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Abstract

Graphs data is crucial for many applications, and much of it exists in the relations
described in textual format. As a result, being able to accurately recall and encode
a graph described in earlier text is a basic yet pivotal ability that large language
models (LLMs) need to demonstrate if they are to perform reasoning tasks that
involve graph-structured information. Human performance at graph recall by has
been studied by cognitive scientists for decades, and has been found to often exhibit
certain structural patterns of bias that align with human handling of social rela-
tionships. To date, however, we know little about how LLMs behave in analogous
graph recall tasks: do their recalled graphs also exhibit certain biased patterns, and
if so, how do they compare with humans and affect other graph reasoning tasks?
In this work, we perform the first systematical study of graph recall by LLMs,
investigating the accuracy and biased microstructures (local subgraph patterns) in
their recall. We find that LLMs not only underperform often in graph recall, but
also tend to favor more triangles and alternating 2-paths. Moreover, we find that
more advanced LLMs have a striking dependence on the domain that a real-world
graph comes from — by yielding the best recall accuracy when the graph is narrated
in a language style consistent with its original domain.

1 Introduction
Large language models (LLMs) achieve remarkable progress in recent years. In many applications,
LLMs’ success relies on appropriate handing of graph-structured information embedded in text. For
example, to accurately answer questions pertaining to the characters in a story, it is crucial for an
LLM to be able to recognize and analyze the social network of relations among these characters.
In fact, graph-structured information is ubiquitous across many language-based applications, such
as structured commonsense reasoning [32], multi-agent communications [3], multi-hop question
answering [15], and more. LLMs’ graph reasoning ability has thus become an active research topic.

Existing works on LLMs’ graph reasoning ability have been primarily posited in the context of
various graph tasks, from most basic ones such as computing node degree, graph diameter, clustering
coefficient, or checking cycles [48, 20, 18], to more challenging ones such as node/graph classification
[14, 38] and link-based recommendations [55]. Sec. 7 provides a more comprehensive survey.

But all of the tasks above rely on the premise that an LLM is able to start from the graph that is
described in the text it is given. Thus, our key starting observation here is that all of these tasks rely
on a pivotal (and perhaps seemingly trivial) ability of LLMs – to recall and encode a set of relations
described in earlier text. In this paper, we consider a graph recall task which has been extensively
studied in cognitive science [8, 44, 7, 9, 41], and which formalizes this basic goal, illustrated in
Figure 1: a set of pairwise relationships is described in a simple narrative form to the experimental
subject (human or LLM); then at a later point in the experiment, the subject is asked to recall and
describe these relationships explicitly in the form of a graph.
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The rationale for studying an LLM’s graph recall is simple. If an LLM cannot even accurately recall
the graph it is asked to reason upon, it will not be able to do well in any of the more advanced graph
tasks surveyed above. Further, structural patterns in recall errors may propagate to (or even serve as
the basis for) the behavior of LLMs in these more complex graph tasks. Therefore, we consider it
important to investigate LLMs’ graph recall ability, a topic absent from existing literature. The edge
prediction task is related to but fundamentally different from the graph recall task: the correct answer
for graph recall always exists in the prompt and can be directly extracted, which is not true for any
prediction tasks.
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User: Now please recall the structure of the graph you saw …
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Figure 1: Graph recall is a simple task but also a
crucial pivot for other graph reasoning tasks.

Meanwhile, the existing two decades of studies
on human’s graph recall ability provide another
fascinating perspective to motivate our study.
Cognitive scientists have found through substan-
tial human experiments that, when memorizing
a social network, humans extensively employ
certain compression heuristics, such as triadic
closure, near-clique completion, and certain de-
gree biases [8, 35], due to natural limits on cog-
nitive capacity. Further studies show that a per-
son’s ability to accurately recall a social network,
along with the microstructures (local subgraph
patterns, or network motifs [2, 34]) in their re-
called network, not only has profound influence
on their social decisions [25, 11, 52], but also
varies on different styles of graph narrative [44],
and the sex of the person [7, 22]. Do LLMs use
similar compression heuristics as humans, and
how are they affected by different working con-
texts? As LLMs become increasingly integrated
into various social applications, it becomes cru-
cial to understand LLM’s behaviors and their
associations with human behaviors in these re-
gards.

The human cognition studies not only motivate our study, but also establish a scientific foundation for
our experimental designs. Similar to [42] which uses political orientation tests designed for humans
to assess LLM’s political bias, we also find some of the protocols employed by [8] for testing human’s
graph recall highly instructional, including: (1) memory clearance, where a classical word span test
[17] is conducted between the presentation of the graph content and the query prompt; this serves as
a chat buffer that helps simulate the delayed queries in many real-world applications; (2) analyzing
biased patterns in graph recall via Exponential Random Graph Model (ERGM), a probabilistic
generalization to the network motif methods in graph mining; (3) focusing on the probability of the
tokens in subject’s response, rather than just their presence; we replicate this through the log_prob
parameter in GPT series or conducting Monto Carlo sampling for Gemini. We will elaborate on these
in the following sections.

Our Work In this work, we investigate the several primary questions regarding the capabilities of
LLMs in recalling graph structures. First, we examine the accuracy and microstructures in graphs
recalled by LLMs through experiments on real-world graph structures, as well as compare these
results with human performance. Second, we explore factors affecting LLMs’ graph recall abilities,
focusing on memory clearance strength, and narrative styles of graph encoding, which are known
to affect human’s graph recall. Finally, we also consider how LLMs’ graph recall influences their
performance in downstream tasks like link prediction, and discuss actionable insights that our findings
provide for future research. To summarize, our work makes the following contributions:

1. We propose graph recall as a simple yet fundamental task for understanding LLM’s graph reasoning
abilities, drawing its connection with the existing cognitive studies on human’s graph recall ability.

2. We are the first to design and conduct systematical studies on the accuracy and biased microstruc-
tures of LLM’s graph recall, and to compare the results with humans.

3. We present many important and interesting findings on LLM’s behaviors in graph recall, which
significantly helps deepen our understandings about LLM’s graph reasoning ability.
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2 Preliminaries
2.1 Exponential Random Graph Model (ERGM)

We use the Exponential Random Graph Model (ERGM) [39] to characterize the statistical significance
of the various microstructural patterns (“network motifs” [2, 34]) in the recalled graphs. ERGM is a
special case of the exponential family dedicated for modeling graph-structured data.
Formally, let G be the probability space of all possible graphs over n nodes, and G = (V,E, f) ∈ G be
a random (graph) variable, where V is the set of nodes, E is the set of edges in G, and f : E → [0, 1]
is a edge probability function. Assuming independence between edges, the probability of G can be
written as:

P (G) =
∏
e∈E

f(e)
∏
e/∈E

(1− f(e)) (1)

A is a list of k predefined microstructural patterns in G. Fig.2’s Step 6 shows k = 5 such patterns
that we primarily investigate in this work, following [8]. The conditional probability of observing G
given the parameter vector θ of length k is defined to be

P (G|θ) =
exp{

∑k
i=1 θisi(G)}
cθ

=
exp{θT s(G)}

cθ
(2)

where s(G) is the sufficient statistics of G, and each si(G) is a count of the number of occurrences of
A[i] in G; cθ is the normalizing constant that only depends on θ. We assume an uninformative prior
for θ ∼ [−10, 10]. The posterior P (θ|G) can then be optimized via MAP under Bayesian framework.
θ measures the strength of presence of the k microstructural patterns we care about. A large θi means
a strong presence of pattern A[i] in G.

2.2 Memory Clearance
The word span test [17] is a standard method for measuring a human’s working memory capacity.
The test requires the subject to read a series of sentence sets out loud, and then recall the last word in
each previous sentence in the current set. The number of sentences in each set gradually increases
from two to seven, i.e. from three sets of two sentences to three sets of seven sentences. The test
continues until the subject fails to recall the final words for two out of three sets of a given size. See
Appendix B.2.1 for the sentence sets we used.
Many cognition studies [8, 7, 6, 5] have adopted this test in their experiment to (1) serve as a chat
buffer or spoiler that simulates the delayed query in real-world applications, and (2) clear the short-
term memory of the subject, which allows researchers to better focus on relatively persistent patterns
in memory structures. It is important to note that transformer-based LLMs are stateless models that,
in strict sense, do not have memory. Nevertheless, we choose to preserve the (slightly misleading)
term “memory clearance” to stay aligned with literature and to emphasize the close analogy and
behavioral resemblance between LLMs and humans in graph recall.

3 Microstructures and Accuracy of Graph Recall by LLMs
Being able to correctly recall a graph described in earlier text is a fundamental ability for LLMs to
perform graph reasoning. While graph recall may seem an easy task for the high-capable LLMs
nowadays, our extensive experiment shows that their performance is in fact far from perfect.
This section presents our study on the performance and the microstructures of graph recall by LLMs.
Our experimental protocols are introduced in Sec.3.1, followed by Sec.3.3 which presents head-to-
head comparisons of LLMs and humans under [8]’s framework. Sec.3.2 substantiates the analysis by
experiments on more diverse datasets. Our code and data are reported in Appendix A.

LLMs Tested: GPT-3.5 [10], GPT-4 [1], Gemini-Pro [46]. We also examined Llama 2 (13B) [47],
but they can rarely follow through on our instructions.

3.1 Experimental Protocols and Datasets

Our staged protocols are visualized in Fig.2 and explained below. To recall each graph sample, an
LLM needs to separately go through the entire pipeline. The stages proceed in an auto-regressive
manner. In other words, the LLM’s intermediate response is always appended to the current thread as
additional conservation context, before we proceed to the next stage along the pipeline.
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Figure 2: Experimental protocols for analyzing microstructures and accuracy of LLM’s graph recall.
See Sec.3.1 for detailed explanations.

Step 1: Task Introduction. The LLM is informed that this is a graph recall test, and that the
recall task may happen at a later time. It is also incentivized to yield its best performance. These
components follow the ones used in [8] for human studies.
Step 2: Presenting Graph Vignette. A vignette in sociology is a short, descriptive story that encodes
the central piece of information for soliciting subject’s response. Here, our vignette encodes the graph
structures sampled from a certain application domain using a certain narrative style — see the dataset
tab below for details.
Step 3: Memory Clearance. A standard word span test [17] is conducted with the LLM. See Sec.2.2
for details. We use the same set of sentences as in [8].
Step 4: Prompting. We use zero-shot prompting with moderate formatting instructions for answers.
This follows both [8]’s protocol and the finding in [18] that simple prompts are the best for simple
tasks, which we also empirically observed.
Step 5: Retrieving Edge Probabilities. We are interested in both the existence and the probability
of each edge (i.e. the f in ERGM) in graphs recalled by LLM – the latter lets us examine LLM’s
behavior at finer granularities. We use two tricks to retrieve edge probabilities from LLM’s answers:

• For GPT series, we can directly access token probabilities through the ChatCompletion API. We
instruct the model to output 1 for each edge it believes to exist, and 0 otherwise. Then, we retrieve
and normalize the probabilities for tokens 0 and 1, using the latter as the edge probability.

• For Gemini-Pro whose token probabilities are not accessible via the API, we conduct Monte
Carlo sampling for each potential edge (repeating the query for 100 times), and use the fraction of
existence as the edge probability.

Note that the retrieved edge probabilities essentially constitute a probability graph.
Step 6: Microstructure Analysis & Performance Measurement. We use the ERGM introduced in
Sec. 2.1 to model both the recalled graph and the ground truth, in order to reveal statistically significant
structural patterns, or “microstructures” as termed by [8], in the recalled graphs. Specifically, for
each microstructural pattern, we compute the gap between its estimated coefficient on the recalled
graph against its estimated coefficient on the ground-truth graph. Steps 1 - 6 are repeated for 100
different graphs uniformly sampled from the same domain to compute confidence intervals.
Datasets. We create five graph datasets from the following application domains. (1) Co-authorship:
DBLP (1995-2005); (2) Social network: Facebook [27]; (3) Geological network: CA road; (4) Protein
interactions: Reactome [16]; (5) Erdős–Rényi graph: as in [18]. Each dataset comprises of 100
graphs and their corresponding textual descriptions in the domain’s narrative language, which are
generated from templates that are intentionally kept simple: Fig.2’s Step 2 shows an example for the
DBLP dataset. More examples and details are provided in Appendix B.
Graphs in the first four datasets are uniformly sampled as ego-network, with the central node removed
so that no graph isomorphism gets excluded by the sampling scheme. Each graph has 5 to 30 nodes.
The Erdős–Rényi graph are generated by uniformly sampling a p value from [0, 1]. Also note that
because the templates used are simple and fixed, we can easily create baselines by reverse-engineering
the template to achieve perfect accuracy in graph recall.
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Table 1: Microstructural patterns and performance of graph recall by LLMs on graphs sampled from
various application domains; mean ± ci95% reported. The numbers reported for microstructural
patterns are signficance parameters θ computed by the ERGM model introduced in Sec. 2.1. A positive
(negative) number means the LLM is biased towards encouraging (depressing) the corresponding
microstructural pattern in recalled graphs. The patterns are visualized in Fig.2 Step 6. Full table
available in Appendix C.

Microstructure Performance
Model / Dataset Edge Triangle Star Alt-Triangle Alt-2-Path Accuracy (%) F1 (%)

GPT-3.5
Facebook -3.70 ± 5.80 1.72 ± 1.34 ↑ -0.70 ± 3.00 -0.91 ± 2.25 3.31 ± 1.77 ↑ 71.60 ± 4.07 72.34 ± 3.54
CA Road 0.64 ± 0.91 7.31 ± 3.49 ↑ -3.46 ± 1.77 ↓ -1.47 ± 0.92 ↓ 2.35 ± 1.29 ↑ 95.52 ± 2.67 92.95 ± 2.95
Reactome -18.01 ± 6.22 ↓ -0.71 ± 4.62 4.96 ± 3.81 ↑ -6.32 ± 4.23 ↓ 4.43 ± 4.93 53.68 ± 3.32 44.47 ± 6.19
DBLP -8.12 ± 3.25 ↓ 1.17 ± 4.43 7.17 ± 2.44 ↑ -11.16 ± 4.35 ↓ 5.77 ± 3.76 ↑ 72.47 ± 3.61 65.08 ± 4.73
Erdős–Rényi -1.40 ± 5.01 9.57 ± 4.89 ↑ 1.40 ± 2.71 -0.41 ± 4.19 3.36 ± 2.76 ↑ 55.20 ± 3.32 49.49 ± 5.29

GPT-4
Facebook -0.17 ± 0.50 0.05 ± 0.78 0.06 ± 0.21 -0.01 ± 0.26 0.01 ± 0.06 99.80 ± 0.11 99.75 ± 0.13
CA Road 1.34 ± 1.62 6.07 ± 3.93 ↑ -3.09 ± 2.08 ↓ -1.27 ± 0.96 ↓ 1.85 ± 0.91 ↑ 98.11 ± 2.54 98.00 ± 2.74
Reactome -11.54 ± 5.82 ↓ 0.82 ± 4.28 2.69 ± 2.87 -1.99 ± 2.03 -0.46 ± 2.14 77.04 ± 4.13 76.80 ± 4.59
DBLP -1.26 ± 2.56 -1.41 ± 3.26 -0.69 ± 3.74 1.71 ± 2.96 -1.59 ± 2.24 98.70 ± 0.74 97.88 ± 1.65
Erdős–Rényi -1.49 ± 4.15 1.95 ± 1.54 ↑ 0.52 ± 2.79 -1.26 ± 1.66 -0.45 ± 0.76 60.34 ± 2.37 44.03 ± 5.20

Gemini-Pro
Facebook -2.31 ± 1.26 ↓ -2.29 ± 2.99 1.50 ± 2.37 2.40 ± 1.37 ↑ 0.67 ± 1.10 51.13 ± 2.58 34.56 ± 4.72
CA Road 0.84 ± 1.68 2.02 ± 0.29 ↑ 5.24 ± 0.27 ↑ 0.89 ± 0.28 ↑ 6.82 ± 0.62 ↑ 44.69 ± 3.86 31.92 ± 4.83
Reactome -11.94 ± 4.65 ↓ 1.27 ± 5.22 13.47 ± 4.70 ↑ 3.32 ± 4.57 4.15 ± 4.01 ↑ 54.09 ± 2.92 46.59 ± 5.90
DBLP -19.47 ± 3.30 ↓ -1.72 ± 3.45 11.24 ± 2.45 ↑ -11.08 ± 3.90 ↓ 10.83 ± 4.53 ↑ 46.33 ± 3.54 47.36 ± 4.55
Erdős–Rényi -2.86 ± 5.16 1.51 ± 5.04 -0.66 ± 3.95 0.59 ± 2.81 -0.70 ± 1.15 52.40 ± 4.41 22.27 ± 4.64

3.2 Results and Analysis
Table 1 shows the results of microstructural patterns and performance of LLMs in our graph recall
test. We primarily investigate the five microstructural patterns as shown in Fig. 2. This is because
these patterns have been observed to be biased patterns in human studies and are substantiated
with rich sociological explanations [8]; other patterns may also be interesting to examine though,
which we leave for future work. A positive/negative value means the LLM is biased towards
encouraging/depressing the corresponding microstructural pattern in recalled graphs. We have the
following findings.

LLMs underperform in the graph recall test. We start by examining the performance metrics on
the right columns. None of the models are able to perform perfectly on any dataset — in fact not even
close in most cases. The unsaturated performance shows that the graph recall test is a meaningful
task to investigate. The result also helps partially explain the poor performance of LLMs on many
other graph tasks including node degree, edge count, and cycle check [48, 18, 20].

LLMs may tend to forget, rather than hallucinate edges. The “edge” column shows an interesting
result that LLMs generally recall fewer edges than the ground truth. This crucially tells us that LLM’s
bias in other microstructural patterns may more likely be the consequence of selective forgetting,
rather than hallucination.

An LLM’s microstructural bias is relatively robust. For each model, the colors in each column are
relatively consistent. This means that an LLM may have have some relatively persistent bias in its
microstructual patterns, which does not change significantly across different application domains.
This is a positive indicator of the generalizability of our findings above.

3.3 LLMs Compared with Humans in Graph Recall
Brashears et al. reported experimental results of social network recall on a total of 301 humans [8].
Here we report how we build upon this existing result to compare LLMs’ and humans’ behaviors in
the social network recall test.

To stay aligned with Brashears’ settings, we use their dataset which consists of two 15-node social
networks: an irreducible one which contains no cliques, and a reducible one which contains multiple
cliques. Appendix B introduces more details. Table 2 shows the comparison results.

Regarding the types of bias (forgetting vs. hallucination), LLMs are relatively consistent
with humans. Both LLMs and humans tend to forget edges and alt-triangles while “hallucinating”
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triangles and stars. This interesting finding may reveal that LLMs have some information decoding
and recall mechanisms similar to human memory.

Regarding the strength of the bias, LLMs tend to have weaker forgetting but stronger hallu-
cinations than humans. On microstructures such as edges and alt-triangles, LLMs tend to have a
weaker forgetting pattern, while on some prominently increasing microstructures (e.g., triangles),
LLMs tend to demonstrate strong hallucinating patterns. These findings suggest that while LLMs
may have a distinct advantage than humans in retaining certain graph structures in their memory, they
may still struggle with accurately recalling, potentially limiting their ability to perform complex or
critical graph tasks.

Table 2: LLMs vs. Humans: microstructural patterns and performance of graph recall, conducted
on the two social networks used in [8]. Numbers on the “humans” row were taken from Brashears’
paper and postprocessed by us. ∗ not reported in Brashears’ paper.

Microstructure Performance
Model Edge Triangle Star Alt-Triangle Alt-2-Path Accuracy (%)

“Irreducible” social network
Humans -3.19+-5.97 9.52+-1.23 ↑ 2.31+-0.11 ↑ -3.39+-1.22 ↓ -1.71+-3.32 29.72
GPT-3.5 -2.23+-2.79 5.40+-0.51 ↑ 4.69+-2.09 ↑ -1.74+-0.87 ↓ -1.26+-1.39 31.51
GPT-4 -5.36+-1.59 ↓ 11.40+-3.07 ↑ 3.40+-1.45 ↑ -2.05+-1.22 ↓ -0.96+-0.48 ↓ 95.71
Gemini-Pro 9.82+-0.28 ↑ 7.63+-0.45 ↑ -0.46+-1.12 ↑ -2.88+-0.98 ↓ -0.47+-0.99 24.99

“Reducible” social network
Humans -9.41+-2.21 ↓ 1.71+-0.51 ↑ -1.67+-0.03 ↓ —∗ 4.34+-1.72 ↑ 17.80
GPT-3.5 -5.64+-1.56 ↓ -0.13+-5.71 -2.52+-16.43 -4.79+-14.96 1.91+-2.97 51.11
GPT-4 -2.82+-2.51 ↓ -1.10+-0.86 ↓ -1.70+-0.97 ↓ -0.93+-0.64 ↓ 0.47+-0.27 95.74
Gemini-Pro -3.25+-2.09 ↓ 10.92+3.52 ↑ -1.99+-8.35 -0.44+-4.37 0.03+-0.39 38.82

4 What Affects LLM’s Graph Recall?

It is a natural question to ask about factors that can affect an LLM’s performance in the graph recall
task. Many existing works have investigated graph properties and prompting methods as two key
variants affecting LLM’s performance in graph reasoning tasks [48, 14]. Here we focus on several
interesting factors that are less explored but still play a crucial role in graph recall: narrative style,
strength of memory clearance, and sex priming (Appendix D).

4.1 Narrative Style

Motivation. The effect of narrative styles on several graph reasoning abilities has been studied by
[18] with synthetic random graphs. Here we will present an interesting finding on real-world graphs,
and by novelly cross-evaluating narrative styles and real-world domains.

The key idea is the following: it is known that graphs sampled from different domains have different
distributions of topology, e.g. road networks are usually star-shaped, whereas social networks usually
have more triangles [45]. Meanwhile, each domain has its own style of narration: for describing
road networks geographical locations and names are often used, while for describing social networks
names and personal relationships are used more often. Our experiment thus far has always used for
each dataset the matched narrative with its domain. Therefore, an interesting question is whether
LLM would perform best in graph recall only if the narrative style of the graphs matches the domain.

To this end, we conduct cross-evaluation over the five different application domains and their
corresponding narrative styles as introduced in Sec.3.1. More concretely, for graphs from each
domain, we describe it in five different ways, corresponding to the five different domains. The
resulting performance is visualized as heatmaps in Fig.3 (a) - (c). Appendix E provides the full table.

Result Analysis. The heatmaps of GPT-4 and GPT-3.5 support our conjecture: the diagonals
(corresponding to a matching between narrative style and the domain of the data) tend to have higher
performance. Such an effect seems to be more prominent with better-performing models.

We find this result striking, that the LLM should do better when the graph is described in the narrative
language of the domain that it comes from. While it is an intuitively sensible conjecture that this
might help, it is very interesting that this conjecture is borne out so clearly in the results.
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Figure 3: Different factors that influence LLM’s graph recall. (a) - (c): narrative styles. The
heatmaps show that more advanced LLMs like GPT-4 yield best recall accuracy when the graph
is narrated in a language style consistent with its original domain. (d) - (f): memory clearance.
Gemini-Pro appears more sensitive to small noise in context, while GPT’s are more robust.
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Figure 4: Correlation between GPT-3.5’s performance at graph recall (y) and link prediction (x).

Given this, it is natural to ask whether the result might be coming from the mechanics of the training;
in particular, is it possible that the LLM is just reciting text from its training corpus, since the five
datasets we use are all public on the Internet? We find this very unlikely, for a simple reason: while the
structured graph data comes from the Internet, the narrative descriptions do not; they were generated
by us from a simple template for purposes of this experiment, as explained in Sec.3.1.

Since superficial explanations do not seem to explain the strength of the results, it becomes reasonable
to suppose that the narrative style is indeed helping with the graph recall task. There are natural,
if subtle, reasons why this may indeed be the case: since organically produced text describing
road networks, for example, refers a different distribution over graph structures than organically
produced text describing social networks, it is a plausible mechanism that recall is helped when the
distributional properties in the text align with the distributional properties of the graph that the text
describes. An implication is thus that LLMs, especially GPT-4, may have indeed formed a good
understanding of the different distributions of graph structures from different domains, as otherwise
they wouldn’t be able to so consistently perform better when the narrative matches the data domain.

4.2 Strength of Memory Clearance
Motivation. Our next experiment contains memory clearance (word span test) which is a standard
component in previous human graph recall tests. We use memory clearance both to align with these
human tests and to simulate the real-world situation where an LLM may not be asked to work on the
key data immediately after it receives them.
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Table 3: Correlation between LLM’s graph recall and link prediction on different microstructures.
Microstructure

Dataset / Task Edge Triangle Star Alt-Triangle Alt-2-Path

Facebook
Graph Recall -3.70+-5.80 1.72+-1.34 ↑ -0.70+-3.00 -0.91+-2.25 ↓ 3.31+-1.77 ↑
Link Prediction -1.01+-0.69 ↓ 3.24+-1.05 ↑ -3.33+-7.39 1.21+-0.55 ↑ 4.98+-3.01 ↑
CA Road
Graph Recall 0.64+-0.91 7.31+-3.49 ↑ -3.46+-1.77 ↓ -1.47+-0.92 ↓ 2.35+-1.29 ↑
Link Prediction 0.33+-0.58 5.10+-3.73 ↑ -7.00+-3.34 ↓ 1.64+-0.50 ↑ 2.86+-2.50 ↑
Reactome
Graph Recall 18.01+-6.22 ↑ -0.71+-4.62 4.96+-3.81 ↑ -6.32+-4.23 ↓ 4.43+-4.93
Link Prediction -9.59+-3.00 ↓ 7.71+-4.62 ↑ -4.99+-4.44 ↓ 8.32+-2.10 ↑ 4.54+-4.25 ↑
DBLP
Graph Recall -8.12+-3.25 ↓ 1.17+-4.43 7.17+-2.44 ↑ -11.16+-4.35 ↓ 5.77+-3.76 ↑
Link Prediction -6.81+-5.44 ↓ 6.11+-4.68 ↑ -2.85+-2.47 ↓ 7.43+-4.04 ↑ 2.83+-1.72 ↑
Erdős–Rényi
Graph Recall -1.40+-5.01 9.57+-4.89 ↑ 1.40+-2.71 -0.41+-4.19 3.36+-2.76 ↑
Link Prediction -2.51+-3.79 8.44+-4.26 ↑ -0.35+-2.27 7.59+-6.22 ↑ 3.38+-2.55 ↑

Since both GPT and Gemini are able to perform 100% correctly in the word span test, by design
principle we always need to progress to the maximum set of seven sentences. This makes the memory
clearance a significant source of noisy context between LLM’s first sight of the graph and the final
prompt of the recall question. Therefore, it is natural to wonder if the relatively poor performance of
LLMs in this graph recall test could have resulted from too much noisy context. In this mini-study,
we investigate how different strengths of memory clearance measured would affect the performance.

The strength of memory clearance can be naturally measured by the maximum number of sentences
of which the subject proceeds to recite the final words. The number in the standard word span test
ranges from 2 to 7, and 0 if the test is dropped. Therefore, we vary this number in our experiment and
record the performance of each model on each dataset.

Result Analysis. The results are shown in Figure 3 (d) - (f), and we have the following findings.

LLMs can significantly differ on their sensitivity to small amount of noise in graph recall. The
trends are clear from the three line plots: Gemini-Pro’s performance plunges in the first few clearance
levels before it touches the bottom. GPT’s performance, in contrast, remain more stable, or even
increases at initial clearance levels. This indicates that many of our results for GPT models may
still likely hold when there is no memory clearance, i.e. prompt is given immediately after relevant
context – which is default setting of most previous studies.

Performance of GPT-3.5’s and Gemini-pro’s is poor even when the question prompt is provided
immediately after the relevant context. This is obvious from the line plots’ intersections with
y-axis, and perhaps a bit surprising to people who have primarily focused on using LLMs for more
challenging graph tasks. This result also helps eliminate the chance that the mediocre performance
comes from overly strong memory clearance module that we’ve installed in place. To boost LLM’s
ability to reason on graphs, we may need to first figure out how to help them better attend to the
correct edge before we seek to improve other more advanced aspects of reasoning. See Sec. 6 for
more discussion.

5 Correlation between LLM’s Graph Recall and Link Prediction

Motivation. The graph recall task should not be confused with How do microstructures and perfor-
mance of LLM’s graph recall affect its behavior in other graph reasoning tasks? In this mini-study,
we conduct a correlation analysis of LLM’s behavior in the label-free link prediction task, which is
an important graph reasoning task for LLMs [24]. We primarily experiment with GPT-3.5 because
its graph recall exhibits more significant microstructural patterns than GPT-4, and meanwhile have
larger performance variation than Gemini-Pro.

Procedures. For each graph in the five datasets, we remove 20% of their edges as missing edges. The
LLM is then asked to predict those missing edges. Two types of correlation are studied: (1) accuracy
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correlation: for each graph in the dataset, we evaluate the LLM’s link prediction accuracy (x) and
graph recall accuracy (y) then map these results onto a scatter plot; (2) microstructural correlation:
similar to Table 1 and 2, we evaluate and compare the microstructural coefficients of the predicted
graph (in link prediction) and the recalled graph (in graph recall test). Table 3 shows the results.

5.1 Result Analysis.
Figure 4 shows the scatter plots for accuracy correlation; Table 3 shows microstructural correlation.

LLM’s link prediction performance correlates well with its graph recall performance on real-
world graphs. This is clear from the scatter plot and the r values. For Erdős–Rényi graphs, the
correlation is close to zero, which is unsurprising though because the link prediction on random
graphs cannot do better than random guess.

Different tasks may trigger behavior changes of LLMs that can be subtly revealed by their
microstructural bias. Table 3 shows that LLM’s microstructural bias in both tasks tend to be
positively correlated on triangles and alt-2-paths, and negatively correlated on alt-triangles. We do
not have an intuitive explanation for this result. However, this result does indicate that different tasks
can trigger certain interesting behavior changes of LLMs that can be subtly revealed by examining
their microstructure patterns, which shows the meaningfulness of our study.

6 What to Inform about Future Research: an Empirical Perspective

We consider this study as a step towards the long-term agendas both for improving LLM’s graph
reasoning ability and for further integrating LLM graph analysis into social-science applications. Here
we discuss how our findings may translate into actionable bias mitigation strategies and architectural
improvements. Appendix F further discusses limitations of the work.

• The graph recall test is one of the simplest and most fundamental graph reasoning tasks. Since
advanced LLMs yield unsatisfactory performance in this test, we need to re-examine the recent
development of approaches that attempt to directly solve more challenging graph reasoning tasks.
Meanwhile, notice the association between graph recall test and the “Needle in a Haystack” test
(i.e. random fact retrieval from long context) [26, 19]: in some sense, the former can viewed as
a “graph-customized” version of the latter. Therefore, existing techniques for boosting LLM’s
performance in the “Needle in a Haystack” test, e.g. recurrent memory augmentations [26], may
likely benefit LLM’s graph recall ability as well.

• Our experiment shows that LLMs tend to favor more triangles and alternating 2-paths. Researchers
of Graph Foundation Models (GFM) [31, 33, 59, 29] should be alerted of such systematic bias.
Because the procedures for training GFMs are largely inspired by those for LLMs, similar re-
trieval bias could emerge. A potential mitigation strategy worthy of exploration is to consider
balancing/compensating the frequencies of different graph motifs that occur in the training data.

• We have also found that more advanced LLM’s performance have a striking dependence on the
compatibility between the application domain of a real-world graph and its narrative style. This
hints a potential direction for designing more powerful graph encoding for LLMs via certain
domain adaptation strategies – by combining the adaptation strategy with either the graph-to-text
methods [18, 20] or the graph-to-embedding methods [12, 37, 13].

7 Related Work

7.1 Humans in the Graph Recall Task

There have been decades of work studying human’s graph recall ability, primarily focused on their
memory and recall of social networks. This line of work originates from sociologist’s need to collect
real-world social networks by asking people to recall their social relationships. [40] noticed that
people forget a significant portion of their social networks, so they built a to predict missing links
from recall. [9] more closely study the mechanism of the forgetting of social networks. [5] found that
humans can more accurately recall social networks that contain more certain microstructural patterns
such as triangles or cliques.
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Following the previous works, [8] establishes experimental protocols for examining the performance
and microstructural patterns of human’s recall of social networks. In their study, each subject reads a
short, artificial description of the relationships among a number of 15 people: “Henry is a member
of the same club as Elizabeth. James sings in a choir with Anne ...”. The subject is then asked to
name who has interacted with whom in the experiment. The authors are also among the first to verify
that humans’ graph recall tend to exhibit patterns of triadic closure. [7] further investigates how
sex affects human’s recall. [6] uses a signed network model to show that human’s graph recall may
repel certain unstable patterns that involve unbalanced relationships between enemies and friends.
Since LLMs are trained on human-readable corpus, many ideas and findings on human’s graph recall
are instructional to our exploration of LLM’s graph reasoning ability. Further studies show that a
person’s ability to accurately recall a social network has profound influence on their social decisions
[25, 11, 52, 53, 54].

The graph recall test is a meaningful test for both humans and LLMs, though their experiment
outcomes may need to be interpreted in a subtly different way. The graph recall test is meaningful
for LLMs because we observe their performance to be far from perfect in the test. Compared with
humans, however, LLMs may face different challenges. Human’s bottleneck in this test is their
limited brain capacity, while LLMs may have difficulty in always attending to the correct positions in
distant earlier context (or in precisely encoding context into hidden states for RNN-based models).

7.2 Graph Reasoning with Large Language Models

Graph reasoning with LLMs is an active research area in recent years. On the benchmark and
methodology level, datasets and frameworks are developed to integrate graphs with LLMs [49, 36].
In addition, researchers are exploring ways to solve question answers over structured data with LLMs
in a unified way [23]. Others are also trying to advance the prompting capabilities of LLMs by
mimicking the connective manner of human thinking or elaboration[4]. There has also been work
on developing general graph models to handle various graph tasks with a unified framework [30].
More recently, [43] provides theoretical analysis on the limit of transformer’s reasoning capability on
graphs, by relating transformer’s capabilities on graph reasoning to the computational complexity
of related tasks. On the application level, LLMs have been adopted in graph reasoning applications
such as node classification [21, 14], graph classification [38, 60], knowledge graphs [58, 56], and
recommendation systems [55]. We are still lacking a data perspective to address the basic question of
whether LLMs can accurately remember the graph that they are supposed to reason upon, which is a
prerequisite for any advanced graph tasks. Inspired and supported by cognitive studies, we conduct
the first comprehensive investigation of graph recall by LLMs, filling a gap in the existing literature.

8 Conclusion

This work proposes and studies graph recall as a simple yet fundamental task for understanding
LLM’s graph reasoning abilities. We design and conduct systematical studies on the accuracy and
biased microstructures of LLM’s graph recall, by creatively drawing its connection with the existing
cognitive studies on humans. Future work may examine more varieties of microstructural patterns
including higher-order structures [51] and “sense of distance”, both of which which are crucial for
understanding graph structures [28, 50, 57]. Another direction is to study how to improve LLM’s
graph recall by prompting or other methods.
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Appendix

A Code and data

Our code and data can be downloaded at: https://github.com/Abel0828/llm-graph-recall.

B More Experimental Details

Dataset. For the experiment in Sec.3.1 and 3.2, Fig.5-7 show graph samples of the Facebook,
Reactome, and Erdos-Renyi datasets. The graph narratives are shown in Appendix B.1. The sentence
sets for memory clearance are shown in Appendix B.2.1.

For the experiment in Sec.3.3, we utilize the two social networks in [8]’s human experiment. Each
social network was presented to the test taker in two different narrative styles: one is friendship-based,
and the other is kinship-based e.g. “James is the brother of Anne...”. In Brashears’ experiment, a
test taker has equal chance to see one of the two narrative style (but never both). The final result in
their paper, however, was reported in an aggregated form that mixes up response to both narrative
styles, as the authors reported to see no difference between caused by these two. To stay aligned we
choose do the same with LLMs, but make a note that LLMs may behave differently to different graph
narrative styles, which we have further investigated in a separate study, Sec.4.1.

We need to be careful with the generation of the node names, because it affects how much parametric
knowledge in the LLM gets elicited to aid the graph recall process. We general guideline is that,
although the parametric knowledge can potentially create a shortcut for LLM’s handling of the
graph recall task, this should not be forcefully forbidden as it is also seen in real-world applications.
Therefore, we have two cases when creating our datasets, namely (1) where parametric knowledge is
potentially useful, and (2) where parametric knowledge is less useful.

• For protein networks, the protein names are not random. They are unique protein identifiers (known
as the “UniProtKB/Swiss-Prot accession number” or NCBI index). Each node is assigned its real
name. We also confirmed that LLMs know and precisely understand those protein identifiers. The
same is true for DBLP coauthorship networks.

• For all other networks, the node names are generated and randomly assigned. For example, in
traffic (geographical) networks, the node names are “bank”, “townhall”, “high school”, etc.

Computing Resources. We use the Azure OpenAI service to test GPT-based models. For
Gemini-Pro, we use the gemini-pro model API provided by Google’s Generative AI. For
Llama Family models, we use the open-sourced models meta-llama/Llama-2-7b-hf and
meta-llama/Llama-2-13b-hf on Hugging Face, tuned on two Quadro RTX 8000 GPUs with
48 GB of RAM.
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Figure 5: Graph samples of the Facebook dataset.

Figure 6: Graph samples from the Reactome (protein-protein interaction) dataset.
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Figure 7: Graph samples of the Erdos-Renyi dataset.

Figure 8: The two 15-node social networks with different connectivity patterns used in [8] and in our
Sec. 3.3 experiment.
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B.1 Samples of the Graph Narratives for All Datasets

**Facebook**

"The following people have friendship relations: Harper, James, Abigail, Noah, Alexander,
Oliver, William, Charlotte, Sophia, Benjamin, Emily, Daniel, Ethan, Henry. Their have friend-
ships: Harper and Daniel are friends. Harper and Sophia are friends. James and William are
friends. James and Daniel are friends. James and Abigail are friends. James and Sophia are
friends. James and Noah are friends. Abigail and Benjamin are friends. Abigail and Noah are
friends. Abigail and Ethan are friends. Abigail and William are friends. Noah and Charlotte are
friends. Noah and Benjamin are friends. Noah and Emily are friends. "

**Traffic Network**

We have a traffic network that involves the following destinations: Bank, Town Hall, Grocery
Store, High School. The traffic network is the following. The traffic can directly flow from the
Bank to the Grocery Store. The traffic can directly flow from the Town Hall to the Grocery
Store. The traffic can directly flow from the Grocery Store to the High School.

**Protein Interaction**

The following proteins have mutual interactions: Q13563, Q16280, P61006, O75385, Q9ULV0,
O75154, Q7L804, Q15907, Q96QF0, Q8IV77, P08100, P18085, Q14028, P98161, Q9ULH1,
Q9P2M4. Their interactions are: Protein Q13563 interacts with Protein P98161. Protein Q13563
interacts with Protein P08100. Protein Q13563 interacts with Protein Q8IV77. Protein Q13563
interacts with Protein Q16280. Protein Q13563 interacts with Protein Q14028. Protein Q13563
interacts with Protein P18085. Protein Q13563 interacts with Protein Q9ULH1. Protein Q13563
interacts with Protein O75154. Protein Q13563 interacts with Protein P61006. Protein Q13563
interacts with Protein Q96QF0. Protein Q16280 interacts with Protein P98161. Protein Q16280
interacts with Protein P08100. Protein Q16280 interacts with Protein Q8IV77. Protein Q16280
interacts with Protein Q14028. Protein Q16280 interacts with Protein P18085. Protein Q16280
interacts with Protein Q9ULH1. Protein Q16280 interacts with Protein O75154. Protein Q16280
interacts with Protein P61006. Protein Q16280 interacts with Protein Q96QF0. Protein P61006
interacts with Protein Q96QF0. Protein P61006 interacts with Protein P98161. Protein P61006
interacts with Protein P08100. Protein P61006 interacts with Protein Q8IV77. Protein P61006
interacts with Protein Q14028. Protein P61006 interacts with Protein Q9ULH1. Protein P61006
interacts with Protein O75154. Protein O75385 interacts with Protein Q15907. Protein O75385
interacts with Protein Q9P2M4.

**Erdos-Renyi Graph**

A graph has the following nodes: Node 0, Node 1, Node 2, Node 3, Node 4, Node 5, Node 6,
Node 7, Node 8, Node 9, Node 10, Node 11, Node 12, Node 13, Node 14, Node 15, Node 16,
and the following edges: Node 0 is connected with Node 1. Node 0 is connected with Node
2. Node 0 is connected with Node 3. Node 0 is connected with Node 4. Node 0 is connected
with Node 6. Node 0 is connected with Node 7. Node 0 is connected with Node 8. Node 0 is
connected with Node 10. Node 0 is connected with Node 11. Node 0 is connected with Node
12. Node 0 is connected with Node 13. Node 0 is connected with Node 14. Node 1 is connected
with Node 4. Node 1 is connected with Node 5. Node 1 is connected with Node 7. Node 1 is
connected with Node 8. Node 1 is connected with Node 9. Node 1 is connected with Node 10.
Node 1 is connected with Node 11. Node 1 is connected with Node 14. Node 1 is connected
with Node 16. Node 2 is connected with Node 4. Node 2 is connected with Node 5. Node 2 is
connected with Node 6. Node 2 is connected with Node 7. Node 2 is connected with Node 9.
Node 2 is connected with Node 10. Node 2 is connected with Node 11. Node 2 is connected
with Node 13. Node 2 is connected with Node 14. Node 2 is connected with Node 16.
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B.2 Textual Samples Used in Experiment

B.2.1 Sentence Sets for Memory Clearance
**Two sentence sets**

“The ghillie suit, the modern sniper’s principle camouflage uniform, derives its name from
Scottish game hunters.”

“Industrial accidents- explosions of stored oil and gas- are bad enough on land.”

**Three sentence sets**

“But overall, the teenage share of the population wasn’t getting much bigger.”

“This is a system steeped in tradition, and I think that’s part of the problem.”

“We’re unable to move, our legs stuck beneath us as under a great weight.”

...

**Seven Sentence Set**

“One afternoon I open a letter from my younger sister, the photo chronicler of family events.”

“Although they have enough food to sustain your group for years, supermarkets are also danger-
ous.”

“Maternity, or additional offspring, may force upon the woman a distressful life and future.”

“By Wednesday night’s vote meeting, Sabrina was thoroughly disgusted by the superficiality of
the week.”

“I ask him to please stop lying about trying to take my place in the war.”

“Since the 1950’s, freeways have been built through every large and medium-sized city.”

“Instead, he took a job in Washington, analyzing weapons expenditures for the U.S. Navy.”
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C Full Comparison of True Graph and LLM Recall Graph

We provide a full comparison of the true graph and the recall graph from different LLMs. The results
are shown in Table 4, Table 5, and Table 6, respectively.

Table 4: Full comparison of true graph and GPT-
3.5 recall graph on different microstructures.

Microstructure

Dataset Edge Triangle Star Alt-Triangle Alt-2-Path

Facebook

True Graph 0.88+-1.46 0.61+-0.57 -1.75+-0.45 -0.02+-0.24 1.07+-0.21
Recall Graph -2.82+-5.47 2.33+-1.33 -2.46+-3.00 -0.93+-2.23 4.38+-1.72
Diff -3.70+-5.80 1.72+-1.34 -0.70+-3.00 -0.91+-2.25 3.31+-1.77

CA Road

True Graph 0.86+-2.50 2.90+-1.79 -4.83+-1.53 -2.07+-0.37 4.75+-0.52
Recall Graph 1.51+-1.73 10.21+-1.74 -8.29+-2.10 -3.54+-1.05 7.10+-0.91
Diff 0.64+-0.91 7.31+-3.49 -3.46+-1.77 -1.47+-0.92 2.35+-1.29

Reactome

True Graph 18.19+-5.96 1.23+-4.31 -9.46+-2.50 1.15+-2.61 1.40+-3.28
Recall Graph 0.18+-5.92 0.52+-2.78 -4.49+-5.15 -5.17+-3.49 5.84+-4.11
Diff -18.01+-6.22 -0.71+-4.62 4.96+-3.81 -6.32+-4.23 4.43+-4.93

DBLP

True Graph 7.63+-3.24 -1.68+-2.02 -5.30+-2.41 2.69+-2.14 -1.17+-2.30
Recall Graph -0.49+-2.24 -0.51+-3.86 1.88+-1.79 -8.47+-4.16 4.60+-3.58
Diff -8.12+-3.25 1.17+-4.43 7.17+-2.44 -11.16+-4.35 5.77+-3.76

Erdős–Rényi

True Graph -0.19+-3.44 -1.96+-1.59 -0.75+-3.28 0.86+-1.66 1.38+-0.89
Recall Graph -1.60+-5.10 7.61+-4.75 0.64+-1.66 0.45+-3.50 4.74+-2.53
Diff -1.40+-5.01 9.57+-4.89 1.40+-2.71 -0.41+-4.19 3.36+-2.76

Table 5: Full comparison of true graph and GPT-4
recall graph on different microstructures.

Microstructure

Dataset Edge Triangle Star Alt-Triangle Alt-2-Path

Facebook

True Graph 0.88+-1.46 0.61+-0.57 -1.75+-0.45 -0.02+-0.24 1.07+-0.21
Recall Graph 0.71+-1.51 0.66+-0.61 -1.69+-0.45 -0.03+-0.26 1.08+-0.21
Diff -0.17+-0.50 0.05+-0.78 0.06+-0.21 -0.01+-0.26 0.01+-0.06

CA Road

True Graph 0.86+-2.50 2.90+-1.79 -4.83+-1.53 -2.07+-0.37 4.75+-0.52
Recall Graph 2.20+-1.55 8.97+-2.43 -7.93+-1.52 -3.34+-1.15 6.60+-0.78
Diff 1.34+-1.62 6.07+-3.93 -3.09+-2.08 -1.27+-0.96 1.85+-0.91

Reactome

True Graph 18.19+-5.96 1.23+-4.31 -9.46+-2.50 1.15+-2.61 1.40+-3.28
Recall Graph 6.64+-5.56 2.05+-2.31 -6.77+-3.21 -0.84+-1.24 0.95+-0.97
Diff -11.54+-5.82 0.82+-4.28 2.69+-2.87 -1.99+-2.03 -0.46+-2.14

DBLP

True Graph 7.63+-3.24 -1.68+-2.02 -5.30+-2.41 2.69+-2.14 -1.17+-2.30
Recall Graph 6.37+-3.08 -3.09+-3.33 -5.99+-3.24 4.40+-3.10 -2.76+-2.51
Diff -1.26+-2.56 -1.41+-3.26 -0.69+-3.74 1.71+-2.96 -1.59+-2.24

Erdős–Rényi

True Graph -0.19+-3.44 -1.96+-1.59 -0.75+-3.28 0.86+-1.66 1.38+-0.89
Recall Graph -1.69+-3.21 -0.01+-1.09 -0.23+-2.13 -0.40+-1.49 0.93+-1.76
Diff -1.49+-4.15 1.95+-1.54 0.52+-2.79 -1.26+-1.66 -0.45+-0.76

Table 6: Full comparison of true graph and Gemini-Pro recall graph on different microstructures.
Microstructure

Dataset Edge Triangle Star Alt-Triangle Alt-2-Path

Facebook

True Graph 0.88+-1.46 0.61+-0.57 -1.75+-0.45 -0.02+-0.24 1.07+-0.21
Recall Graph -1.44+-0.90 -1.68+-3.00 -0.25+-2.35 2.38+-1.35 1.74+-1.06
Diff -2.31+-1.26 -2.29+-2.99 1.50+-2.37 2.40+-1.37 0.67+-1.10

CA Road

True Graph 0.86+-2.50 2.90+-1.79 -4.83+-1.53 -2.07+-0.37 4.75+-0.52
Recall Graph 1.70+-1.15 4.93+-0.84 0.41+-2.95 -1.18+-0.44 -2.07+-2.28
Diff 0.84+-1.68 2.02+-0.29 5.24+-0.27 0.89+-0.28 -6.82+-0.62

Reactome

True Graph 18.19+-5.96 1.23+-4.31 -9.46+-2.50 1.15+-2.61 1.40+-3.28
Recall Graph 6.25+-5.81 2.50+-4.04 4.02+-5.87 4.47+-5.71 5.56+-5.01
Diff -11.94+-4.65 1.27+-5.22 13.47+-4.70 3.32+-4.57 4.15+-4.01

DBLP

True Graph 7.63+-3.24 -1.68+-2.02 -5.30+-2.41 2.69+-2.14 -1.17+-2.30
Recall Graph -11.84+-4.72 -3.40+-3.83 5.94+-2.13 -8.39+-3.34 9.66+-3.99
Diff -19.47+-3.30 -1.72+-3.45 11.24+-2.45 -11.08+-3.90 10.83+-4.53

Erdős–Rényi

True Graph -0.19+-3.44 -1.96+-1.59 -0.75+-3.28 0.86+-1.66 1.38+-0.89
Recall Graph -3.06+-1.67 -0.45+-4.00 -1.41+-1.20 1.45+-2.17 0.69+-0.46
Diff -2.86+-5.16 1.51+-5.04 -0.66+-3.95 0.59+-2.81 -0.70+-1.15
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D Sex Priming as a Mini-study

Motivation. [7] interestingly found that females can more accurately recall their social networks
than males. The underlying explanation is that underrepresented groups tend to be more aware of
their surroundings. We conjecture that this trend might also exist in the corpus on which LLMs are
trained, and therefore wonder whether LLMs perform better at graph recall when asked to play the
role of a female.

Procedures. Aligned with [7]’s design, we include at the beginning of the test (i.e. prior to all steps)
a sex prime, which is a piece of text designed to elicit the test subject’s awareness of their sex. [7]’s
sex prime is a short question that asks the subject’s opinion on same-sex versus mixed-sex housing.
However, this method fails with LLMs because they refuse to identify as having any pre-given sex.
Instead, we send role-playing instructions to LLMs by stating their “sex” in the system message at
the beginning of the chat. We further confirm the successful elicitation by asking what their sex is
afterwards. We compare the LLM’s graph recall performance under male and female roles.
Result Analysis. The results are shown in Fig.9 (g) - (i). The error bars are 95% confidence intervals.
The effect of sex roles appear to be insignificant in most cases, which negates our initial conjecture
and interestingly opposes the existing findings on humans. In fact, LLMs underperform in both roles
when compared with the control group, i.e. cross-referencing Table 1 “Accuracy” column.

Figure 9: Different factors that influence LLM’s graph recall. (g) - (i): sex. Following [7]’s
procedures, we test and find that the effect of sex roles that an LLM is asked to play is insignificant
on their capability of graph recall — a result different from that on humans.
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E Full Performance Metrics with Different Narrative Styles

The full performance comparison of different narrative styles on five datasets for each LLM is present
in Table 7.

Table 7: Full graph recall performance metrics with different narrative styles on five datasets.

Dataset Narrative Style
GPT-3.5 (%) GPT-4 (%) Gemini-Pro (%)

F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall

Facebook

Social 72.34 71.60 66.84 90.22 99.75 99.80 99.51 100.00 34.56 51.13 34.60 49.11
Geological 44.39 48.35 38.07 55.89 37.55 52.18 37.50 37.61 41.42 46.71 35.27 66.10
Biological 51.99 47.11 40.48 75.91 49.93 48.64 39.95 67.72 31.01 48.79 27.67 49.88

Co-authorship 42.30 48.76 38.25 53.69 37.98 51.87 37.42 38.59 28.95 51.84 27.08 42.27
Random 47.57 47.81 40.28 63.03 44.57 51.27 40.41 51.54 24.36 55.25 31.39 27.30

CA Road

Social 41.37 49.30 36.43 53.07 40.85 58.22 40.85 40.85 28.19 40.53 25.78 45.17
Geological 92.95 95.52 89.81 97.13 98.00 98.11 98.00 98.00 31.92 44.69 28.02 53.02
Biological 44.90 41.59 34.74 71.64 44.08 43.73 34.72 66.25 18.74 38.60 14.20 40.75

Co-authorship 40.65 48.71 35.75 53.66 40.50 57.91 40.38 40.67 24.08 40.15 18.40 46.41
Random 31.88 47.26 29.39 38.14 31.43 49.10 29.38 35.58 31.52 59.93 33.23 35.46

Reactome

Social 56.32 54.99 49.54 71.59 50.68 53.69 50.45 50.91 43.34 51.58 47.48 52.57
Geological 57.47 56.18 51.41 68.15 50.09 54.05 50.41 50.06 48.72 51.28 44.97 63.11
Biological 44.47 53.68 46.53 54.62 76.80 77.04 77.57 77.44 46.59 54.09 49.06 55.07

Co-authorship 50.10 54.55 51.48 54.95 50.21 53.72 50.42 50.12 31.68 51.29 36.57 36.24
Random 56.27 53.67 52.77 64.92 53.59 54.11 53.13 56.12 24.92 46.62 43.65 26.30

DBLP

Social 51.00 53.79 42.65 68.22 42.05 58.79 42.05 42.05 35.72 49.70 36.09 51.83
Geological 47.01 58.17 43.30 53.69 42.10 58.81 42.09 42.11 41.89 47.02 36.96 66.93
Biological 51.75 48.30 41.44 75.21 50.60 50.30 41.67 69.24 41.95 49.15 33.76 69.52

Co-authorship 65.08 72.47 67.56 74.97 97.88 98.70 97.17 98.81 47.36 46.33 40.23 77.56
Random 45.22 52.35 40.08 54.86 42.56 53.58 39.98 47.07 15.82 57.50 32.94 13.06

ER

Social 61.69 68.95 51.67 81.15 62.60 78.68 62.40 62.80 39.37 50.41 44.01 56.08
Geological 62.70 73.89 56.07 73.67 64.62 79.13 64.37 64.89 43.18 44.92 41.96 71.69
Biological 47.84 49.09 39.65 69.47 46.11 50.42 39.69 62.71 36.56 52.32 33.54 54.60

Co-authorship 52.69 66.74 48.15 66.90 61.13 78.10 60.33 62.06 29.69 50.42 38.57 42.52
Random 49.49 55.21 45.33 63.94 44.03 60.34 44.97 44.40 22.27 52.40 36.95 26.33

F Limitations

Our evaluation of LLM’s graph recall performance is not exhaustive. Due to budget constraint,
we only test on datasets from five domains and on a limited number of graph samples from each
domain. Also, while we have experimented with several main-stream LLMs including GPT-3.5,
GPT-4, Gemini-Pro, and Llama-2, there are other popular LLMs such as Claude 3 and Llama-3 which
our experiment have not covered.

Another limitation of our work, which we also consider to be an important direction for future work,
lies in the distinction between graph recall and graph retrieval. The latter requires a more variational
setting on the amount of contextual noise in graph narratives. In our work, we have intentionally
designed the graph narratives to be simple and fixed, because we already observed considerable
errors in LLM’s graph recall at this starting point (and we know little about LLM’s behaviors even in
this simplest setting). However, the real-world structure-rich text that LLMs process may contain
significantly more contextual noise, where some of the findings in this work may not be easily
generalizable (although we conjecture that many systematic bias we have observed will persist). How
to both realistically and comprehensively vary the amount of noise in graphs narratives remains to be
a challenging topic to explore.

Finally, despite being small, the gap between our result and the recent “Needles in a Haystack” by
Greg Kamradt [19] on GPT-4 needs more investigation. In [19], it is reported that GPT-4 makes little
errors in long-context recall over Paul Graham essays, up to the context length of 73k. While our
study also shows (in Table 1) that GPT-4 performs well on three out of the five datasets used, its
performance on the rest two is mediocre. There can be many possible explanations to reconcile the
gap, but the lack of robustness that we observe in tests of this kind is an important starting point for
further investigation.

G Relationship with the “Edge Existence” Task in (Fatemi et al.) [18]

The edge existence task is one of the six exemplary tasks proposed in [18] for measuring LLM’s
graph reasoning ability. Both our graph recall test and the edge existence task require the LLM to
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decide the existence of graph edges described in earlier text. However, our work has the following
main differences and novelty.

• The main topics of investigation are different. The central topics in this paper are 1) to unveil biased
subgraph patterns (motifs) in LLM’s graph recall, (2) to rigorously compare LLM’s performance
with humans, and (3) to investigate how results of (1) are affected by various factors. These topics
are not studied in [18].

• The empirical findings are completely non-overlapped. Our work presents many findings about
LLM’s biased graph recall patterns and their rigorous comparison with humans, which are novel to
[18].

• Our experimental pipelines are different. Our paper uses a more rigorous evaluation pipeline
inspired by classical human cognition studies. In addition to synthetic data, we also extensively use
real-world datasets for experiment, which was not reported [18].
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We’ve made claims about this work’s originality, novelty, and significance.
They are accurately described, with the central task and scope well defined.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have Appendix F for this.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We’ve provided original code and data to be downloaded at: https:
//anonymous.4open.science/r/llm-graph-recall-8513. They can be used to re-
produce the main experimental results of the paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We’ve provided original code and data to reproduce the main experimental
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has provided the main hyperparameters for the evaluation test, such
as the prior for the ERGM, and the specifications for generating the synthetic datasets. More
nuanced details have been included in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided 95% conficence internvals for all of the main results in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided our cloud providers for all the APIs used in this paper in
Appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have strictly conformed to the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have a section for this.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We believe that this paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all the dataset being used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper is not directly involved with research with human subjects. It is,
however, inspired by and adopts some of the results in a (referenced) previous paper that
involves human subject. All details of instructions can be found in that paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper is not directly involved with research with human subjects. It is,
however, inspired by and adopts some of the results in a (referenced) previous paper that
involves human subject. All details of instructions can be found in that paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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