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Abstract
We study linear contextual bandits in the misspec-
ified setting, where the expected reward function
can be approximated by a linear function class
up to a bounded misspecification level ζ > 0.
We propose an algorithm based on a novel data
selection scheme, which only selects the contex-
tual vectors with large uncertainty for online re-
gression. We show that, when the misspecifi-
cation level ζ is dominated by Õ(∆/

√
d) with

∆ being the minimal sub-optimality gap and d
being the dimension of the contextual vectors,
our algorithm enjoys the same gap-dependent re-
gret bound Õ(d2/∆) as in the well-specified set-
ting up to logarithmic factors. In addition, we
show that an existing algorithm SupLinUCB (Chu
et al., 2011) can also achieve a gap-dependent con-
stant regret bound without the knowledge of sub-
optimality gap ∆. Together with a lower bound
adapted from Lattimore et al. (2020), our result
suggests an interplay between misspecification
level and the sub-optimality gap: (1) the linear
contextual bandit model is efficiently learnable
when ζ ≤ Õ(∆/

√
d); and (2) it is not efficiently

learnable when ζ ≥ Ω̃(∆/
√
d). Experiments on

both synthetic and real-world datasets corroborate
our theoretical results.

1. Introduction
Linear contextual bandits (Li et al., 2010; Chu et al., 2011;
Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013) have
been extensively studied when the reward function can be
represented as a linear function of the contextual vectors.
However, such a well-specified linear model assumption
sometimes does not hold in practice. This motivates the
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study of misspecified linear models. In particular, we only
assume that the reward function can be approximated by
a linear function up to some worst-case error ζ called mis-
specification level. Existing algorithms for misspecified lin-
ear contextual bandits (Lattimore et al., 2020; Foster et al.,
2020) can only achieve an Õ(d

√
K + ζK

√
d logK) regret

bound, where K is the total number of rounds and d is the
dimension of the contextual vector. Such a regret, however,
suggests that the performance of these algorithms will de-
generate to be linear in K when K is sufficiently large. The
reason for this performance degeneration is because exist-
ing algorithms, such as OFUL (Abbasi-Yadkori et al., 2011)
and linear Thompson sampling (Agrawal & Goyal, 2013),
utilize all the collected data without selection. This makes
these algorithms vulnerable to “outliers” caused by the mis-
specified model. Meanwhile, the aforementioned results do
not consider the sub-optimality gap in the expected reward
between the best arm and the second best arm. Intuitively
speaking, if the sub-optimality gap is smaller than the mis-
specification level, there is no hope to obtain a sublinear
regret. Therefore, it is sensible to take into account the
sub-optimality gap in the misspecified setting, and pursue a
gap-dependent regret bound.

The same misspecification issue also appears in reinforce-
ment learning with linear function approximation, when a
linear function cannot exactly represent the transition ker-
nel or value function of the underlying MDP. In this case,
Du et al. (2019) provided a negative result showing that
if the misspecification level is larger than a certain thresh-
old, any RL algorithm will suffer from an exponentially
large sample complexity. This result was later revisited
in the stochastic linear bandit setting by Lattimore et al.
(2020), which shows that a large misspecification error will
make the bandit model not efficiently learnable. However,
these results cannot well explain the tremendous success of
deep reinforcement learning on various tasks (Mnih et al.,
2013; Schulman et al., 2015; 2017), where the deep neural
networks are used as function approximators with misspeci-
fication error.

In this paper, we aim to understand the role of model mis-
specification in linear contextual bandits through the lens of
sub-optimality gap. By proposing a new algorithm with data
selection, we can achieve a constant regret bound for such a
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problem. We also shows that the existing algorithm, SupLin-
UCB (Chu et al., 2011) can be also viewed as a boostrapped
version of our proposed algorithm. Our contributions are
highlighted as follows:

• We propose a new algorithm called DS-OFUL (Data Se-
lection OFUL). DS-OFUL only learns from the data with
large uncertainty. We prove an Õ(d2∆−1) constant gap-
dependent regret1 bound independent from K when the
misspecification level is small (i.e., ζ = Õ(∆/

√
d)) and

the minimal sub-optimality gap ∆ is known. Our regret
bound even improves upon the gap-dependent regret in
the well-specified setting (Abbasi-Yadkori et al., 2011)
from log(K) to constant regret bound. To the best of
our knowledge, this is the first constant gap-dependant
regret bound for misspecified linear contextual bandits as
well as the well-specified linear bandit without any prior
assumptions.

• We show that an existing algorithm, SupLinUCB (Chu
et al., 2011), can be viewed as a multi-level version of
our proposed algorithm. With a fine-grained analysis, we
are able to show that SupLinUCB can achieve Õ(d2∆−1)
constant regret under the same condition of misspecifica-
tion level without knowing the sub-optimality gap.

• We also prove a gap-dependent lower bound following
the lower bound proof techniques in Du et al. (2019);
Lattimore et al. (2020). This, together with the upper
bound, suggests an interplay between the misspecification
level and the sub-optimality gap: the linear contextual
bandit is efficiently learnable if ζ ≤ Õ(∆/

√
d) while it

is not efficiently learnable if ζ ≥ Ω̃(∆/
√
d).

• Finally, we conduct experiments on the linear contextual
bandit with both synthetic and real datasets, and demon-
strate the superior performance of DS-OFUL algorithm
and the effectiveness of SupLinUCB. This corroborates
our theoretical results.

Notation. Scalars and constants are denoted by lower and
upper case letters, respectively. Vectors are denoted by
lower case boldface letters x, and matrices by upper case
boldface letters A. We denote by [k] the set {1, 2, · · · , k}
for positive integers k. For two non-negative sequence
{an}, {bn}, an = O(bn) means that there exists a positive
constant C such that an ≤ Cbn, and we use Õ(·) to hide
the log factor in O(·) other than number of rounds T or
episode K; an = Ω(bn) means that there exists a positive
constant C such that an ≥ Cbn, and we use Ω̃(·) to hide the
log factor. For a vector x ∈ Rd and a positive semi-definite
matrix A ∈ Rd×d, we define ∥x∥2A = x⊤Ax. For any set
C, we use |C| to denote its cardinality.

1we use notation Õ(·) to hide the log factor other than number
of rounds K

2. Related Work
In this section, we review the related work for misspecified
linear bandits and misspecified reinforcement learning.

Linear Contextual Bandits. There is a large body of lit-
erature on linear contextual bandits. For example, Auer
(2002); Chu et al. (2011); Agrawal & Goyal (2013) studied
linear contextual bandits when the number of arms is finite.
Abbasi-Yadkori et al. (2011) proposed an algorithm called
OFUL to deal with the infinite arm set. All these works
come with an Õ(

√
K) problem-independent regret bound,

and an O(d2∆−1 log(K)) gap-dependent regret bound is
also given by Abbasi-Yadkori et al. (2011).

Misspecified Linear Bandits. Ghosh et al. (2017) is
probably the first work considering the misspecified lin-
ear bandits, which shows that the OFUL (Abbasi-Yadkori
et al., 2011) algorithm cannot achieve a sublinear regret
in the presence of misspecification. They, therefore, pro-
posed a new algorithm with a hypothesis testing module
for linearity to determine whether to use OFUL (Abbasi-
Yadkori et al., 2011) or the multi-armed UCB algorithm.
Their algorithm enjoys the same performance guarantee
as OFUL in the well-specified setting and can avoid the
linear regret under certain misspecification setting. Latti-
more et al. (2020) proposed a phase-elimination algorithm
for misspecified stochastic linear bandits, which achieves
an Õ(

√
dK + ζK

√
d) regret bound. For contextual lin-

ear bandits, both Lattimore et al. (2020) and Foster et al.
(2020) proved an Õ(d

√
K + ζK

√
d) regret bound under

misspecification. Takemura et al. (2021) showed that Su-
pLinUCB can achieve a similar regret bound without the
knowledge of the misspecification level. Van Roy & Dong
(2019) proved a lower bound of sample complexity, which
suggests when ζ

√
d ≥

√
8 log |D|, any best arm identifica-

tion algorithm will suffer a Ω(2d) sample complexity, where
D is the decision set. When the reward is deterministic and
does not contain noise, they provided an algorithm using
Õ(d) sample complexity to identify a ∆-optimal arm when
ζ ≤ ∆/

√
d. Lattimore et al. (2020) also mentioned that if

ζ
√
d ≤ ∆, there exists a best arm identification algorithm

that only needs to pull Õ(d) arms to find a ∆-optimal arm
with the knowledge of ζ . Note that although the exponential
sample complexity lower bound for best-arm identification
can be translated into a regret lower bound in linear con-
textual bandits, the algorithms for best-arm identification
and the corresponding upper bounds cannot be easily ex-
tended to linear contextual bandits. Besides these works on
misspecification, He et al. (2022) studied the linear contex-
tual bandits with adversarial corruptions, where the reward
for each round can be corrupted arbitrarily. They assumed
that the summation of the corruption up to K rounds is
bounded by C > 0 and proposed an algorithm achieving
Õ(d

√
K + dC) regret bound with the known C. Since the
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corruption level C = Kζ in the misspecification setting,
their result directly implied an O(d

√
K + dKζ) linear re-

gret, which differs from the optimal guarantee with a extra
O(

√
d) factor. Besides these series of work, Camilleri et al.

(2021) also studied the robustness of kernel bandits with
misspecification.

3. Preliminaries of Linear Contextual Bandits
We consider a linear contextual bandit problem. In round
k ∈ [K], the agent receives a decision set Dk ⊂ Rd

and selects an arm xk ∈ Dk then observes the reward
rk = r(xk) + εk, where r(·) : Rd 7→ [0, 1] is a deter-
ministic expected reward function and εk is a zero-mean
R-sub-Gaussian random noise. i.e., E[eλεk |x1:k, ε1:k−1] ≤
exp(λ2R2/2),∀k ∈ [K], λ ∈ R.

In this work, we assume that all contextual vector x ∈ Dk

satisfies ∥x∥2 ≤ L and the reward function r(·) : Rd →
[0, 1] can be approximated by a linear function r(x) =
x⊤θ∗ + η(x), where η(·) : Rd 7→ [−ζ, ζ] is an unknown
misspecification error function. We further assume ∥θ∗∥2 ≤
B and for simplicity, we assume B,L ≥ 1. We denote the
optimal reward at round k as r∗k = maxx∈Dk

r(x) and
the optimal arm x∗

k = argmaxx∈Dk
r(x). Our goal is to

minimize the regret defined by Regret(K) :=
∑K

k=1 r
∗
k −

r(xk).

In this paper, we focus on the minimal sub-optimality gap
condition.

Definition 3.1 (Minimal sub-optimality gap). For each x ∈
Dk, the sub-optimality gap ∆k(x) is defined by ∆k(x) :=
r∗k − r(x) and the minimal sub-optimality gap ∆ is defined
by ∆ := mink∈[K],x∈Dk

{∆k(x) : ∆k(x) > 0}.

Then we further assume this minimal sub-optimality gap is
strictly positive, i.e., ∆ > 0.

4. Constant Regret Bound with Known
Sub-Optimality Gap ∆

4.1. Algorithm

In this subsection, we propose our algorithm, DS-OFUL,
in Algorithm 1. The algorithm runs for K rounds. At each
round, the algorithm first estimates the underlying parameter
θ∗ by solving the following ridge regression problem in
Line 4

θk = argminθ
∑

i∈Ck−1

(
ri − x⊤

i θ
)2

+ λ∥θ∥22,

where Ck−1 is the index set of the selected contextual vec-
tors for regression and is initialized as an empty set at the
beginning. After receiving the contextual vectors set Dk, the
algorithm selects an arm from the optimistic estimation pow-
ered by the Upper Confidence Bound (UCB) bonus in Line 6.

In line 8, the algorithm adds the index of current round into
Ck if the UCB bonus of the chosen arm xk, denoted by
∥xk∥U−1

k
, is greater than the threshold Γ. Intuitively speak-

ing, since the UCB bonus reflects the uncertainty of the
model about the given arm x, Line 8 discards the data that
brings little uncertainty (∥x∥U−1

k
) to the model. Finally, we

denote the total number of selected data in Line 8 by |CK |.
We will declare the choices of the parameter Γ, β and λ in
the next section.

Algorithm 1 Data Selection OFUL (DS-OFUL)
Input: Threshold Γ, radius β and regularizer λ

1: Initialize C0 = ∅,U0 = λI,θ0 = 0
2: for k = 1, . . . ,K do
3: Set Uk = λI+

∑
i∈Ck−1

xix
⊤
i .

4: Set θk = U−1
k

∑
i∈Ck−1

rixi.
5: Receive the decision set Dk.
6: Select xk = argmaxx∈Dk

{
x⊤θk + β∥x∥U−1

k

}
.

7: Receive reward rk
8: if ∥xk∥U−1

k
≥ Γ then Ck = Ck−1 ∪ {k} else Ck =

Ck−1

9: end for

4.2. Regret Bound

In this subsection, we provide the regret upper bound of
Algorithm 1 and the regret lower bound for learning the
misspecified linear contextual bandit.

Theorem 4.1 (Upper Bound). For any 0 < δ < 1, let
λ = B−2 and Γ = ∆/(2

√
dι1) where ι1 = (24 +

18R) log((72 + 54R)LB
√
d∆−1) +

√
8R2 log(1/δ). Set

β = 1 + 4
√
dι2 + R

√
2dι3 where ι2 = log(3LBΓ−1),

ι3 = log((1 + 16L2B2Γ−2ι2)/δ). If the misspecification
level is bounded by 2

√
dζι1 ≤ ∆, then with probability at

least 1− δ, the cumulative regret of Algorithm 1 is bounded
by

Regret(K) ≤
32β

√
2d3ι2 log(1 + 16dΓ−2ι2)ι1

∆
.

Remark 4.2. Since β = Õ(
√
d), Theorem 4.1 suggests an

Õ(d2∆−1) constant regret bound independent of the total
number of rounds K when ζ ≤ Õ(∆/

√
d), which improves

the logarithmic regret Õ(d2∆−1 logK) in Abbasi-Yadkori
et al. (2011) to a constant regret2. Note that our constant
regret bound relies on the knowledge of the minimal sub-
optimality gap ∆, while the OFUL algorithm in Abbasi-
Yadkori et al. (2011) does not need prior knowledge about
the minimal sub-optimality gap ∆.

2When we say constant regret, we ignore the log(1/δ) factor
in the regret as we choose δ to be a constant.
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Remark 4.3. Our high probability constant regret bound
does not violate the lower bound proved in Hao et al. (2020),
which says that certain diversity condition on the contexts is
necessary to achieve an expected constant regret bound (Pa-
pini et al., 2021). Here we only provide a high-probability
constant regret bound. When extending this high probability
constant regret bound to expected regret bound, we have

E[Regret(K)] ≤ Õ(d2∆−1 log(1/δ))(1− δ) + δK,

which depends on K. To obtain a sub-linear expected regret,
we can choose δ = 1/K, which yields a logarithmic regret
Õ(d2∆−1 log(K)) and does not violate the lower bound in
Hao et al. (2020).

Remark 4.4. Notably, Papini et al. (2021) can achieve a
constant expected regret bound under certain diversity con-
dition, which requires the contexts of arms span the whole
Rd space. In contrast, our constant regret bound does not
need such an assumption and is a high-probability constant
regret bound.

4.3. Key Proof Techniques

Here we present the key proof techniques for achieving the
constant regret with the knowledge of sub-optimality gap ∆.
The detailed proof is deferred to Appendix B.

Regret decomposition The total regret over all K rounds
can be decomposed as follows

Regret(K) =
∑
k∈CK

(
r∗k − r(xk)

)
+
∑
k/∈CK

(
r∗k − r(xk)

)
.

(4.1)

Finite samples collected in Ck Since we only adding the
contextual arm with large uncertainty (i.e., ∥x∥U−1

k
≥ Γ)

into the set Ck, we can bound the number of samples in Ck
as Ck = Õ(dΓ−2) which is claimed in the following lemma.

Lemma 4.5. Given 0 < Γ ≤ 1, set λ = B−2. For any
k ∈ [K], |Ck| ≤ 16dΓ−2 log(3LBΓ−1).

Then the following lemma suggests that a finite regression
set Ck can lead to a small confidence set with misspecifica-
tion.

Lemma 4.6. Let λ = B−2. For all δ > 0, with probability
at least 1− δ, for all x ∈ Rd, k ∈ [K], the prediction error
is bounded by:

|x⊤(θk − θ∗)| ≤
(
1 +R

√
2dι+ ζ

√
|Ck|
)
∥x∥U−1

k
,

where ι = log((d + |Ck|L2B2)/(dδ)) and |Ck| is the total
number of data used in regression at the k-th round.

Comparing the confidence radius Õ(R
√
d+ ζ

√
|Ck|) here

with the conventional radius Õ(R
√
d) in OFUL, one can

find that the misspecification error will affect the radius by
an
√
|CK | factor. If we use all the data to do regression,

the confidence radius will be in the order of Õ(
√
K) and

therefore will lead to a O(K
√
logK) regret bound (see

Lemma 11 in Abbasi-Yadkori et al. (2011)). This makes
the regret bound vacuous. In contrast, in our algorithm, the
confidence radius is only

√
|CK | where |CK | is finite given

Lemma 4.5. As a result, our regret bound will not grow with
K as in OFUL and will be smaller.

Skipped rounds are optimal Given the fact that the se-
lected arm set Ck is finite, the rest of the proof is simply
showing that the skipped rounds k /∈ Ck are optimal and
will not incur regret. Since we have ∥x∥U−1

k
≤ Γ for those

skipped rounds, the sub-optimality is bounded by the fol-
lowing (informal) lemma.

Lemma 4.7. The instantaneous regret for round k /∈ Ck is
bounded by

∆k(xk) ≤ 2ζ + 2β∥xk∥U−1
k

≤ Θ̃(ζ +∆+
√
dΓ),

Setting Γ = Θ̃(∆/
√
d) suggests that the instantaneous re-

gret ∆k(xk) ≤ ∆, which means no instantaneous regret
occurs on round k.

Achieving the constant regret To wrap up, as (4.1) sug-
gests, for rounds k ∈ CK , we can follow the gap-dependent
regret analysis in Abbasi-Yadkori et al. (2011) and obtain
an Õ(d2 log(|CK |)/∆) gap-dependent regret bound, which
is independent of K according to Lemma 4.5. For rounds
k /∈ CK , Lemma 4.7 guarantees a zero instantaneous regret.
Putting them together yields the claimed constant regret
bound.

5. Constant Regret Bound with Unknown
Sub-Optimality Gap ∆

5.1. Algorithm

Although Algorithm 1 can achieve a constant regret, it re-
quires the knowledge of sub-optimality gap ∆. To tackle
this problem, we propose a new algorithm that does not
require the knowledge of sub-optimality gap ∆.

The algorithm is described in Algorithm 2. It inherits the
arm elimination method from SupLinUCB (Chu et al., 2011).
A similar algorithm is also presented for misspecified linear
bandits in Takemura et al. (2021).

Algorithm 2 works as follows. At each round k ∈ [K], the
algorithm maintains l levels of ridge regression with differ-
ent set Cl

k−1, where the estimation error for the l-th level
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is about β(l)2−l (we will prove this in the latter analysis).
Then starting from the first level l = 1 and the received de-
cision set Dk, if there exists an arm in the decision set with
a large uncertainty (i.e., ∥x∥(Ul

k)
−1 ≥ 2−l), the algorithm

directly selects that arm (Line 10). According to Lemma 4.5
in the analysis of DS-OFUL, the number of selected con-
texts at each level should be bounded. If the uncertainty
for all arms is smaller than the threshold 2−l, the algorithm
follows the arm elimination rule, which reduces the decision
set into

Dl+1
k =

{
x : x ∈ Dl

k, r
l
k(x

l
k)− rlk(x) ≤ 3β(l)2−l

}
.

(5.1)

Then the algorithm enters the next level l+1 until it reaches
log(k)-th level as Line 13 suggests. For the level l ≥ log(k),
the algorithm directly selects the arm with highest optimistic
reward on Line 14 and does not add the index k to the
regression set Cl

k as on Line 15 since the uncertainty is
small enough.

Algorithm 2 can be viewed as the multi-level version of
Algorithm 1 boosted by the peeling technique. Algorithm 2
does not require the knowledge of the sub-optimality gap
∆: if ∆ is known, one can directly jump to a specific
level l∆ = Õ(log(d/∆)), where the prediction error is
bounded by 2β(l∆)2

−l∆ = Õ(∆) and is sufficient to
achieve zero-instantaneous regret. However, when the ∆
is unknown, Algorithm 2 has to do a grid search over
2−1, 2−2, · · · 2−l∆ , · · · and waste some of the samples to
learn the first l∆ − 1 levels. We will revisit and compare the
difference between these two algorithms in the later regret
analysis.

5.2. Regret Bound

This subsection provides the regret upper bound for Algo-
rithm 2.

Theorem 5.1 (Upper Bound). For any 0 < δ < 1, let λ =
B−2. For every integer l > 0, set β(l) = 1 + R

√
2dι2(l)

where ι2(l) = log((d2l + 16L2B28lι1(l))/(dδ)) and
ι1(l) = log

(
3LB2l

)
. If the misspecification level is

bounded by 4l∆ζ
(
1 + 4

√
dι1(l∆)

)
< ∆ where l∆ is the

minimal solution to l∆ > log(8β(l∆)/∆), then with proba-
bility at least 1− δ, the cumulative regret of Algorithm 1 is
bounded by

Regret(K) ≤ 214dβ2(l∆)ι1(l∆)

∆
.

Remark 5.2. Since β(l) = Õ(
√
dl) and l∆ =

Õ(log(d/∆)), Theorem 5.1 suggests that SupLinUCB
enjoys a constant regret bound Õ(d2∆−1) when ζ ≤
Õ(∆/

√
d), which is independent of the total number of

Algorithm 2 SupLinUCB
Input: Regularization λ, confidence radius β(·)

1: Initialize Cl
0 = ∅ for all l ∈ [⌈log(K)⌉]

2: for k = 1, 2, · · ·K do
3: Set D1

k = Dk and l = 1
4: repeat
5: Set Ul

k = λI+
∑

i∈Cl
k−1

xix
⊤
i

6: Set θl
k = (Ul

k)
−1
∑

i∈Cl
k−1

rixi

7: Set rlk(x) = x⊤θl
k + β(l) ∥x∥(Ul

k)
−1

8: Select action xl
k = argmaxx∈Dl

k
rlk(x)

9: if maxx∈Dl
k
∥x∥(Ul

k)
−1 ≥ 2−l then

10: Choose xk = argmaxx∈Dl
k
∥x∥(Ul

k)
−1

11: Update Cl
k = Cl

k−1 ∪ {k}
12: Keep Cl′

k = Cl′

k−1 for all l′ ̸= l

13: else if k ≤ 4ld then
14: Choose xk = xl

k

15: Keep Cl′

k = Cl′

k−1 for all l′ ≥ 1
16: else
17: Set Dl+1

k according to (5.1)
18: Increase l = l + 1
19: end if
20: until xk is chosen
21: Take action xk and receive reward rk
22: end for

rounds K. Note that in Algorithm 2, the choices of λ and βl

do not depend on the sub-optimality gaps ∆ and misspecifi-
cation level ζ.

Remark 5.3. When ζ ≥ ∆/
√
d, it is hard to provide a

gap-dependent regret bound due to the large misspecifi-
cation level ζ. However, a gap-independent regret bound
of Õ(

√
dK +

√
dζK log(K)) is proved in Takemura et al.

(2021), which suggests the performance of SupLinUCB al-
gorithm will not significantly decrease when the condition
on misspecification does not hold.

Remark 5.4. Comparing the constant factors of DS-OFUL
(Algorithm 1) and SupLinUCB (Algorithm 2) on the domi-
nating terms Õ(β2d/∆), one can find that the constant fac-
tors of SupLinUCB is significantly larger than DS-OFUL.
This is because it takes more samples to learn the first l∆−1
levels in SupLinUCB while DS-OFUL directly learns the
l∆-th level. Therefore, despite having the same order of
constant regret bound (in big-O notation), one can expect
that SupLinUCB has a worse performance than DS-OFUL
(when ∆ is known or can be estimated by grid search).

5.3. Key Proof Techniques

Here we provide additional proof techniques besides the
techniques discussed in Section 4.3. First of all, Lem-
mas 4.5 and 4.6, which are built on a single level selected
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by ∥x∥U−1
k

≥ Γ, can be generalized to the following lem-
mas for all levels l. The detailed proof are deferred to
Appendix D.

Lemma 5.5. Set λ = B−2, for any k ∈ [K] and l > 0,
|Cl

k| ≤ 16d4lι1(l), where ι1(l) = log
(
3LB2l

)
.

Lemma 5.6. Set λ = B−2. For any level l > 0, for any
δ > 0, with probability at least 1 − δ, for all k ∈ [K], the
prediction error is bounded by

∣∣x⊤(θl
k − θ∗)

∣∣ ≤ (1 +R
√
2dι2(l) + ζ

√∣∣Cl
k

∣∣) ∥x∥(Ul
k)

−1 ,

for all x such that ∥x∥2 ≤ L, where ι2(l) = log((d +
|Cl

k|L2B2)/(dδ)).

The following two proof techniques are crucial to prove
constant regret bound of Algorithm 2.

Optimal arm is never eliminated Considering the opti-
mal arm in the eliminated set, which is defined by xl,∗

k =

argmaxx∈Dl
r(x). Obviously x1,∗

k = x∗
k. The following

(informal) lemma says that the decision set always contains
a nearly optimal action xl,∗

k :

Lemma 5.7 (informal). For any level l > 0, assume some
good events hold, then there exists xl,∗

k ∈ Dl
k, such that

r(x∗
k)−r(xl,∗

k ) ≤ 2(l−1)ζ
(
1 + 4

√
dι1(l)

)
where ι1(l) =

log
(
3LB2l

)
.

Given the result of Lemma 5.7 and the existence of the sub-
optimality gap ∆, we have xl,∗

k = x∗
k when l is not too large.

This means that the optimal arm is never eliminated from
the decision set Dl.

Sub-optimal arms are all eliminated Intuitively speak-
ing, at level l, the prediction error is bounded by Õ(β(l) ·
2−l) with some additional misspecification term ζ. There-
fore, when we eliminate the arms at level l, the sub-
optimality of the arms in Dl is bounded by the following
(informal) lemma:

Lemma 5.8 (informal). For any level l > 0, for any arm
x ∈ Dl

k, r(x∗
k)− r(x) ≤ 6β(l)2−l + 2lζ

(
1 + 4

√
dι1(l)

)
where ι1(l) = log

(
3LB2l

)
.

Given Lemma 5.8, we know that when l is sufficiently large
(e.g., larger than l∆), all x ∈ Dl

k enjoys a sub-optimality less
than ∆. Combining with the existence of sub-optimality gap
∆, we know that all of the sub-optimal arms are eliminated
after level l∆.

Regret decomposition Given Lemma 5.5 and Lemma 5.8,
the regret over all K rounds can be decomposed into

Regret(K) =

K∑
k=1

(r(x∗
k)− r(xk))

=
∑
l≥1

∑
k∈Cl

K

(r(x∗
k)− r(xk))

=

l∆∑
l=1

∑
k∈Cl

K

(r(x∗
k)− r(xk)) ,

where the last equality is due to the fact that no regret occurs
after l > l∆. For each level l ≤ l∆, the summation of the
instantaneous regret within k ∈ Cl

K can be bounded follow-
ing the gap-dependent regret bound of Abbasi-Yadkori et al.
(2011) to obtain a Õ(d2 log |Cl

K |/∆) regret bound which
is independent from K. Then taking the summation over
l ≤ l∆ yields the claimed constant regret bound.

6. Lower Bound
Following a similar idea in Lattimore et al. (2020), we prove
a gap-dependent lower bound for misspecified stochastic
linear bandits. Note that stochastic linear bandit can be seen
as a special case of linear contextual bandits with a fixed
decision set Dk = D across all round k ∈ [K]. Similar re-
sults and proof can be found in Du et al. (2019) for episodic
reinforcement learning.

Theorem 6.1 (Lower Bound). Given the dimension d
and the number of arms |D|, for any ∆ ≤ 1 and ζ ≥
3∆
√
8 log(|D|)/(d− 1), there exists a set of stochastic lin-

ear bandit problems Θ with minimal sub-optimality gap
∆ and misspecification error level ζ, such that for any al-
gorithm that has a sublinear expected regret bound for all
θ ∈ Θ, i.e., E[Regretθ(K)] ≤ CKα with C > 0 and
0 ≤ α < 1, we have

• When K ≤ O(|D|), the expected regret is lower bounded
by Eθ∼Unif.(Θ)[Regretθ(K)] ≥ K∆.

• When K ≥ Ω(|D|), the expected regret is lower bounded
by supθ∈Θ E[Regretθ(K)] ≥ Ω̃(|D| log(K)∆−1).

Remark 6.2. Theorem 6.1 shows two regimes under the
case ζ ≥ Ω̃(∆/

√
d). In the first regime K ≤ O(|D|)

where the decision set is large (e.g., |D| = d100), any al-
gorithm will suffer from a linear regret Õ(∆K), which
suggests that the regime cannot be efficiently learnable.
In the second regime K ≥ Ω(|D|), Theorem 6.1 sug-
gests an Ω̃(|D|∆−1 log(K)) regret lower bound, which is
matched by the multi-armed bandit algorithm with an upper
bound Õ(|D|∆−1 log(K)) (Lattimore & Szepesvári, 2020).
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Therefore, in this easier regime, linear function approxima-
tion cannot provide any performance improvement and one
can simply adopt the multi-armed bandit algorithm to learn
the bandit model.

Remark 6.3. Theorems 4.1 and 6.1 provide a holistic pic-
ture about the role of misspecification in linear contex-
tual bandits. Here we focus on the more difficult regime
K ≤ |D|. In the regime K ≤ |D|, when ζ ≤ Õ(∆/

√
d),

Theorem 4.1 suggests that the bandit problem is efficiently
learnable, and our algorithm DS-OFUL can achieve a con-
stant regret, which improves upon the logarithmic regret
bound in the well-specified setting (Abbasi-Yadkori et al.,
2011). On the other hand, when ζ ≥ Ω̃(∆/

√
d), Theo-

rem 6.1 provides a linear regret lower bound suggesting that
the bandit model can not be efficiently learned.

7. Experiments
To verify the performance improvement by data selection
using the UCB bonus in Algorithm 1 and the effectiveness
of the parameter-free algorithm Algorithm 2, we conduct
experiments for bandit tasks on both synthetic and real-
world datasets, which we will describe in detail below.

7.1. Synthetic Dataset

The synthetic dataset is composed as follows: we set d = 16
and generate parameter θ∗ ∼ N (0, Id) and contextual
vectors {xi}Ni=1 ∼ N (0, Id) where N = 100. The gen-
erated parameter and vectors are later normalized to be
∥θ∗∥2 = ∥xi∥2 = 1. The reward function is calculated by
ri = ⟨θ∗,xi⟩+ηi where ηi ∼ Unif{−ζ, ζ}. The contextual
vectors and reward function is fixed after generated. The
random noise on the receiving rewards εt are sampled from
the standard normal distribution.

We set the misspecification level ζ = 0.02 and verified that
the sub-optimality gap over the N contextual vectors ∆ ≈
0.18. We do a grid search for β = {1, 3, 10}, λ = {1, 3, 10}
3 and report the cumulative regret of Algorithm 1 with dif-
ferent parameter Γ = {0, 0.02, 0.05, 0.08, 0.18} over 8 in-
dependent trials with total rounds K = 10000. It is obvious
that when Γ = 0, our algorithm degrades to the standard
OFUL algorithm (Abbasi-Yadkori et al., 2011) which uses
data from all rounds into regression.

Besides the OFUL algorithm, we also compare with the
algorithm (LSW) in Equation (6) of Lattimore et al. (2020)
and the RLB in Ghosh et al. (2017) in Figure 1 and Table 1.
For Lattimore et al. (2020), the estimated reward is up-
dated by r(x) = x⊤θk+β∥x∥U−1

k
+ε
∑k

s=1 |x⊤U−1
k x−1

s |.
However, since the time complexity of the LSW al-

3By “grid search”, we tune the parameter (β, λ) =
(1, 1), (1, 3), · · · , (10, 3), (10, 10) and see their results.
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Figure 1. Cumulative regret comparison of DS-OFUL (with dif-
ference choices of Γ), SupLinUCB, Lattimore et al. (2020) and
Robust Linear Bandit Ghosh et al. (2017) over 10000 rounds. Re-
sults are averaged over 8 replicates.

gorithm is Õ(K2) due to the hardness of calculating
ε
∑k

s=1 |x⊤U−1
k x−1

s | incrementally w.r.t. k. In our setting
it takes more than 7 hours for 10000 rounds.

For the RLB algorithm in Ghosh et al. (2017), we did the
hypothesis test for k = 10 rounds and then decided whether
to use OFUL or multi-armed UCB. The results show that
both LSW and RLB achieve a worse regret than OFUL since
in our setting ζ is relatively small.

The result is shown in Figure 1 and the average cumula-
tive regret on the last round is reported in Table 1 with
its variance over 8 trials. We can see that by setting
Γ ≈ ∆/

√
d ≈ 0.18/

√
16 ≈ 0.05, Algorithm 1 can achieve

less cumulative regret compared with OFUL (Γ = 0). The
algorithm with a proper choice of Γ also convergences to
zero instantaneous regret faster than OFUL. It is also evi-
dent that a too large Γ = 0.18 ≈ ∆ will cause the algorithm
to fail to learn the contextual vectors and induce a linear
regret. Also, our algorithm shows that using a larger Γ can
significantly boost the speed of the algorithm by reducing
the number of regressions needed in the algorithm.

Besides the performance improvement achieved by Algo-
rithm 1, the experiments also demonstrates the effectiveness
of Algorithm 2. As Table 1 suggests, SupLinUCB achieves
a zero cumulative regret over the last 1000 steps. However,
as discussed in Remark 5.4, the total regret of SupLinUCB
is much higher than the DS-OFUL and OFUL since it takes
more samples to learn the first l∆ − 1 levels which is not
used by DS-OFUL. This constant larger sample complexity
could also be verified by a longer elapsed time for executing
the SubLinUCB comparing to DS-OFUL.

7.2. Real-world Dataset

To demonstrate that the proposed algorithm can be eas-
ily applied to modern machine learning tasks, we carried

7
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Table 1. Averaged cumulative regret and elapsed time of DS-OFUL over 8 runs. The bold face value indicates the best (low regret or low
elapsed time) for all the algorithm configurations

Algorithm Configuration, (Γ) Regret (mean±std.) Regret in last 1k steps Elapsed Time(sec)

OFUL (Abbasi-Yadkori et al., 2011), Γ = 0 405.4± 76.5 4.94 15.06
DS-OFUL (Algorithm 1), Γ = 0.02 326.5± 68.0 0.0 8.59
DS-OFUL (Algorithm 1), Γ = 0.05 235.75± 40.3 0.0 6.30
DS-OFUL (Algorithm 1), Γ = 0.08 411.6± 566.7 22.44 5.97
DS-OFUL (Algorithm 1), Γ = 0.13 1789.5± 1918.8 173.67 5.56

Eq. (6) in Lattimore et al. (2020) 433.36± 64 1.79 ≥ 7 hrs.
Robust Linear Bandit (Ghosh et al., 2017) 831.5± 880.4 42.58 12.85

SupLinUCB (Algorithm 2) 747.9± 329.5 0.0 31.86
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Figure 2. Cumulative regret of DS-OFUL on the Asirra dataset
over 1M rounds with different Γ under misspecification level ζ =
0.01. Results are averaged over 8 runs. The cumulative regret of
DS-OFUL (as well as OFUL) can be read from the y-axis on the
left. The cumulative regret of SupLinUCB algorithm can be read
from the y-axis on the right.

out experiments on the Asirra dataset (Elson et al., 2007).
The task of agent is to distinguish the image of cats from
the image of dogs. At each round k, the agent receives
the feature vector ϕ1,k ∈ R512 of a cat image and an-
other feature vector ϕ2,k ∈ R512 of a dog image. Both
feature vectors are generated using ResNet-18 (He et al.,
2016) pretrained on ImageNet (Deng et al., 2009). We nor-
malize ∥ϕ1,k∥2 = ∥ϕ2,k∥2 = 1. The agent is required
to select the cat from these two vectors. It receives re-
ward rt = 1 if it selects the correct feature vector, and re-
ceives rt = 0 otherwise. It is trivial that the sub-optimality
gap of this task is ∆ = 1. To better demonstrate the in-
fluence of misspecification on the performance of the al-
gorithm, we only select the data with |ϕ⊤

i θ
∗ − ri| ≤ ζ

with ri = 1 if it is a cat and ri = 0 otherwise. θ∗ is
a pretrained parameter on the whole dataset using linear
regression θ∗ = argminθ

∑N
i=1(ϕ

⊤
i θ − ri)

2, which the
agent does not know. For hyper-parameter tuning, we select
β = {0.1, 0.3, 1} and λ = {1, 3, 10} by doing a grid search

4 and repeat the experiments for 8 times over 1M rounds
for each parameter configuration. As shown in Figure 2,
when ζ = 0.01, setting Γ = 0.05 ≈ ∆/

√
d will eventually

have a better performance comapred with OFUL algorithm
(setting Γ = 0). On the other hand, the SupLinUCB al-
gorithm (Algorithm 2) will suffer from a much higher, but
constant regret bound, which is well aligned with our the-
oretical result especially Remark 5.4. We skip the Robust
Linear Bandit (Ghosh et al., 2017) algorithm since it is for
stochastic linear bandit with fixed contextual features for
each arm while here the contextual features are sampled and
not fixed. The LSW (Equation (6) in Lattimore et al. (2020)
is skipped due to the infeasible executing time.

As a sensitivity analysis, we also set ζ = {0.5, 0.1, 0.05}
to test the impact of misspecification on the performance
of algorithm choices of Γ. More experiment configurations
and results are deferred to Appendix A.

8. Conclusion and Future Work
We study the misspecified linear contextual bandit from a
gap-dependent perceptive. We propose an algorithm and
show that if the misspecification level ζ ≤ Õ(∆/

√
d), the

proposed algorithm, DS-ODUL, can achieve the same gap-
dependent regret bound as in the well-specified case. Along
with Lattimore et al. (2020); Du et al. (2019), we provide a
complete picture on the interplay between misspecification
and sub-optimality gap, in which ∆/

√
d plays an important

role on the phase transition of ζ to decide if the bandit model
can be efficiently learned.

Besides the aforementioned constant regret result, DS-
OFUL algorithm requires the knowledge of sub-optimality
ap ∆. We prove that the SupLinUCB algorithm (Chu et al.,
2011) can be viewed as a multi-level version of our algo-
rithm and can also achieve a constant regret with our fine-
grained analysis without the knowledge of ∆. Experiments

4By “grid search”, we tune the parameter (β, λ) =
(0.1, 1), (0.1, 3), · · · , (1, 3), (1, 10) and see their results.
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are conducted to demonstrate the performance of the DS-
OFUL algorithm and verify the effectiveness of SupLinUCB
algorithm.

The promising result suggests a few interesting directions
for future research. For example, it would be interesting to
incorporate the Lipschitz continuity or smoothness proper-
ties of the reward function to derive fine-grained results.
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A. Experiment Details and Additional Results
A.1. Experiment Configuration

Table 2. The number of remaining data samples after data processing
with expected misspecification level

ζ # of cats # of dogs

∞ (without preprocessing) 12500 12500
0.5 (linear separable) 10316 10511

0.1 3182 3248
0.05 2408 2442
0.01 1886 1905

The experiment on synthetic dataset is conducted on
Google Colab with a 2-core Intel® Xeon® CPU @
2.20GHz. The experiment on the real-world Asirra
dataset (Elson et al., 2007) is conducted on an AWS p2-
xlarge instance.

A.2. Data Preprocessing for the Asirra Dataset

To demonstrate how our algorithm can deal with differ-
ent levels of misspecification, we do data preprocessing
before feeding the data into the agent. As described in
Section 7.2, the remaining data with expected misspeci-
fication level ζ are shown in Table 2. It can be verified
that even with the smallest misspecification level, there
are still more than 10% of the data is selected.

A.3. Additional Result on the Asirra Dataset

As a sensitivity analysis, we change the misspecification level in the preprocessing part in the Asirra dataset. The result is
shown in Figure 3. This result suggests that when the misspecification is small enough, setting Γ = ∆/

√
d can deliver a

reasonable result and SupLinUCB Chu et al. (2011) can achieve a constant regret bound when ζ ≤ 0.1. It is aligned with the
parameter setting in our Theorem 4.1 and the result in our Theorem 5.1. Meanwhile, we found that when ζ = 0.5, which
means it is strictly larger than the threshold ∆/

√
d, the algorithm cannot achieve a similar performance with of ζ < 0.1,

regardless of the setting of parameter Γ. This also verifies the theoretical understanding of how a large misspecification level
will harm the performance of the algorithm.
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(b) ζ = 0.1
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Figure 3. The performance of DS-OFUL under different misspecification levels ζ. Results are averaged over 8 runs, with standard errors
shown as shaded areas.

B. Detailed Proof of Theorem 4.1
In this section, we provide detailed proof for Theorem 4.1. First, we present a technical lemma to bound the total number of
data used in the online linear regression in Algorithm 1.

Lemma B.1 (Restatement of Lemma 4.5). Given 0 < Γ ≤ 1, set λ = B−2. For any k ∈ [K], |Ck| ≤
16dΓ−2 log(3LBΓ−1).

Lemma B.1 suggests that up to Õ(dΓ−2) contextual vectors have a UCB bonus greater than Γ. A similar result is also
provided in He et al. (2021b), suggesting an Õ(Γ−2) Uniform-PAC sample complexity. Lemma B.1 also suggests that the
numbers of data points added into the regression set C is finite. Thus, the impact of the noise and the misspecification on the
linear regression estimator can be well-controlled.
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For a linear regression with up to |Ck| data points, the next lemma controls the prediction error under misspecification.

Lemma B.2 (Formal statement of Lemma 4.6). Let λ = B−2. For all δ > 0, with probability at least 1 − δ, for all
x ∈ Rd, k ∈ [K], the prediction error is bounded by:

|x⊤(θk − θ∗)| ≤
(
1 +R

√
2dι+ ζ

√
|Ck|
)
∥x∥U−1

k
,

where ι = log((d+ |Ck|L2B2)/(dδ)) and |Ck| is the total number of data used in regression at the k-th round.

Lemma B.2 provides a similar confidence bound as the well-specified linear contextual bandits algorithms like OFUL (Abbasi-
Yadkori et al., 2011). Comparing the confidence radius here Õ(R

√
d+ ζ

√
|Ck−1|) with the conventional radius in OFUL

Õ(R
√
d), one can find that there is an additional term ζ

√
|Ck| that is caused by the misspecification. If we directly use

all data to do the regression, the resulting confidence radius will be in the order of Õ(
√
K) and therefore will lead to a

O(K
√
logK) regret bound (see Lemma 11 in Abbasi-Yadkori et al. (2011)). This makes the regret bound vacuous. In our

algorithm, however, the confidence radius is only
√
|Ck| where |Ck| is bounded by Lemma B.1. As a result, our regret bound

will not be vacuous (i.e., superlinear in K).

When the misspecification level is well bounded by ζ = Õ(∆/
√
d), the following corollary is a direct result of Lemmas B.2

by replacing the term |Ck| with its upper bound provided in Lemma B.1.

Corollary B.3. Suppose 2
√
dζι1 ≤ ∆, let λ = B−2 and 0 < Γ ≤ 1. Let β = 1 + 2∆Γ−1√ι2/ι1 + R

√
2dι3 where

ι2 = log(3LBΓ−1), ι3 = log((1 + 16L2B2Γ−2ι2)/δ), then with probability at least 1 − δ, for all x ∈ Rd, k ∈ [K], the
estimation error for all k ∈ [K] is bounded by: |x⊤(θk − θ∗)| ≤ β∥x∥U−1

k
.

Proof. By Lemma B.1, replacing |Ck| with its upper bound yields

|x⊤(θk − θ∗)| ≤ (1 + 4
√
dζΓ−1√ι2 +R

√
2dι3)∥x∥U−1

k
≤ β∥x∥U−1

k
,

where the second inequality is due to the condition 2
√
dζ ≤ ∆/ι1.

Next we introduce an auxiliary lemma controlling the instantaneous regret bound using the UCB bonus and the misspecifica-
tion level.

Lemma B.4 (Formal statement of Lemma 4.7). Suppose Corollary B.3 holds, for all k ∈ [K], the instantaneous regret at
round k is bounded by

∆k(xk) = r∗k − r(xk) ≤ 2ζ + 2β∥xk∥U−1
k
.

The next technical lemma from He et al. (2021a) bounds the summation of a subset of the bonuses.

Lemma B.5 (Lemma 6.6, He et al. 2021a). For any subset G = {c1, · · · , ci} ⊆ CK , we have∑
k∈G

∥xk∥2U−1
k

≤ 2d log(1 + |G|L2/λ).

The next auxiliary lemma is used to control the dominating terms.

Lemma B.6. Let ι1 = (24 + 18R) log((72 + 54R)LB
√
d∆−1) +

√
8R2 log(1/δ), Γ = ∆/(2

√
dι1), ι2 =

log(3LBΓ−1), ι3 = log((1 + 16L2B2Γ−2ι2)/δ), we have ι1 > 2 + 4
√
ι2 +R

√
2ι3.

Equipped with these lemmas, we can start the proof of Theorem 4.1.

Proof of Theorem 4.1. First, note that by setting Γ = ∆/(2
√
dι1), the confidence radius β becomes 1 + 4

√
dι2 +R

√
2dι3.

Then our proof starts by assuming that Corollary B.3 holds with probability at least 1− δ. We decompose the index set [K]
into two subsets. The first set is the set of not selected data [K] \ CK , and the second set is the set of selected data CK . We
will bound the cumulative regret within these two sets separately.

12
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First, for those non-selected data k /∈ Ck, i.e. ∥xk∥U−1
k

< Γ, combining Lemma B.4 with Corollary B.3 yields

r∗k − r(xk) < 2ζ + 2βΓ = 2ζ +
∆√
dι1

+

√
2ι3R∆

ι1
+

4∆
√
ι2

ι1
, (B.1)

where ι1, ι2, ι3 are the same as Theorem 4.1, and the equality is due to Γ = ∆/(2
√
dι1). When misspecification condition

2
√
dζ ≤ ∆/ι1 holds, (B.1) suggests that

r∗k − r(xk) <
2∆√
dι1

+
4∆

√
ι2

ι1
+

√
2ι3R∆

ι1
. (B.2)

Lemma B.6 suggests that when ι1 = (24+ 18R) log((72+ 54R)LB
√
d∆−1)+

√
8R2 log(1/δ) ι1 > 2+ 4

√
ι2 +R

√
2ι3,

(B.2) yields that the instantaneous regret r∗k − r(xk) < ∆ at round k. By Definition 3.1, the instantaneous regret is zero for
all k /∈ Ck, indicating the non-selected data incur zero instantaneous regret.

In addition, Lemma B.4 suggests that the instantaneous regret for those k ∈ CK is bounded by∑
k∈CK

r∗k − r(xk) ≤
∑
k∈CK

(
2β∥ϕk∥U−1

k
+ 2ζ

)
≤ 2β

√
|CK |

√∑
k∈CK

∥ϕk∥2U−1
k

+ 2|CK |ζ

≤ 8βΓ−1
√

dι2
√
2d log(1 + 16dΓ−2ι2) + 32ζdΓ−2ι2

≤ 16β
√

2d3ι2 log(1 + 16dΓ−2ι2)ι1/∆+ 64
√
d3ι1ι2/∆

≤ 32β
√

2d3ι2 log(1 + 16dΓ−2ι2)ι1/∆, (B.3)

where the second inequality follows the Cauchy-Schwarz inequality, the third one yields from Lemma B.5 while the fourth
utilizes the fact that Γ = ∆/(2

√
dι1) and ζ ≤ ∆/(2

√
dι1). The last one is due to the fact that the second term in the fourth

inequality is dominated by the first one.

To warp up, the cumulative regret can be decomposed by

Regret(K) =
∑
k/∈CK

(r∗k − r(xk)) +
∑
k∈CK

(r∗k − r(xk)) ≤ 0 +
32β

√
2d3ι2 log(1 + 16dΓ−2ι2)ι1

∆
,

where the first two zeros are given by the fact that for k /∈ CK , we have r∗k − r(xk) = 0. the regret bound for k ∈ G is given
by (B.3).

C. Proof of Technical Lemmas in Appendix B
C.1. Proof of Lemma B.1

To prove this lemma, we introduce the well-known elliptical potential lemma (Abbasi-Yadkori et al., 2011)

Lemma C.1 (Lemma 11, Abbasi-Yadkori et al. 2011). Let {ϕi}Ii=1 be a sequence in Rd, define Ui = λI+
∑i

j=1 ϕjϕ
⊤
j ,

then

I∑
i=1

min
{
1, ∥ϕi∥2U−1

i−1

}
≤ 2d log

(
λd+ IL2

λd

)
.

The following auxiliary lemma and its corollary are useful

Lemma C.2 (Lemma A.2, Shalev-Shwartz & Ben-David 2014). Let a ≥ 1 and b > 0. Then x ≥ 4a log(2a) + 2b yields
x ≥ a log(x) + b.

Lemma C.2 can easily indicate the following lemma.

13
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Lemma C.3. Let a ≥ 1. Then x ≥ 4 log(2a) + a−1 yields x ≥ log(1 + ax).

Proof. Let y = 1+ ax, x = (y − 1)/a. Then x ≥ 4 log(2a) + a−1 is equivalent with y ≥ 4a log(2a) + 2. By Lemma C.2,
this implies y ≥ a log(y) + 1 which is exactly x ≥ log(1 + ax).

Equipped with these technical lemmas, we can start our proof.

Proof of Lemma B.1. Since the cardinality of set Ck is monotonically increasing w.r.t. k, we fix k to be K in the proof
and only provide the bound of CK . For all selected data k ∈ CK , we have ∥ϕk∥U−1

k
≥ Γ. Therefore, when Γ ≤ 1, the

summation of the bonuses over data k ∈ CK is lower bounded by∑
k∈CK

min
{
1, ∥ϕk∥2U−1

k

}
≥ |CK |min{1,Γ2} = |CK |Γ2. (C.1)

On the other hand, Lemma C.1 implies

∑
k∈CK

min
{
1, ∥ϕk∥2U−1

k

}
≤ 2d log

(
λd+ |CK |L2

λd

)
. (C.2)

Combining (C.2) and (C.1), the total number of the selected data points |CK | is bounded by

Γ2|CK | ≤ 2d log

(
λd+ |CK |L2

λd

)
.

This result can be re-organized as

Γ2|CK |
2d

≤ log

(
1 +

2L2

Γ2λ

Γ2|CK |
2d

)
. (C.3)

Let λ = B−2 and since 2L2B2 ≥ 2 ≥ Γ2, by Lemma C.3, if

Γ2|CK |
2d

> 4 log

(
4L2B2

Γ2

)
+ 1 ≥ 4 log

(
4L2B2

Γ2

)
+

Γ2

2L2B2
,

then (C.3) will not hold. Thus the necessary condition for (C.3) to hold is

Γ2|CK |
2d

≤ 4 log

(
4L2B2

Γ2

)
+ 1 = 8 log

(
2LB

Γ

)
+ log(e) = 8 log

(
2LBe

1
8

Γ

)
< 8 log

(
3LB

Γ

)
.

By basic calculus we get the claimed bound for |CK | and complete the proof.

C.2. Proof of Lemma B.2

The proof follows the standard technique for linear bandits, we first introduce the self-normalized bound for vector-valued
martingales from Abbasi-Yadkori et al. (2011).

Lemma C.4 (Theorem 1, Abbasi-Yadkori et al. 2011). Let {Ft}∞t=0 be a filtration. Let {εt}∞t=1 be a real-valued stochastic
process such that εt is Ft-measurable and εt is conditionally R-sub-Gaussian for some R ≥ 0. Let {ϕt}∞t=1 be an Rd-valued
stochastic process such that ϕt is Ft−1 measurable and ∥ϕ∥2 ≤ L for all t. For any t ≥ 0, define Ut = λI+

∑t
k=1 ϕkϕk.

Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0∥∥∥∥∥
t∑

k=1

ϕkεk

∥∥∥∥∥
2

U−1
t

≤ 2R2 log

( √
det(Ut)√
det(U0)δ

)
.

14



On the Interplay Between Misspecification and Sub-optimality Gap in Linear Contextual Bandits

Lemma C.5 (Lemma 8, Zanette et al. 2020). Let {ai}di=1 be any sequence of vectors in Rd and {bi}di=1 be any sequence of
scalars such that |bi| ≤ ζ. For any λ > 0: ∥∥∥∥∥

n∑
i=1

aibi

∥∥∥∥∥
2

[
∑n

i=1 aia⊤
i +λI]

−1

≤ nζ2.

The next lemma is to bound the perturbation of the misspecification

Lemma C.6. Let {ηk}k be any sequence of scalars such that |ηk| ≤ ζ for any k ∈ [K]. For any index subset C ⊆ [K],
define U = λI+

∑
k∈C xkx

⊤
k , then for any x ∈ Rd, we have∣∣∣∣x⊤U−1

∑
k∈C

xkηk

∣∣∣∣ ≤ ζ
√

|C|∥x∥U−1 .

Proof. By Cauchy-Schwartz inequality we have∣∣∣∣∣x⊤U−1
∑
k∈C

xkηk

∣∣∣∣∣ ≤ ∥x∥U−1

∥∥∥∥∥∑
k∈C

xkηk

∥∥∥∥∥
U−1

≤ ζ
√
|C|∥x∥U−1 ,

where the second inequality dues to lemma C.5.

The next lemma is the Determinant-Trace inequality.

Lemma C.7. Suppose sequence {xk}Kk=1 ⊂ Rd and for any k ∈ [K], ∥xk∥2 ≤ L. For any index subset C ⊆ [K], define
U = λI+

∑
k∈C xkx

⊤
k for some λ > 0, then det(U) ≤ (λ+ |C|L2/d)d.

Proof. The proof of this lemma is almost the same as Lemma 10 in Abbasi-Yadkori et al. (2011) by replacing the index set
[K] with any subset C. We refer the readers to Abbasi-Yadkori et al. (2011) for details.

Equipped with these lemmas, we can start our proof.

Proof of Lemma B.2. For any k ∈ [K], considering the data samples k′ ∈ Ck−1 used for regression at round k. Following
the update rule of Uk and θk yields

Uk(θk − θ∗) = UkU
−1
k

( ∑
k′∈Ck−1

xk′rk′

)
−
(
λI+

∑
k′∈Ck−1

xk′x⊤
k′

)
θ∗

=
∑

k′∈Ck−1

xk′rk′ − λθ∗ −
∑

k′∈Ck−1

xk′x⊤
k′θ∗

= −λθ∗ +
∑

k′∈Ck−1

xk′(rk′ − x⊤
k′θ∗)

= −λθ∗ +
∑

k′∈Ck−1

xk′εk′ +
∑

k′∈Ck−1

xk′ηk′ ,

where the first equation is due to the fact that Uk = λI +
∑

k′∈Ck−1
xkx

⊤
k and θk = U−1

k

∑
k′∈Ck−1

xk′rk′ . The last
equation follows the fact that rk′ is generated from rk′ = r(xk′) + εk′ = x⊤

k′θ∗ + η(xk′) + εk′ , where we denote η(xk′) as
ηk′ for the model misspecification error and εk′ is the random noise. Therefore, consider any contextual vector x ∈ Rd, we
have ∣∣x⊤(θk − θ∗)

∣∣ = ∣∣x⊤U−1
k Uk(θk − θ∗)

∣∣
≤ λ

∣∣x⊤U−1
k θ∗∣∣︸ ︷︷ ︸

q1

+

∣∣∣∣x⊤U−1
k

∑
k′∈Ck−1

ϕk′εk′

∣∣∣∣︸ ︷︷ ︸
q2

+

∣∣∣∣x⊤U−1
k

∑
k′∈Ck−1

ϕk′ηk′

∣∣∣∣︸ ︷︷ ︸
q3

,
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where the inequality is due to the triangle inequality. Lemma C.6 yields q3 ≤ ζ
√

|Ck−1|∥x∥U−1
k

. From the fact that
|x⊤Ay| ≤ ∥x∥A∥y∥A, we can bound term q1 by

q1 ≤ ∥x∥U−1
k
∥θ∗∥U−1

k
≤ λ−1/2B∥x∥U−1

k
. (C.4)

where the last inequality is due to the fact that U−1
k ⪯ λ−1I. Term q2 is also bounded as

q2 ≤ ∥x∥U−1
k

∥∥∥∥∥ ∑
k′∈Ck−1

xk′εk′

∥∥∥∥∥
U−1

k

= ∥x∥U−1
k

∥∥∥∥∥
K∑

k′=1

1 [k′ ∈ Ck−1]xk′εk′

∥∥∥∥∥
U−1

k︸ ︷︷ ︸
I1

, (C.5)

where the second equation uses the indicator function to rewrite the summation over subset Ck−1. Denoting yk′ =
1 [k′ ∈ Ck−1]xk′ , noticing that ∥yk′∥2 ≤ ∥xk′∥2 ≤ L and

Uk =
∑

k′∈Ck−1

xk′x⊤
k′ =

K∑
k′=1

1 [k′ ∈ Ck−1]xk′x⊤
k′ =

K∑
k′=1

yk′y⊤
k′ ,

by Lemma C.4, I1 can be further bounded by

I1 ≤

√√√√2R2 log

( √
det(Uk)√
det(U0)δ

)
≤ R

√
2 log

(
det(Uk)

det(U0)δ

)
= R

√
2 log

(
det(Uk)

λdδ

)
, (C.6)

where the second inequality follows the fact that det(Uk) ≥ det(U0) = λd. Notice that Uk = λI +
∑

k′∈Ck−1
xk′x⊤

k′ .
Lemma C.7 suggests that det(Uk) ≤ (λ+ |Ck−1|L2/d)d, plugging this into (C.6), we obtain

I1 ≤ R

√
2 log

(
(λ+ |Ck−1|L2/d)d

λdδ

)
≤ R

√
2d log

(
dλ+ |Ck−1|L2

dλδ

)
.

Plugging the bound of I1 into (C.5) and combining with (C.4) and Lemma C.6 together, replacing |Ck−1| with its upper
bound |CK | we have with probability at least 1− δ, for all k ∈ [K],x ∈ Rd,

|x⊤(θk − θ∗)| ≤

(
R

√
2d log

(
dλ+ |CK |L2

dλδ

)
+Bλ−1/2 + ζ

√
|CK |

)
∥ϕ∥U−1

k
.

Letting λ = B−2 we get the claimed results.

C.3. Proof of Lemma B.4

Proof. According to the definition of expected reward function r(x), we have for all k ∈ [K], suppose the condition in
Lemma B.2 holds, then

r∗k − rk = η(x∗
k)− η(xk) + (x∗

k)
⊤
θ∗ − x⊤

k θ
∗

≤ 2ζ + (x∗
k)

⊤
θ∗ − x⊤

k θ
∗

= 2ζ + (x∗
k)

⊤
θk + (x∗

k)
⊤
(θ∗ − θk)− x⊤

k θk + x⊤
k (θk − θ∗)

≤ 2ζ + (x∗
k)

⊤
θk + β∥x∗

k∥U−1
k

− x⊤
k θk + β∥xk∥U−1

k

≤ 2ζ + x⊤
k θk + β∥xk∥U−1

k
− x⊤

k θk + β∥xk∥U−1
k

≤ 2ζ + 2β∥xk∥U−1
k
,

where the first inequality utilize the fact that |η(x)| ≤ ζ for all x ∈ Dk, the second inequality follows from Corollary B.3, the
third inequality is due to the fact that xk = argmaxx∈Dk

x⊤θk+β∥x∥U−1
k

, which is executed in Line 6 of Algorithm 1.
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C.4. Proof of Lemma B.6

Proof. First it is clear to see that
√
2ι3 =

√
2 log(1 + 16L2B2Γ−2ι2) + 2 log(1/δ). Using the fact that

√
a+ b ≤

√
a+

√
b,

it can be further bounded by

√
2ι3 ≤

√
2 log(1 + 16L2B2Γ−2ι2) +

√
2 log(1/δ).

Assuming L ≥ 1, B ≥ 1,Γ = ∆/(2
√
dι1) ≤ 1 yields LBΓ−1 ≥ 1, then by basic calculus one can verify that

2 + 4
√
ι2 ≤ 6 log(3LBΓ−1),

√
2 log(1 + 16L2B2Γ−2ι2) ≤ 3 log(3LBΓ−1),

therefore we have that

2 + 4
√
ι2 +R

√
2ι3 ≤ (6 + 3R) log(3LBΓ−1) +

√
2 log(1/δ)R

= (6 + 3R) log(6LB
√
d∆−1ι1) +

√
2 log(1/δ)R,

where the last equality is from the fact that Γ = ∆/(2
√
dι1). Lemma C.2 suggests that the necessary condition for

(6LB
√
d∆−1)ι1︸ ︷︷ ︸
x

≥ (6LB
√
d∆−1)(6 + 3R)︸ ︷︷ ︸

a

log(6LB
√
d∆−1ι1) + (6LB

√
d∆−1)

√
2 log(1/δ)R︸ ︷︷ ︸

b

(C.7)

is that

(6LB
√
d∆−1)ι1 ≥ 4(6LB

√
d∆−1)(6 + 3R) log(2(6LB

√
d∆−1)(6 + 3R))

+ 2(6LB
√
d∆−1)

√
2 log(1/δ)R,

which suggests that setting

ι1 = (24 + 18R) log((72 + 54R)LB
√
d∆−1) +

√
8R2 log(1/δ)

implies the fact that ι1 ≥ 2 + 4
√
ι2 +R

√
2ι3

D. Detailed Proof of Theorem 5.1
The first lemma shows that the contexts selected to l-th level are bounded independent from K

Lemma D.1 (Restatement of Lemma 5.5). Set λ = B−2. For any k ∈ [K] and l > 0, |Cl
k| ≤ 16d4lι1(l) where

ι1(l) = log
(
3LB2l

)
.

Proof. The proof is similar to the proof of Lemma B.1 by repalcing Γ = 2−l.

The next lemma provides a fluctuation control as well as the concentration in the ridge regression

Lemma D.2 (Restatement of Lemma 5.6). Set λ = B−2. For any level l > 0, for any δ > 0, with probability at least 1− δ,
for all k ∈ [K], the estimation error is bounded by

∣∣x⊤(θl
k − θ∗)

∣∣ ≤ (1 +R
√

2dι2(l) + ζ
√∣∣Cl

k

∣∣) ∥x∥(Ul
k)

−1 ,

for all x such that ∥x∥2 ≤ L, where ι2(l) = log((d+ |Cl
k|L2B2)/(dδ)).

Proof. The proof is similar to the proof of Lemma B.2

Combining Lemma D.1 and Lemma D.2, we have the following corollary.
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Corollary D.3. Set λ = B−2. For any δ > 0, with probability at least 1− δ, for all round k ∈ [K] and any level l > 0, the
prediction error is bounded by ∣∣x⊤(θl

k − θ∗)
∣∣ ≤ (β(l) + 4ζ2l

√
dι1(l)

)
∥x∥(Ul

k)
−1 ,

for all x such that ∥x∥2 ≤ L, where β(l) = 1 + R
√

2dι2(l), ι2(l) = log((d2l + 16L2B28lι1(l))/(dδ)), and ι1(l) =
log
(
3LB2l

)
.

Proof. The proof is simply by plugging the result in Lemma D.1 into Lemma D.2 and replacing the δ with δ/2l. By the
union bound over l ∈ N+ and the fact that

∑∞
l=1 δ/2

l = δ yields the claimed result.

Now, we are about to control Dl
k, which means here we only consider the case where ∥x∥(Ul

k)
−1 ≤ 2−l for all x ∈ Dl

k and
assuming the high-probability event in previous subsection always holds. The following lemma suggests that the decision
set always keeps a nearly optimal action xl,∗

k . Let GK be the event that the high probability statement in Corollary D.3 holds.

Lemma D.4 (Formal statement of Lemma 5.7). For any level l > 0, assume event GK holds, then there exists xl,∗
k ∈ Dl

k,

r(x∗
k)− r(xl,∗

k ) ≤ 2(l − 1)ζ
(
1 + 4

√
dι1(l)

)
where ι1(l) = log

(
3LB2l

)
.

Proof. We would prove the statement by induction. Since D1
k = Dk, we have x∗

k ∈ D1
k and thus the induction basis holds

according to r(x∗
k)− r(xl,∗

k ) = 0. Now we assume the statement holds for level l, that is, there exists xl,∗
k ∈ Dl

k such that

xl,∗
k ∈ Dl

k, r(x∗
k)− r(xl,∗

k ) ≤ 2(l − 1)ζ
(
1 + 4

√
dι1(l)

)
.

If xl,∗
k ∈ Dl+1

k , then the desired statement directly holds by choosing xl,∗
k = xl−1,∗

k . Otherwise xl,∗
k is eliminated by some

action xl+1,∗
k ∈ Dl

k that rlk(x
l+1,∗
k ) ≥ rlk(x

l,∗
k ) + 2β(l)2−l. Moreover, from the definition of estimator rlk(·), we have

rlk(x
l+1,∗
k )− r(xl+1,∗

k ) ≤ ζ +
〈
xl+1,∗
k , θlk − θ∗

〉
+ β(l)

∥∥∥xl+1,∗
k

∥∥∥
(Ul

k)
−1

(D.1)

and

r(xl,∗
k )− rlk(x

l,∗
k ) ≤ ζ −

〈
xl,∗
k , θlk − θ∗

〉
− β(l)

∥∥∥xl,∗
k

∥∥∥
(Ul

k)
−1

. (D.2)

Combining (D.1) and (D.2) and the fact that rlk(x
l+1,∗
k ) ≥ rlk(x

l,∗
k ) + 3β(l)2−l gives that

r(xl,∗
k )− r(xl+1,∗

k ) ≤ −3β(l)2−l + 2ζ +
〈
xl+1,∗
k − xl,∗

k , θlk − θ∗
〉
− β(l)

∥∥∥xl+1,∗
k

∥∥∥
(Ul

k)
−1

+ β(l)
∥∥∥xl,∗

k

∥∥∥
(Ul

k)
−1

≤ −3β(l)2−l + 2ζ + 2 · 2−l
(
β(l) + 4ζ2l

√
dι1(l)

)
+ β(l)2−l

≤ 2ζ
(
1 + 4

√
dι1(l)

)
,

where the second inequality is suggested by Corollary D.3 and ∥x∥(Ul
k)

−1 ≤ 2−l for all x ∈ Dl
k. The desired statement can

then be reached using the induction hypothesis.

Then, the following lemma suggests that the performance of the actions in the decision set is guaranteed.

Lemma D.5 (Formal statement of Lemma 5.8). For any level l > 0, assume event GK holds, then for any action x ∈ Dl
k,

r(x∗
k)− r(x) ≤ 6β(l)2−l + 2lζ

(
1 + 4

√
dι1(l)

)
where ι1(l) = log

(
3LB2l

)
.

Proof. Let xl,∗
k ∈ Dl

k be the optimal action given in Lemma D.4. According to the elimination process, for any action
x ∈ Dl

k, it holds that rlk(x) ≥ rlk(x
l,∗
k )− 3β(l)2−l. Moreover, from the definition of estimator rlk(·), we have

rlk(x)− r(x) ≤ ζ +
〈
x, θlk − θ∗

〉
+ β(l) ∥x∥(Ul

k)
−1
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and

r(xl,∗
k )− rlk(x

l,∗
k ) ≤ ζ −

〈
xl,∗
k , θlk − θ∗

〉
− β(l)

∥∥∥xl,∗
k

∥∥∥
(Ul

k)
−1

.

Combining the above three inequalities give

r(xl,∗
k )− r(x) ≤ 3β(l)2−l + 2ζ + 2−l +

〈
x− xl,∗

k , θlk − θ∗
〉
− β(l)

∥∥∥xl,∗
k

∥∥∥
(Ul

k)
−1

+ β(l)
∥∥∥xl−1,∗

k

∥∥∥
(Ul

k)
−1

≤ 3β(l)2−l + 2ζ + 2 · 2−l
(
β(l) + 4ζ2l

√
dι1(l)

)
+ β(l)2−l

≤ 6β(l)2−l + 2ζ
(
1 + 4

√
dι1(l)

)
,

where the second inequality is suggested by Corollary D.3 and ∥x∥(Ul
k)

−1 ≤ 2−l for all x ∈ Dl
k. The desired statement can

then be reached by combining Lemma D.4.

Proof of Theorem 5.1. Consider the case that event GK holds. Let l∆ be the smallest integer solution to l∆ >
log(8β(l∆)∆

−1). Note this relation ensures 4β(l∆)2
−l∆ < ∆/2. In case that the misspecification level is bounded

by 2l∆ζ
(
1 + 4

√
dι1(l∆)

)
< ∆/2, it holds that 6β(l∆)2−l∆ + 2l∆ζ

(
1 + 4

√
dι1(l∆)

)
< ∆. According to Lemma D.5,

it satisfies that
r(x∗

k)− r(x) ≤ 6β(l∆)2
−l∆ + 2l∆ζ

(
1 + 4

√
dι1(l∆)

)
for any x ∈ Dl∆

k . According to the process of arm elimination, we have Dl
k ⊆ Dl∆

k for any l ≥ l∆. Thus, it holds that
r(x∗

k)− r(x) < ∆ for any x ∈ Dl
k, l ≥ l∆. Note that according to the definition of ∆, we have r(x∗

k)− r(x) > ∆ for all
x ∈ Dl

k that r(x∗
k) ̸= r(x). These two statements together restrict r(x∗

k) = r(x) for any x ∈ Dl
k on every l > l∆, that is,

any action that remains in the decision sets on higher levels are optimal. Let U l
K be the set of index k that action xk is

chosen from layer l. We have |U l
K | ≤ |Cl

K |+ 4ld. Thus, we could decompose the total regret by

Regret(K) =
∑
l≥1

∑
k∈Ul

K

(r(x∗
k)− r(x)) =

l∆−1∑
l=1

∑
k∈Ul

K

(r(x∗
k)− r(x))

≤
l∆−1∑
l=1

(|Cl
K |+ 4ld) ·

(
6β(l)2−l + 2lζ

(
1 + 4

√
dι1(l)

))
≤

l∆−1∑
l=1

16d4lι1(l) ·
(
6β(l)2−l + 2lζ

(
1 + 4

√
dι1(l)

))
≤ 96d

l∆−1∑
l=1

β(l)2lι1(l) + 32dζ

l∆−1∑
l=1

l4lι1(l)
(
1 + 4

√
dι1(l)

)
≤ 96dβ(l∆)2

l∆ι1(l∆) + 32dl∆4
l∆ι1(l∆)ζ

(
1 + 4

√
dι1(l∆)

)
≤ 1536dβ2(l∆)ι1(l∆)/∆+ 8192dβ2(l∆)ι1(l∆)/∆

≤ 214dβ2(l∆)ι1(l∆)/∆

where the second equality is given by Lemma D.5, the second inequality is given by Lemma D.1, the third last inequality
holds since β(·) and ι1(·) are monotone increase and the second inequality since 2l∆−1 ≤ 8β(l∆ − 1)∆−1 ≤ 8β(l∆)∆

−1

and 2l∆ζ
(
1 + 4

√
dι1(l∆)

)
< ∆/2.

E. Proof of Theorem 6.1
To begin with, we introduce the lemma providing a sparse vector set in Rd.
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Lemma E.1 (Lemma 3.1, Lattimore et al. 2020). For any ε > 0 and d < [|D|] such that d ≥ ⌈8 log(|D|)ε−2⌉, there exists a
vector set D ⊂ Rd such that ∥x∥2 = 1 for all x ∈ D and | ⟨x,y⟩ | ≤ ε for all x,y ∈ D and x ̸= y.

Next, we present the Bretagnolle–Huber inequality providing the lower bound to distinguish a system.

Lemma E.2 (Bretagnolle–Huber inequality). Let P and Q be probability measures on the same measurable space (Ω,F),
let A ∈ F be an arbitary event. Then

P (A) +Q(Ac) ≥ 1

2
exp(−KL(P,Q)).

For stochastic linear bandit problem with finite arm, we can denote Ti(k) as the number of rounds the algorithm visit the
i-th arm over total k rounds. Then We have the KL-divergence decomposition lemma.

Lemma E.3 (Lemma 15.1, Lattimore & Szepesvári (2020)). Let ν = (P1, · · · , Pn) be the reward distributions associated
with one n-armed bandit and let ν′ = (P ′

1, · · · , P ′
n) be another n-armed bandit. Fix some algorithm π and let Pν =

Pνπ,Pν′ = Pν′,π be the probability measures on the canonical bandit model induced by the k-round interconnection of π
and ν (respectively, π and ν′). Then KL(Pν ,Pν′) =

∑n
i=1 Eν [Ti(n)]KL(Pi, P

′
i )

Proof of Theorem 6.1. The proof starts from inheriting the idea from Lattimore et al. (2020). Given dimension d and the
number of arms |D|, setting ε =

√
8 log(|D|)/(d− 1), we can provide the contextual vector set D such that

∥x∥2 = 1,∀x ∈ D, | ⟨x,y⟩ | ≤
√

8 log(|D|)
d− 1

,∀x,y ∈ D,x ̸= y,

For simplicity, we index the decision set as x1, · · · ,x|D|. Given the minimal sub-optimality gap ∆, we provide the parameter
set Θ as follows:

Θ =
{
θ(i,j) = ∆xi + 2∆xj ,xi,xj ∈ D, i ̸= j

}⋃
{θi = ∆xi,xi ∈ D}.

It can be verified that Θ contains two kinds of θ. The first one θ(i,j) is a mixture of two different contexts xi,xj with
different strength ∆ and 2∆. The second one is θi which only contains features from one context xi. We can further verify
that the size of |Θ| = |D|2 and ∥θ∥2 ≤

√
5∆ for θ ∈ Θ. For different parameter θ, the reward function is sampled from a

Gaussian distribution N (rθ(x), 1), where the expected reward function is defined as

rθ(i,j)
(x) =


2∆ if x = xj

∆ if x = xi

0 otherwise
, rθi

(x) =

{
∆ if x = xi

0 otherwise
.

We can verify that the minimal sub-optimality of all these bandit problem is ∆. For different parameter θ and input x, by
utilizing the sparsity of the set D (i.e. |x⊤y| ≤ ε if x ̸= y), we can verify the misspecification level as

|rθ(i,j)
(x)− θ⊤

(i,j)x| =


|2∆− 2∆x⊤

j x−∆x⊤
i x| ≤ ∆ε if x = xj

|∆− 2∆x⊤
j x−∆x⊤

i x| ≤ 2∆ϵ if x = xi

|0− 2∆x⊤
j x−∆x⊤

i x| ≤ 3∆ε otherwise

|rθi
(x)− θ⊤

i (x)| =

{
|∆−∆x⊤

i x| = 0 if x = xi

|0−∆x⊤
i x| ≤ ∆ε otherwise.

Therefore we have verified that the misspecification level is bounded by ζ = 3∆ε.

The provided bandit structure is hard for any linear algorithm to learn since any algorithm cannot get any information
before it encounters non-zero expected rewards, even regardless of the noise of the rewards. We following the same method
in Lattimore & Szepesvári (2020). If the algorithm choose arm i at the first round, there would be |D| parameters (i.e.
θi,θ(i,·) receiving a non-zero expected reward. On the second round if the algorithm choose a different arm j, there would
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be |D| parameters (i.e. θj ,θ(j,k:k ̸=i) receiving a non-zero expected reward. Therefore the average time of receiving zero
expected reward should be

|D|−2

|D|∑
i=1

(i− 1)(|D| − i+ 1) = |D|−2

|D|−1∑
i=0

i(|D| − i)

= |D|−2

|D|
|D|−1∑
i=0

i−
|D|−1∑
i=0

i2


= |D|−2

(
|D|2(|D| − 1)

2
− |D|(|D| − 1)(2|D| − 1)

6

)
=

|D| − 1

2

(
1− 2|D| − 1

3|D|

)
≥ |D| − 1

6
,

where the third equation is from the fact that
∑n

i=1 i = n(n+1)/2 and
∑n

i=1 i
2 = n(n+1)(2n+1)/6. The last inequality

is from the fact that 2|D| − 1)/(3|D|) ≤ 2/3. Therefore, even without of the random noise, any algorithm is expected to
receive min{K, (|D| − 1)/6} uninformative data with expected reward to be zero. Therefore any algorithm will receive a
∆min{K, (|D| − 1)/6} regret considers the suboptimality as ∆.

Next, we consider the effect of random noise. For any algorithm running on this parameter set Θ, we find two parameter θi
and θi,j where j ̸= i. Define the event as A = {Tj(k) ≥ k/2} and Ac = {Tj(k) < k/2}. By Lemma E.2 and Lemma E.3,

Pθi

(
Tj(k) ≥

k

2

)
+ Pθ(i,j)

(
Tj(k) <

k

2

)
≥ 1

2
exp(−KL(Pθi

,Pθ(i,j)
))

≥ 1

2
exp

(
−
∑
n∈D

Eθi [Tn(k)]KL
(
Pθ(i,j),n,Pθj ,n

))
. (E.1)

Noticing the minimal sub-optimality gap is ∆. Also the j-th arm is the sub-optimal arm for parameter θi. Therefore, once
Tj(k) ≥ k/2, the algorithm will at least suffer from ∆k/2 regret for parameter θi. Also, since the j-th arm is the optimal
arm for bandit θ(i,j). If Tj(k) < k/2, the algorithm will also at least suffer from ∆k/2 regret for θ(i,j). Denoting Rθ(k) as
the expected cumulative regret over k rounds, that is to say

Rθi
(k) ≥ ∆k

2
Pθi

(Tj(k) ≥ k/2) Rθj
(k) ≥ ∆k

2
Pθi

(Tj(k) < k/2). (E.2)

On the other hand since the bandit using θi and θj only differ in the j-th arm. Since standard Gaussian noise is adapted,
KL(Pθi,n,Pθ(i,j),n) = ∆2 1[n = j]/2. Combining this with (E.2), (E.1) suggests that

Rθi
(k) +Rθj

(k) ≥ ∆k

2
exp

(
−∆2

2
Eθi

[Tj(k)]

)
,

which suggests that

Eθi
[Tj(k)] ≥

log(∆k)− log 2− log(Rθi
(k) +Rθj

(k))

∆2/2
, (E.3)

For any algorithm seeking to get a sublinear expected regret bound of Rθ(k) ≤ Ckα with C > 0, 0 ≤ α < 1 for all θ ∈ Θ,
(E.3) becomes

Eθi
[Tj(k)] ≥

log(∆k)− log 2− log(2Ckα)

∆2/2
=

log(∆k)− log(4C)− α log k

∆2/2
. (E.4)
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Since that the regret on θi can be decomposed by

Rθi
(k) = ∆

|D|∑
n=1,n̸=i

Tn(k), (E.5)

combining (E.5) with (E.4) yields

Rθi
(k) ≥ 2(|D| − 1)

∆
max {log(∆k)− log(4C)− α log k, 0} ,

where the max operator is trivially taken for Rθ(k) ≥ 0.
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