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ABSTRACT

Machine learning (ML) models are costly to train as they can require a significant
amount of data, computational resources and technical expertise. Thus, they con-
stitute valuable intellectual property that needs protection from adversaries want-
ing to steal them. Ownership verification techniques allow the victims of model
stealing attacks to demonstrate that a suspect model was in fact stolen from theirs.
Although a number of ownership verification techniques based on watermarking
or fingerprinting have been proposed, most of them fall short either in terms of se-
curity guarantees (well-equipped adversaries can evade verification) or computa-
tional cost. A fingerprinting technique introduced at ICLR ’21, Dataset Inference
(DI), has been shown to offer better robustness and efficiency than prior methods.
The authors of DI provided a correctness proof for linear (suspect) models. How-
ever, in a subspace of the same setting, we prove that DI suffers from high false
positives (FPs) – it can incorrectly identify an independent model trained with
non-overlapping data from the same distribution as stolen. We further prove that
DI also triggers FPs in realistic, non-linear suspect models. We then confirm em-
pirically that DI in the black-box setting leads to FPs, with high confidence.
Second, we show that DI also suffers from false negatives (FNs) – an adversary
can fool DI by regularising a stolen model’s decision boundaries using adversarial
training, thereby leading to an FN. To this end, we demonstrate that black-box DI
fails to identify a model adversarially trained from a stolen dataset – the setting
where DI is the hardest to evade.
Finally, we discuss the implications of our findings, the viability of fingerprinting-
based ownership verification in general, and suggest directions for future work.

1 INTRODUCTION

Machine learning (ML) models are being developed and deployed at an increasingly faster rate and
in several application domains. For many companies, they are not just a part of the technological
stack that offers an edge over the competitors but a core business offering. Hence, ML models
constitute valuable intellectual property that needs to be protected.

Model stealing is considered one of the most serious attack vectors against ML models (Kumar et al.,
2019). The goal of a model stealing attack is to obtain a functionally equivalent copy of a victim
model that can be used, for example, to offer a competing service, or avoid having to pay for the use
of the model.

In the white-box attack, the adversary obtains the exact copy of the victim model, for example by
reverse engineering an application containing an embedded model (Deng et al., 2022). In contrast,
in black-box attacks (known as model extraction attacks) (Papernot et al., 2017; Orekondy et al.,
2019; Tramèr et al., 2016) the adversary gleans information about victim model via its predictive
interface. Two possible approaches to defend against model extraction are 1) detection (Juuti et al.,
2019; Atli et al., 2020; Zheng et al., 2022) and 2) prevention (Orekondy et al., 2020; Mazeika
et al., 2022; Dziedzic et al., 2022). However, a powerful, yet realistic attacker can circumvent these
defenses (Atli et al., 2020).

An alternative defense applicable to both white-box and black-box model theft is based on deter-
rence. It concedes that the model will eventually get stolen. Therefore, an ownership verification
technique that can identify and demonstrate a suspect model as having been stolen can serve as a
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deterrent against model theft. Early research in this field focused on watermarking based on embed-
ding triggers or backdoors (Zhang et al., 2018; Uchida et al., 2017; Adi et al., 2018) into the weights
of the model. Unfortunately, all watermarking schemes were shown to be brittle (Lukas et al., 2022)
in that an attacker can successfully remove the watermark from a protected stolen model without
incurring a substantial loss in model utility.

An alternative approach to ownership verification is fingerprinting. Instead of embedding a trigger
or backdoor in the model, one can extract a fingerprint that matches only the victim model, and
models derived from it. Fingerprinting works both against white-box and black-box attacks, and
does not affect the performance of the model. Although several fingerprinting schemes have been
proposed, some are not rigorously tested against model extraction (Cao et al., 2021; Pan et al., 2022)
and others can be computationally expensive to derive (Lukas et al., 2021).

In this backdrop, Dataset Inference (DI), which appeared in ICLR 2021 (Maini et al., 2021) promises
to be an effective fingerprinting mechanism. Intuitively, it leverages the fact that if model owners
trained their models on private data, knowledge about that data can be used to identify all stolen
models. DI was shown to be effective against white-box and black-box attacks and is efficient to
compute (Maini et al., 2021). It was also shown not to conflict with any other defenses (Szyller &
Asokan, 2022). Given its promise, the guarantees provided by DI merits closer examination.

In this work, we first show that DI suffers from false positives (FPs) — it can incorrectly identify
an independent model trained with non-overlapping data from the same distribution as stolen. The
authors of DI provided a correctness proof for a linear model. However, DI in fact suffers from high
FPs, unless two assumptions hold: (1) a large noise dimension, as explained in the original paper
and (2) a large proportion of the victim’s training data is used during ownership verification, as we
prove in this paper. Both of these assumptions are unrealistic in a subspace of the linear case used
by DI: (i) we prove that large noise dimension can lead to low accuracy in the resulting model , and
(ii) revealing too much of the victim’s (private) training data is detrimental to privacy. Furthermore,
we prove that DI also triggers FPs in realistic, non-linear models. We then confirm empirically that
DI leads to FPs, with high confidence in the black-box verification setting, “black-box DI”, where
the DI verifier has access only to the inference interface of a suspect model, but not its internals .

We also show that black-box DI suffers from false negatives (FNs): an adversary who has in fact
stolen a victim model can avoid detection by regularising their model with adversarial training. We
provide empirical evidence that an adversary who steals the victim’s dataset itself and adversarially
trains a model can evade detection by DI.

We claim the following contributions:

• Following the same simplified theoretical analysis used by the original paper (Maini et al.,
2021), in a subspace of the linear case used by DI, we show that for a linear suspect model,
a) high-dimensional noise (as required in (Maini et al., 2021) leads to low model accuracy
(Lemma 1, Section 3.1), and 2) DI suffers from FPs unless a large proportion of private
data is revealed during ownership verification (Theorem 1, Section 3.1);

• Extending the analysis to non-linear suspect models, using a PAC-Bayesian frame-
work (Neyshabur et al., 2018), we show that DI suffers from FPs in non-linear models
regardless of how much private data is revealed (Theorem 2, Section 3.2.1);

• We empirically demonstrate the existence of FPs in a realistic black-box DI setting (Sec-
tion 3.2.2);

• We show empirically that black-box DI also suffers from FNs: using adversarial training
to regularise the decision boundaries of a stolen model can successfully evade detection by
DI while incurring only a modest loss in accuracy (≈ 6pp) (Section 4);

2 DATASET INFERENCE PRELIMINARIES

Dataset Inference (DI) aims to determine whether a suspect model fSP was obtained by an adver-
sary A who has stolen a model (fA) derived from a victim V’s private data SV , or belongs to an
independent party I (fI). DI relies on the intuition that if a model is derived from SV , this infor-
mation can be identified from all models. DI measures the prediction margins of a suspect model
around private and public samples: distance from the samples to the model’s decision boundaries. If
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Table 1: Summary of the notation used throughout this work.

V the victim f a model
I an independent party fV a model trained on SV

A an adversary f0 a model trained on S0

S a dataset fI a model trained on SI

SV V’s private dataset fA A’s model
S0 a public dataset fSP a suspect model
SI I’s data w model weights
D distribution that all datasets follow gV regression model
(x, y) a sample from D D noise dimension

fSP has distinguishable decision boundaries for private and public samples DI deems it to be stolen;
otherwise the model is deemed independent.

In the rest of this section, we explain the theoretical framework that DI uses — consisting of a
linear suspect model — the embedding generation necessary for using DI with realistic non-linear
suspect models, and the verification procedure. A summary of the notation used throughout this
work appears in Table 1.

2.1 THEORETICAL FRAMEWORK

The original DI paper (Maini et al., 2021) used a linear suspect model to theoretically prove the
guarantees provided by DI. We first explain how DI works in this setting.

Setup. Consider a data distribution D, such that any input-label pair (x, y) can be described as:

y ∼ {−1,+1},x1 = y · u ∈ RK ,x2 ∼ N (0, σ2I) ∈ RD,

where x = (x1,x2) ∈ RK+D and u ∈ RK is a fixed vector. The last D dimensions of x represent
Gaussian noise (with variance σ2).

Structure of the linear model. Assuming a linear model f , with weights w = (w1,w2), such that
f(x) = w1 · x1 + w2 · x2, then the final classification decision is sgn(f(x)). With the weights
initialized to zero, f learns the weights using gradient descent with learning rate 1 until yf(x) is
maximized. Given a private training dataset SV ∼ D = {(x(i), y(i))|i = 1, ...,m}, and a public
dataset S0 ∼ D (both of size m), then w1 = mu and w2 =

∑m
i=1 y

(i)x
(i)
2 regardless of the batch

size.

In DI, the prediction margin p(·) is used to imply the confidence of f in its prediction. It is defined
as the margin (distance) of a data point from the decision boundary.

p(x) ≜ y · f(x). (1)

The authors (Maini et al., 2021) show that the difference of expected prediction margins of two
datasets SV and S0 is Dσ2. The threshold can be set λ ∈ (0, Dσ2), and by estimating the difference
of the prediction margins on S0 and SV on fSP , DI is able to distinguish whether that model is
stolen.

Note that DI uses approximations of the prediction margins based on embeddings. The theoretical
framework assumes that the approximations are accurate, and we can use them directly for the
theoretical analysis (Equation 1). For the linear model, the margins can be computed analytically;
however, in Section 2.2, we explain how the approximations of the margins are obtained.

2.2 EMBEDDING GENERATION

In order to use DI one needs to generate embeddings of the samples. V queries their model fV with
samples in their private dataset SV and public dataset S0, and assigns the labels b = 1 and b = 0
respectively. The authors propose two methods of generating the embeddings: a white-box approach
(MinGD) and a black-box one (Blind Walk). In this work, we use only Blind Walk as it outperforms
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MinGD in most experimental setups in the original work, and is more realistic, as it only requires
access to the API of the suspect model.

Blind Walk estimates the prediction margin of a sample by measuring its robustness to random noise.
For a sample (x, y), to compute the margin, first choose a random direction δ, and take k ∈ N steps
in the same direction until the misclassification f(x + kδ) ̸= y. This is repeated multiple times to
increase the size of the embedding. As reported in (Maini et al., 2021), obtaining embeddings for
100 samples can take up to 30, 000 queries.

Having obtained the embeddings, V trains a regression model gV that predicts the confidence that a
sample contains private information from SV .

2.3 OWNERSHIP VERIFICATION

Using the scores from gV and the membership labels, V creates vectors c and cV of equal size from
SV and S0, respectively. Then for a null hypothesis H0 : µ < µV where µ = c̄ and µ̄ = c̄V are
mean confidence scores. The test rejects H0 and rules that the suspect model is ‘stolen’, or gives an
inconclusive result.

To verify whether fSP is stolen or independent, V obtains the embeddings by querying the model
(using Blind Walk) using samples from SV and S0. Then they use the embeddings to obtain the
confidence scores from the gV , and performs a hypothesis test on the two distributions of scores.

3 FALSE POSITIVES IN DATASET INFERENCE

To generate the embeddings for a specific sample in the private dataset SV , DI requires query-
ing the suspect model fSP hundreds of times. To reduce the total number of queries, DI
was shown to be effective with only 10 private samples with at least 95% confidence. Ad-
ditionally, DI requires a large random noise dimension D such that probability of success in-
creases to 1 as D → ∞. In this section, we prove that these two assumptions are not real-
istic in the case of a linear model: 1) DI is susceptible to false positives (FPs) unless V re-
veals a large number of samples; 2) a large D will harm the utility of the model (Section 3.1).
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Figure 1: Probability of an FP as the fraction of
revealed private samples for D = 10 for a lin-
ear suspect model (Equation 6). V needs to use
many private samples to guarantee low false posi-
tive rate.

Furthermore, we find that the theoretical re-
sults on linear suspect models which say that
the margins on different models are distinguish-
able with some strict conditions do not hold for
more realistic non-linear suspect models. Us-
ing a PAC-Bayesian margin based generaliza-
tion bound (Neyshabur et al., 2018) we prove
that models trained on the same distribution
are indistinguishable, and will trigger FPs (Sec-
tion 3.2.1. Next, we provide empirical evidence
for the existence of FPs (Section 3.2.2).

3.1 LINEAR SUSPECT MODELS

In section 2, we have a distribution D set up for
linear models. The linear model f should cor-
rectly classify most of the randomly picked data
from this distribution. However, in a subspace
of the linear case used by DI, we find that the
dimension of the noise part of x needs to be small, otherwise it will harm the utility of the model.
Lemma 1 (Need for Bounding Noise Dimension). Let f be a linear model trained on S ∼ D.
For a sample (x, y) sampled from D which is independent of S, assuming that ||u||2 ≤ 1√

m
and

σ2 > 1√
m

, then, the linear model f correctly classifies (x, y) with a probability larger than 0.9 only
if D < 10.

The details of the proof are in the Appendix A. Lemma 1 shows that if the dimension of x2, which
follows N (0, σ2), is large, then the noise will dominate f and mislead it into making incorrect
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predictions. For example, set D = 1000 and assume that the variance of x2 is 0.25 (close to the
CIFAR10 dataset). Then, f can correctly classify a sample that is different from f ’s training set with
a probability up to 0.69.
Theorem 1 (Existence of False Positives with Linear Suspect Models). Let fI be a linear classifier
trained on the independent dataset SI ∼ D with accuracy more than 0.9. Assume that |SI | = m,
||u||2 ≤ 1√

m
and σ2 > 1√

m
. Let k be the number of samples estimated required for the verification.

Then, the probability that V mistakenly decides that fI is a stolen model P [Ψ(fI ,SV ;D) = 1] >

1− Φ(
√
k√
m
).

Where Ψ is V’s decision function (Maini et al., 2021):

Ψ(fSP ,S;D) =

{
1, if fSP ∼ fA,

0, if fSP ∼ fI ,
(2)

Proof. Recall that V tries to reveal only a few samples during the verification. For a distribution D
where ||u|| ≤ 1√

m
and σ2 > 1√

m
.

Following the intuition from DI (Yeom et al., 2018), for satisfactory performance, DI must minimise
both false positives and false negatives. Hence, the objective function is defined as:

minλ
P[Ψ(fI ,SV ;D) = 1] + P[Ψ(fV ,SV ;D) = 0]

2
, (3)

where the margin of D is estimated using SV and S0. Note that we are only interested in the false
positives P[Ψ(fI ,SV ;D) = 1], let SI = {(x(i), y(i))|i = 1, ...,m}, Sk

∗ be a subset of S∗ consisting
of k samples.

P[Ψ(fI ,SV ;D) = 1] = P[E(x,y)∈Sk
V
[yfI(x)]− E(x,y)∈Sk

0
[yfI(x)] ≥ λ]

= P[E(x,y)∈Sk
V
[

m∑
i

y(i)x
(i)
2 x2]− E(x,y)∈Sk

0
[

m∑
i

y(i)x
(i)
2 x2] ≥ λ]

= P[
1

k

k∑
j

m∑
i

y(i)x
(i)
2 x

(j)
2 − 1

k

k∑
p

m∑
i

y(i)x
(i)
2 x

(p)
2 ≥ λ].

(4)

Recall that x(i)
2 , x(j)

2 and x
(p)
2 are D-dimensional vectors sampled independently from N (0, σ2).

Using central limit theorem we can approximate the terms. We have
∑m

i y(i)x
(i)
2 ∼ N (0,mσ2).

Then, we can approximate 1
k

∑k
j

∑m
i y(i)x

(i)
2 x

(j)
2 by t1 ∼ N (0, mD

k σ4) and approximate
1
k

∑k
p

∑m
i y(i)x

(i)
2 x

(p)
2 by t2 ∼ N (0, mD

k σ4) (Maini et al., 2021). Thus, we get t ∼ N (0, 2mD
k σ4),

and

P[Ψ(fI ,SV ;D) = 1] = P[t ≥ λ] = P[
√

2mD

k
σ2Z ≥ λ] = P[Z ≥

√
kλ√

2mDσ2
] = 1−Φ(

√
kλ√

2mDσ2
),

(5)
where Z ∼ N (0, 1). The optimal threshold is given as λ = Dσ2

2 ,

P[Ψ(fI ,SV ;D) = 1] = 1− Φ(

√
kD

2
√
2m

). (6)

From Equation 6, we see that the probability of false positives relies on the number of points used
for the verification k

m and the size of D. Combining with Lemma 1, the proof is complete.

In other words, the success of DI is directly related to the number of samples used for the verification.
This is similar to the analysis of failure of membership inference in the original paper when the k is
extremely low, e.g. only 10 samples. In the DI paper, it was explained that DI succeeds because it
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calculates the average margin for multiple verification samples; whereas membership inference fails
as it relies on per-sample decision. So when the number of tested samples is smaller, the success rate
of DI will be close to 0.5, just like for membership inference. In Figure 1, we show the probability
of an FP (Equation 6) for different values of k; even for k = 10000 the probability is 0.309 .

Hence, even the simple linear setup, Ψ(f,S;D) has false positives with high probability; in partic-
ular, when the fraction of tested samples is small.

3.2 NON-LINEAR SUSPECT MODELS

Having demonstrated the limitations of the linear model, we now focus on non-linear suspect mod-
els. The intuition is based on the margin-based generalization bounds. Note that the generalization
bounds states that the expected error of the margin based loss function is bounded, and the bound
is mostly related to the distribution (Neyshabur et al., 2018). Since DI assumes all the datasets fol-
low the distribution D, our intuition is to directly use the generalization bounds and the triangle
inequality to prove the similarity of the models trained on the same distribution.

3.2.1 THEORETICAL MOTIVATION

Let fw be a real-valued classifier fw : X → Rk, ||x|| ≤ B with parameters w = {Wi}di=1. For any
distribution D and margin p(f,x) = f(x)[y] −maxj ̸=yf(x)[j] ≤ γ, where γ > 0. The margin is
same as for the linear model with labels y ∈ {−1,+1}. Then, we define the margin loss function
as:

Lγ(f, y) = P(x,y)∼D[f(x)[y]−maxj ̸=yf(x)[j] ≤ γ]. (7)

Note that the PAC-Bayes framework (Neyshabur et al., 2018) provides guarantees for any clas-
sifier f trained on data from a given distribution. We define the expected loss of a classifier
f on distribution D as LD := E(x,y)∼D[L(f(x), y)] and the empirical loss on a dataset S as
L̂S := 1

m

∑
(x,y)∈S [L(f(x), y)]. Then, for a d−layer feed-forward network f with parameters

w = {Wi}di=1 and ReLU activation (Neyshabur et al., 2018). The empirical loss is very close to the
expected loss. For any σ, γ > 0, with probability 1− σ over the training set, we have:

|LD(fS)− L̂S(fS)| ≤ O(ϵ), (8)

where ϵ =

√
B2d2hln(dh)

∏d
i=1 ||Wi||22

∑d
i=1

||Wi||2F
||Wi||22

+ln dm
σ

γ2m , and h is the upper bound dimension for

{Wi}di=1.

This PAC-Bayes based generalization guarantee states that for a model f , the distance between the
empirical loss and the expected loss is bounded, and the bound can be very small when the model’s
margin is large. Thus, we can expect that the margins of f on any dataset that follows a given
distribution to be similar. This contradicts the intuition of DI.

Moreover, since DI assumes that SV and SI follow the same distribution D, we can show that the
margins for fV and fI are similar to each other.

Theorem 2 (k-independent False Positives with Non-linear Suspect Models). For the victim private
dataset SV ∼ D and an independent dataset SI ∼ D, let fw be a d−layer feed-forward network
with ReLU activations and parameters w = {Wi}di=1. Assume that fV is trained on SV and fI is
trained on SI , fV and fI have the same structure. Then, for any B, d, h, ϵ > 0 and any x ∈ X ,
there exist a prior P on w, s.t. with probability at least 1

2 ,

|E(p(fV ,x)− p(fI ,x))| ≤ ϵ. (9)

The details of the proof are in the Appendix A. Hence, for any two models trained on the same distri-
bution, the expectation of margins for any sample are similar. Given that DI works by distinguishing
the difference of margins for two models, it will result in false positives with probability at least 1

2
(Theorem 2).
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3.2.2 EMPIRICAL EVIDENCE

Having proved the existence of FPs for non-linear models, we now focus on empirically confirming
it.

First, recall the original experiment setup (Maini et al., 2021); let us consider the following two
models: 1) fV trained using SV , and 2) f0 trained using S0. In the original formulation, e.g. for
CIFAR10, CIFAR10-train (50, 000 samples) is used as SV , and CIFAR10-test is used as S0 (10, 000
samples). Recall that V uses their SV and S0 to obtain the embeddings that are then used to train
the regression model gV .

DI was shown to be effective against several post-processing used to obtain dependent models which
are expected to be flagged as stolen - true positives However, the independent model f0 is trained
on S0 — the same data that is used to train gV . This means that the same dataset S0 is used both
to train gV and subsequently, to evaluate it. This is likely to introduce a bias that overestimates the
efficacy of gV and DI as a whole.

To address this, and test whether DI works for a more reasonable data split, we use the following
setup:

1) randomly split CIFAR10-train into two subsets (Atrain and Btrain) of 25, 000 samples
each;

2) assign SV = Atrain, and train fV using it;

3) continue using CIFAR10-test as S0 (nothing changes), and train f0 using it;

4) gV is trained using the embedding for S0 and the new SV , obtained from the new fV ;

5) assign SI = Btrain, independent data of a third-party I, who trains their model fI .

This way, we have an independent model fI that was trained on data from the same distribution D
as SV but data that was not seen by gV

1.

Recall that to determine whether the model is stolen, DI obtains the embeddings for private (SV )
and public (S0) samples. Then it measures the confidence for each of the embeddings using the
regressor gV . For a model derived from V’s SV , the mean difference (∆µ) between the confidence
assigned to SV and S0 should be large. If the model is not derived from SV , the difference should
be small. The decision is made using the hypothesis test that compares the distributions of measures
from gV .

In Figure 2 we visualise the difference in the distributions for three models. For fV we observe two
separable distributions with a large (∆µ), while for f0 the difference is small — DI is working as
intended. However, for fI , even though ∆µ is smaller than for fV it is sufficiently large to reject H0

with high confidence. Therefore, fI is marked as stolen, a false positive, In Table 2 we provide ∆µ
and the associated p-values for multiple random splits.

Table 2: Verification of an independent model trained on the same data distribution triggers an FP.
Also, we report the accuracy of the models on the test set. We provide the mean and standard
deviation computed across five runs. Verification done using k = 10 private samples. FPs become
more significant as k increases (see Appendix B).

Model Accuracy ∆µ p-value
fV 0.87± 0.03 1.62± 0.08 10−18 ± 10−18

fI 0.87± 0.03 1.14± 0.12 10−8 ± 10−8

f0 0.64± 0.02 −0.29± 0.12 0.46± 0.04

We discuss the implications of our findings in Section 5.

1We use the official implementation of DI, together with the architectures and training loops. Our changes
are limited to the data splits only.
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Figure 2: Left to right: fV , fI , f0. Comparison of distributions of the confidence scores assigned to
the embeddings by gV . ∆µ is smaller for fI than for fV but large enough to trigger an FP.

Table 3: fA adversarially trained on SV results in a false negative. Also, we report the accuracy of
the models on the test set. We provide the mean and standard deviation computed across five runs.
Verification done using k = 10 private samples.

Model Accuracy ∆µ p-value
fV 0.92± 0.01 1.59± 0.04 10−21 ± 10−16

fA 0.86± 0.01 0.12± 0.06 0.15± 0.07

f0 0.64± 0.02 −0.29± 0.12 0.46± 0.04

4 FALSE NEGATIVES IN DATASET INFERENCE

Having demonstrated the existence of false positives, we now show that DI can suffer from false neg-
atives (FNs). A can avoid detection by regularising fA, and thus changing the prediction margins.
This in turn, will mislead DI into flagging fA as independent.

Recall that Blind Walk relies on finding the prediction margin by querying perturbed samples de-
signed to cause a misclassification. In order to avoid detection, A needs to make the prediction
margin robust to such perturbations. We do so using adversarial training: a popular regularisation
method used to provide robustness against adversarial examples. A who launches a model extraction
attack against fV , or steals V’s SV can adversarially train fA.

During adversarial training, each training sample (x, y) is replaced with an adversarial example that
is misclassified fA(x+ γ) ̸= y. There exist many techniques for crafting adversarial examples. We
use projected gradient descent (Madry et al., 2018) (PGD), and we set γ = 10/255 (under l∞).
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Figure 3: Confidence scores assigned to
embeddings by gV obtained from fA.
∆µ is small enough to trigger FNs.

We evaluate adversarial training as a way to avoid detec-
tion in a setting where A steals V’s SV and trains their
own model fA. fA has the same architecture and hyper-
parameters as fV , but is adversarially trained. Hence, the
experiment is biased in favour of DI2.

In Figure 3 we visualise the difference in the distributions
of scores assigned by gV to fA embeddings derived for
SV and S0. We observe that the distributions are not
clearly separable and result in low ∆µ, and hence H0

cannot be rejected. Therefore, fA is marked as an in-
dependent model, a false negative. In Table 3 we provide
∆µ and the associated p-values for multiple runs.

Note that adversarial training comes with an accuracy
trade-off. In our experiments, the accuracy of fA goes
from 0.92±0.01 to 0.86±0.01. We study how the amount
of noise affects the verification in Appendix D. Also, we discuss the resulting implications in Sec-
tion 5.

2We use the official implementation of DI, together with the architectures and training loops. Our changes
are limited to adding adversarial training.
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5 DISCUSSION

Revealing private data. We have shown that DI requires revealing significantly more than 50
samples to avoid false positives in the case of linear models (Figure 1). Since the core assumption
of DI is that SV is private, revealing too much of SV during the ownership verification constitutes
a privacy threat. In neither of the settings described in Section 5 of the original DI paper the victim
cannot query the model sufficiently without leaking the query data to the adversary. Additionally,
it was shown that using more samples gives V more information about the prediction margin than
using stronger embedding methods (Maini et al., 2021). Model owners that operate in sensitive
domains such as healthcare or insurance industry need to comply with strict data protection laws,
and hence need to minimise the disclosure.

One potential way to protect the privacy of the private samples used for DI ownership verification
is to use oblivious inference (Liu et al., 2017; Juvekar et al., 2018). This way V could query fA
without revealing SV . Despite recent advances in efficient oblivious inference (Samragh et al.,
2021; Watson et al., 2022; Samardzic et al., 2021; 2022), it requires all parties (including A!) to
update their software stacks which may not always be realistic.

Viability of ownership verification using training data. We have demonstrated that DI suffers
from FPs when faced with an independent model trained on the same distribution. While it is rea-
sonable to assume that V’s data is private, the uniqueness of the distribution is difficult to guarantee
in practice. For example, two model builders may have data from the same distribution because they
purchased their training data from a vendor that generates per-client synthetic data from the same
distribution (e.g., regional financial data). In fact, two model builders working on the same narrow
domain and independently building models that are intended to represent the same phenomenon,
may very well end up using data from the same distribution.

There are other methods that attempt to detect stolen models based on the dataset used to train
them (Sablayrolles et al., 2020; Pan et al., 2022). However, they rely on flaws in the model to estab-
lish the ownership (susceptibility to adversarial examples (Sablayrolles et al., 2020) or membership
inference attacks (Pan et al., 2022)). Intuitively, given a perfect membership inference attack, a
fingerprinting scheme should be possible. However, recent work shows that for a balanced dataset,
only a fraction of records is vulnerable to a confident membership inference attack (Carlini et al.,
2022; Duddu et al., 2021) which in turn reduces the capabilities of a membership inference-based
fingerprinting scheme. Therefore, any improvements to generalisation or robustness (such as ad-
versarial training or purification (Nie et al., 2022)) of ML models reduce the surface for ownership
verification schemes.

White-box theft Our experiments in Section 4 are limited to A that trains their own model — they
either steal the data or conduct a model extraction attack. If A obtains an exact copy of the model,
they might lack the data to fine-tune it with adversarial training. Hence, our findings do not apply to
the white-box setting. We leave the examination of other threat models out as future work.

Black-box vs. white-box verification setting. Our evaluation is focused on the black-box DI set-
ting. We do not consider the white-box DI setting which uses MinGD. While white-box DI is feasible
in a scenario where V takes A (the holder of a suspect model) to court, requiring A to provide white-
box access to the suspect model, prosecution is an expensive undertaking. Realistically V is likely
to first conduct black-box DI to decide whether the expense of prosecution is justified. Therefore,
FPs in the black-box DI setting can cause substantial monetary loss to V .

6 CONCLUSION

We analyzed Dataset Inference (DI) (Maini et al., 2021), a promising fingerprinting scheme, to show
theoretically and empirically that DI is prone to false positives in the case of independent models
trained from distinct datasets drawn from the same distribution. This limits the applicability of DI
only to settings where a model builder uses a dataset with a definitively unique distribution. We also
showed that an attacker can use adversarial training to regularise the decision boundaries of a stolen
model to evade detection by DI at the cost of a modest (6pp) drop in accuracy.

Nevertheless, DI is a promising ML fingerprinting scheme. Model owners can use our results to
make informed decisions as to whether DI is appropriate for their particular settings.
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tracing through training. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 8326–8335. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.pr
ess/v119/sablayrolles20a.html.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslinski,
Christopher Peikert, and Daniel Sanchez. F1: A fast and programmable accelerator for fully
homomorphic encryption. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’21, pp. 238–252, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450385572. doi: 10.1145/3466752.3480070. URL
https://doi.org/10.1145/3466752.3480070.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas Genise, Srini-
vas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel Sanchez. Craterlake: A hardware
accelerator for efficient unbounded computation on encrypted data. In Proceedings of the
49th Annual International Symposium on Computer Architecture, ISCA ’22, pp. 173–187, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450386104. doi:
10.1145/3470496.3527393. URL https://doi.org/10.1145/3470496.3527393.

11

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=hvdKKV2yt7T
https://proceedings.mlr.press/v162/mazeika22a.html
https://proceedings.mlr.press/v162/mazeika22a.html
https://openreview.net/forum?id=Skz_WfbCZ
https://openreview.net/forum?id=SyevYxHtDB
https://arxiv.org/abs/2201.07391
https://arxiv.org/abs/2201.07391
https://proceedings.mlr.press/v119/sablayrolles20a.html
https://proceedings.mlr.press/v119/sablayrolles20a.html
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3470496.3527393


Under review as a conference paper at ICLR 2023

Mohammad Samragh, Siam Hussain, Xinqiao Zhang, Ke Huang, and Farinaz Koushanfar. On the
application of binary neural networks in oblivious inference. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 4625–4634, 2021. doi:
10.1109/CVPRW53098.2021.00521.

Sebastian Szyller and N. Asokan. Conflicting interactions among protection mechanisms for
machine learning models. 2022. doi: 10.48550/ARXIV.2207.01991. URL https:
//arxiv.org/abs/2207.01991.
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A EXISTENCE OF FALSE POSITIVES IN DATASET INFERENCE

Calculating the prediction margin. We assume that the model weights are initialized to zero. For
each sample x in a dataset S ∼ D = {(x(i), y(i))|i = 1, ...,m}, y ∼ {−1,+1}. The learning
algorithm observes all samples in S once and maximize the loss function L(x, y) = y · f(x). For
the learning rate α = 1, the weights are updates as:

w = w + αy(i)x(i). (10)

Recall that x = (x1,x2) ∈ RK+D, the weights of the linear model are w1 = mu and w2 =∑m
i=1 y

(i)x
(i)
2 when the training is completed.

When writing out the linear classifier explicitly, we can easily calculate the prediction margin of
each sample (x, y) in S,

y · f(x) = y · (w1x1 +w2x2) = y · (mu · yu+

m∑
i=1

y(i)x
(i)
2 ·x2) = c+ y

m∑
i=1

y(i)x
(i)
2 ·x2. (11)

The expectations of the prediction margin for the points in training set S+ = {(x, 1)|(x, 1) ∈ S} is,

ES+ [yf(x)] = yc+ ES+ [

m∑
i=1

y(i)x
(i)
2 · x2] = yc+ ES+ [

∑
x2 ̸=x

(i)
2

y(i)x
(i)
2 · x2 + yx2

2]

= c+ 0 +Dσ2.

(12)
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Note that in Equation 12, since x2 ∼ N(0, Dσ2), then x2
2 ∼ χ2, E[x

(i)
2 ] = Dσ2.

Consider a new dataset S0 ∼ D, the expectations of the prediction margin for the points in S+
0 are,

ES+
0
[yf(x)] = yc+ ES+

0
[

m∑
i=1

y(i)x
(i)
2 · x2] = c. (13)

Finally, we see that the difference of prediction margin of training set S and test set S0 is

ES+ [yf(x)]− ES+
0
[yf(x)] = Dσ2. (14)

DI’s decision function. From the above analysis, we know that the statistical difference between the
distribution of training and test data is Dσ2 which is usually larger than 1 in numerical. DI utilizes
this difference to predict if a potential adversary’s model stole their knowledge.

Since we know that ES0
[yf(x)] = c and ES [yf(x)] = c + Dσ2. Let Ψ(f,S;D) represent the

dataset inference victim’s decision function. It is defined as,

Ψ(f,S;D) =

{
1, if E(x,y)∈S [y · f(x)]− ED[y · f(x)] ≥ λ,

0, otherwise,
(15)

where λ ∈ [0, Dσ2] is some threshold that the decision function uses to maximise true positives and
minimise false positives.

Proof for Lemma 1 For a linear model f trained on distribution D where x = (x1,x2), x1 =
yu,x2 ∼ N (0, σ2) and ||u||2 ≤ 1√

m
, f is expected to achieve high accuracy on any sample (x, y)

sampled randomly from D which is independent of the training data set of f .

Proof. Given a linear model f trained on dataset S ∼ D = {(x(i), y(i))|i = 1, ...,m}, and a test
sample (x, y) sampled randomly from D which is independent of S, the probability that (x, y) is
correctly classified by f can be represented as:

P[yf(x) ≥ 0] = P[mu2 + y

m∑
i

y(i)x
(i)
2 x2 ≥ 0]

= P[y
m∑
i

y(i)x
(i)
2 x2 ≥ −mu2]

≤ P[y
m∑
i

y(i)x
(i)
2 x2 ≥ −1]

(16)

Since x2 ∼ N (0, σ2) are D-dimensional vectors, we can use central limit theorem to approximate
the term. Thus, the internal term can be approximated by a variable t ∼ N (0,mDσ4). Let Z ∼
N (0, 1),

P[yf(x) ≥ 0] ≤ P[
√
mDσ2Z ≥ −1] = 1− Φ(− 1√

mDσ2
) (17)

where Φ is the normal CDF.

For a distribution where the randomness σ2 ≥ 1√
m

≥ 1
4
√
m

.

P[yf(x) ≥ 0] ≤ 1− Φ(− 4√
D
), (18)

where Φ(− 4√
D
) ≈ 0.10. The linear model f can correctly classify a sample with a probability more

than 0.9 only if D < 10.
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We can also calculate the accuracy of the training set S similarly. For a training sample (x, y)
sampled randomly from S,

P[yf(x) ≥ 0] = P[mu2 + y

m∑
i

y(i)x
(i)
2 x2 ≥ 0]

= P[mu2 + y2x2
2 + y

m−1∑
i

y(i)x
(i)
2 x2 ≥ 0]

= P[y2x2
2 + y

m∑
i

y(i)x
(i)
2 x2 ≥ −mu2]

≤ P[y2x2
2 + y

m∑
i

y(i)x
(i)
2 x2 ≥ −1].

(19)

Since y2x2
2 ≥ 0 for any sample in S, we have

y2x2
2 + y

m∑
i

y(i)x
(i)
2 x2 ≥ y

m∑
i

y(i)x
(i)
2 x2. (20)

Then, P(x,y)∈S ≥ P(x,y)∈D/S . This completes the proof.

Proof for Theorem 2 Let fw be a d-layer feed-forward model trained on distribution D with pa-
rameters w = {Wi}di=1 and the ReLU activation function. Assuming a training dataset S ∼ D, the
model is given as fS = fw+uS , where uS is a random variable whose distribution may also depend
on S.

Since the key to analyze the margin is the output of the model, we first introduce Lemma 2 that
analyzes the perturbation bound of the model trained on S and D.

Lemma 2 (Perturbation Bound (Lemma 2) in (Neyshabur et al., 2018)). For any B, d > 0, let
fw : X → Rk be a d−layer neural network with ReLU activations. Then for any w, and x ∈ X ,
and any perturbation uS = {Ui}di=1 such that ||Ui||2 ≤ 1

d ||Wi||2, the change in the output of the
network can be bounded as follow,

|fw+uS (x)− fw(x)| ≤ eB(

d∏
i=1

||Wi||2)
d∑

i=1

||Ui||2
||Wi||2

. (21)

Since our proof is also based on Lemma 2, it is analogous to the analysis of generalization bound in
(Neyshabur et al., 2018) and is essentially the same for the first part.

Proof. The proof involves two parts. In the first part, we show the maximum allowed perturbation
of parameters as shown in (Neyshabur et al., 2018). In the second part, we show that the margin
difference of the models trained on SV and SI is also bounded by the perturbation of parameters.
Let β = (

∏d
i=1 ||Wi||2)

1
d , and consider a network with normalized weights W̃i =

β
||Wi||2Wi. Due

to the homogeneity of the ReLU, we have fw̃ = fw. We can also verify that (
∏d

i=1 ||Wi||2) =∏d
i=1 ||W̃i||2 and ||Wi||F

||Wi||2 = ||W̃i||F
||W̃i||2

. Therefore, it is sufficient to prove the Theorem only for the
normalized weights w̃, and hence w.l.o.g we assume that for any layer i, ||Wi||2 = β.

Choose the distribution P of the prior of w to be N (0, σ2I), and consider the random perturbation
uS ∼ N (0, σ2I) = {Ui}di=1. Since the prior cannot depend on the learned model w or its norm,
we set σ based on the approximation β̃. For each value of β̃ on a pre-determined grid, we compute
the PAC-Bayes bound, establishing the generalization guarantee for all w for which |β̃ − β| ≤ 1

dβ,
and ensuring that each relevant value of β is covered by some β̃ on the grid. We then take a union
bound over all β̃ on the grid. For now, we consider a fixed β̃ and the w for which |β − β̃| ≤ 1

dβ,
and hence 1

eβ
d−1 ≤ β̃d−1 ≤ eβd−1.
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Since uS ∼ N (0, σ2I), we get the following bound for the spectral norm of Ui (Tropp, 2012):

PUi∼N (0,σ2I)[||Ui||2 > t] ≤ 2he−t2/2hσ2

. (22)

Taking a union bound over the layers, we get that with probability at least 1√
2

, the spectral norm of

perturbation of Ui in each layer is bounded by σ
√

2hln(2dh). Plugging this spectral norm bound
into Lemma 2 we have that with probability at least 1√

2
the maximum allowed perturbation bound

is:

maxx∈X |fw+uS (x)− fw(x)| ≤eBβd
∑
i

||Ui||2
β

≤ e2dBβ̃d−1σ
√

2hln(2dh) ≤ ϵ

4
, (23)

where σ = ϵ

42dBβ̃d−1σ
√

2hln(2dh)
. Then we can compute the difference of expectation margins for

fV which is trained on SV and fI which is trained on SI . Firstly, we compute the difference margins
for any model fS trained on S ∼ D and the target model fD. For any verified dataset Ŝ ∈ D,

|E(p(fS ,x))− E(p(fD,x))|
=|E(fw+uS (x)[y]−maxj ̸=yfw+uS (x)[j])− E(fw(x)[y]−maxj ̸=yfw(x)[j])|
=|(E(fw+uS (x)[y])− E(fw(x)[y]))− (E(maxj ̸=yfw+uS (x)[j])− E(maxj ̸=yfw(x)[j]))|
≤maxx∈X (fw+uS (x)[y]− fw(x)[y]) +maxx∈X (maxj ̸=yfw+uS (x)[j]−maxj ̸=yfw(x)[j])

≤2maxx∈X |fw+uS (x)− fw(x)| ≤ ϵ

2
.

(24)

So, for fV trained on SV and fI trained on SI , we have with probability at least 1
2 that the predictions

margins are bounded by ϵ:

|E(p(fV ,x))− E(p(fI ,x))|
≤|E(p(fV ,x))− E(p(fD,x))|+ |E(p(fI ,x))− E(p(fD),x)|
≤ϵ.

(25)

B IMPACT OF REVEALING MORE PRIVATE SAMPLES ON FALSE POSITIVES

Figure 4: Left: Comparison of the verification confidence of fV and fI . FP becomes stronger (lower
p-value) as more samples are revealed. Right: same comparison, however, we include f0 to show
the desirable behaviour of an independent model.

In Figure 4, we show the results for verification, using Blind Walk, with more data (up to k = 100
private samples). As we increase the number of revealed private samples, the confidence of DI
increases both for fV (true positive) and fI (false positive).

C RELATED WORK

Model extraction detection and prevention. Detection methods rely on the fact that many ex-
traction attacks have querying patterns that are distinguishable from the benign ones (Juuti et al.,
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2019; Atli et al., 2020; Zheng et al., 2022; Quiring et al., 2018). All of these can be circumvented
by the adversary who has access to natural data from the same domain as the victim model (Atli
et al., 2020). Prevention techniques aim to slow down the attack by injecting the noise into the
prediction, designed to corrupt the training of the stolen model (Orekondy et al., 2020; Lee et al.,
2019; Mazeika et al., 2022), or by making all clients participate in consensus-based cryptographic
protocols (Dziedzic et al., 2022). Even though they increase the cost of the attack, they do not stop
a determined attacker from stealing the model.

Ownership verification. There exist many watermarking schemes for neural networks (e.g. (Zhang
et al., 2018; Uchida et al., 2017; Adi et al., 2018)) that have the same goal as DI does. However they
were shown to be brittle (Lukas et al., 2022). It was shown that adversarial examples (Lukas et al.,
2021) can be used to fingerprint a model or to watermark the dataset (Sablayrolles et al., 2020).
However, adversarial training can be used to weaken both schemes (Lukas et al., 2021; Szyller &
Asokan, 2022). On the other hand, if a model is sufficiently vulnerable to membership inference
attacks, it can be used to fingerprint it (Pan et al., 2022).

D VERIFICATION WITH MORE NOISE

Table 4: Impact of the amount of noise (maximum number of perturbation steps) added during
the verification on the success of DI (baseline 50 steps). Using more noise does not prevent FNs
against fA. However, it increases the standard deviation across all experiments, and has negative
effect on the verification of f0. We provide the mean and standard deviation computed over five
runs. Verification done using k = 10 private samples. FNs highlighted in red.

Model Accuracy Steps ∆µ p-value
fV 0.92± 0.01 50 1.59± 0.04 10−21 ± 10−16

fA 0.86± 0.01

25 0.09± 0.04 0.09± 0.07

50 0.12± 0.06 0.15± 0.07

100 0.10± 0.05 0.08± 0.09

200 0.14± 0.08 0.16± 0.11

f0 0.64± 0.02
50 −0.29± 0.12 0.46± 0.04

100 −0.19± 0.16 0.37± 0.12

V who suspects that A might be using adversarial training to avoid the detection, can carry out the
verification with more noise in order to escape the guarantees provided by adversarial training to A.

In the experiments presented in Section 4, the average noise added during Blind Walk is 0.12±0.05
(under ℓ∞), and adversarial training is done with γ = 10/255(≈ 0.039). In this experiment, we
vary the number of maximum steps taken by V , and hence the maximum amount of noise added
during the verification. We consider {25, 50, 100, 200} steps (baseline 50 steps) which corresponds
to {0.10± 0.03, 0.12± 0.05, 0.33± 15, 0.38± 23} noise added (under ℓ∞) during the verification.

Since V does not know which fSP is indeed stolen, in addition to fA, we also conduct this experi-
ment for f0 (for {50, 100} steps).

In Table 4 we provide the results for the experiments with different amounts of noise. Using more
steps does not improve the result against fA compared to the baseline: 1) the standard deviation of
the p-value increases; 2) we do not observe any linear relationship between the noise and ∆µ or the
associated p-value.

On the other hand, the confidence of the verification of f0 decreases. The standard deviations of ∆µ
and its associated p-value increase. Nevertheless, the p-value remains sufficiently high.

In conclusion, increasing the amount of noise during Blind Walk does not allow V to circumvent
A’s adversarial training. Hence, DI remains susceptible to false negatives induced by adversarial
training.
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