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Abstract
We extend the artificial language learning ex-001
perimental paradigm from psycholinguistics002
and apply it to pre-trained language models003
– specifically, BERT (Devlin et al., 2019). We004
treat a pretrained model as a subject in an ar-005
tificial language learning experimental setting:006
in order to learn the relation between two lin-007
guistic properties A and B, we introduce a set008
of new, non-existent, linguistic items, give the009
model information about their variation along010
property A, then measure to what extent the011
model learns property B for these items as a012
result of training. We show this method at work013
for degree modifiers (expressions like slightly,014
very, rather, extremely) and test the hypothesis015
that the degree expressed by the modifier (low,016
medium or high degree) is related to its sensitiv-017
ity to sentence polarity (whether it shows pref-018
erence for affirmative or negative sentences or019
neither). Our experimental results are compat-020
ible with existing linguistic observations that021
relate degree semantics to polarity-sensitivity,022
including the main one: low degree semantics023
leads to positive polarity sensitivity (that is, to024
preference towards affirmative contexts).025

1 Introduction026

One over-arching goal of linguistics is to describe027

and explain the limits of linguistic variation. What028

is impossible in natural language and why? Lin-029

guistic expressions can be characterized along a030

large set of properties: what they mean, what parts031

they consist of, how they combine with other ex-032

pressions and so on. Delineating the space of pos-033

sible natural languages amounts to uncovering non-034

trivial relations between these properties that con-035

strain this space. Observations about these relations036

can come in the form of categorical implicational037

linguistic universals, for example, Greenberg’s Uni-038

versal 37: A language never has more gender cate-039

gories in nonsingular numbers than in the singular.040

(Greenberg, 1963). Here, two properties of linguis-041

tic expressions are related: the grammatical number042

of an expression and how many gender distinctions 043

are available for this expression. More complex 044

generalizations may concern correlation between 045

two continuous properties A and B. 046

Moving from observation towards explanation, 047

one might also question the direction of this rela- 048

tion: does the extent of A affect the extent of B, or 049

vice versa, or are they both affected by some other 050

unobserved factor? 051

Interactions between linguistic properties can be 052

studied (and potentially, found) on different scales: 053

in one language, in a subset of natural languages, 054

or universally. 055

In this paper, we study one particular linguistic 056

generalization: the problem of polarity-sensitivity 057

of degree modifiers (Israel, 1996, 2011; Solt, 2018; 058

Solt and Wilson, 2021). Degree modifiers are 059

words like slightly, very, and extremely. Property 060

A, in this case, is the degree that these words con- 061

vey, defined on a interval from very low to very 062

high. For example, the degree of slightly is lower 063

than the one of very. Property B here encodes 064

distributional preferences of degree modifiers with 065

respect to polarity of a sentence where they appear 066

– roughly, whether they prefer to appear in negative 067

or affirmative sentences, or show no polarity prefer- 068

ence. Polarity preferences can also be represented 069

as a continuous property from very low (negative 070

polarity preference) to very high (positive polarity 071

preference), with polarity-neutral in the middle. 072

Our study will focus on English, as represented 073

in a pre-trained language model (LM), BERT (De- 074

vlin et al., 2019). 075

Interactions between linguistic properties have 076

been subject to experimental studies. One promi- 077

nent experimental method is artificial language 078

learning, a framework actively used in psycholin- 079

guistics and cognitive science (Friederici et al., 080

2002; Motamedi et al., 2019; Kanwal et al., 2017; 081

Culbertson et al., 2012; Ettlinger et al., 2014; Fin- 082

ley and Badecker, 2009). It has the following main 083
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ingredients: (1) a fragment of an artificial language084

in the form of expressions that do not belong to085

the language that participants are speakers of; (2)086

training phase, where some information about the087

language fragment is given to the participants; (3)088

testing phase, where it is checked what other knowl-089

edge, beside the provided, was inferred during train-090

ing. The main challenge for this method is that one091

only has limited access to the processes in the brain092

that underlie artificial language acquisition and use093

(although see Friederici et al. 2002). In particu-094

lar, it is hard to control for the role of the partici-095

pants’ native language in the experiment. Another096

approach is artificial language learning using (ar-097

tificial) neural networks (Piantadosi et al., 2012;098

Carcassi et al., 2019; van de Pol et al., 2021). Re-099

placing human participants with neural networks as100

learning agents allows to examine the learning pro-101

cess in more detail, and to control for the learner’s102

native language substrate, since the agent comes in103

a blank state with no prior knowledge. However,104

while this approach can make particular types of105

learnability statements, it raises questions about106

the extent to which its conclusions apply to natural107

language at all.108

We propose a methodology that is middle ground109

between these two paradigms. It also involves an110

artificial language fragment and training to intro-111

duce knowledge about some property A, but it uses112

a pre-trained LM (Peters et al., 2018; Devlin et al.,113

2019; Brown et al., 2020) as the learning subject.114

More technically, we extend a pre-trained LM with115

a set of new tokens with randomly initialized em-116

beddings and perform fine-tuning on a carefully117

constructed synthetic dataset. The dataset is con-118

structed in a way to indirectly introduce different119

values along property A for different new tokens.120

Upon fine-tuning, we measure how the training121

affected property B and how variation along B122

depends on the values of property A introduced123

during training.124

Our proposed approach combines the benefits of125

the two other approaches described above. First,126

learning happens on top of already existing lin-127

guistic knowledge, which makes these experiments128

more directly parallel to those with human partici-129

pants. Second, like in other approaches involving130

computational modelling, the learning process is131

more directly controllable and explorable. Addi-132

tionally, the factor of pre-existing linguistic knowl-133

edge can be more easily controlled for, compared134

to human experiments. Finally, our approach is 135

scalable to a wide variety of languages, provided 136

there is a LM of sufficient quality. 137

The idea of using counterfactual linguistic data 138

is not new (Kaushik et al. 2020, 2021; Thrush et al. 139

2020 a.o.), but in this paper we do not use it for 140

the purpose of bias mitigation or model evaluation. 141

Our work contributes to the general agenda of es- 142

tablishing closer connections between learning in 143

humans and artificial neural models (Futrell et al. 144

2019; Wilcox et al. 2020 a.o.). 145

We make the following contributions: we pro- 146

pose a new experimental methodology based on 147

the artificial language learning paradigm; we use 148

this methodology to explore the relation between 149

two linguistic phenomena, degree and polarity- 150

sensitivity, as represented in one pre-trained LM 151

(BERT). We argue that, according to the experi- 152

mental results, there is indeed a direct connection 153

between the degree encoded by a degree modifier 154

and its polarity-sensitivity. 155

The paper is structured as follows: Section 2 156

gives linguistic background about degrees and po- 157

larity. Section 3 describes the general method. In 158

Section 4, we define a synthetic dataset and the 159

measures we use to estimate degree and polarity. 160

Section 5 presents the experiment. Section 6 dis- 161

cusses our results, the limitations of our set-up and 162

suggestions for future work. 163

2 Background: Degree and polarity 164

In this section we provide background on the 165

studied linguistic properties: we describe degree 166

as a property of degree modifiers, and polarity- 167

sensitivity as a property of linguistic items (words) 168

that tend to appear in certain types of contexts. We 169

outline the relation between these two properties, 170

as discussed in theoretical linguistic literature. We 171

will apply our proposed method to experimentally 172

verify the hypothesised relation. 173

Degree 174

So-called gradable adjectives describe properties 175

that can hold to a different degree. A classic exam- 176

ple of a gradable adjective is tall. A classic example 177

of a non-gradable one is prime. The former, as op- 178

posed to the latter, can be part of comparative and 179

superlative constructions, and they can combine 180

with degree modifiers: words like slightly, very, 181

and extremely. Examples (1)-(2) illustrate this dif- 182

ference. We use ∗ to denote all types of linguistic 183
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deviancy, including ungrammaticality as well as184

semantic / pragmatic oddity:185

(1) ∗7 is more prime than 3.186
∗13 is the most prime number in this set.187
∗1 is somewhat / very / extremely prime.188

(2) Mary is taller than John.189

Mary is the tallest person in this room.190

Mary is somewhat / very / extremely tall.191

For a statement with a simple base form of a grad-192

able adjective – like Mary is tall – to be true, the193

property in question has to hold of the subject194

to some degree δ that is determined by linguistic195

and extra-linguistic contextual factors (Fara, 2000;196

Kennedy and McNally, 2005; Kennedy, 2007).197

When a gradable adjective appears in combination198

with a degree modifier, the degree δ that makes199

the statement true changes to a value that depends200

on the modifier. For Mary to count as ‘somewhat201

tall’, her height needs to be much lower than for202

‘extremely tall’, for instance. The requirements on203

δ that degree modifiers encode can be used to or-204

der these modifiers along a scale of degrees, for205

example, somewhat < extremely.206

Polarity-sensitivity207

For certain expressions, their acceptability and/or208

interpretation in a context is conditioned on the209

polarity of this context. Expressions with distribu-210

tional preference1 for negative contexts are called211

negative polarity items (NPIs). Expressions with212

preference towards positive contexts are called pos-213

itive polarity items (PPIs). For example, any is an214

NPI (3), while already is a PPI (4). NPIs and PPIs215

are said to be polarity-sensitive. Like degree, we216

treat polarity-sensitivity as a continuous property217

on the [0,1] interval, where 0 is a very pronounced218

NPI, 1 a very pronounced PPI, with polarity-neutral219

items in the middle.220

(3) ∗Mary bought any books. NPI221

Mary didn’t buy any books.222

(4) John has arrived already. PPI223
∗John hasn’t arrived already.224

Sentences that are good contexts for NPIs and PPIs225

1We use the vague and permissive term ‘preference’ here
to cover the whole spectrum of asymmetries between positive
and negative contexts that an expression shows – from ungram-
maticality to decreased prominence of a narrow scope reading.
Gradations of polarity-sensitivity will play a crucial role in our
discussion, but specifically for this reason we are looking for a
unified way to describe the whole space of polarity sensitivity
phenomena.

are said to have negative and positive polarity, re- 226

spectively. Polarity of a sentence does not amount 227

simply to the presence or absence of sentential 228

negation, it is a way more complex semantic prop- 229

erty (see Fauconnier 1975; Ladusaw 1979 and sub- 230

sequent literature). However, we will focus on the 231

presence or absence of negation as a proxy to po- 232

larity in the current discussion. 233

Relation between the two properties 234

Observations reported in linguistic literature sug- 235

gest an interaction between these two properties 236

(Israel, 1996, 2011; Solt, 2018; Solt and Wilson, 237

2021). Specifically, lower degrees associate with 238

PPI behaviour. Low-to-moderate degree modifiers 239

in English support this observation (Solt and Wil- 240

son, 2021), as examples in (5) demonstrate. This 241

pattern is supported by other languages too (van 242

Os, 1989; Nouwen, 2013; Ito, 2015). 243

(5) The issue is fairly / pretty / somewhat / 244

rather / kind of / sort of important. 245
∗The issue isn’t fairly / pretty / somewhat 246

/ rather / kind of / sort of important. 247

On the other hand, modifiers in the moderate-to- 248

high range show mild association with negative 249

contexts (Israel, 1996). The association between 250

negative polarity and degree modifiers from a cer- 251

tain range comes from the phenomenon of ‘neg- 252

ative strengthening’ (Gotzner et al., 2018; Maz- 253

zarella and Gotzner, 2021): 254

(6) John isn’t particularly smart. 255

While the literal meaning of (6) is compatible with 256

John being smart quite often these types of sen- 257

tences are used to convey a stronger meaning: that 258

John is not smart at all. This is a pragmatic asym- 259

metry rather than a distributional constraint, but 260

it contributes to the interaction patterns between 261

degree and polarity-sensitivity. 262

Existing work proposes analyses of degree mod- 263

ification with built-in causal connection between 264

the degree semantics of modifiers and their polar- 265

ity profile (Israel, 1996; Solt and Wilson, 2021) – 266

even though the extent, exact shape and direction 267

of this connection is not established yet. We use 268

this state of affairs as a chance to contribute to this 269

discussion empirically and analytically, using the 270

method proposed below. 271

3 Method 272

In this section, we describe the details of a method 273

to conduct artificial language learning experiments 274
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with pretrained LMs. Without loss of generality, we275

use BERT in our experiments, but other pretrained276

language models could be used instead.277

We design our method to be applied to linguis-278

tic hypotheses of the form A ⇒ B, where A,B279

are some properties in a given language. In this280

study, we specifically focus on the relationship be-281

tween adverbial degree modification and polarity-282

sensitivity. A in this context is low, medium or283

high degree of an adverbial modifier w, and B is284

negative, neutral or positive polarity of w. In gen-285

eral, we evaluate a hypothesis A(w, i) ⇒ B(w, j)286

by showing that if A holds according to BERT for287

token w to an extent i, then so does B to some288

extent j, according to BERT.289

We use the cloze test (a task where the par-290

ticipant is asked to recover a missing language291

item) adapted for BERT (see Warstadt et al. 2019,292

[redacted for anonymity] for the cloze test on293

LMs for polarity). The test uses BERT’s probabil-294

ity distributions over tokens in masked positions in295

diagnostic contexts for property A or B.296

To show that a hypothesis holds in general for297

an arbitatrary w, we:298

(1) augment BERT’s vocabulary with a set W of299

new tokens and randomly initialize the corre-300

sponding embeddings;301

(2) fine-tune the corresponding embeddings on a302

dataset where the new tokens appear in con-303

texts that distributionally select for particular304

values of A;305

(3) test whether the knowledge that B holds was306

acquired, to the extent that follows the hypoth-307

esised association pattern with A.308

As part of Step (1), we also verify that prior to309

training the initialized embeddings don’t show any310

biases w.r.t. both properties A and B. This ap-311

proach presupposes a set of contexts that distribu-312

tionally select for a specific linguistic property X ,313

denoted S(X). We describe a method to mine such314

contexts for the specific linguistic properties of our315

case study in Section 4.3. Part of future work is316

extending it to a more general case. The general317

structure of the synthetic dataset is described in318

Section 4.1. It is also tailored to the linguistic phe-319

nomenon under investigation.320

4 Dataset and measures321

First, we delineate a fragment of English that will322

be the basis of our experiment (Section 4.1): simple323

sentences with a gradable adjective predicated over 324

a definite noun phrase (as in The pizza is good). 325

We re-shape these sentences to create diagnostic 326

contexts for properties A and B (Sections 4.2, 4.3). 327

We also use it to exemplify values of A during 328

training (Section 4.3). 329

4.1 Basic set of sentences 330

First, we automatically identified the set of 331

gradable adjectives and nouns to build our 332

training samples from. We started with 333

bert-base-uncased2 vocabulary and as- 334

signed all non-subword tokens a part of speech 335

label with the SpaCy POS tagger3. We kept the top 336

1000 nouns. Using the CapitolWords dataset from 337

textacy4, we looked for co-occurrences of ad- 338

341 jectives with degree modifiers somewhat, very, 339

really, extremely, rather and picked 200 adjectives 340

with the highest ratio of modified uses. 341

Second, we generated sentences with these 342

nouns and adjectives using the following pattern: 343

The nounx cop.PRS adjy 344

where cop.PRS is either singular or plural copula 345

in the Present tense (is or are), nounx is one of 346

the 1000 picked nouns, and adjy is one of the 200 347

gradable adjectives. The procedure gave us 400k 348

sentences like these: 349

(7) The purpose is interesting. 350

The answer is simple. 351

The environment is large. 352

This 400k set varied in terms of naturalness, coher- 353

ence and adherence to lexical selectional restric- 354

tions. To control for this, we ran the sentences 355

through GPT-25 and kept the bottom 10k accord- 356

ing to the assigned sentence perplexity. 357

The construction steps above aim to output ‘nat- 358

ural’ examples, based on insights from different 359

sources (GPT-2, BERT, corpus-based statistics). 360

Manual inspection of the resulting 10k dataset re- 361

vealed some sentences that still sound intuitively 362

‘weird’. We do not see this as a problem though, 363

since the majority of sentences are natural enough. 364

The large quantity of examples in our dataset 365

is crucial to make our experiments comparable to 366

2 https://huggingface.co/
bert-base-uncased

3https://github.com/explosion/
spacy-models

4https://github.com/bdewilde/
textacy-data

5https://huggingface.co/gpt2
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psycholinguistic experiments. In the latter, one367

sentence gives rise to a multiple of observations368

about (roughly) one linguistic system, due to judge-369

ments to multiple participants with similar enough370

intuitions. In our setting, we have only one agent371

(BERT), so we compensate by increasing the num-372

ber of sentences.373

4.2 Estimating polarity374

To assign polarity scores to degree modifiers, we375

follow the procedure in (Warstadt et al. 2019,376

[redacted for anonymity]). We use the 10k ba-377

sic sentences (Section 4.1) to build a polarity con-378

trast set. For each sentence in the basic set, a pair379

of sentences, one positive and one negative, with380

the [MASK] token in the modifier position:381

The nounx cop.PRS [MASK] adjy.382

The nounx cop.PRS.NEG [MASK] adjy.383

We end up with 10k pairs of sentences like these:384

(8) The reason is [MASK] simple.385
The reason isn’t [MASK] simple.386

We use the generated sentence set to estimate387

polarity-sensitivity pol(m) of a degree modifier m388

using the probabilities that BERT assigns to each389

token in its vocabulary in the masked position:390

∑
s∈D[[p([MASK] = m|smskd

AFF ) > p([MASK] = m|smskd
NEG )]]

|D|
(1)

391

where D is the 10k dataset, smasked
pos is a sentence s392

from the dataset in the positive form, with [MASK]393

in the degree modifier position, and smasked
neg is its394

negative counterpart. So, we approximate polarity395

as the proportion of cases where token m got a396

higher probability in pos than in neg context.397

Previous applications of this estimation method398

has shown its reliability for NPI detection (Jumelet399

and Hupkes 2018; Warstadt et al. 2019; Jumelet400

et al. 2021;[redacted for anonymity]). As an401

illustration, slightly gets a score of 0.99 (= is a PPI),402

particularly gets a score of 0.1 (is an NPI), while403

incredibly is a PPI again with score 0.94.404

We use this polarity estimation method to get a405

reliable list of degree modifiers with polarity scores.406

For each of the 10k sentence pairs, we pick 100407

tokens with highest probability in the masked po-408

sition for a positive sentence and 100 tokens for409

its negative counterpart. Then we take two unions:410

one of all the “positive” tokens and one for the411

“negative” ones. We filter these two sets to only412

keep tokens that appear more than 100 times in one 413

of them.6 We use the resulting sets in the rest of 414

the experiment. 415

4.3 Estimating and mining degree 416

To estimate polarity of tokens (Section 4.2), we 417

relied on their patterns of occurrence in positive 418

and negative contexts. To apply an analogous pro- 419

cedure to degree, we need contexts that associate 420

with various degree semantics. We propose the fol- 421

lowing intuition. What does an answer to a yes/no- 422

question with a gradable adjective – like Is the pizza 423

good? – depend on? It certainly depends on how 424

good the pizza is: the degree to which the property 425

applies to the subject. Given that degree modifiers 426

express exactly that, we can make a connection be- 427

tween their degree value and particles that answer 428

the degree yes/no question. 429

For example, we expect particles to have differ- 430

ent distribution in the masked position in (9) as an 431

effect of the modifier: 432

(9) – Is the pizza good? 433

– [MASK], it is somewhat good. 434

– [MASK], it is extremely good. 435

We use this idea to mine particles that are associ- 436

ated with low and high degree. The mined particles 437

can be used to assess degree of the modifiers, anal- 438

ogously to polarity measurement above. As low 439

degree modifiers, we use somewhat and slightly; 440

for high degree, very and extremely. We modify 441

each of the 10k sentences to generate pairs of sen- 442

tences like these, where MOD is one of the four 443

modifiers of interest: 444

(10) Is the question difficult? 445
[MASK], it is MOD difficult. 446

As before, we run the resulting (40k) sentences 447

through BERT and, for each sentence, we collect 448

the top 100 tokens according to the probability of 449

tokens in the masked position. We only keep those 450

tokens that appear in this list 100 times or more. 451

The particles in the resulting list are then tested 452

their degree-diagnosing potential, as follows. 453

We use the same procedure as for polarity: for 454

each particle, we check in what proportion of cases 455

the probability that BERT assigns to the particle in 456

the sentence with the high degree modifier is higher 457

than with a low degree modifier. We perform this 458

comparison for each of the four pairs of high vs. 459

low degree modifiers: very vs. somewhat, very 460

6Among the tokens that survived the filter: very, always,
quite, so, really, too, all, actually.

5



vs. slightly, extremely vs. somewhat, extremely vs.461

slightly. This procedure gives us a value from 0 to462

1 for each particle from the list, depending on the463

extent to which it is associated with low degrees464

(the closer to 0, the more this holds) or high degrees465

(closer to 1). We fix the final set of top 10 particles466

that associate with low (11) degrees and with high467

degrees (12):468

(11) well, actually, now, but, however,469
still, so, why, anyway, sure470

(12) yes, oh, sir, absolutely, god,471
damn, remember, wow, seriously,472
man473

Finally, we reverse the process and now use these474

particles to produce a degree score for degree mod-475

ifiers. For each of the 10k sentences, we modify it476

to get 20 sentences like the following (where PRT477

ranges over the 20 particles in (11) and (12)):478

(13) Is the question difficult? PRT,479
it is [MASK] difficult.480

Comparing modifier probabilities across conditions481

defined by the distinction in (11) and (12) as before,482

we get a measure defined on the [0,1] interval that483

corresponds to the modifier’s degree.484

As a final step, we manually cleaned the result-485

ing list of 415 tokens obtained from the [MASK]486

to get rid of syntactic junk and items whose selec-487

tional restrictions are too narrow, to end up with488

the list of 98 degree modifiers we will further use7.489

To validate our degree measure, we take five490

modifiers about which the literature agrees they491

introduce low or moderate degree (barely, hardly,492

rather, fairly, merely); same for high degree (com-493

pletely, totally, utterly, damn, bloody) (Paradis494

(1997); Bennett and Goodman (2018) a.o.). There’s495

no overlap with modifiers we used as seeds for our496

degree measure. Also, these are practically all mod-497

ifiers with an undisputed degree profile discussed498

in the literature that are also whole BERT tokens.499

Our measure assigns the low degree class an aver-500

age score of 0.22 (min 0.11; max 0.31); average501

of 0.56 for the high degree class (min 0.5; max502

0.62). Very, which has some intensifying effect got503

a score of 0.45. We conclude that the measure is504

decent, albeit somewhat shifted to the left.505

Fig. 1 shows the distribution of polarity-506

sensitivity and degree for these modifiers (we color-507

code them as moderate, medium and high degree).508

As the scatterplot and the fitted parabola show, the509

7Code and data are at https://github.com/
nlpsubmissions/artificial_language_
learning_for_modifiers (anonymous).

Figure 1: Degree and polarity of existing modifiers.

existing data is compatible with what is hypothe- 510

sised in the linguistic literature: low degrees asso- 511

ciate with positive polarity, while the rest is more 512

varied – mid-range degrees gravitate towards more 513

negative polarity somewhat, while the higher range 514

again gravitates towards PPI behaviour. 515

5164.4 Degree and polarity in BERT embeddings 517

We use diagnostic classifiers to analyse how 518

polarity-sensitivity and degree semantics are rep- 519

resented in BERT token embeddings for degree 520

modifiers. Using embeddings of degree modifiers 521

as features, we fit logistic regression with L1 regu- 522

larization to demote non-zero coefficients for two 523

binary classification tasks: 1) token classification 524

into ‘negative’ (< .5) and ‘positive’ (> .5) with 525

respect to polarity; 2) token classification into ‘low 526

degree (< .4, based on somewhat skewed score 527

distribution) and ‘high degree’ (> .4). 528

On 5 folds, average accuracy for polarity on train 529

data is 79.2%, and 74.7% on test. For degree, it’s 530

73% and 72.3%, respectively. For each of the tasks, 531

we find the most important part of the embedding 532

that is responsible for the distinction, by taking co- 533

ordinates that have non-zero coefficients in at least 534

four of the folds. We found 20 important coordi- 535

nates for polarity and 13 for degree. There was no 536

overlap between these coordinates, indicating no 537

representational overlap between polarity and de- 538

gree at the level of token embeddings. If it turns out 539

that the model encodes the dependency between 540

the two properties, it would be on a level other than 541

embeddings directly. 542

5 Experiment 543

This section describes how we teach BERT a new 544

system of degree modifiers by only giving it infor- 545

mation about their degree. Section 5.1 describes 546

how we introduced new tokens into BERT’s vocab- 547

ulary and mined particles that signal the properties 548
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we wish to teach BERT. Section 5.2 provides the549

details of the fine-tuning procedure and the experi-550

mental results.551

5.1 Mining contexts for new degree modifiers552

We partition the existing degree modifiers into three553

same-sized groups, based on the degree scale re-554

gion they belong to: moderate, medium, high (or,555

v1, v2 and v3, respectively). This is shown as556

three vertical regions in Fig. 1. We use the iden-557

tified groups to instantiate three classes of new558

degree modifiers. For each of the groups, we mine559

degree-region-specific particles, using the proce-560

dure described in Section 4.3. The resulting sets of561

particles are:562

V1: alternatively, myself, similarly,563
accordingly, otherwise, however,564
alternately, likewise, conversely,565
er, although, thus, nevertheless,566
nonetheless, still, hence567

V2: yes, once, naturally, evidently,568
eventually, not, surely, nowadays,569
however, someday, fortunately, here,570
presumably, ideally, accordingly,571
hopefully572

V3: god, gods, goddess, dammit, christ,573
goddamn, jesus, fucking, holy, kate,574
damn, skyla, lord, princess, love,575
daddy576

For each of the three groups, we instantiate 33 new577

modifiers. Then, for each sentence in the 10K set,578

we generate a v1 sentence, a v2 and a v3. The sen-579

tences are of the same question-answer form as in580

Section 4, and in each of them we insert a randomly581

picked particle corresponding to the degree class582

of the modifier (n = number id):583

(14) Is the reason simple? [prt_v1],584
it is [mod_v1_n] simple.585
Is the reason simple? [prt_v2],586
it is [mod_v2_n] simple.587
Is the reason simple? [prt_v3],588
it is [mod_v3_n] simple.589

5.2 Fine-tuning BERT to new tokens590

We split the dataset into training and validation591

parts with 0.85:0.15 ratio. Then we randomly mask592

15% of tokens in the resulting dataset and fine-tune593

BERT for the task of masked token prediction. We594

use the same type of pretrained BERT model as in595

the previous steps. We use the Adam optimization596

algorithm with decoupled weight decay regulariza-597

tion (Kingma and Ba, 2014; Loshchilov and Hutter,598

2017) and learning rate of 5e-5. We use the batch599

size of 32 and fine-tune the model for three epochs.600

Before training After training

degree polarity degree polarity

v1 0.48, 0.06 0.42, 0.24 0.18, 0.02 0.99, 0.03

v2 0.50, 0.06 0.43, 0.21 0.40, 0.02 0.00, 0.00

v3 0.48, 0.06 0.39, 0.18 0.83, 0.02 0.85, 0.26

Baselines
random 0.52, 0.06 0.38, 0.20 0.41, 0.09 0.83, 0.30

untrained 0.50, 0.06 0.39, 0.20 0.42, 0.08 0.00, 0.00

Table 1: Estimates of polarity and degree of new to-
kens before and after training. Each pair of numbers
represents a mean and a standard deviation. v1, v2, v3
represent polarity and degree statistics for the new mod-
ifiers (low, medium, high) from our main experiment.

For the training, we freeze all weights except for 601

the very first layer of token embeddings.8 602

We compare our method against two baselines: 603

• random baseline: 99 randomly initialized 604

tokens are trained in contexts with particles 605

randomly chosen from any of the three sets 606

(v1, v2 and v3); 607

• untrained baseline: 99 new tokens to be ran- 608

domly initialized before the training phase, 609

but not fine-tuned. 610

Upon training, the three groups of tokens form 611

three clusters, as shown in Fig. 2. Tokens that 612

belong to groups v1 and v3 cluster in the PPI re- 613

gion, medium-degree tokens (v2) show NPI-like 614

behaviour. This is generally in line with obser- 615

vations described in Sections 2 and 4. The two 616

baselines (Figure 3), as expected, don’t show pro- 617

nounced degree profiles – but develop non-random 618

polarity behaviour. The random baseline gravitates 619

towards positive polarity, while the untrained base- 620

line shows NPI behaviour. Means and standard 621

deviations for degree and polarity before and after 622

training are listed in Table 1. 623

6 Discussion and future work 624

6.1 Interpretation of the experimental results 625

We saw that the training organized the new tokens 626

into three clusters. First, we observe that the tokens 627

develop low, medium or high degree behaviour, 628

as intended by dataset construction. This means 629

that our procedure conveyed degree information 630

to the model. Furthermore, polarity scores upon 631

training show that the three groups generally follow 632

8This decision is based on the intuition that learning new
words in an artificial language learning setting shouldn’t lead
to deep changes in prior linguistic knowledge of a native
language for a realistic learner.
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Figure 2: Target new tokens before (left) and after fine-tuning (right).

Figure 3: Baselines: contexts randomly mixed during training (left) and untrained tokens (right)

the hypothesis from Section 2 and analysis from633

Section 4.3: low and high degrees lead to PPI be-634

haviour, while medium degrees are associated with635

negative polarity.636

What is somewhat surprising though is how637

strong the association with negative polarity is for638

medium degrees. Here, looking at our baselines639

might provide a hint towards an explanation. The640

random baseline develops PPI behaviour: this is641

not particularly surprising given that a random pool642

of degree contexts is bound to contain a majority643

of PPI-associated low and high degree diagnostic644

particles. So, the model has prevailing evidence645

to treat random baseline items as PPIs. Untrained646

baseline is more interesting in this respect: new647

tokens that did not appear in the training dataset at648

all develop NPI behaviour. We do not know what649

leads to this, but, at the level of observation, a gen-650

eral shift in the direction of lower polarity scores651

for the whole lexicon might be some artefact of our652

training procedure. If this is true, the very low po-653

larity scores that we see for some items should be654

interpreted as actually corresponding to somewhat655

higher scores. We leave exploration of this effect656

to future work.657

6.2 Limitations and future work658

Summing up Sections 5.2 and 6.1, our results are659

compatible with existing linguistic observations660

concerning the relation between degree and polar-661

ity. However, the biggest question to our approach662

is how much we can trust the obtained results in663

making conclusions about natural language. We 664

could gain insight on this question by reproduc- 665

ing the experiment with human participants. The 666

experiment with artificial LMs could serve as a pre- 667

liminary step to polish the underlying hypothesis 668

and the setup for the human experiment. We leave 669

to future work as well. 670

Another question is whether there is a reliable 671

way to introduce property A without leaking in- 672

formation about property B in the training data. 673

Admittedly, the simple procedure we follow does 674

not take specific precautions to convincingly show 675

this did not happen. We hope that the version of 676

the experiment that we present here will serve as a 677

starting point for future work developing methods 678

to address this question or recycling existing tools 679

from other types of experiments. 680

7 Conclusions 681

We introduced a methodology to assess linguis- 682

tic hypotheses using statistical and computational 683

modeling methods (specifically, pretrained LMs). 684

We applied it to a problem in linguistic semantics: 685

relation between degree and polarity-sensitivity. 686

We found that the experimental results are in line 687

with the generalizations from the linguistic litera- 688

ture, indicating validity of our approach. We hope 689

that this set-up can be applied to other types of 690

models (trained on languages other than English, 691

or multilingual) and other linguistic generaliza- 692

tions, both within individual languages and cross- 693

linguistically (Greenberg, 1963; Corbett, 2010). 694
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