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ABSTRACT

The Latent Stochastic Differential Equation (SDE) is a powerful tool for time series
and sequence modeling. However, training Latent SDEs typically relies on adjoint
sensitivity methods, which depend on simulation and backpropagation through
approximate SDE solutions, which limit scalability. In this work, we propose SDE
Matching, a new simulation-free method for training Latent SDEs. Inspired by
modern Score- and Flow Matching algorithms for learning generative dynamics,
we extend these ideas to the domain of stochastic dynamics for time series and
sequence modeling, eliminating the need for costly numerical simulations. Our
results demonstrate that SDE Matching achieves performance comparable to adjoint
sensitivity methods while drastically reducing computational complexity.

1 INTRODUCTION

Differential equations are a natural

choice for modeling continuous-time  Taple 1: Asymptotic complexity comparison. L and
dynamical systems and have recently R are number of sequential and parallel evaluations of

received significant interest in ma- drift/diffusion terms, respectively, and D is the number of
chine learning. Since [Chen et al| parameters/states.

(2018) proposed the adjoint sensi-

tivity method for learning Ordinary Method

Differential Equations (ODEs) in a Memory Time

memory-efficient manner, ODE-based ~ Forward Pathwise

approaches became popular in deep  (Yang & Kushner, |1991) o) O(LD)
learning for density estimation|Grath!  (Gobet & Munos, 2005)

wohl et al.| (2019) and to model un-

evenly observed time series [YildiZ =~ Backprop through Solver o(L) o(L)
et al|(2019); Rubanova et al|(2019)].  (Giles & Glasserman, [2006)

However, ODEs describe determinis- . .

> Stochastic Ad t
tic systems and encode all uncertainty (L?thsl 1c2028())1n o(1) O(LlogL)
into their initial conditions. This lim- i
its the applicability of ODE-based ap- A 11,ortized R terizati
proaches when modeling stochastic (Cngﬁis{czf& Nzﬁa?ggf rzaton g (R) O(R)
and chaotic processes. To address this ’
limitation, L1 et al.| (2020) extended SDE Matching

the adjoint sensitivity method to La- (this paper)

tent Stochastic Differential Equations
(SDEs).

Despite these advancements, training of ODE and SDE models is simulation-based, it relies on costly
numerical integration of differential equations and backpropagation through the solutions. With
training algorithms that are difficult to parallelize on modern hardware, Latent SDEs have resisted
truly scaling.
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In parallel, Score Matching (Ho et al.,|2020; |Song et al.,2021c) and Flow Matching methods (Lipman
et al.} 2023 |Albergo et al., 2023} |Liu et al., [2023) have demonstrated that continuous-time dynamics
for generative modeling can be learned efficiently in a simulation-free manner—without requiring
numerical integration. These techniques have proven computationally efficient and scalable for
high-dimensional problems. Inspired by these developments, we develop a simulation-free approach
for learning SDEs.

We introduce SDE Matching—a simulation-free framework for learning Latent SDE models. The
key idea we adopt from matching-based approaches is direct access to latent posterior samples at any
time step. This eliminates the need to integrate SDEs during training. The SDE Matching objective
is estimated using the Monte Carlo method, achieving O(1) memory and time complexity. We
summarize the complexity comparisons in Table

‘We summarize our contributions as follows:

1. We propose an efficient parameterization of the Latent SDE posterior process and use it to
develop SDE Matching, a simulation-free training procedure for Latent and Neural SDEs.

2. We demonstrate that SDE Matching achieves comparable performance to the adjoint sensi-
tivity method on both synthetic and real data, while significantly reducing the computational
cost of training and improving convergence.

2 BACKGROUND

Consider a series of observations X = x4, , Tt,, ..., Tty , Where each x;, € X where the space X
depends on the application. For simplicity of notation, we assume that all time steps ¢; belong to the
interval [0, 1]. The extension to intervals of arbitrary lengths is straightforward.

The Latent SDE model, also known as Neural SDE, assumes that this series is generated constructively
by the following stochastic process, referred to as the prior process. First, sample a latent variable
2o € RP from the initial prior distribution pg(z0). Next, infer the latent continuous dynamics
Z = (2(t));e[o,1) by integrating the following SDE:

dzt = h@(zt7t)dt+ge(zt7t)dwﬂ (1)

where hg : RP x [0, 1] = RP is the drift term, gg(z¢,t) : RP x [0, 1] = RP*P is the diffusion term,
and w is a standard Wiener process. The SDE in Equation (TJ), together with the prior distribution
po(20), defines a sequence of probability distributions pg(z:) at each time step ¢ € [0, 1]. Once the
trajectory of the latent variables Z is sampled, we independently sample observations x;, from the
conditional distributions pg(x¢,|2,) for each time step ¢;.

The goal of the Latent SDE is to find a set of parameters 6 that best fits a dataset of observed time
series or sequence. Unfortunately, the posterior distribution of the latent variables, py(Z|X), is
generally intractable. However, variational inference can be used to train the Latent SDE. Similar
to the prior process, we introduce an approximate posterior process, which is conditioned on the
observations X. The posterior process consists of two components: the initial posterior distribution
¢, (20|X) and a conditional SDE:

dzy = fo(ze,t, X)dt + go (2, t)dw, 2)

where f,(z,t,X) defines the drift term of the SDE conditionally on the observations X. It is
important to note that, despite having a different drift term, the posterior shares the same diffusion
term gg (2, t) as in Equation (I)).

The training objective of the Latent SDE is a variational bound on the log-marginal likelihood of the
observations:

- 10gp9 (X) < L= Eprior + [:diff + Erea Eprior = DKL (QAp(ZO‘X)HPO (ZO)) (3)
1q N
Lag= E - X)|2dt], Lree= E -1 Nz, @
diff 00 (Z1X) |:/0 5 HTG,QD(Zt )H2 ec 00 (Z1X) ; ng@(xtlzt,)‘| “4)
where 79, (2, t, X) satisfies
g@(zta t)re,tp(zh ta X) = h9<zta t) - fgo(zh t7 X) (5)
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Obtaining an estimate of the objective £ for stochastic optimization requires joint numerical inte-
gration of the posterior process SDE (Equation (2)) and the integral in Equation ({@). While there
exist methods to improve the memory and computational efficiency of numerical integration, most
are simulation-based and require backpropagation through numerical solutions of SDEs. Besides
being computationally expensive, these methods are difficult to parallelize and suffer from numerical
instabilities. Altogether, these challenges make training the Latent SDE a difficult task.

3 SDE MATCHING

Diffusion models can be trained in a simulation-free manner because they do not require full
simulation of the noising process. Instead, they allow direct sampling of latent variables z; from the
marginal distribution ¢(z;|z). In contrast, Latent SDEs are often trained using a posterior process
parameterized by a general-form SDE. This renders the marginal posterior distribution g, (z|X)
intractable, which prevents simulation-free training.

To address this limitation, we propose SDE Matching — a framework for simulation-free training of
Latent SDE models. The key idea behind SDE Matching is to parameterize the posterior process’
conditional SDE via a learnable function F, (e, t, X) that directly defines the marginal distributions
¢, (2:|X). This design inherently allows direct sampling of latent variables without numerical
integration. Importantly, SDE Matching simplifies only the training procedure while leaving the
generative dynamics of the Latent SDE prior process fully flexible.

3.1 GENERATIVE MODEL

In SDE Matching, the prior process is identical to the standard Latent SDE model (see Section [2)):
dze = hg(z¢, t)dt + go(2¢, t)dw. 6)

In general, the functions hy and gy may be parameterized using neural networks of arbitrary form.
However, the choice of parameterization involves some trade-offs, which we will discuss later.

Observations x;, are likewise assumed to be sampled conditionally independently from the likelihood
distributions x;, ~ pg(x+,|2:,) for each time step ¢;.

3.2 POSTERIOR PROCESS

Instead of defining the posterior process through a conditional SDE (Equation (2))) and then deriving
its analytical solution, we propose an alternative approach. We first define the conditional marginal
distribution of latent variables ¢, (z¢|X) for each ¢, and then derive the corresponding conditional
SDE with the desired marginal distributions.

We construct the posterior process by following three steps:

1. Define the marginal distribution implicitly through a parameterized function of noise;
2. Construct a conditional ODE that satisfies the target marginals;
3. Transition from the ODE to a SDE while preserving the marginal distributions.

A detailed description of each step with proofs is provided in Appendix [A]

Posterior Marginal Distribution. We define the conditional marginal distribution g, (z|X) implic-
itly. First, we introduce a function that, given time ¢ and observations X, transforms noise ¢ into a
latent variable z;:

2z = Fy(e,t,X), @)

where € ~ ¢g(e) = N (g;0, I). This implicitly defines the conditional distribution of latent variables
de (z¢|X). Although, in general, we do not have an explicit form for this distribution, the above defi-
nition inherently enables efficient sampling. The specific parameterization of I, and the dependence
of z; on observations X are user design choices.

Conditional ODE. We assume that I, is differentiable with respect to € and ¢, and invertible with
respect to €. Fixing observations X and noise ¢, and varying ¢ from 0 to 1, results in a smooth
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trajectory from zy to z;. Differentiating these trajectories over time yields a velocity field that
generates the conditional distribution g, (2¢|X), the conditional ODE:

— O0F,(e,t,X)

dzy = fu(z,t,X)dt, where folze,t,X) = (8)

ot e=F; " (2:,t,X) .
Thus, if we sample zg ~ ¢,(20|X) and solve Equation up to time ¢, we obtain a sample
2t ~ (2| X).

The time derivative of I, can be computed efficiently using forward-mode differentiation in modern
frameworks such as PyTorch |Paszke et al.|(2017) or JAX Bradbury et al.|(2018).

Conditional SDE. Finally, we derive the conditional SDE that defines the posterior process.

Given access to both the conditional ODE and the score function V, log g, (2| X), we follow |Song
et al. (2021c) and define a conditional SDE with marginal distributions g, (2| X) as follows:

dzi = fo,0(2¢,t, X)dt + go(2z,t)dw, where 9)

_ 1 1
Jo.po(26, 6, X) = fo(2e, 1, X) + 590(2t7t)99T(2t’t)Vzt log g, (2| X) + S Ve [96(2¢,t)gg (26,1)] -
(10)

Here, the diffusion term gy is the matrix-valued function from the prior process. It is crucial that
the posterior process has the same diffusion term as the prior process to ensure that the variational
bound is finite. Notably, g¢ affects only the distribution of trajectories z(t), €[0.1]’ while the marginal

distributions g,,(2¢|X) do not depend on gy.

Evaluating the drift term in Equation (9) presents several challenges. First, it requires access to the
conditional score function V., log ¢, (z:|X), which can be computationally expensive. However,
for F\, functions that enable efficient log-determinant computation of the Jacobian matrix, the score
function can be computed efficiently (e.g., functions linear in € or ReaINVP architectures Dinh et al.
(2017); Kingma & Dhariwal|(2018))). The calculation of this score function is further discussed in

Appendix

The second challenge involves computing the last term in Equation (I0), which can be expensive
in high-dimensional settings. However, it can be computed efficiently if for example the diffusion
term gy is of the form oy (z, )Ty (t) for scalar-valued oy and matrix-valued I'y. Another option
is if gy is a diagonal matrix, where each element gy (2, t)x 1 depends only on the k-th coordinate
of z;. Furthermore, if gy does not depend on the state z;, this term vanishes. Notably, while
this structure limits flexibility, it is identical to constraints in memory-efficient implementations of
standard Latent SDE training [Li et al.|(2020), which means that SDE Matching does not introduce
additional restrictions.

3.3 OPTIMIZATION

Like standard Latent SDE training, SDE Matching optimizes the parameters 6 and ¢ end-to-end by
optimizing the same variational objective. However, the training procedure of SDE Matching can
be made simulation-free by leveraging the above posterior process and rewriting the objective from
Equation (3) as follows:

- 10gp9 (X) < L= Eprior + Ediff + £reC7 £prior = DKL (qW(20|X)||p9 (ZO)) (11)
1 2

Lag= E oot XA, Lwe=N E [—logpe(zslz,)], (12

Gt =l % |2 70,6 (2t )Mz u(i)qw(ztilx)[ gpo(Te|2,)],  (12)

where u(t) represents a uniform distribution over the interval [0, 1], u(i) represents a uniform
distribution over the set 1,..., N, and rg (2, t, X) satisfies:

gg(Zt7t)’l"9’4p(Zt,t,X) = h@(zht) - f@,tp(zht?X)‘ (13)

The objective in Equation @) consists of three terms: the prior 1oss Lprior, the diffusion loss Laig,
and the reconstruction loss L;... The optimization of L., With respect to parameters 6 can be
omitted if we are not interested in unconditional sampling or in learning the initial prior py(zo)—for
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Figure 1: (a) Training data distribution and learned dynamics from a 3D stochastic Lorenz attractor.
Results for Latent SDE trained with (b) adjoint sensitivity method and (c) SDE Matching. (d)
Negative Evidence Lower Bound (NELBO) (Equation (TI))) objective with respect to iteration step
on 3D stochastic Lorenz attractor data. SDE Matching demonstrates approximatly 10 times faster
convergence in terms of iterations.

example, if we are solely interested in forecasting. Otherwise, this term can still be optimized
efficiently.

The other two terms, Lg;g and L., which previously required the numerical integration of the
conditional SDE, can now be estimated more efficiently. Specifically, for each term, we can first
sample a timestep ¢, then sample z; ~ ¢, (z¢|X), and finally evaluate the corresponding function.
Importantly, SDE Matching allows the estimation of Lg;g and L., with an arbitrary number of
samples evaluated in parallel. It also enables inference of the posterior process (Equation (9)) as a
special case. However, we found that using a single sample was sufficient for our experiments. We
summarize the training procedure in Algorithm T}

Note that while we use the functions fsa (Equation ) and fy , (Equation @)) to describe the condi-
tional SDE in the posterior process, these functions are ultimately defined by the reparameterization
function F, (Equation ) and gy, which are the functions we actually parameterize.

3.4 SAMPLING

Unconditional sampling at inference- or test-time for SDE Matching follows the same procedure as
sampling from a Latent SDE. First, we sample an initial latent variable zo ~ pg(2¢) and then integrate
the unconditional SDE in Equation (6)) using any off-the-shelf SDE solver. Then, at each desired time
step t, we project the latent states z; to the data space by sampling z; from the distribution pg(x¢|2:).

However, if we have access to partial observations X = x4,,%t,,..., %+, and are interested in
forecasting for t > ¢x, we can instead first sample the latent state z;, from g, (2, |X) and then
integrate the prior process dynamics using this sample as initial condition. This follows because
the Latent SDE is Markovian with observations that are conditionally independent given the latent
state. Importantly, because SDE Matching provides direct access to an approximation to the pos-
terior (smoothing) marginals it can be used for simulation-free sampling (inference) of the latent
state, whereas conventional parameterization of the posterior process would require simulating the
conditional SDE up to time step ¢ first.

Similarly, interpolation can be performed by inferring only the posterior process dynamics. Alterna-
tively, for more general conditioning events and steering one could leverage Sequential Monte Carlo
methods (Naesseth et al.| 2019} [Chopin et al., 2020; [Wu et al.| [2023) for conditional sampling, but a
detailed investigation of these approaches is beyond the scope of this work.

Due to the strong connection between SDE Matching and diffusion models—and given that diffusion
models have demonstrated exceptional performance in deterministic sampling—it is natural to ask
whether it is possible to sample deterministically from SDE Matching. Indeed, the prior process and
the initial distribution py(zo) together define a sequence of marginal probability distributions pg(z; ).
While it is possible to learn an ODE corresponding to py(z:), it is important to clarify that solving
this ODE does not necessarily produce meaningful time-series samples.
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4 EXPERIMENTS

SDE Matching is a simulation-free

framework for training Latent SDE  Typle 2: Test MSE on motion capture dataset. We report
models. Therefore, the goal of this 4p average performance based on 10 models trained with
section is to demonstrate that SDE  deferent random seeds and 95% confidence interval based on
Matching indeed enables computa- (_gtatistic. The first section of the table contains simulation-
tionally efficient training of Latent paged approaches and the second part contains simulation-
SDEs. Our objective is not to out- free approaches. fresults from|Yildiz et al. (2019), *from Li

perform all other Latent SDE-based et al,(2020) and *from Course & Nair| (2023).
approaches for time series modeling.

Instead, SDE Matching is compatible

. L . Model Test MSE |
with existing extensions and can be
combined with them for further im- DTSBN-S|Gan et al.|(2015) 34.86 + 0.02f
provements. npODE [Heinonen et al.| (2018) 22.961
T
To this end, we provide two sets of NeurglODE Ch§n et al.[|(2018) 22.49 4+ 0.88
ODE-“VAE|Yildiz et al.| (2019) 10.06 + 1.4°

experiments for both synthetic data ) -l
and real motion capture data. In all ODE?VAE-KL |Yildiz et al. (2019) ~ 8.09 4 1.95

experiments, we use the same hyper- Latent ODE |Rubanova et al.[(2019)  5.98 £ 0.28*

parameters for both the conventional Latent SDE Li et al,| (2020) 4.03+0.2"
parameterization of Latent SDE and ARCTA [Course & Nair (2023)) 7.62 + 0.93%
the parameterization described in Sec- SDE Matching (ours) 4.50 + 0.32

tion[3] Additional discussions on pa-
rameterization and training are provided in Appendix |[C} When using the SDE Matching training
procedure, we jointly optimize the parameters of the generative model 6 in the prior pg(2¢), drift
ho(zt,t), diffusion gg(z¢,t), and observation model py(x¢|z:), as well as the parameters ¢ of the
posterior reparameterization function F,. All parameters are optimized jointly by minimizing the
variational bound in Equation (TI). We do not apply annealing or additional regularization techniques
during training.

The experiments demonstrate that SDE Matching achieves comparable accuracy to simulation-based
Latent SDE training, while significantly reducing computational complexity. Not only does SDE
Matching reduce the computational cost of each training iteration, the parameterization of the
posterior process also leads to faster convergence in terms of the number of iterations for further
gains compared to alternatives.

4.1 SYNTHETIC DATASETS

For the synthetic data experiment, we consider the 3D stochastic Lorenz attractor process from Li
et al.|(2020) with identical observation generation procedure.

As shown in Figure[I] both models—one trained using the adjoint sensitivity method and the other
with SDE Matching—successfully learned the underlying dynamics. However, SDE Matching
required only a single evaluation of the drift term in the posterior process for each iteration, whereas
the adjoint sensitivity method required 100 simulation steps for this experiment. In terms of absolute
runtime, a single training iteration with SDE Matching was approximately five times faster.

Moreover, as demonstrated in Figure|l1d, SDE Matching leads to faster convergence of the model. We
attribute this to the parameterization of the posterior process through the reparameterization function
F, (Equation (7). We hypothesize that since this function directly models the marginal distributions
of the posterior process, the model can more efficiently learn compared to integrating conditional
SDE:s.

The combined, per-iteration and convergence, runtime speed-up is over 50x compared to the adjoint
sensitivity approach for this example.

4.2 MOTION CAPTURE DATASET

To validate SDE Matching on real-world data, we follow [Li et al.| (2020); |Course & Nair| (2023) and
evaluate it on the motion capture dataset from |Gan et al.| (2015). This dataset consists of motion
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recordings from 35 walking subjects, represented as 50-dimensional time series with 300 observations
each. The dataset is split into 16 training sequences, 3 validation sequences, and 4 test sequences,
following the preprocessing method from |Wang et al.| (2007).

We use the same hyperparameters as [Li et al.|(2020), including setting the latent state dimensionality
to 6 and keeping the number of training iterations unchanged. In Table [2| we report the average
performance on the training set over 10 models trained from different random seeds. SDE Match-
ing achieves similar performance to the adjoint sensitivity method while being significantly more
computationally efficient.

SDE Matching also outperforms the other simulation-free approach, ARCTA |Course & Nair| (2023)),
which can be seen as a special case of SDE Matching. Notably, ARCTA requires drawing around
100 latent samples and evaluations of SDEs per batch, whereas SDE Matching requires only one.
We attribute this result to the fact that ARCTA employs a less flexible posterior parameterization,
where the distribution of latent states ¢, (z;|X) depends heavily on observations close to time ¢. This
dependence makes it challenging to learn long-term dependencies and limits the ability to propagate
learning signals effectively.

5 RELATED WORK

Differential equations are a widely recognized technique for modeling continuous dynamics. Recently
they have seen a surge of interest in machine learning after the introduction of Neural ODEs by
Chen et al.|(2018) and [Rubanova et al.|(2019). Neural ODEs demonstrated strong performance in
time-series modeling compared to recurrent neural networks, particularly for irregularly sampled
time series. However, Neural ODEs have several limitations.

First, they rely on adjoint sensitivity methods for training, which requires numerical integration of
gradients and backpropagation through the solutions. Aside from being computationally expensive
and difficult to parallelize on modern hardware, ODEs can sometimes suffer from numerical instabili-
ties|Lea et al.|(2000). Second, ODE-based models inherently encode all uncertainty into the initial
conditions as the dynamics is completely deterministic. This approach is inadequate for modeling
fundamentally stochastic processes, especially when observations are sparse or uninformative.

Li et al.| (2020) extended the adjoint sensitivity method from ODEs to SDEs. Unlike Neural ODEs,
Latent (or Neural) SDEs are better suited for modeling inherently stochastic and chaotic processes.

Numerous studies have proposed modifications to objective functions, introduced regularized dynam-
ics, and improved computational efficiency and numerical stability for both Neural ODEs Kelly et al.
(2020); [Finlay et al.|(2020); |[Kidger et al.| (2021a) and Latent SDEs [Kidger et al.|(2021b)). However,
most of these methods still rely on backpropagation through the numerical solutions of differential
equations limiting their scalability.

Another line of work |Archambeau et al.| (2007ab) has proposed less computationally demanding
techniques for inferring the Latent SDEs’s training objective. Closest to our work is|Course & Nair
(2023) that develops a method for training Latent SDEs in a simulation-free manner. This approach
is restricted to posterior processes with Gaussian marginals and does not support state-dependent
diffusion terms in the prior process. Additionally, this method assumes that the latent state in the
posterior process depends only on a few temporally closest observations. As a result, for effective
optimization it requires drawing approximately 100 latent samples, rather than 1, per batch during
training. This method can be seen as a special case of SDE Matching with the corresponding
restrictions on the parameterization of the prior process and posterior process.

More recently, Zhang et al.|(2024)) proposed a simulation-free technique for time-series modeling.
However, this approach learns dynamics directly in the original data space rather than in a latent space.
Furthermore, to model non-Markovian processes the authors condition the generative dynamics on a
fixed set of past observations, making simulations more computationally expensive and limiting the
model’s ability to capture long-range dependencies. This can be viewed as a special case of SDE
Matching, where the latent space is constructed by concatenation of the most recent observations.

Another line of research that explores learning stochastic dynamics in a simulation-free manner
is diffusion models [Ho et al.| (2020); Song et al.| (2021c). As we demonstrated in Appendix @
conventional diffusion models can be seen as a special case of Latent SDEs with only a single
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observation. The key property that enables efficient training in conventional diffusion models is their
simple and fixed noising process, i.e., the posterior process.

Recently Singhal et al.| (2023)); Bartosh et al.| (2023); Nielsen et al.| (2024); [Sahoo et al.| (2024);
Bartosh et al.|(2024); Du et al.|(2024) have shown that the noising process in diffusion models can
be more complex, and even learnable, while still preserving the simulation-free property. These
approaches can also be viewed as special cases of SDE Matching by the re-interpretation of diffusion
models as Latent SDEs.

6 LIMITATIONS AND FUTURE WORK

The simulation-free properties of SDE Matching come with certain trade-offs. First, SDE Matching
parameterizes the posterior process through the function F, (¢, ¢, X) (Equation ). This function
must not only be smooth and invertible with respect to ¢, it must also provide access to the conditional
score function V, log ¢, (z:|X) (Equation ). These requirements restrict the flexibility of F;, and,
consequently, the posterior distribution approximation. Nevertheless, to the best of our knowledge,
SDE Matching offers the most flexible parameterization that enables simulation-free access to latent
samples z; ~ ¢,,(2:|X) of the conditional SDE posterior process.

Another limitation is the computational cost of evaluating the posterior process’ SDE drift term for
high-dimensional gg(z¢,t) (Equation (6)) of general form, as discussed in Section[3.2} However, it is
worth reiterating that other memory-efficient training of Latent SDEs faces this same limitation.

SDE Matching does not constrain the flexibility of the prior process, which defines the generative
model. Nevertheless, developing methods that allow even more flexible parameterization of F;, and
diffusion terms gy remains a promising direction for future research. Additionally, understanding the
impact of this flexibility in modeling latent dynamics versus dynamics in the original data space is an
interesting open question.

We believe that thanks to its simulation-free properties, SDE Matching has the potential to scale
Latent SDE-based modeling to high-dimensional applications like audio and video generation and
many other applications where they were previously infeasible. It could potentially also contribute to
the development of simulation-free methods for training Latent ODE models and learning policies in
reinforcement learning. However, we leave these directions for future work.

7 CONCLUSION

We introduced SDE Matching, a simulation-free framework for training Latent SDEs. By leveraging
insights from score-based generative models, we formulated a method that eliminates the need for
costly numerical simulations while maintaining the expressiveness of Latent SDEs. Our approach
directly parameterizes the marginal posterior distributions, enabling efficient training and conditional
inference.

Through both synthetic and real-world experiments, we demonstrated that SDE Matching achieves
performance comparable to existing adjoint sensitivity-based methods while significantly reducing
computational complexity. The ability to estimate latent trajectories without solving high-dimensional
SDEs makes our method particularly suitable for large-scale time-series and sequence modeling.

Despite its advantages, SDE Matching introduces trade-offs in terms of posterior parameterization
flexibility. Nevertheless, to the best of our knowledge, SDE Matching proposes the most flexible
parameterization of the posterior process that allows simulation-free sampling of latent variables.
Exploring more expressive function classes for posterior distributions and further extending SDE
Matching are promising directions for future work.

Furthermore, our approach provides a foundation for scaling Latent SDEs to previously infeasible
sequential domains such as audio and video. We believe that the scalability and efficiency of SDE
Matching will enable broader applications in scientific modeling, finance, and healthcare, where
structured uncertainty modeling is critical. Future research may also explore extensions to simulation-
free training of Latent ODEs and connections to reinforcement learning and stochastic optimal
control.
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A DETAILED DESCRIPTION OF THE POSTERIOR PROCESS

A.1 MARGINAL DISTRIBUTION

The posterior marginal distribution is defined by a transformation F, from noise € for each ¢ and X:

2z = Fy(e,t,X), e~qle) =N(e0,1). (14)
Assuming that F, is invertible and differentiable in € for each ¢ and X. Then, we can use the standard
change of variables result for distributions (Rudin, |2006; | Bogachev, 2007)) to derive the density of z;
8F;1(zt, t, X)

s (41X) = q(e) =

15
e=Fj; " (2¢,t,X) (1s)

where F; ! is the inverse of F}, and | - | denotes the absolute value of the determinant. This is a
well-known result of normalizing flows (Papamakarios et al.,[2021)) applied to our setting.

A.2 CONDITIONAL ODE
We leverage results based on flows, solutions to ODEs, inspired by [Bilos et al.|(2021); Lee| (2012);
Bartosh et al.| (2024) to turn a flow F}, into its corresponding generating ODE f,..

Proposition A.1. Let F, : RP x R x X — R be a smooth function such that F,(-,t,X) is
invertible Vt, X. Then, F(-,t,X) is a flow with the infinitesimal generator

dF,(e,t,X)
16
7 ; (16)
which is a smooth vector field f such that
OF,(e,t,X
Pt X) _ 4R, (e.t.%).1.X). (17

ot

Proof. The result is a consequence of the Fundamental Theorem on Flows (Lee, |2012) Theorem 9.12)
for the flow defined by F, (-, , X). O

Using Propositionwith £ = F;'(2,t,X), identifying that F,,(F; (2, ¢,X), ¢, X) = z, lets
us construct the conditional ODE whose solution matches those of the flow z; = F, (¢, t, X):

dzi = fu(z,t,X)dt, where (18)
. 0F,(e,t,X
f&p('zt7t7X) = % . (19)
e=F; " (2¢,t,X)

Initializing using 2o ~ ¢4 (20|X) and solving the above conditional ODE in Equation ensures

P F,(e,t,X) for e ~ ¢(e), where £ denotes equal in distribution.

A.3 CONDITIONAL SDE

To derive the conditional SDE we leverage a result by |Song et al.|(2021a) that relates the marginal
distributions of an SDE with its corresponding (probability flow) ODE, restated in Proposition[A.2]
for convenience.

Proposition A.2. The marginal distributions p;(z;) of the SDE
dZt = h(zt7t)dt+g(ztat)dwa (20)

are, under suitable conditions on the drift and diffusion terms h and g, identical to the distributions
induced by the ODE

1 1
dzy = (h(zt»t) - ig(ztvt)g—r(ztvt)vm log pt(2t) — §VZt ‘ [g(zt,t)g—r(zt,t)}> dt. (2D
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Proof. See|Song et al.|(2021a, Appendix D.1). O

Note that this equivalence lets us easily find the corresponding (probability flow) ODE. However, we
can equally well use it in the reverse order with a known ODE to construct the corresponding SDE by
selecting a diffusion term g and using Equation to compute the drift term h.

For the prior process diffusion term gy (2, t) with velocity field Equation we apply Proposi-
tion[A.2]to find the conditional SDE with marginals g, (z|X)

dz = fo. (2,6, X)dt + go (2, t)dw, where (22)
oot X) = Foeast,X) + S0 a0, 1193 (2 )V, o 0 (2) + 5V, - [0 (20, 00 (20,8)]
This result follows by simply identifying terms in Proposition with our specific case

h(ze,t) = fo,0(2e,t, X),
9(z,t) = go(z, 1).
A.4 PARAMETERIZATION

As discussed in Section [3.2] evaluating the posterior SDE (Equation (9)) requires access to the
conditional score function V ., log g, (2¢|X). Since we parameterize the posterior marginals ¢, (z¢|X)
implicitly through an invertible transformation F, (Equation (7)) of a random variable & ~ ¢(¢) into
24, the score function can in general be computed using Equation (I3):

vzt log q@(zt|X) = vzt (23)

log q(¢)

The first term in Equation represents the log-density of the noise distribution, which is straight-
forward to compute. The second term is the log-determinant of the Jacobian matrix of the inverse
transformation. If this Jacobian is available, the score function can be efficiently computed using
automatic differentiation tools.

In this work, we parameterize the function F,, as follows:
Fo(e,t,X) = pp(X, 1) + 0,(X,t)e, and  F ' (2,6, X) = 0,1 (X, 1) (20 — po(X, 1)) (24)
where o, is a matrix valued function.

Substituting this parameterization into Equation (23)), the score function simplifies to:

1 _
V2, log g, (2| X) = [U@(X,t)U;(X,t)] (1e(X,t) — 2) = —JWT(Xi)a‘E:Fw_l(th’X) .

(25)

The SDE Matching framework allows for other, potentially more flexible, parameterizations of the
function F,. However, we leave the exploration of such alternatives for future research.

B DIFFUSION MODELS AS LATENT SDES

In contrast to Latent SDEs, recent advancements in diffusion and flow-based modeling demonstrate
that continuous dynamics can be learned efficiently in a simulation-free manner, without requiring
numerical integration. At first glance, these generative models seem quite different from Latent
SDEs. Instead of generating data autoregressively, they produce a single data point through an
iterative refinement process, gradually reconstructing corrupted data. However, similar to Latent
SDEs, continuous diffusion models can be thought of as learning an SDE in a latent space. This
connection is useful for understanding and developing SDE Matching.

Conventional diffusion models are defined through two processes: the forward (or noising) process
and the reverse (or generative) process. The forward process takes a data point € R” and perturbs
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it over time by injecting noise. This dynamic can be expressed as an SDE with a linear drift term and
state-independent diffusion term:

dz = f(t)zdt + g(t)dw, (26)

where f : [0,1] = R, g : [0,1] = Ry, and g(z0|z) ~ 6(20—x). Due to the linearity of Equation (26)),
the conditional marginal distribution is available in closed form q(z;|x) = N (z; oy, 02 1), where
oy, oy are determined by f(t), g(¢). The functions f(¢) and g(¢) are typically chosen to ensure that
q(z1|x) = N(21;0, I). The generative process then reverses this transformation, starting from the
prior p(z1) = N (21;0, ) and following the (marginal) reverse SDE:

dzy = [f(t)z: — g2 (t) V2, log q(z)]dt + g(t)dw. 27

Here, w denotes a standard Wiener process, where time flows backward. Diffusion models ap-
proximate this reverse process by learning the score function V,, log ¢(z;) using a denoising score
matching loss:

2
u(t)qﬂ%qu) [Hse(th) - V., log q(zt\x)Hz} , (28)

where u(t) represents a uniform distribution over the interval [0, 1], and s¢ : R? x [0,1] = R%is a
learnable approximation of the score function.

A key property of the denoising score matching objective is that it can be learned in a simulation-
free manner. Thanks to the simplicity of the forward process, instead of integrating the SDE in
Equation , we can directly sample from ¢(z;|x) and estimate the expectation in Equation
using the Monte Carlo method. This property distinguishes diffusion models from Latent SDEs.
However, as we will see diffusion models are in fact a special case of Latent SDE:s.

To demonstrate this connection we: (1) derive the reverse SDE for the conditional forward pro-
cess (Equation (26)), and (2) invert the time direction for the entire model, mapping the time interval
[0, 1] into [1, 0].

First, the reverse SDE for the forward process can be obtained from the Fokker—Planck equation,
similar to the derivation of the marginal reverse SDE in Equation (27).

Second, after inverting the time direction, we obtain:

dz = [f(t)z + g7 (t) V2, log q(z|x)]dt + g(t)dw. (29)

Except for the change in time direction, the generative process remains unchanged:

dz; = [f(t)z + g*(t)se (21, t)]dt + g(t)dw. (30)

From this perspective, diffusion models can be seen as a special case of Latent SDEs with a specific
form of the posterior process and only a single observation x at time step t = 1. Moreover, substituting
this parameterization of the prior and reverse processes into the Latent SDE objective in Equation (3),
we find that it corresponds to a reweighted denoising score matching objective:

U f(t) L7 + 6% ()s0(20, 1) — £B77 — g (V= Jog g =) dt | + C

{gz(t)
u(Walzda) | 2

a(Z|z)

Hsa(zt,t) -V, logq(zt|x)’|§ +C. 31

This result is particularly meaningful since it is well known that denoising score matching (Equa-
tion (28))) corresponds to a reweighted variational bound on the likelihood of diffusion models Song
et al. (2021b).

This connection between diffusion models and Latent SDEs, along with the fact that diffusion models
can be trained in a simulation-free manner, motivates us to extend and develop a simulation-free
framework for training Latent SDEs.
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Algorithm 1 Training of SDE Matching

Require: X, pg(20), ho, go, po(Ti]2t), Fy
for learning iterations do
# Calculation of prior 1088 Lprior
gg N(O, I)
20 = FW(SO;O,X)
£prior = DKL (Q¢(ZO|X)HI79(ZO))
# Calculation of diffusion loss Lqig
t ~ u(t)
gr ~ N(O, I)
Zt = F@(Eta t, X)
TG,K,D(Zta tv X) = ge_l(zt7 t) (hg(Zt, t) - fe,l,a(zta t7 X))
Laigr = L 10,0 (26,1, XI5
# Calculation of reconstruction 10ss L ec
i~ u(i)
Et; ™ N(O7 I)
Zti = Ftp(sti, y t7;7 X)
»Crec =—-N logpﬂ(xti
# Optimization
L= Lrec + ['diﬁ + Eprior
Gradient step on 6 and ¢ w.r.t. £
end for

Zti)

C IMPLEMENTATION DETAILS

For the experiments presented in Section 4} we follow the setup from|Li et al.|(2020) for both the
3D stochastic Lorenz attractor and the motion capture dataset. We use the same parameterizations
and hyperparameters for the prior process, including the observation models pg(z|z;) and the
coordinate-wise diagonal diffusion term gg (2, t).

We make a slight modification to the parameterization of the posterior process. First, we do not use
an encoder, i.e., a separate network that defines the initial conditions of the posterior process. Second,
Li et al.[(2020) propose using a time-reversal GRU layer Cho et al.| (2014)) to aggregate information
from observations into what they refer to as a context. This context is then used to predict the drift
term of the posterior SDE via an MLP. To maintain consistency with |Cho et al.|(2014), we use the
same hyperparameters for the GRU and MLP. However, instead of predicting the drift term, we use
the MLP to predict the functions /i, and log o, (Equation ) based on the context computed from
all observations and the time step . We use diaganal parameterization o,.

For optimization, we use the same training hyperparameters, including the Adam optimizer Kingma
(2014) and the same number of training iterations. However, we do not apply any additional
regularization, reweighting, or annealing techniques.

We believe that there exists more efficient ways to parameterize the posterior process for SDE
Matching. However, in this work, our primary goal was to provide a fair comparison with the standard
Latent SDE training approach rather than focusing on specific design choices.

We summarize the training procedure in Algorithm |}
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