Contributors can submit pull requests with their enhancements or new task datasets. All
contributions undergo a rigorous review process by the existing project maintainers to ensure that they
meet the quality standards of the dataset and are consistent with the goals of OSWORLD. This review
process includes verifying the accuracy of the information, the relevance, and the usability of the
tasks. Once approved and merged, contributions are incorporated into the main branch of the dataset
repository and are made available for immediate access and use. Updates to the dataset are regularly
communicated through the project’s website and GitHub repository, as well as through mailing lists
and social media to ensure that dataset consumers and contributors stay informed. Additionally,
periodic releases of the dataset include detailed changelogs that summarize new additions, changes,
and improvements, thus ensuring transparency and ease of access for all users interested in building
upon or utilizing the OSWORLD dataset.

55

https://github.com/xlang-ai/OSWorld

	Introduction
	OSWorld Environment
	Task Definition
	Real Computer Environment Infrastructure
	Observation Space
	Action Space

	OSWorld Benchmark
	Operating System and Software Environments
	Tasks
	Data Statistics
	Human Performance

	Benchmarking LLM and VLM Agent Baselines
	LLM and VLM Agent Baselines
	Results

	Analysis
	Related Work
	Conclusion
	Details of OSWorld Environment
	Environment Infrastructure
	Observation Space
	Screenshot
	Accessibility Tree

	Action Space
	PYAUTOGUI
	COMPUTER_13

	Details of OSWorld Benchmark
	Operating System Selection
	Software Selection
	Task Example Sources
	Task Examples Collection
	Initial State Setup Details
	Evaluation Configuration Details
	Ubuntu
	Windows

	More Task Examples

	Details of Baseline Methods
	Hyper-Parameter of the Baseline Agents
	Prompt Details
	Prompt for A11y Tree, Screenshot and their Combination Setting
	Prompt for SoM Setting

	Input Settings
	Accessibility Tree Filtering
	Set-of-Mark Implementation Details
	Full Results of Baseline Methods
	Running Time and Cost

	Further Analysis
	Performance by Task Difficulty, Feasibility and App Involved
	A11y tree-based Observation Length Distribution
	Performance across Different Operating Systems
	Qualitative Analysis
	Qualitative Analysis Examples
	Success and Failure Cases
	Common Errors by GPT-4V Agents
	Discrepancies in Task Difficulty between Agent and Human
	Comparative Analysis: Claude-3 vs. GPT-4V

	Analysis on SoM Effectiveness
	Analysis on SoM Effectiveness

	Limitations and Future Work
	Distribution & License
	Datasheet
	Motivation
	Composition
	Collection Process
	Uses
	Distribution
	Maintenance

