
Understanding Distributional Ambiguity
via Non-robust Chance Constraint

Shumin Ma

City University of Hong Kong

shuminma@cityu.edu.hk

Cheuk Hang Leung

City University of Hong Kong

chleung87@cityu.edu.hk

Qi Wu
∗

City University of Hong Kong

qiwu55@cityu.edu.hk

Wei Liu

Tencent

wl2223@columbia.edu

Nanbo Peng

JD Digits

pengnanbo@jd.com

ABSTRACT
This paper provides a non-robust interpretation of the distribution-

ally robust optimization (DRO) problem by relating the distribu-

tional uncertainties to the chance probabilities. Our analysis allows

a decision-maker to interpret the size of the ambiguity set, which

is often lack of business meaning, through the chance parameters

constraining the objective function. We first show that, for general

𝜙-divergences, a DRO problem is asymptotically equivalent to a

class of mean-deviation problems. These mean-deviation problems

are not subject to uncertain distributions, and the ambiguity ra-

dius in the original DRO problem now plays the role of controlling

the risk preference of the decision-maker. We then demonstrate

that a DRO problem can be cast as a chance-constrained optimiza-

tion (CCO) problem when a boundedness constraint is added to

the decision variables. Without the boundedness constraint, the

CCO problem is shown to perform uniformly better than the DRO

problem, irrespective of the radius of the ambiguity set, the choice

of the divergence measure, or the tail heaviness of the center dis-

tribution. Thanks to our high-order expansion result, a notable

feature of our analysis is that it applies to divergence measures that

accommodate well heavy tail distributions such as the student 𝑡-

distribution and the lognormal distribution, besides the widely-used

Kullback-Leibler (KL) divergence, which requires the distribution of

the objective function to be exponentially bounded. Using the port-

folio selection problem as an example, our comprehensive testings

on multivariate heavy-tail datasets, both synthetic and real-world,

shows that this business-interpretation approach is indeed useful

and insightful.

CCS CONCEPTS
•Applied computing→Multi-criterion optimization anddecision-
making.
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1 INTRODUCTION
Stochastic optimization is widely used in many machine learning

algorithms to optimize the expected performance or loss, e.g., the

mean squared error for regressions, or the expected discounted re-

turn in the context of reinforcement learning [19]. A soundmachine

learning model demands reliable estimates of the data-generating

distribution. However, uncertainties of the data distribution could

arise in many ways: limited observations in the stationary case,

time-varying law in the non-stationary case, or the law is subject to

policy intervention due to the treatment effect. In robust statistics,

formulating a decision-making problem as a DRO problem is a

remedy to address the distributional uncertainties in the data [6].

A typical DRO formulation adds an extra layer of optimization

over a set of possible distributions, called the ambiguity set, and op-
timizes the decision variables in the worst-case distribution. There

are mainly three ways in the literature to define the ambiguity set.

The first is the geometric approach, which allows the parameters

of the chosen distribution to vary within certain geometric regions

[14, 20, 21] such as boxes, ellipsoids, and polyhedrons, etc. The

second approach, known as the moment-based approach, constructs
the ambiguity set by collecting distributions that share the same

moment constraints [5, 7, 18, 22]. The last one, the statistical dis-
tance approach, uses divergence measures or difference functions

between two probability distributions to define the ambiguity set as

a ball of distributions [1, 6, 8, 16]. The radius of the ball is referred

to as the ambiguity radius. Among the three, the moment-based

and the statistical distance approaches address law uncertainties. In

contrast, the geometric approach only addresses the uncertainties

in the parameters of a a prior fixed distribution, not in its functional

form. It does not help if the correct distribution turns out to be

lognormal when you think it is instead normal and fine-tune its

mean and variance. However, the cost of advancing from parameter

uncertainty to law uncertainty is that you lose the interpretability

https://doi.org/10.1145/3383455.3422522
https://doi.org/10.1145/3383455.3422522
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of the ambiguity set because the parameters characterizing it are

non-business quantities.

This paper provides a solution to address this business-interpretation

problem. For business applications, a decision-maker would have a

hard time relating, e.g., the radius 0.01 of a KL ball to e.g., product

sales, taxi demands, or portfolio returns. The radius 0.01 is not

related to any measures of the business objective. An unavoidable

headache for her is how she should decide the size of the ambiguity

set. Our idea is straightforward. We want to translate the impact of

the ambiguity radius, which lacks business meanings, to the impact

of the chance parameters constraining the objective function, which

now allows a decision-maker to enter her preferences directly re-

lated to the business objective. Take asset allocation as an example,

our solution can tell a portfolio manager that setting the ambiguity

radius to 0.01would be equivalent to asking the optimization not to

let the chances of her portfolio return going below −13% be higher

than 2%. In this way, the geometry of the ambiguity set, its radius,

is connected directly to her granular preference of the objective,

the amount of risks she can tolerate.

This paper makes two primary technical contributions. First, our

analysis applies to the heavy-tail distributions (e.g., via the Cressie-

Read divergence) [10], besides the usual light-tail cases using the KL

divergence. Heavy-tail distributions, e.g., the lognormal distribution

and the student 𝑡-distribution, are ubiquitous for many business and

finance datasets. A DRO problem with an ambiguity set defined by

the KL divergence is solvable, however, only when the distribution

of the objective function is exponentially bounded [13], in which

case heavy-tail distributions are excluded. Our analysis extends

well to the general 𝜙-divergence family, including KL divergence,

Burg entropy, 𝜒2-distance, Hellinger distance, Cressie-Read diver-

gence, etc. [12, 16]. The second contribution of this paper is that

we establish two connections between a DRO problem and a CCO

problem. The first one is that when a bounded constraint is added

to decision variables, a DRO problem can be cast as a CCO problem

without distributional uncertainties. The second connection is that,

without the boundedness constraint, the CCO problem is shown to

perform uniformly better than the DRO problem, irrespective of the

radius of the ambiguity set, the choice of the divergence measure,

or the tail heaviness of the center distribution.

The rest of the paper is organized as follows. In Section 2, we

provide some background information and the motivation for the

proposed optimization problems. Theoretical analysis of the DRO

problem and the CCO problem is provided in Section 3. Section 4

establishes the connection between the DRO problem and the CCO

problem under an explicit formulation of the portfolio selection

problem. Section 5 gives numerical experiments, and Section 6

concludes our findings from both synthetic and empirical data. Due

to the page limits, all the proofs are omitted in the main body;

however, they can be readily provided once requested.

2 PROBLEM SETUP
2.1 Notations
Let r ∈ R𝑛 , an 𝑛-dimensional real-valued random vector, be the

vector of asset returns. And suppose the joint probability distribu-

tion of r is P. Let P0 be the nominal probability distribution of r. Let
x ∈ R𝑛 be the asset allocation strategy, and e ∈ R𝑛 be a vector with

Table 1: The two 𝜙-divergences used in this paper. The
KL divergence applies to light-tail distributions, while the
Cressie-Read divergence is compatible with heavy-tail dis-
tributions.

Kullback-Leibler Cressie-Read

𝜙 (𝑡) 𝑡 log(𝑡) − 𝑡 + 1
1−𝜃+𝜃𝑡−𝑡𝜃
𝜃 (1−𝜃 ) , 𝜃 ≠ 0, 1

𝜙∗ (𝑠) 𝑒𝑠 − 1
(1−𝑠 (1−𝜃 ))

𝜃
𝜃−1

𝜃
− 1

𝜃
, 𝑠 < 1

1−𝜃

all entries equal to 1. Denote the utility function that is concave in

x and associated with x and r by 𝑓 (x, r). We assume that x lies in a

convex setX and P belongs to an ambiguity setU. The expectation

and variance of a random variable under P are represented by EP [·]
and VP [·], respectively.

Definition 2.1. (𝜙-divergence) Assume that 𝜙 (𝑡) is convex for

𝑡 ≥ 0 and that 𝜙 (1) = 0. Then the 𝜙-divergence 𝐷 (Q| |P) between
distribution P and distribution Q is defined as:

𝐷 (Q| |P) :=
∫

𝜙

(
dQ

dP

)
dP = EP

[
𝜙

(
dQ

dP

)]
:= EP [𝜙 (𝐿)] . (1)

The quantity 𝐿 in Eq. (1) is called the Radon Nikodym derivative

(or likelihood ratio) such that 𝐿 ≥ 0 almost surely and EP [𝐿] = 1.

Notice that, for the Radon-Nikodymm derivative 𝐿 to exist, Q
must be absolutely continuous w.r.t. P. Given the function 𝜙 for

a specific 𝜙-divergence, its conjugate 𝜙∗ is defined as 𝜙∗ (𝑠) :=

sup𝑡 ≥0{𝑠𝑡 − 𝜙 (𝑡)}. Table 1 lists the two divergences used in this

paper. But it should be mentioned that, our interpretation of the

ambiguity radius actually applies to all the 𝜙-divergences, including

Burg entropy, 𝐽 -divergence, 𝜒2-distance, modified 𝜒2-distance, and

Hellinger distance. (For more information about the 𝜙-divergence

family, see [2]).

2.2 Motivation
The goal is to maximize the expected utility over a set of admissible

allocation strategies X, namely,

max

x∈X
EP [𝑓 (x, r)] . (2)

We introduce the ambiguity set U centered at the nominal dis-

tribution P0 (also called the center distribution in the following

context) and controlled by the radius parameter 𝜌 > 0, that is,

U := {P : 𝐷 (P| |P0) ≤ 𝜌}. Thus, the distributionally robust coun-

terpart of problem (2) is:

max

x∈X
min

P∈U
EP [𝑓 (x, r)] . (3)

For a decision-maker, the ambiguity radius 𝜌 is critical. One can-

not set it too large since the optimal utility decreases in 𝜌 . However,

if it is too small, one loses the robust protection. There is a trade-off

in choosing its magnitude in the financial context. In literature, [17]

presents the characteristics of the 𝜙-divergence between the true

distribution P and the nominal distribution P0, 𝐷 (P| |P0). Assum-

ing that P and P0 belong to the same parameterized distribution

family with parameter dimension 𝑑 , and that 𝜙 is twice continu-

ously differentiable in a neighborhood of 1 with 𝜙 (2) (1) > 0, the

normalized estimated 𝜙-divergence 2𝑁

𝜙 (2) (1)𝐷 (P| |P0) asymptotically
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(i.e., for the sample size 𝑁 → ∞) follows a 𝜒2
𝑑
-distribution. This

conclusion thus relates the ambiguity radius 𝜌 to a confidence level

at which the true distribution P falls within the ambiguity set. [3]

provides one methodology, under the Markowitz’s mean-variance

portfolio selection framework, to select the ambiguity radius 𝜌 as

the smallest radius such that the true asset allocation strategy is

included with a given confidence level.

However, in financial practice with real data, the assumption that

the true distribution is in the same parameterized family with the

center distribution is too strong. A wrong guess of the nominal dis-

tribution may lead to a meaningless confidence level interpretation

of the ambiguity radius 𝜌 . Since the DRO approach is believed to

provide robust protection against distributional uncertainty, we are

motivated to connect the robust protection to protection provided

by traditional risk measures. In particular, the heavy-tail nature

of distributions that we are concerned with reminds us of the tail

probability protection, the optimization based on which is known

as CCO problems. Specifically, we define the CCO problem as:

max

x∈X
EP0 [𝑓 (x, r)] 𝑠 .𝑡 . 𝑃𝑟∼P0 (x

𝑇 r ≤ −𝛿) ≤ 𝜖. (4)

Here, 𝛿 > 0 characterizes a typical investor’s loss threshold and

𝜖 > 0 corresponds to the loss probability. The CCO problem in

problem (4) shares the same objective function as that of problem

(2). The expectation is taken under the nominal distribution P0,
not subject to any distributional robustness (the term "non-robust"

in the title originates from here). Compared to problem (2), the

new component is the chance constraint with parameters (𝛿 , 𝜖)

characterizing an investor’s tolerance to losses.

Wewould build up a performance-based interpretation of the am-

biguity radius 𝜌 through the parameters of the chance-constrained

problem. To be specific, if under some ambiguity radius 𝜌 and

chance constraint parameters (𝛿 , 𝜖), problem (3) and problem (4)

achieve the same optimal value, we would say that the robust pro-

tection under the ambiguity radius 𝜌 is similar to that of a tail

probability protection. In addition, we would also look into how the

choice of the allocation strategy set X and the tail heaviness of the

nominal distribution P0 affect the interpretation of the ambiguity

radius 𝜌 , given that X and P0 are the shared model settings of the

two problems (3) and (4).

3 ANALYSIS OF DRO AND CCO PROBLEMS
This section is devoted to the theoretical analysis of problems (3)

and (4). We show that, for general 𝜙-divergences, problem (3) can

be reformulated as a class of mean-deviation problems with the

investor’s risk preference parameter controlled by the ambiguity

radius 𝜌 . Besides, we provide an approximation framework to solve

problem (4).

3.1 Reformulation of the DRO problem (3)

Consider the inner optimization problem in problem (3):

min

P∈U
EP [𝑓 (x, r)] . (5)

The Lagrangian dual to problem (5) is:

sup

𝜂1∈R,𝜂2≥0

{
− 1

𝜂2
sup

𝐿

{
EP0 [−𝜂2 (𝑓 (x, r) + 𝜂1)𝐿 − 𝜙 (𝐿)]

}
− 𝜂1 −

𝜌

𝜂2

}
= sup

𝜂1∈R,𝜂2≥0

{
− 1

𝜂2
EP0 [𝜙

∗ (−𝜂2 (𝑓 (x, r) + 𝜂1))] − 𝜂1 −
𝜌

𝜂2

}
.

The last equality is derived directly from the definition of the

conjugate function of 𝜙-divergence. Difficulty in solving the dual

problem lies in the term EP0 [𝜙∗ (−𝜂2 (𝑓 (x, r) + 𝜂1))]. We hereby

follow the idea in [11] to express optimization (5) in terms of Regular
Measure of Deviation, with results summarized in Theorem 3.1.

Theorem 3.1. Let 𝜙 be a closed proper convex function and 𝜙∗ be
its corresponding conjugate function, respectively. Suppose that under
mild conditions, the strong duality holds. Define the regular measure
of deviation

D𝜂2,𝜙,P0 (𝑓 (x, r) |EP0 [𝑓 (x, r)])

:= inf

𝜂1

{
𝜂1 +

1

𝜂2
EP0

[
𝜙∗

(
𝜂2 (EP0 [𝑓 (x, r)] − 𝑓 (x, r) − 𝜂1)

) ]}
.

Then, optimization (5) is equivalent to :

EP0 [𝑓 (x, r)] − inf

𝜂2≥0

{
𝜌

𝜂2
+ D𝜂2,𝜙,P0 (𝑓 (x, r) |EP0 [𝑓 (x, r)])

}
.

Furthermore, the quantity D𝜂2,𝜙,P0 (𝑓 (x, r) |EP0 [𝑓 (x, r)]) can be

expanded as a series of terms, the coefficients of which can be

computed under the nominal distribution P0. By doing so, we can

reformulate the DRO problem (3) as a single-layer maximization

problem.

Lemma 3.2. Suppose that 𝐾 is an even number, 𝜙 ∈ C𝐾+1 is a
convex function which satisfies 𝜙 (1) = 𝜙 (1) (1) = 0 and 𝜙 (2) (1) > 0.
Assume that EP0 [𝑋𝑘 ] < ∞ for 𝑘 ≤ 𝐾 and 𝑋 is defined as 𝑋 :=

𝑓 (x, r) − EP0 [𝑓 (x, r)]. Then

D𝜂2,𝜙,P0 (𝑓 (x, r) |EP0 [𝑓 (x, r)])

=

𝐾−1∑︁
𝑘=1

𝑏𝑘EP0

[ (
𝑋 + 𝜂∗

1

)𝑘+1]
𝜂𝑘
2
+ 𝑜 (𝜂𝐾−1

2
),

(6)

where 𝑏𝑘 =
(−1)𝑘+1𝑧 (𝑘 ) (0)

(𝑘+1)! , and 𝜂∗
1
is the optimal solution to

min

𝜂1

𝐾−1∑︁
𝑘=1

𝑏𝑘EP0

[
(𝑋 + 𝜂1)𝑘+1

]
𝜂𝑘
2
.

Specifically, 𝑧 (·) is a function satisfying 𝑧 (0) = 1, 𝑧 (1) (·) = 1

𝜙 (2) (𝑧 ( ·))
and 𝑧 (𝑘) (·) can be obtained recursively for 𝑘 ≥ 2.

Note that the above expansion applies to general utility func-

tions 𝑓 (x, r) that are concave in x. More importantly, most of the 𝜙-

divergences (KL divergence, Cressie-Read divergence, Burg entropy,

𝐽 -divergence, 𝜒2-distance, modified 𝜒2-distance, and Hellinger dis-

tance) satisfy the smoothness conditions. Taking KL and Cressie-

Read divergence as example, for 𝐾 = 4, we can explicitly solve the

terms in Eq. (6), as are shown in the following corollary.
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Corollary 3.3. Consider 𝐾 = 4. We have the 4𝑡ℎ order expansion
of D𝜂2,𝜙,P0 (𝑓 (x, r) |EP0 [𝑓 (x, r)]):

D𝜂2,𝜙,P0 (𝑓 (x, r) |EP0 [𝑓 (x, r)])

=

3∑︁
𝑘=1

𝑏𝑘EP0

[ (
𝑋 + 𝜂∗

1

)𝑘+1]
𝜂𝑘
2
+ 𝑜 (𝜂3

2
),

(7)

with 𝜂∗
1
being the real root to the 3𝑟𝑑 order equation

3∑︁
𝑘=1

(𝑘 + 1)𝑏𝑘𝜂𝑘2 · 𝜂𝑘
1
+ 12𝑏3𝜂

3

2
EP0 [𝑋

2] · 𝜂1

+ 4𝑏3𝜂
3

2
EP0 [𝑋

3] + 3𝑏2𝜂
2

2
EP0

[
𝑋 2

]
= 0.

For KL divergence, the coefficients are 𝑏1 = 1/2, 𝑏2 = −1/6, 𝑏3 =
1/24; for Cressie-Read divergence with 𝜃 > 2, the coefficients are
𝑏1 = 1/2, 𝑏2 = (𝜃 − 2)/6, 𝑏3 = (𝜃 − 2) (2𝜃 − 3)/24.

[11] gives a similar expansion of D𝜂2,𝜙,P0 (𝑓 (x, r) |EP0 [𝑓 (x, r)])
in Proposition 3.5. The main difference between our expansion in

Eq. (7) and their expansion lies in the calculation of 𝜂∗
1
. In Eq. (7), 𝜂∗

1

is directly solved through the polynomial equation, while in [11],

𝜂∗
1
is an approximated function of 𝜂2.

In the sequel, we take 𝐾 = 2, consider the 2
𝑛𝑑

order expansion of

D𝜂2,𝜙,P0 (x𝑇 r|x𝑇 𝜇) and ignore the higher order terms, which gives

min

P∈U
EP [𝑓 (x, r)]

≈ EP0 [𝑓 (x, r)] − inf

𝜂2≥0

{
𝜌

𝜂2
+ 𝜂2

2𝜙 (2) (1)
VP0 [𝑓 (x, r)]

}
= EP0 [𝑓 (x, r)] −

√︄
2𝜌

𝜙 (2) (1)
VP0 [𝑓 (x, r)] .

The last equality comes as a result of

inf

𝜂2≥0

{
𝜌

𝜂2
+ 𝜂2

2𝜙 (2) (1)
VP0 [𝑓 (x, r)]

}
=

√︄
2𝜌VP0 [𝑓 (x, r)]

𝜙 (2) (1)
,

and the minimum is achieved at 𝜂2 =

√︂
2𝜌𝜙 (2) (1)
VP

0
[𝑓 (x,r) ] . This suggests,

when 𝜌 is small, the optimal Lagrangian multiplier 𝜂2 is also small

and the expansion in (6) is accurate. By taking maxx∈X on both

sides, we finally achieve the 2
𝑛𝑑

order reformulation of problem (3)

in Theorem 3.4.

Theorem 3.4. Suppose that 𝜙 is convex, twice continuously dif-
ferentiable, and that 𝜙 (1) = 𝜙 (1) (1) = 0 and 𝜙 (2) (1) > 0. The
DRO problem in problem (3) is asymptotically equivalent to a mean-
deviation problem:

max

x∈X

{
EP0 [𝑓 (x, r)] −

√︄
2𝜌VP0 [𝑓 (x, r)]

𝜙 (2) (1)

}
. (8)

Theorem 3.4 tells that the ambiguity radius 𝜌 actually controls

the investor’s risk preference.

3.2 Reformulation of the CCO problem (4)

Notice that, the chance constraint in problem (4) is in the same form

as the definition of Value-at-Risk (VaR), a risk measure that focuses

on the probability of losses. This motivates us to reorganize the tail

chance constraint in problem (4) with VaR. The VaR is defined as

the minimal level 𝛾 such that the probability that the portfolio loss

−x𝑇 r exceeds 𝛾 is below 𝜖 :

V𝜖 (x) := inf{𝛾 ∈ R : 𝑃𝑟∼P0 {−x
𝑇 r ≥ 𝛾} ≤ 𝜖}.

The equivalent form of the chance constraint in problem (4):

𝑃𝑟∼P0 {−x𝑇 r ≥ 𝛿} ≤ 𝜖 implies that, 𝛿 is included in the set {𝛾 ∈ R :

𝑃𝑟∼P0 {−x𝑇 r ≥ 𝛾} ≤ 𝜖}. That is to say, the chance constraint can

be reorganized with V𝜖 (x), namely,

𝑃𝑟∼P0 {−x
𝑇 r ≥ 𝛿} ≤ 𝜖 ⇔ V𝜖 (x) ≤ 𝛿.

Hence, given EP0 [x𝑇 r] = x𝑇 𝜇, problem (4) can be reformulated as

max

𝑥 ∈X
x𝑇 𝜇 𝑠.𝑡 . V𝜖 (x) ≤ 𝛿.

If P0 is normal, then the VaR can be expressed as

V𝜖 (x) = 𝜅 (𝜖)
√︁
x𝑇 Σx − x𝑇 𝜇,

where 𝜅 (𝜖) = −Φ−1 (𝜖) and Φ−1 (·) is the inverse of the cumu-

lative distribution function of the standard normal distribution.

If P0 is a member of general elliptical distribution family, [15]

gives an asymptotic expansion of V𝜖 (x), which takes the form

𝜅 (𝜖)
√
x𝑇 Σx − x𝑇 𝜇 asymptotically when 𝜖 → 0. For example, if P0

is a student 𝑡-distribution with degree of freedom parameter 𝜈 , then

𝜅 (𝜖) = 𝐷𝜖−
1

𝜈 , where 𝐷 =

(
𝑐𝑛𝜋

𝑛−1
2 Γ ( 𝜈+1

2
)

𝜈Γ ( 𝜈+𝑛
2

)

) 1

𝜈

, 𝑐𝑛 =
Γ ( 𝜈+𝑛

2
)

Γ ( 𝜈
2
) 𝜈

𝜈
2 𝜋−

𝑛
2 ,

and Γ(·) refers to the gamma function. For distributions other than

elliptical distributions,

√︃
1−𝜖
𝜖

√
x𝑇 Σx−x𝑇 𝜇 is proved to be a valid ap-

proximation of V𝜖 (x) [4, 9]. These in all provide the approximation

of problem (4) reformulated as

max

𝑥 ∈X
EP0 [𝑓 (x, r)] 𝑠 .𝑡 . 𝜅 (𝜖)

√︁
x𝑇 Σx − x𝑇 𝜇 ≤ 𝛿. (9)

With the following lemma, we can verify that problem (9) is a

convex optimization when 𝜅 (𝜖) > 0. For general feasibility set X,

problem (9) can always be efficiently solved with second-order cone

programming (SOCP).

Lemma 3.5. Suppose 𝑎 > 0. Then the function 𝑎
√
x𝑇 Σx − x𝑇 𝜇 is a

convex function of x.

4 EXPLICIT FORMULATIONS OF PORTFOLIO
SELECTION

In this section, we propose the explicit formulations for portfolio

selection problem with 𝑓 (x, r) = x𝑇 r. It only remains to explic-

itly specify the set X. We begin with the most simple but basic

unbounded set X :=
{
x ∈ R𝑛 | x𝑇 e = 1

}
. We would denote the

optimal solution and optimal value to optimization (8) by x∗ and
𝑣∗, respectively. The corresponding optimal solution and optimal

value to optimization (9) are denoted by x̃∗ and 𝑣∗, respectively.
Throughout the rest of the paper, we would denote EP0 [r] and
covariance matrix of r under P0 by 𝜇 and Σ, respectively. Then nat-

urally, EP0 [x𝑇 r] = x𝑇 𝜇,VP0 [x𝑇 r] = x𝑇 Σx, 𝑣∗ = x∗𝑇 𝜇−
√︂

2𝜌x∗𝑇 Σx∗

𝜙 (2) (1)
and 𝑣∗ = x̃∗𝑇 𝜇.

Recall that in a convex optimization, any local optimum is also a

global optimum. This motivates us to study the optimal solution
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to problem (8), x∗, and the optimal solution to problem (9), x̃∗,
through KKT conditions. The results for (x∗, 𝑣∗) and (x̃∗, 𝑣∗) are
summarized in Theorem 4.1 and Theorem 4.2, respectively.

Theorem 4.1. Suppose 𝜙 (2) (1) > 0. Define 𝐴 := e𝑇 Σ−1e, 𝐵 :=

𝜇𝑇 Σ−1e, and𝐶 := 𝜇𝑇 Σ−1𝜇. Then problem (8) with 𝑓 (x, r) = x𝑇 r and
the feasibility set X =

{
x ∈ R𝑛 | x𝑇 e = 1

}
has an optimal solution

when 𝜌 > 𝜙 (2) (1) (𝐶 − 𝐵2/𝐴)/2. And the optimal solution x∗ and
optimal value 𝑣∗ are:

x∗ =
Σ−1 (𝜇 − 𝜆∗e)
𝐵 − 𝜆∗𝐴 , 𝑣∗ = 𝜆∗,

where 𝜆∗ = 𝐵
𝐴
−

√︃
𝐵2−𝐴(𝐶−2𝜌/𝜙 (2) (1))

𝐴
.

Theorem 4.2. Suppose 𝜅 (𝜖) > 0. Problem (9) with 𝑓 (x, r) = x𝑇 r
and the feasibility set X =

{
x ∈ R𝑛 | x𝑇 e = 1

}
has an optimal solu-

tion when (𝜖, 𝛿) satisfies 𝐶 − 𝐵2/𝐴 < (𝜅 (𝜖))2 < 𝛿2𝐴 + 2𝛿𝐵 +𝐶 and
𝐵 + 𝛿𝐴 > 0. (𝐴, 𝐵, and 𝐶 defined in Theorem 4.1.) And the optimal
solution x̃∗ and optimal value 𝑣∗ are:

x̃∗ =
Σ−1 [(1 + ˜𝜆)𝜇 − ˜𝜃e]

(1 + ˜𝜆)𝐵 − ˜𝜃𝐴
, 𝑣∗ = ˜𝜆𝛿 + ˜𝜃,

where ˜𝜆 =

√
𝐴𝐶−𝐵2

𝐴𝜅 (𝜖)2−𝐴𝐶+𝐵2
( 𝜅 (𝜖) (𝐵+𝐴𝛿)√

𝐴𝛿2+2𝐵𝛿+𝐶−𝜅 (𝜖)2
+
√
𝐴𝐶 − 𝐵2), and ˜𝜃 =

(𝐶+𝛿𝐵) ( ˜𝜆+1)− ˜𝜆𝜅 (𝜖)2
𝐵+𝛿𝐴 .

Furthermore, 𝑣∗ ≥ 𝑣∗, i.e., problem (8) always outperforms problem
(9).

In Theorem 4.2, we first identify the sufficient conditions of

(𝜖, 𝛿) for the optimization problem (9) to be feasible. The compar-

ison between 𝑣∗ and 𝑣∗ shows that the CCO reformulation per-

forms uniformly better than the DRO reformulation. Here it should

be mentioned that, the outperformance of problem (8) over prob-

lem (9) is not so obvious. At the first glance, it does seem quite

straightforward that the objective function in problem (9) is al-

ways smaller than that in problem (8). While in fact, rather than

comparing x𝑇 𝜇 −
√︂

2𝜌x𝑇 Σx
𝜙 (2) (1) and x𝑇 𝜇 based on the same asset allo-

cation strategy x, we are comparing the two objective functions

based on their respective optimal asset allocation strategies, namely,

x∗𝑇 𝜇 −
√︂

2𝜌x∗𝑇 Σx∗

𝜙 (2) (1) vs x̃∗𝑇 𝜇.

For more complex sets X, we resort to numerical analysis to

investigate interpretation of the ambiguity radius 𝜌 through chance

constraint parameters.

5 EXPERIMENTS
Sections 5.1 and 5.2 are based on synthetic data to test the refor-

mulation accuracy of the DRO problem (3) and to see how the tail

heaviness of the nominal distribution P0 affects the interpretation
of 𝜌 . Section 5.3 is devoted to a more detailed understanding of the

ambiguity radius 𝜌 based on the empirical daily returns of 4 asset

classes. And Section 5.4 uses intraday 5-minute stock returns to

test the value of robust protection in the real portfolio selection

problem.

5.1 Reformulation accuracy of problem (3)

In this section, we numerically test the accuracies of the 2
𝑛𝑑

order

and the 4
𝑡ℎ

order reformulations with respect to the original robust

problem (3). The 𝜙-divergence we take is KL divergence, under

which problem (3) can be exactly solved. And we take the exact

optimal value as a benchmark to compare the 2
𝑛𝑑

order and the

4
𝑡ℎ

order reformulations.

Table 2 records the relative errors (in the 3
𝑟𝑑

& 4
𝑡ℎ

columns)

w.r.t. the exact optimal value (the 2
𝑛𝑑

column) under KL divergence.

It shows that the higher order improvement is particularly notable

when data exhibits a heavier tail. In the case of Cressie-Read diver-

gence, which we do not record in the table due to the page limit,

we observe a 50 times improvement: when 𝜌 is set to 0.78, relative

error for the 4
𝑡ℎ

order reformulation is 1.53%, while it is 56.54% for

the 2
𝑛𝑑

order reformulation given that the optimal value is −0.2787.
Here, we assume the ambiguity set under the KL divergence cen-

ters at a six-dimensional multivariate exponential distribution with

mean=0.2, std=0.2, skewness=2, and kurtosis=6. We set the dimen-

sions to be i.i.d to see a clean impact from the heavy tail. And the

center distribution P0 under Cressie-Read divergence is multivari-

ate 𝑡 . We see that the larger the size of the ambiguity set (i.e., larger

𝜌), the better the improvement of the 4
𝑡ℎ

order reformulation. In

fact, the error reduction is about 10 folds in this example. However,

using the 2
𝑛𝑑

order equivalent formulation is good enough to solve

problem (3) when 𝜌 is small.

Table 2: Relative errors of the 4
𝑡ℎ order reformulation and

2
𝑛𝑑 order reformulation w.r.t. the optimal value of problem
(3). Ambiguity sets are defined by KL divergence centered at
a 6-𝑑 exponential distribution.

Relative errors

Optimal value 4
𝑡ℎ

order 2
𝑛𝑑

order

𝜌 = 0.01 0.1887 0.0002% 0.1172%

0.02 0.1841 0.0038% 0.2397%

0.03 0.1807 0.0128 % 0.3659%

0.04 0.1778 0.0274% 0.4951%

0.05 0.1753 0.0479% 0.6270%

0.06 0.1730 0.0748% 0.7613%

0.07 0.1710 0.1082% 0.8979%

0.08 0.1691 0.1483% 1.037%

0.09 0.1673 0.1951% 1.778%

5.2 Interpretation of 𝜌 under distributions with
different tail heavinesses

This experiment shows that tail heaviness of the nominal distribu-

tion P0 indeed affects the interpretation of the ambiguity radius 𝜌 .

We focus on three distributions for 5 assets: multivariate normal,

lognormal distribution and student 𝑡3−distribution. The set of allo-
cation strategies is bounded below by -1, and the ambiguity radius

𝜌 is fixed at 0.27. We plot the results of equivalent (𝜖, 𝛿) in Figure

1. It shows that, first, the ambiguity radius 𝜌 can be explained by a

set of pairs (𝜖, 𝛿) in terms of the impact on the optimal value. Sec-

ond, tail heaviness affects the interpretation of 𝜌 and distributions
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with heavier tail result in a larger loss threshold for a given loss

probability 𝜖 .

ǫ(%)
2 4 6 8 10 12 14 16 18 20

δ
(%

)

0

10

20

30

40

50

60

Normal
Lognormal
Student t3

Figure 1: Given 𝜌 = 0.27, tail heaviness affects the equivalent
loss threshold 𝛿 .

5.3 Empirical studies with daily asset returns
To see more clearly the financial interpretation of the ambiguity

radius 𝜌 , we undergo experiments based on empirical data. We ex-

tract past 40 years’ daily simple returns of four major asset classes:

Equity indexes (DAX, FTSE, HSI, NASDAQ, NIKKEI250, SP500) ,

US Treasuries (2year, 10year, 30year), Currencies (AUD, CHF, EUR,

GBP, JPY) and Commodities (Crude oil, Silver, Gold). For the DRO

problem, we use the Cressie-Read divergence instead of KL diver-

gence since all data exhibits quite heavy tail. For the CCO problem,

we choose the negative daily return threshold −𝛿 to be the 3% em-

pirical quantile of the daily simply return series for each asset class

so that they can differ across assets. We choose the chance level 𝜖

to be 2% and 5%, mincing (rounded) event frequencies at quarterly

(4 out of 252) and monthly (12 out of 252) so that investors can

relate 𝜖 to the degree of event rareness. The portfolio weights are

constrained to be bounded below by -1. Both multivariate 𝑡- and

normal distributions are tested as the center P0 of the ambiguity

setU when fitting data. Also, we test both the 4
𝑡ℎ

order and 2
𝑛𝑑

order reformulations of the DRO problem.

Table 3 (a)-(d) report the equivalent ambiguity radius 𝜌 of the

DRO problem, together with the corresponding optimal portfolio

return (annualized), at a given pair of CCO parameters (𝜖 , 𝛿) for the

four asset classes, respectively. Take Table 3(a) as an example. There

are 2 rows, 4 columns and 8 entries in total. Each row corresponds

to the choice of the parameter 𝜖 , and each column corresponds to

the choice of the reformulation framework of the DRO problem

and the choice of the center distribution P0. The upper number

in one entry records the equivalent ambiguity radius 𝜌 , while the

lower number in the round brackets records the corresponding

optimal portfolio annualized return. With other parameter fixed,

we compare the optimal portfolio returns between the multivariate

student 𝑡-distribution and the normal distribution, and label the

entry numbers with a larger portfolio return in bold black.

We read from Table 3 that, by relating the size parameter 𝜌 of

the ambiguity set in the DRO problem to the CCO chance parame-

ters, it then becomes tangible, without which even the appropriate

Table 3: The equivalent ambiguity radius 𝜌 of the DRO prob-
lem for the four asset classes: (a) Equity, (b) US Treasury, (c)
Currency, and (d) Commodity. The loss threshold 𝛿 is taken
as the negative value of the 3% empirical quantile of the daily
simple return series for each asset class, thus is different
across assets.We compare the portfolio performance within
each asset class based on the choice of the center distribu-
tion (either multivariate student 𝑡- or normal distributions)
under both the 4𝑡ℎ order and 2

𝑛𝑑 order reformulations of the
DRO problem. The percentage number in the round brack-
ets under the equivalent ambiguity radius 𝜌 records the cor-
responding optimal portfolio annualized return. Bold num-
bers emphasize the better portfolio return performance at a
given pair of (𝜖, 𝛿) under a given solution framework of the
DRO problem.

(a) Equity: 𝛿 = 3.35%.

4
𝑡ℎ

order 2
𝑛𝑑

order

Student 𝑡 Normal Student 𝑡 Normal

𝜖 = 2% 3.5e-4 1.2e-4 6.1e-4 1.2e-4

(30.7%) (15.3%) (30.7%) (15.3%)

𝜖 = 5% 3.4e-4 1.2e-4 6.1e-4 1.2e-4

(39.2%) (19.8%) (39.2%) (19.8%)

(b) US Treasury: 𝛿 = 6.58%.

4
𝑡ℎ

order 2
𝑛𝑑

order

Student 𝑡 Normal Student 𝑡 Normal

𝜖 = 2% 2e-6 2.8e-14 9.5e-6 2.8e-14

(-1.1%) (-2.6%) (-1.1%) (-2.6%)

𝜖 = 5% 2e-6 2.8e-14 4.8e-6 2.8e-14

(0.7%) (-2.6%) (0.7%) (-2.6%)

(c) Currency: 𝛿 = 1.40%.

4
𝑡ℎ

order 2
𝑛𝑑

order

Student 𝑡 Normal Student 𝑡 Normal

𝜖 = 2% 2.6e-4 6.1e-5 3.1e-4 6.1e-5
(2.3%) (3.6%) (2.3%) (3.6%)

𝜖 = 5% 1.5e-4 3.1e-5 3.1e-4 3.1e-5
(4.4%) (5.0%) (4.4%) (5.0%)

(d) Commodity: 𝛿 = 4.4%.

4
𝑡ℎ

order 2
𝑛𝑑

order

Student 𝑡 Normal Student 𝑡 Normal

𝜖 = 2% 9.6e-5 3.7e-9 1.5e-4 3.7e-9

(17.3%) (4.6%) (17.3%) (4.6%)

𝜖 = 5% 6.5e-5 1.9e-9 7.6e-4 1.9e-9

(22.7%) (4.6%) (22.6%) (4.6%)

order is hard to guess. In our tests, its magnitude can range from

10
−4

to 10
−14

depending on asset classes and on the investor’s tol-

erance level. What’s more, the heavy-tail nature of financial data

demands the usage of divergence measures (e.g., the Cressie-Read

divergence) that allow heavy-tail distribution if one takes the robust
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approach for portfolio optimization. Ambiguity sets constructed

by the KL divergence, however, require the objective function to

be exponentially bounded, which exclude important heavy-tail dis-

tributions used ubiquitously for financial asset returns, e.g., the

student 𝑡-distribution. Among the 16 tests in Table 3, the larger

return in bold shows 12 favor fitting data with P0 as multivariate

𝑡-distributed.

5.4 High frequency empirical setting
We collect the intraday 5-minute asset returns of 15 stocks

1
that

are selected from the 50 Hang Seng Index constituent stocks based

on the market cap and daily turnover. The data spans from Dec 1st,

2014 to Dec 1st, 2017, and consists of roughly 39,390 observations

with information of the first and the last half hours in each trading

day excluded.

The first experiment illustrates the trend of equivalent ambi-

guity radius 𝜌 as more empirical data is available. As in the last

experiment, we use the Cressie-Read divergence and set the loss

probability 𝜖 = 3% and 𝛿 = 0.28% (the 3% empirical quantile of the

return series over 100 trading days). The asset allocation strategy

is bounded from below by −1. We apply the 4
𝑡ℎ

order reformula-

tion to solve the DRO problem and test both multivariate 𝑡- and

normal distribution as the nominal distribution P0. To begin with,

we compute the equivalent ambiguity radius 𝜌 based on the first 6

consecutive trading days of 5-minute return series. Then we move

forward to include one more trading day’s sample data and obtain

the next equivalent 𝜌 . Figure 2 plots the series of equivalent 𝜌 with

each 𝜌 stamped with how many trading days’ data the computation

is based on.

0 20 40 60 80 100
0

1

2

3

4
10-3

Figure 2: With (𝜖, 𝛿) = (3%, 0.28%) fixed, the equivalent am-
biguity radius 𝜌 goes down and converges as data of more
trading days is available.

Figure 2 shows that, to achieve the same level of tail probabil-

ity protection, the equivalent ambiguity radius 𝜌 goes down and

converges as more data is available. Such a conclusion is within

expectation because the more available data, the more information

and thus fewer uncertainties are over the underlying distribution.

The second observation accords with the conclusion in Figure 1,

1
The ticker codes for the selected 15 stocks are: 00001, 00005, 00016, 00027, 00388,

00688, 00700, 00883, 00939, 00941, 01299, 01398, 01928, 02318, 03988.

that is, even with the same empirical data set, the tail heaviness

assumption of the center distribution affects the interpretation of

the ambiguity radius 𝜌 . Robust portfolio optimization centered with

heavy-tail distributions requires a larger range of robust protections

to achieve the same tail probability level.

Then, we fit the returns of each single stock to a univariate stu-

dent 𝑡-distribution to verify that the distribution of high frequency

financial data indeed exhibits heavy tail. The degree of freedom pa-

rameter, which quantifies the tail heaviness, is shown to range from

2.36 to 3.81 among the 15 stocks. Figure 3 shows the fitting results

of 4 stocks accompanied with the degree of freedom parameter 𝜈 in

the title position. As it suggests, assuming the nominal distribution

of the returns as a student 𝑡-distribution is rather reasonable.
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Figure 3: Fitting performance in a student 𝑡-distribution for
stock 5, 7, 11 and 15. The degree of freedom parameter 𝜈 is
shown to range from 2.36 to 3.81, which verifies that the dis-
tributions of intraday 5-minute returns are indeed heavy-
tailed.

The last experiment focuses on the value of robust protection in

portfolio optimization. In real practice, portfolio optimization under

a distributional robust framework is needed to protect investors

from uncertainties arising from both the limited historical data

and future distributional changes. It is necessary for a trader to

frequently rebalance the portfolio to accommodate fluctuations

in distributions. As we would demonstrate, the robust protection

actually helps improve the portfolio performance, especially when

compared with portfolios that are selected either based on the

nominal distribution (namely, problem (2)) or under the classical

Mean Variance framework. The Mean Variance model we take is:

min

𝑥 ∈X
x𝑇 Σx 𝑠 .𝑡 . x𝑇 𝜇 ≥ 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 .

We divide the whole 3-year datasets into two consecutive parts.

With the first 2-year data, we fit it to a 15-d student 𝑡-distribution

and establish the equivalent ambiguity radius 𝜌 = 2.4e-4 and op-

timal return 0.35e-4, given chance constraint parameters (𝜖, 𝛿) =
(3%, 39e-4). Then with the last-year data as a test set, we backtest

the portfolio performance with three asset allocation strategies

solved respectively by the DRO problem, the nominal optimization

problem, and the Mean Variance problem. For the DRO problem,

we fix 𝜌 = 2.4e-4, and for the Mean Variance problem, we fix 𝑟𝑡𝑎𝑟𝑔𝑒𝑡
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= 0.35e-4. Under each optimization framework, the asset allocation

strategy is not constant throughout the whole testing period. We re-

balance the portfolio in the frequency of every 5 minutes/hour/half

day/day. For each rebalancing, we always use its past 4 months of

trading data to solve the optimal allocation strategy and then apply

the strategy to next incoming 5 minutes/hour/half day/day. Table

4 summarizes the statistics of the return series based on different

strategies and rebalancing frequencies.

Table 4: Statistics of the 3 return series constructed by 5-
minute/hourly/half-day/daily rebalanced allocation strate-
gies solved by the DRO problem, the nominal problem, and
the Mean Variance problem, respectively.

DRO Nominal Mean Variance

5-minute rebalancing
Mean (e-4) 3.68 3.24 0.77

Variance(e-6) 56.5 199 3.48

Skewness 0.66 0.17 0.61

Hourly rebalancing
Mean (e-4) 3.19 2.67 0.59

Variance(e-6) 56.3 200 3.52

Skewness 0.64 0.13 0.53

Half-day rebalancing
Mean (e-4) 2.7 2.3 0.48

Variance(e-6) 55.9 198 3.47

Skewness 0.62 0.09 0.43

Daily rebalancing
Mean (e-4) 1.69 1.0 0.24

Variance(e-6) 55.6 190 3.43

Skewness 0.66 0.054 0.52

Table 4 shows that, the dynamic allocation strategy under a ro-

bust framework always outperforms that without a robust protec-

tion and the classical Mean Variance strategy. The outperformance

can be at most 7 times, depending on the rebalancing frequency.

And the DRO strategy keeps a medium level of volatility, neither

too aggressive nor too conservative to gain low returns. What’s

more, the highest skewness for the DRO strategy also highlights

its inclination to more gains than losses. Last but not the least, al-

though the outperformance of a DRO strategy is consistent between

different rebalancing frequencies, an investor benefits from more

frequent rebalancing with returns far more than doubled under

whatever portfolio selection framework.

6 CONCLUSIONS
We delved into the ambiguity radius for DRO problems with a

distributional ambiguity set defined by 𝜙-divergence. We showed

that for general 𝜙-divergences, a DRO optimization problem is

asymptotically equivalent to a mean-deviation problem, where the

risk preference parameter is controlled by the ambiguity radius.

We used a portfolio selection example to demonstrate that, when

the investment strategy is bounded, the ambiguity radius can be

cast as a chance constraint in a deterministic optimization with

the same objective. Otherwise, within the set of unbounded invest-

ment strategies, a chance-constrained deterministic optimization

consistently performs better than the DRO problem. Through ex-

tensive experiments with both synthetic and empirical data, we

concluded that, to achieve the same level of tail probability protec-

tion, a DRO problem centered at heavy-tail distributions requires a

larger ambiguity set.
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