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ABSTRACT

The interaction process of comprehending user-specific nuances and adapting to
their preferences represents a pivotal consideration for Persona Large Language
Models, as it more authentically mirrors genuine dialogue dynamics than adherence
to general human value alignment. In this paper, we conceptualize this “Interact to
Persona Alignment” challenge as a Partially Observable Markov Decision Process,
abbreviated as Persona Alignment MDP (PAMDP), wherein the user’s dynamically
evolving profile through interaction is treated as an unobservable variable to the
assistant. Grounded in this formulation, we propose a dual-critic reinforcement
learning framework, with a continuous latent space action representing the assis-
tant’s utterance. We evaluate our approach on both offline datasets and the online
simulator, ultimately demonstrating its effectiveness.

1 INTRODUCTION

The alignment of large language models (LLMs) with human value preferences is typically achieved
through post-training alignment techniques, particularly supervised fine-tuning (SFT) and reinforce-
ment learning from human feedback (RLHF) Ouyang et al. (2022), are commonly implemented as
standard approaches in the field. These methods aim to optimize models to satisfy general human
preferences, including criteria such as helpfulness, harmlessness, and honesty. However, human
preferences exhibit significant heterogeneity across different user groups and individuals. Moreover,
even for a single user, preferences may demonstrate subtle variations depending on contextual factors.
The single reward model in RLHF overlooks the rich diversity of human preferences inherent in
data collected from multiple users, which leads to the inability of LLMs to align with user-specific
preferences Wu et al. (2023). As Chakraborty et al. theoretically and empirically demonstrates, the
conventional RLHF approach with a monolithic reward mechanism cannot adequately capture the
full spectrum of diverse human preferences. This limitation underscores the need for more nuanced
alignment frameworks capable of accommodating preference variability.

To enhance personalization, user-specific data—such as profiles, interaction histories, and behavioral
patterns—are utilized to generate responses that align with individual preferences and contextual
needs Liu et al. (2025); Li et al. (2025). This adaptive approach ensures greater relevance and
customization in model outputs. However, obtaining sufficient user-specific data for personalization
remains nontrivial due to privacy restrictions and the inherent sensitivity of personal behavioral data.
Wu et al. propose training LLMs to align with individual preferences through interactions. To achieve
this goal, they establish distinct user personas and multi-turn preference data to fine-tune LLMs,
enabling it to explicitly infer user preferences during interaction and generate personalized responses.
As the conversation goes deeper, the alignment level is expected to improve iteratively with each
conversational turn.

If the higher personalized alignment level is regarded as the long-term goal, the multi-turn interaction
can be formulated as a decision-making process and optimized by reinforcement learning (RL). As
the interaction with the user deepens, the assistant dynamically refines its understanding of user
characteristics, thereby optimizing alignment with individual user traits over time.

In this paper, we model personalized multi-turn interactions as a Partially Observable Markov
Decision Process (POMDP) Kaelbling et al. (1998), where user profile or implicit preferences are
treated as unobservable environmental context and the dialogue agent acts as the decision-making
entity. We denote this framework as the Persona Alignment Markov Decision Process (PAMDP).
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Unobservable context is typically hidden during deployment but revealed during training. Drawing
inspiration from the adoption of an offline learning and online execution paradigm in POMDP settings
Baisero & Amato (2022); Li et al. (2024a), we explore an asymmetric actor-critic framework, where
the actor takes observation as input and the critic takes all observable and unobservable information
as input, to better adapt to user profile or implicit preferences during deployment. Specifically, we
perform an iterative decomposition of the observable state, profile and action variables and derive the
Bellman equation for the PAMDP. Based on this formulation, we further establish the advantage value
function in the form of a dual-critic mechanism, where an observation state based value function and
an unobservable state conditional value function are estimated for advantage value, which is proven
an unbiased estimate of observation state based value while maintaining exploitation of unobservable
information during training. In summary, our contributions as follows:

• We introduce the notation of the PAMDP, derive the Bellman equation for the PAMDP (Theorem
1) to further estimate the advantage value (Theorem 2), and address the PAMDP in the way of dual
critic (Section 3). To the best of our knowledge, this is the first work to propose PAMDP and from a
new perspective address personalized alignment.

• We theoretically prove that our dual-critic formulation yields an unbiased estimate for the advantage
function while maintaining exploitation of unobservable information during training (Theorem 3).

• We conduct extensive experiments to evaluate the effectiveness of our dual-critic method. Experi-
ments on offline and online settings demonstrate that our dual-critic method is effective in adapting
user profile or implicit preferences during deployment (Section 4).

2 METHODOLOGY

... ...
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Figure 1: Probability graph for the “Persona Inter-
action Process”. At step i, conditioned on the ob-
servable state (or dialogue history in the interaction
setting) hi, the assistant formulates its response ui.
Subsequently, the environment (the user), leverag-
ing both hi and ui and the unobservable profile
content ωi, executes a state transition, advancing
the state to hi+1, while providing a feedback re-
ward ri in accordance with the assistant’s response.

In this paper, we delve into the “Interact to
Persona Alignment” problem, wherein iterative
dialogue interactions progressively refine and
augment user’s profile, culminating in highly
personalized responses that resonate with the
user’s intrinsic preferences and behavioral pat-
terns. Formally, the dialogue is initiated with a
primordial user profile or implicit preferences
(simply referred to as “profile” in the following
text), denoted as ω0 = ωinit (can be empty as
well), and the user’s query as q0. Concurrently,
the assistant acquires an initial dialogue history,
subject to the equation that h0 = q0, and gener-
ates a response, i.e., u0, conditioned on this state.
At interaction timestep t, the dialogue history is
formalized as the sequence ht = (q0, u0, ..., qt),
where qi and ui correspond to utterances of the
user and assistant, separately. During this phase,
the dialogue dynamically updates the user pro-
file representation to ωt (a comprehensive ex-
ample of the dynamic characteristics of the user profile can be found in Tables 8 and 9 in Section
E), notably, it is generally assumed that the profile information remains unobservable to the
assistant’s decision-making across the full interaction cycle, necessitating that the assistant learns
an optimal interaction policy through feedback of the user. Leveraging this strategy, the assistant
synthesizes an adaptive utterance ut, optimized for perceived user-specificity through discourse-aware
personalization.

POMDP: A Partially Observable Markov Decision Process is denoted as a tuple
(S,H,U ,Ω,D(ω)), where Ω is the unobservable variable (reflecting the profile or environment
context in this paper), and D(.) represents a context based dynamics:

D(ω) = (p(.|so, ω, u), r(so, ω, u))
s.t. (so, ω, u) ∈ (So,Ω,U), S = So ∪ Ω. (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

S means the state space, consisting of both observable and unobservable components, that is: So and
Ω. H and U denote the realizable history and action spaces. Generally, the agent would incorporate
the history to derive an optimal policy, i.e., π(u|h ∈ H).

The POMDP can be effectively solved employing an Advantage Actor-Critic (A2C) model Konda &
Tsitsiklis (1999); Mnih et al. (2016), wherein the advantage is estimated by the temporal-difference
(TD) Sutton (1988); Cai et al. (2019):

A = r(so, ω, u) + γV (h′)− V (h). (2)

Asymmetric A2C: Asymmetric A2C method introduces state value estimator conditioned on both
the history and the unobservable variable, i.e., V (h, ω), and is integrated via a linear combination
operation with V (h) mentioned in Equation 2:

Aasy = β(r(so, ω, u) + γV (h′, ω′)− V (h, ω)) + (1− β)(r(so, ω, u) + γV (h′)− V (h))

s.t. β ∈ (0, 1]. (3)

If β = 1, the method is named Unbiased Asymmetric Actor-Critic (UAAC) Baisero & Amato (2022);
otherwise, it constitutes a Dual Critic Reinforcement Learning (DCRL) framework Li et al. (2024a)
(seeing in Section 5).

Definition: We formulate the challenge of personalization with interaction as a POMDP problem,
denoted as Persona Alignment MDP (PAMDP), where the assistant acts as the agent, and the user
profile serves as an unobservable environment context. The dialogue history, i.e., hi, is treated as the
observable part of the state, which implies h = so in the dialogue setting. The assistant response ui

(= (u1
i , ..., u

k
i ), where uk

i denotes the k th token in the response) constitutes the action. Thus, the
environment primarily consists of the user which drives the state transition, and its profile information
operates as a critical latent factor driving interaction dynamics, while remaining unobservable to
the assistant. Additionally, the reward is determined based on the context and the action taken. Our
objective is to optimize the assistant’s policy model to maximize the expected return over the dialogue
trajectory, formally expressed as:

π∗ = max
π

(Eω∈Ω,π(

T∑
t=0

γtr(ht = h, ωt = ω, ut = u))). (4)

It is imperative to highlight that, as previously established, given h = so within our conversational
framework, all so-dependent variables in the original POMDP can be reformulated as functions
parameterized by h. Details are displayed in Table 1.

Table 1: Variables Comparison between original
POMDP and our PAMDP setting.

Name POMDP PAMDP

reward function r(so, ω, u)
1 r(h, ω, u)

partial state value V (h) V (h)
full state value V (h, so, ω) V (h, ω)
partial action value Q(h, u) Q(h, u)
full action value Q(h, so, ω, u) Q(h, ω, u)
policy function π(u|h) π(u|h)
state transition p(s′o|so, ω, u) p(h′|h, ω, u)

Generally, the design of reward func-
tion should be meticulously architected to
guide the assistant’s learning paradigm to-
ward an optimal dialogue strategy, which
should progressively elicit and assimilate
richer user profile information, thereby
systematically mitigating epistemic uncer-
tainty about user preferences and character-
istics. As a consequence, through iterative
interaction, the assistant refines its belief
distribution over user profile, ultimately
converging to responses that exhibit pre-
cise personalization alignment.

Remark 1: Given that the user profile is inherently unobservable, the assistant can only infer a
plausible profile, i.e., ct, based on dialogue history—which, however, does not equate to the true
underlying profile (ct = I(ht) ̸= ωt). This fundamental partial observability precludes any reduction
of the PAMDP to a conventional MDP formulation.

1Referring to Equation 1, the complete state comprises both the observable part and the unobservable, hence
we delineate so and ω in lieu of s.
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Theorem 1. Based on the “Persona Interaction Process” in Figure 1, we perform an iterative
decomposition of the observable state, profile, and action variables, thereby deriving the Bellman
equation for the PAMDP:

V (h) =
∑

p(ω|h)

V (h,ω)︷ ︸︸ ︷∑
π(u|h)(r(h, ω, u) + γ

∑
p(h′|h, ω, u)V (h′)︸ ︷︷ ︸

Q(h,ω,u)

) . (5)

In this formulation, V (h) refers to the Markovian state-value function, V (h, ω) defines the profile
conditional value, while Q(h, ω, u) characterizes the action-value (derived from both the observable
state and unobservable profile information). h′ denotes the observable state (or the history) at the
next step after executing the action u, expressed as h′ = h⊕ u⊕ q′ (with q′ being the user’s next
response).

Theorem 2. The advantage value in the PAMDP framework can be estimated in a dual-critic
formulation (still in a TD error manner), comprising a state-based value function V (s) and a context
conditional value V (s, ω).

Â ≜ δ(h, ω, u) = r(h, ω, u) + γV (h′)− V (h, ω), (6)

where the first term captures the Markovian dynamics of the environment, and the latter quantifies the
profile-induced bias. Â signifies that it serves as an estimator for the advantage function in original
symmetric actor-critic framework within POMDP.

Theorem 3. The aforementioned dual-critic formulation yields an unbiased estimate for the ad-
vantage function, i.e., A in Equation 2, thereby achieving lower bias in advantage value estimation
compared to the Asymmetric A2C methods in Equation 3.

Proof. The expectation value of Â conditioned on ω is expressed as:

Eω|h[Â−A] = Eω|h[(r(h, ω, u) + γV (h′)− V (h, ω))− (r(h, ω, u) + γV (h′)− V (h))]

= Eω|h[V (h, ω))− V (h)] = 0, (7)

which guarantees an unbiased estimator for A. Nevertheless, the bias for Asymmetric A2C method
value is derived as:

Eω|h[Aasy −A] = Eω|h[βγV (h′, ω′)− βV (h, ω)− (βγV (h′)− βV (h))]

= Eω|h[βγ(V (h′, ω′)− V (h′))]− Eω|h[β(V (h, ω)− V (h))]

= βγ(V (h′, ω′)− V (h′)) ̸= 0. (8)

Remark 2: To summarize, within our PAMDP framework, the policy gradient can be formally
derived as:

∇θJ (θ) = E[δ(h, ω, u)∇θ log πθ(u|h)]. (9)

3 PROPOSED MODEL

In the previous section, we treat the assistant’s response, i.e., ui, as the action. However, in practical
implementations, given the variability in token counts and the vast token space of the response,
we adapt a continuous action representation while maintaining compliance with the PAMDP (as is
demonstrated in Figure 2). Additionally, similar to Li et al. (2024b), we introduce a dual-critic model
to compute the advantage value in Equation 6, thereby employing the A2C algorithm to optimize the
policy model and derive an improved action distribution.

4
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Figure 2: The main framework of our proposed model. Within the Interaction Flow, the Actor
processes the observable partial state (or the dialogue history ht) to generate an action, subsequently
decoded into an assistant response ut. The Environment module emits an instantaneous reward rt and
orchestrates the state transition ht+1. By iterating this procedure, dialogue trajectories are aggregated.
The Dual-Critic module conducts value estimation over both the partial and full states, ultimately
enabling Actor optimization through policy gradient method.

Actor: The policy model, i.e., π(u|h), is approximately formulated as u = F(qθ(a|h)), where
a denotes a continuous action representation derived from the encoding of the dialogue history h.
Drawing inspirations from Hao et al. (2024); Li et al. (2024c), we employ a pre-trained LLM to
encode h and extract its hidden states. The action representation a is then obtained through further
dimensionality reduction. Concretely:

qθ(a|h) = H(h)×A1; s.t. A1 ∈ Rd×da , (10)

where H(.) denotes the hidden state operation with dimensionality d, and da represents the action
dimension, subject to the constraint that da ≪ d. The function F(.) serves to reinstate the action
vector to the LLM’s native hidden dimension, subsequently injecting it as an embedding input to the
LLM. This conditioned input strategically guides the LLM’s autoregressive generation process to
produce contextually coherent responses.

u = F(a) = D(a×A2) = p((u1, ..., uk)|a×A2); s.t. A2 ∈ Rda×d, (11)

where D(.) is the autoregressive decoding process for the LLM. Notably, in the action acquisition
process, we provide only the dialogue history without the contextual information ω. As highlighted
in Remark 1 of Section 2, this design intentionally compels the policy model to infer contextual cues
through interaction, while the ground-truth context remains unobservable to the policy model during
training. Building upon the aforementioned model design, the loss function of the policy model can
be derived from the policy gradient in Equation 9 and formulated as:

la = −E[δ(h, ω, u) log qθ(a|h)] + λKL(qθ(a|h))||qb(a|h))), (12)

where qb(.) refers to the action distribution of the initial policy model (being initialized through
behavior cloning to ensure that the final output utterance after action mapping is more coherent;
details can be found in Section 4.1). We employ KL divergence minimization to prevent excessive
divergence in the distribution after RL training.

Dual-Critic: Referring to Equation 6, we introduce a dual-critic architecture to separately estimate
the partial state value and the full state value, that is, Vϕ(h) and Vξ(h, ω). The former takes

5
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Table 2: Evaluation results on ALOE and PrefEval Datasets. We leverage Qwen2.5-72B-Instruct to
benchmark each method’s responses against the Vanilla outputs, determining their win-rates, i.e., rω .

Methods
Qwen2.5-7b Llama3-8b

ALOE PrefEval ALOE PrefEval

win. loss. rω win. loss. rω win. loss. rω win. loss. rω

Prompt 1906 1727 0.0467 54 43 0.1122 1981 1645 0.0877 48 35 0.1326
PEFT - - - 51 42 0.0918 - - - 58 39 0.1939
FPFT 2005 1716 0.0755 50 40 0.1020 2087 1726 0.0942 54 40 0.1429
CoT 2041 1696 0.0901 51 38 0.1326 2119 1708 0.1073 56 41 0.1531

BC 2069 1759 0.0809 62 33 0.296 2281 1536 0.1945 64 32 0.3265
Ours 2115 1714 0.1046 70 27 0.439 2422 1399 0.2671 67 30 0.3776

the observable state, or dialogue history, as the input, while the latter additionally incorporates
environmental context, i.e., the user’s current profile or implicit preference information. Specifically:

Vϕ(h) = vm ∗ σ(H(h)×B1), Vξ(h, ω) = vm ∗ σ(H(h, ω)×B2); s.t. B1, B2 ∈ Rd×1, (13)

where H(.) is the exact LLM hidden states to Equation 10, σ(.) denotes the tanh function. B1 and
B2 map the representation vectors of partial observation and full observation, respectively, to a
scalar value, serving as an estimate of the value function. vm means the maximum state value. As a
consequence, the dual-critic model is optimized by:

lc = α1 ∗ E(||Vϕ(h))−R(h)||2) + α2 ∗ E(||Vξ(h, ω))−R(h, ω)||2)
s.t. R(h, u) = r(h, ω, u) + Vϕ(h

′)− Vϕ(h),

R(h, ω, u) = r(h, ω, u) + Vξ(h
′, ω′)− Vξ(h, ω). (14)

4 EXPERIMENTS

In this section, we conduct comparative experiments under offline and online training paradigms
to validate the efficacy of the proposed algorithm. In the offline phase, the model is trained on
pre-collected dialogue datasets. For the online implementation, we architect an LLM-powered user
simulation environment, enabling the assistant agent to progressively refine its policy model through
iterative interactions with the simulator. We carry out additional comparative experiments, ablation
studies, and case analyses, which are comprehensively discussed in Section E.

4.1 OFFLINE LEARNING

Datasets: We select ALOE Wu et al. (2024) and PrefEval Zhao et al. (2025) datasets for the offline
setting. The ALOE dataset is designed to improve LLMs’ adaptability to user-specific preferences
through multi-turn conversational interactions. It comprises 3,310 unique user personas and over
3,000 multi-turn dialogue trees, generated via a collaborative multi-LLM framework. Each node in
the tree branches into two responses (“preferred” and “rejected”), representing possible continuations
at a given turn, with a label “chosen” indicating the user’s selection. To construct dialogue histories,
we follow the path dictated by the “chosen” label (either “preferred” or “rejected”), while reference
responses are derived from the “preferred” branch to ensure alignment with high-quality interactions.
PrefEval, known as a benchmark dataset to evaluate LLMs’ ability to follow user preferences in
multi-turn conversations, contains 3,000 manually curated preference-query pairs across 20 topics,
with preferences in explicit and implicit forms. We utilize a subset of the PrefEval dataset, specifically
focusing on the Generation of Implicit Persona-Driven Preferences component. This subset provides
multi-turn dialogues suitable for our specific needs.

Baselines: We compare our proposed method with several existing baseline models (the base LLMs
adopted are Qwen2.5-7B 2 and Llama3-8B 3, details are displayed in Section B): Prompt-based

2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
3https://huggingface.co/meta-llama/Meta-Llama-3-8B
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(Prompt, user profile-aware prompt), Parameter-Efficient Fine-tuning (PEFT, with integrating user
knowledge), Full-Parameter Fine-tuning (FPFT, conducting SFT on the offline data), Chain of
Thought (CoT, conducting SFT to first infer the user profile before response generation), Behavior
Cloning (BC, conducting SFT on our proposed Actor module.)

Reward: To provide feedback signals during the RL process, we leverage offline data and employ
the Qwen2.5-72B-Instruct 4 to score each dialogue turn’s response u (reward-aware prompt is shown
in Section D). Specifically, the LLM first generates a ground-truth response, i.e., ug , conditioned on
the dialogue history h. Subsequently, the exact LLM evaluates which of the two candidate responses
is superior and more aligned with the user’s current profile. If u is deemed preferable, the reward
is set to +1; otherwise, it is assigned −1. In cases where the responses are deemed comparable, a
neutral reward of +0.5 is granted.

Evaluation Metrics: We utilize Qwen2.5-72B-Instruct (details are displayed in Section C) to
evaluate model performance on the dialogue generation task using the following formula Ji et al.
(2024):

rw =
Nw −Nl

Nw +Nl +Ne
, (15)

where rw represents the success rate, while Nw, Ne, and Nl denote the counts of wins, draws, and
losses in comparison to the same Vanilla outputs (generations from the base LLM, i.e., Qwen2.5-7B,
seeing in Section B). In this formula, draws increase the denominator, diluting the impact of wins and
losses on the final rate. However, in the traditional win-rate Nw

Nw+Nl
, draws are not factored in at all.

Main Results:

• Performance comparison among baselines: Table 2 presents the success rate of various methods
across two datasets (ALOE and PrefEval) based on the Qwen2.5-7B and Llama3-8B models. The
results demonstrate that our RL-based methods achieve the highest performance, with success rate of
0.439 (Qwen, PrefEval) and 0.3776 (Llama, PrefEval). Notably, baselines of PEFT and FPFT exhibit
competitive results, particularly for Llama on PrefEval dataset (0.1939 and 0.1429, respectively),
while prompt-based methods consistently underperform. CoT, a variant of full-parameter finetuning
augmented with chain-of-thought reasoning—consistently outperforms standard FPFT across both
datasets (e.g., +0.0306 for Qwen on PrefEval), suggesting that explicit reasoning steps enhance the
performance even in full-parameter optimization.

• Effectiveness of Behavior Cloning as initialization: BC, which leverages offline expert trajectories
to pretrain the Actor network, demonstrates strong performance—particularly for Llama (e.g. 0.1945
on ALOE and 0.3265 on PrefEval)—underscoring its value as an initialization strategy for RL-based
alignment. This suggests that warm-starting policy optimization with supervised learning provides a
robust foundation.

• Performance analysis among baselines: Figure 3 compares the performance of baseline methods on
(a) ALOE and (b) PrefEval. The blue-gray, green, and yellow segments denote wins, losses, and ties,
respectively, between methods and the vanilla model bases. Notably, prompt-based methods exhibit
significantly more ties with the vanilla model than other baselines, suggesting that while prompts
aid preference understanding, their impact on response quality is marginal, making them difficult
to distinguish in evaluation. Meanwhile, CoT outperforms standard FPFT, as its chain-of-thought
reasoning explicitly infers implicit user preferences, yielding deeper dialogue comprehension. Our
method further surpasses all baselines by introducing a latent state representation to address the
high-dimensionality of text-based action spaces. By projecting states into a compact embedding
space, we mitigate computational intractability and achieve superior performance, as reflected in the
higher success rate across both datasets.

4https://huggingface.co/Qwen/Qwen2-72B-Instruct
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(a) Evaluation result on ALOE (b) Evaluation result on PrefEval

Figure 3: Offline learning evaluation results on ALOE and PrefEval Datasets. In subfigure (a), the
left chart shows the results when selecting Qwen2.5-7B as the base LLM, while the right chart
corresponds to the results using Llama3-8B as the base LLM. The same applies to subfigure (b).

4.2 ONLINE EXPERIMENT

Being analogous to the methodology established in PPDPP Deng et al. (2024), we implement
sophisticated LLM prompt techniques, i.e., Pω, Ph and Pr in Equation 16, to simulate an adaptive
user environment. Through iterative interactions between the assistant agent and this environment,
we facilitate multi-turn dialogue progression, user profile enrichment, response quality assessment,
and policy model refinement. Specifically, the environment comprises three integrated modules:

Table 3: Average Returns with User Simulator. During evaluation
process, we set the maximum number of interaction steps to 6 and
record the returns at the end of each round, from step 1 to 6.

Methods 1 2 3 4 5 6
UAAC -0.7109 -1.2524 -1.6728 -1.9507 -2.6039 -2.8432
DCRL -0.6328 -1.1773 -1.7163 -2.3791 -3.0598 -3.1396
Ours -0.5469 -0.9516 -1.5397 -2.1063 -2.7568 -2.5222

Profile Infer module
takes the dialogue history
h as input, leveraging
an LLM to generate
context-aware user profile
descriptions. This output
subsequently guides state
transition dynamics and
reward derivation for
assistant’s response.

User Simulator serves as the executor of state transition. It leverages the complete user profile,
however selectively curate partial profile content at each dialogue turn. It then dynamically responds
to the assistant’s utterance or initiates a new topic, conditioned on the conversational history.

Reward Generator evaluates the assistant’s response against the current user profile alignment,
utilizing dialogue history and user query as contextual inputs. Its implementation adheres to the same
reward design paradigm as the offline module (seeing in Section 4.1).

EnvWrapper :

ωt =

ht+1 = ht ⊕ ut⊕
rt =

 LLM(.)


Pω(ht)

Ph(ht, ut, ωt)

Pr(ht, ut, ωt, ug)

(16)

Main Results: We sample 256 user records from the ALOE dataset, with each comprising a
user profile and its corresponding query, for online training. The user’s query serves as the initial
observable state, i.e., h0. During the evaluation phase, we extract an additional 128 user records and
employ the same interaction protocol to assess the performance of the trained policy model.

• From Table 3, it reveals that our method attains the highest accumulative return value, i.e., −2.5222
by average, in user environment interactions across evaluation samples, exceeding UAAC by 0.321
and DCRL by 0.6174 among comparative POMDP techniques. Additionally, our approach attains a
substantially elevated reward score in the initial interaction phase, i.e., +0.164 and +0.0859 against
these competing methodologies, underscoring its inherent efficacy and promising applicability in
conventional question-answering paradigms (or single-turn interaction).

• As is displayed in Figure 4, at the terminal interaction step, all methodologies demonstrated
measurable return increments, substantiating that through progressive multi-turn engagements, the
assistant successfully distills user profile characteristics. This alignment optimization consequently

8
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yields preference-aware responses that derive considerable reward feedback in the final phase. Notably,
our approach achieved superior gain amplification (0.23), evidencing its exceptional capability in
rapid persona discernment – effectively accomplishing “Interact to Persona Alignment” within fewer
interaction steps.

5 RELATED WORK

Figure 4: Reward Gain between Consecutive
Steps. We quantitatively evaluate the differ-
ential cumulative returns between adjacent
interaction steps in Table 3, which effectively
captures the immediate return increment ob-
tained in subsequent steps.

RL for Dialogue Generation: Conventional dia-
logue generation models are typically grounded in
static datasets, inducing generation deficient in adapt-
ability and personalization. The method proposed
by Li et al. (2016) highlights that RL could provide
an advanced and intelligent learning framework for
dialogue generation, enabling the dialogue system to
dynamically learn and adapt its strategy during inter-
action with the user. Consequently, it can generate
more contextually appropriate responses, in consid-
eration of user’s feedback and environmental dynam-
ics. Saleh et al. employ policy gradient to tune the
utterance-level embedding of the generation model,
offering greater flexibility for learning long-term con-
versational returns. Glaese et al. present Sparrow,
using RLHF to train models with two new additions
to help human raters judge agent behaviour, hence
reduces the risk of unsafe or inappropriate responses
generated by dialogue agents. The PPDPP Deng et al. (2024) introduces a novel dialogue policy
planning paradigm to strategize LLMs for proactive dialogue problems. It incorporates a tunable
LLM plug-in that functions as the dialogue policy planner. Li et al. treat each utterance as an action,
and train a small plan model to derive continuous action vector to control generation.

RL for POMDP: In our “Interact to Persona Alignment” setting, the user’s profile information
remains implicit and unobservable, rendering conventional dialogue RL algorithms ineffective in
processing such profile-aware optimization. POMDP is a powerful framework for decision-making
under uncertainty, i.e., the unobservable variable. It has been widely applied across domains Lauri
et al. (2022). For instance, Gupta et al. construct a POMDP model, with modeling states of both
the ego-vehicle and the pedestrians, for navigation in complex dynamic environments. Shi et al.
utilize POMDP for offline policy evaluation in high-stakes fields such as healthcare and economics.
They introduce a bridge function to connect the value of the target policy with the distribution
of observational data, and propose a “minimax” estimation method to learn it. Baisero & Amato
propose UAAC method to address the POMDP problem, where the actor is conditioned solely on
the observable state; the critic, however, operates on the full state space, enabling unbiased value
estimation and advantage computation despite partial observability. The DCRL method Li et al.
(2024a) integrates an oracle critic with complete state information and a standard critic that operates
in partially observable environments. A novel weight-matching method is to reduce learning variance
while maintaining unbiasedness.

6 CONCLUSION

This paper introduces a novel dual-critic reinforcement learning framework designed to improve the
personalized preference alignment level during interaction. We decompose the state value function,
derive the Bellman equation for PAMDP, and theoretically prove the unbiasedness of the dual-critic.
In the implementation, we employ a lightweight planner as the actor network, which is effectively
guided and optimized by the dual-critic mechanism. Experiments on offline and online settings
(offline experiments on two different LLMs across two different pre-collected datasets, and online
experiments on interactions with more than two hundred personas) demonstrate that our proposed
dual-critic framework significantly enhances the agent’s capability to generate adaptive outcomes
tailored to individual user characteristics.

9
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A TRAINING SETTINGS

All experiments are designed and executed utilizing NVIDIA A800-SXM4-80GB GPUs, with
comprehensive training specifications delineated in Table 4.

Table 4: Training Details for our experimental setting.

Parameter Description BC Offline Online
nc maximum dialogue context length, by tokens 1200 _ _
ng maximum generation response length, by tokens 128 _ _
es training epochs 3 5 5
bs training batch size 8 32 32
fa actor update frequency _ 5 5
lra learning rate for acotr 2e-5 5e-5 5e-5
lrc learning rate for critic _ 5e-4 5e-4
da action dimension 64 64 64
ckl KL loss coefficient 0.2 0.05 0.05
γ the discount factor for accumulative rewards _ 0.99 0.99
T interaction steps _ _ 6

B BASELINES

• Vanilla We utilize two widely adopted base models (Qwen2.5-7B and Llama3-8B) to generate
responses under minimal instruction. The system role is restricted to a basic directive (e.g., “answer
the user’s question using the provided dialog history and profile”), omitting any specialized fine-
tuning or supplementary guidance. This configuration yields unaltered model outputs for both the
ALOE and PrefEval datasets, establishing a foundational benchmark for comparison.

• Prompt-based This variant incorporates a structured system role with explicit directives to guide
response generation. The prompt specifies detailed objectives, including (1) inferring latent user
preferences from dialogue history, (2) aligning response content with the user’s linguistic style, (3)
avoiding preference conflicts, and (4) maintaining contextual coherence. By integrating these con-
straints, the model produces outputs that are more tailored to user-specific behaviors and consistency
requirements, while still leveraging the same base architectures (Qwen2.5-7B and Llama3-8B) for
fair comparison.

• PEFT (Parameter-Efficient Fine-tuning Han et al. (2024)) The OPPU Fine-tuning baseline
integrats parametric user knowledge through personalized PEFT modules (e.g., LoRA Hu et al.
(2022)), which encode behavior patterns via lightweight parameter updates. It augments PEFT-
derived user representations with retrieved history or generated profiles, enabling private model
ownership and robust adaptation to behavior shifts. This dual mechanism,parametric fine-tuning for
latent preference modeling and non-parametric retrieval for contextual grounding, yields state-of-
the-art performance across diverse personalization-related tasks, particularly when historical data is
sparse or misaligned with queries.

• FPFT (Full-Parameter Fine-tuning) The baseline employs comprehensive end-to-end optimiza-
tion of Qwen2.5-7B and Llama3-8B models using the LLaMA-Factory toolkit. Unlike prompt-based
methods or PEFT techniques that modify only a fraction of parameters (<1%), FPFT updates all
model weights through supervised fine-tuning on the ALOE and PrefEval datasets. Input data is rig-
orously structured into instruction-dialogue history-query-output quadruples to optimize input-output
mapping. While achieving strong performance, this method incurs significantly higher computational
costs than PEFT alternatives.

• CoT (chain of thought Wei et al. (2022)) In this setting, we augment each dialogue turn with
supplemental profile data as auxiliary annotations. The model is trained via FPFT to perform
dual objectives: first deriving latent user profiles from dialogue history through inference, then
conditioning its response generation on these extracted profile attributes.

• BC (Behavior Cloning Bain & Sammut (1999); Torabi et al. (2018)) The baseline leverages
offline data as expert trajectories, i.e., ALOE or PrefEval, to initialize our designed Actor network
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(referring to Section 3). Following the FPFT paradigm, we employ cross-entropy loss conditioned
on the ground-truth response, ug, for model optimization. Through the BC training, the Actor
generates linguistically coherent responses, effectively circumventing the suboptimal output quality
that typically arises from direct integration with the base LLM.

lbc = CE(F(qθ(a|s)), ug) (17)

C EVALUATION DETAILS

1: Evaluation-Aware Prompt

Please act as an impartial judge and evaluate the quality of the responses provided by two AI
assistants to the user question displayed below.

You will be given a user’s profile and a message that the user sent to a chatbot. You will also
be given two responses.
You should choose the assistant that follows the user’s instructions and answers the user’s
question better. Your evaluation should consider factor is how much the response is tailored
to the user’s potential preferences based on the user’s profile and personality. You should
follow the following criteria for evaluation:
1.Is the conversational style of the message tailored to the user’s personality?
2.Is the content or topic relevant to the user’s profile?
3.Is the response human-like, engaging, and concise?
Begin your evaluation by comparing the two responses and provide a short explanation. Avoid
any position biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective as possible.

After providing your explanation, output your final verdict by strictly following this for-
mat: [̈[A]]ïf assistant A is better, [̈[B]]ïf assistant B is better, and [̈[C]]f̈or a tie. [Dia-
logue History]{history}[The End of Dialogue History][User Question]{query}[User Pro-
file]{profile}[The End of User Profile][User Personality]{personality}[The End of User
Personality][The Start of Assistant A’s Answer]{answer A}[The End of Assistant A’s An-
swer][The Start of Assistant B’s Answer]{answer B}[The End of Assistant B’s Answer]"

D USER ENVIRONMENT DESIGN FOR ONLINE LEARNING

2: Profile-Infer-Aware Prompt

***Task***
Analyze the provided conversation history and infer the user’s profile and personality traits.
Focus on key details such as demographics, interests, communication style, and behavioral
patterns.

**Output Requirements***
1. Profile Inference: Estimate age, gender (if discernible), language proficiency, education
level, and possible occupation.
2. Personality Traits: Identify traits (e.g., introverted/extroverted, analytical/emotional,
formal/casual) based on word choice, tone, and interaction style.
3. Interests/Preferences: Note hobbies, expertise areas, or recurring topics.
4. Communication Style: Assess clarity, verbosity, politeness, and engagement level.
5. Behavioral Cues: Highlight any consistency, curiosity, humor, or skepticism.

**Rules***
1. Only include directly supported inferences—avoid speculation.
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2. Omit uncertain attributes.
3. Only Summarize in several short sentences.

**Example***
conversation history:
"user": "Hey there! How’s your day going? I just got back from a hike and I’m feeling
pretty energized! Do you enjoy spending time outdoors?" "assistant": "Hey! That sounds
awesome—hiking is such a great way to recharge. I love the outdoors too; being in nature is
always refreshing. What trail did you explore?" "user": "I hiked a trail that had some stunning
views of the mountains and a lovely waterfall. It was the perfect escape! Do you have a
favorite outdoor spot?"
output:
She enjoys hiking, loves travel around the world, especially enjoys natural scenery. She is
enthusiastic, full of energy and passion.

**Real data*** Now process the attached conversation history.
conversation history:
{history}
output:

3: User-Aware Prompt

Your task is to play the role of a person with the following profile and personalities traits and
chat with a chatbot:

Profile: {profile}
Personalities: {personality}

Please ignore the gender pronouns in the personalities and use the correct pronouns based on
the given profile.

Please follow the requirements:
1. You should determine the topic of conversation based on the given profile. You should
determine the conversational styles based on the given personalities.
2. IMPORTANTLY!!! You should only reveal partial information about your profile in each
round of conversation instead of disclosing all the provided information at once.
3. Keep in mind that you are chatting with a friend instead of a robot or assistant. So do not
always seek for advice or recommendations.
4. Do not include any analysis about how you role-play this user. Only output your messages
content.

Now, initiate the conversation with the chatbot based on persona profile or personality. Please
always be concise in your questions and responses and remember that you are pretending to
be a human now, so you should generate human-like language.

4: Reward-Aware Prompt

Dialogue History: {history}
User’s Input: {query}

You should:
1. Generate a response to chat with the user. Please always be concise in your questions and
responses. Output your response by strictly following this format: "[The Start of Assistant
A’s Response]The Assistant A’s Response[The End of Assistant A’s Response]"
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2. Compare your response to assistant B’s response, assess which response is more tailored to
the User’s potential preferences based on User’s profile and personality. [The Start of User’s
Profile and Personality]{profile}[The End of User’s Profile and Personality], [The Start of
Assistant B’s Response]{response}[The End of Assistant B’s Response]. When comparing,
focus solely on how well each response incorporates details from the user’s profile to engage
the user, and avoid being influenced by factors such as the overall flow of the conversation,
personal opinions about the topics in the responses, or any other elements not related to the
user’s profile and potential preferences based on it. Begin your evaluation by comparing the
two responses and provide a short explanation. Avoid any position biases and ensure that the
order in which the responses were presented does not influence your decision. Do not allow
the length of the responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. After providing your explanation, output your final
verdict by strictly following this format: "[[A]]" if assistant A’s response is better, "[[B]]" if
assistant B’s response is better, and "[[C]]" for a tie.

Output following this format:
1.
2.

E EXTRA EXPERIMENTS, ABLATION STUDY AND CASE STUDY

Extra Experiments A comparative analysis is conducted against several prominent RL algorithms,
where win rate is computed employing distinct evaluation LLMs. For a fair comparison, the GRPO
baseline is configured to calculate its reward using the same prompt as in our method. The experi-
mental results reveal that our method maintains a superior advantage over general RL algorithms and,
furthermore, underscores the robustness of our results against variations in the evaluation LLM.

Table 5: Win-Rate comparison results between our method and the popular RL methods for LLM.

Qwen3-30B-A3B win loss rw DeepSeek-R1-0528-AWQ win loss rw
DPO 2732 1091 0.4284 DPO 2778 1037 0.4546

GRPO 2697 1128 0.4097 GRPO 2711 1099 0.4208
Ours 2743 1076 0.4352 Ours 2802 1019 0.4655

Ours VS. DPO 1927 1881 0.0120 Ours VS. DPO 1931 1896 0.0091
Ours VS. GRPO 1950 1867 0.0217 Ours VS. GRPO 1988 1832 0.0407

Ablation Study Our method can be decomposed into two key modules: (1) a Reinforcement
Learning framework for training personalized dialogue policies, and (2) a POMDP-based architecture
that integrates user profile information as the unobservable state variable, enabling the policy model
to effectively learn user-specific characteristics. Building upon these two components, we conduct
comprehensive ablation studies to validate their individual contributions.

Table 6: The ablation study encompasses both absolute (in comparison to the same Vanilla outputs,
referring to Evaluation Metrics in Section 4.1) and relative comparisons of the results.

Methods win loss rw Comparison Pair win loss rw
BC 2676 1125 0.4050 RL-base VS. BC 1963 1841 0.0318

RL-base 2732 1085 0.4300 Ours VS. BC 1999 1800 0.0519
Ours 2802 1019 0.4655 Ours VS. RL-base 1953 1834 0.0311

Here, "BC" (Behavior Cloning) leverages offline datasets (e.g., ALOE) to train the policy model
via SFT. Comparing BC with reinforcement learning methods effectively demonstrates the latter’s
superiority in enhancing persona engagement. "RL-base" refers to standard reinforcement learning
algorithms (i.e., actor-critic methods) that do not incorporate user profile information. Specifically,
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Table 7: The Full Persona Information for the sampled User. The interaction process unfolds
sequentially around these characteristics.

Full Profile Full Preference
content She is a 34-year-old freelance graphic designer

who enjoys hiking, yoga, and painting. She is
vegan, spicy-food lover and loves experimenting
with new recipes. She loves travel around the
world, especially enjoys natural scenery. She
lives in a small apartment in the city with two
cats named Pixel and Scribble.

She is independent, capable of working alone.
She is empathetic, understanding and sharing
others feelings. She is methodical, working in an
orderly way. She is enthusiastic, full of energy
and passion. She is articulate, expressing ideas
clearly. She is versatile, adapting to different
roles. She is reliable, consistently dependable.
She is reflective, thinking deeply about things.

Table 8: Interaction details with the User. The persona details change across adjacent dialogue turns.

Turn User Assistant Persona (ω in Section 2)
1 Hey there! Hope you’re do-

ing well. I just got back from
a hike this weekend, and the
views were absolutely breathtak-
ing! Have you been on any out-
door adventures lately?

Hey! That sounds amaz-
ing—there’s nothing quite like a
good hike. I haven’t been on any
adventures recently, but I love
hearing about them! What was
the highlight of your hike?

She is a freelance graphic de-
signer who enjoys hiking. She
loves travel around the world, es-
pecially enjoys natural scenery.

2 The highlight was reaching the
summit and finding a hidden wa-
terfall. The sound of the water
was so calming, and I took a mo-
ment to just soak it all in. Nature
has a way of refreshing the soul,
doesn’t it?

That sounds absolutely magical!
Hidden waterfalls have such a
special way of making a hike
feel even more rewarding. It’s
true—nature really does have a
way of reviving our spirits and
bringing peace.

She enjoys hiking. She
loves travel around the world,
especially enjoys natural
scenery.She is empathetic, un-
derstanding and sharing others’
feelings. She is enthusiastic,
full of energy and passion. She
is reflective, thinking deeply
about things.

3 Exactly! I always feel energized
and inspired after being in na-
ture. It makes me want to cre-
ate something artistic too, like a
painting. Do you enjoy any cre-
ative hobbies?

I love that idea! Nature really
sparks creativity, and I can see
how a beautiful waterfall could
inspire a stunning painting. I en-
joy doodling and experimenting
with colors—there’s something
so freeing about bringing art to
life!

She is a freelance graphic de-
signer who enjoys hiking. She
loves nature, enjoys natural
scenery, and has a passion for
creating something artistic too,
like a painting.She is enthusias-
tic, full of energy and passion.
She is empathetic, understand-
ing and sharing others’ feelings.
She is reflective, thinking deeply
about things.

this baseline is implemented by modifying the advantage value in our algorithm (Equation 6) to
A = r(h, ω, u) + V (h′)− V (h).

The experimental results displayed in Table 6 demonstrate that persona integration is achieved through
three key mechanisms: (1) Behavior Cloning initializes the policy model by learning personalized
patterns from offline datasets; (2) Reinforcement learning further refines personalization through
persona-specific reward signals; and (3) Modeling user profile information as the unobservable
state variable in the POMDP framework effectively incorporates persona features into the advantage
function, ultimately enhancing the policy model’s capability to generate personalized responses.

Case Study We present examples that illustrate the dynamic evolution of user personas across both
the offline dataset and the online simulator. These cases validate the rationale behind our algorithm’s
approach to modeling interaction for alignment.

• Offline dataset: In offline datasets such as ALOE, each interaction turn only reflects a subset of
(demonstrating in Table 8) the full persona information (referring to Table 7), and the persona details
exhibited vary across different rounds. Therefore, this does not constitute a static persona but rather
one that evolves dynamically throughout the interaction. Here is an instance from the ALOE dataset:
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• Online Simulation: This variability, observed through LLM-based persona extraction from sampled
dialogue turns in our online experiment, also serves to affirm the dynamic nature of user personas
and the operational accuracy of our simulation framework. Specifically, in the implementation of
the online setting, the LLM is provided with the complete user profile information at the beginning.
However, through carefully designed prompts (referring to User-Aware Prompt in Section D), we
enforce an incremental disclosure mechanism, ensuring that the simulator progressively reveals only
a subset of profile details per interaction. This approach facilitates dynamic evaluation in multi-turn
dialogues, where the policy model must adapt to evolving user context while preventing information
overload in any single turn.

Table 9: The example for Online Simulation interaction process.

Turn User Assistant Persona (ω in Section 2)
1 I totally agree! Today, I rode

through the local park and
then took a loop around the
lake. The scenery was breath-
taking, and the weather was
perfect. What about you? Do
you have a favorite route or
a special place you like to
ride?

I love riding along the river
trail! There’s something
magical about being near the
water and watching the world
go by. Plus, I always feel
inspired to write about the
scenery—do you ever bring
your bike to local events or
just enjoy riding solo?

enjoys cycling, enthusiastic,
full of energy and passion

2 The river trail sounds amaz-
ing! I can totally see why it
would be so inspiring. I usu-
ally ride solo, but I do bring
my bike to school events
sometimes. It’s a fun way to
get there, and it’s great for
the environment too. Do you
ever ride with friends or join
any cycling groups?

riding solo, it’s awesome that
you combine your passion
with environmental impact!
I enjoy riding with friends
too; it’s a great way to bond
while sharing the love for cy-
cling. Have you met anyone
interesting through your bike
rides lately?

enjoys cycling,often
participates in school
events,independent,
capable of working
alone,enthusiastic, full
of energy and passion

3 I haven’t met anyone new re-
cently, but I did have a great
chat with a fellow cyclist at
the park last week. We talked
about our favorite routes and
shared some tips. It’s al-
ways fun to connect with oth-
ers who share the same inter-
ests. How about you? Have
you met anyone interesting
on your rides?

I recently spoke with a local
bike enthusiast who had in-
credible stories about hidden
trails and secret spots! It’s
amazing how much knowl-
edge cyclists can share, and
it sparks new adventures. Do
you have any favorite spots
you’ve discovered through
your rides?

enjoys cycling,empathetic,
understanding and sharing
others feelings,articulate, ex-
pressing ideas clearly

F LIMITATIONS

In this paper, we propose PAMDP, a dual-critic reinforcement learning framework designed to
address the challenge of “Interact to Persona Alignment”. Through rigorous theoretical analysis
and comprehensive offline and online experimentation, we empirically validate the efficacy of our
proposed approach.

Current method necessitates initializing the Actor network via behavior cloning—a prevalent prac-
tice in reinforcement learning—to constrain the exploration space and expedite convergence to
near-optimal policies. However, we intend to further investigate the feasibility of eliminating this
initialization paradigm, thereby streamlining the PAMDP framework for enhanced simplicity and
efficiency
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G LLM USAGE CLARIFICATION

Throughout the paper, the use of LLMs is solely restricted to the polishing of textual elements, such
as lexical or phrasal substitutions, and does not extend beyond this scope.
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