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Abstract

Audio watermarking provides an effective ap-
proach for tracing and protecting synthetic au-
dio content. Traditional methods often apply
watermarking as a post-processing step, which
makes the watermark vulnerable to removal or
degradation through signal processing or model
editing. To address these issues, our paper intro-
duces GenMark, a novel approach that embeds
watermarks directly into the decoder of neural
audio generation models during training. Our
approach combines time-frequency perceptual
losses, a mask-based localization model, and
adversarial training to ensure high audio qual-
ity and watermark robustness. Experimental
results on speech and music generation tasks
demonstrate superior detection accuracy (TPR:
99.9% for speech, 100.0% for music). GenMark
also preserves perceptual quality with less than
2% degradation in MUSHRA scores, establish-
ing it as a strong candidate for practical and
secure watermarking in generative audio sys-
tems. The replication package can be accessed
at the anonymous link.!

1 Introduction

With the rapid advancement and increasing acces-
sibility of generative audio technologies (Xiang
et al., 2017; You et al., 2021; Wang et al., 2023;
Borsos et al., 2023; Suno, 2023; Copet et al., 2024),
concerns about the abuse of synthetic speech are
growing. Modern speech synthesis models like
deepfake technology (Shaaban et al., 2023) en-
able voice cloning that could manipulate public
discourse (News, 2024), damage individual repu-
tations (Findlay, 2025), or compromise national
security (Canadian Security Intelligence Service,
2023). These risks highlight the critical need for
effective detection tools and traceability measures
to verify the authenticity of synthetic audio and
enforce accountability.

1https://anonymous.4open.science/r/
Gen-Mark-1F27

In such cases, audio watermarking serves as an ef-
fective solution by embedding imperceptible iden-
tifiers to trace model-generated audio, which ef-
fectively prevents malicious users’ misuse of syn-
thetic audio. Current mainstream audio watermark-
ing methods embed watermarks directly into audio
signals. In audio generation scenarios, it requires
first generating audio by a generation model and
then embedding a watermark into the generated
audio. However, the post-processing watermarking
strategy poses a serious security risk: malicious
users can take control of the watermarking embed-
ding process. By circumventing the watermark
embedding stage, they are able to produce unwa-
termarked audio and exploit it in illicit scenarios.
This poses a huge challenge to the regulation of
synthetic audio. Moreover, audio generation poses
unique challenges for watermarking, such as deal-
ing with intricate frequency patterns and ensuring
that the watermark stays reliable without affecting
audio quality. These difficulties make it hard to
embed robust and imperceptible watermarks.

To address these issues, we propose GenMark, a
novel in-process injection watermark method that
embeds the watermark during the audio genera-
tion process. GenMark improves traditional post-
generation watermarking by directly generating au-
dio with embedded watermarks. Unlike traditional
post-generation watermarking methods, GenMark
allows direct generation of audio with embedded
watermarks. This prevents malicious attackers
from manipulating the watermarking process and
ensures reliable regulation of synthetic audio. In-
stead of modifying the entire generation pipeline,
we focus only on the decoder, which converts to-
kens into audio samples. This choice enables effi-
cient integration while maintaining generation qual-
ity. GenMark leverages joint time-frequency losses
to improve perceptual audio quality and incorpo-
rates a mask model to enhance watermark robust-
ness and location accuracy. In addition, it adopts
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GAN-based training to enhance the imperceptibil-
ity of the watermark. As a result, the generated
waveforms inherently encode persistent and iden-
tifiable watermark signatures, regardless of input
prompts or decoding parameters.

We evaluate GenMark using four state-of-the-art

watermarking models, WavMark (Chen et al.,

2024), AudioSeal (San Roman et al., 2024),Silent-

Cipher (Singh et al., 2024), and Timbre (Liu et al.,

2023a) on both speech and music generation tasks.

In terms of audio quality, GenMark consistently

achieves lower Frechet Audio Distance (FAD) and

Kullback-Leibler Divergence (KLD) scores across

multiple datasets, indicating minimal perceptual

and distributional distortion. It also maintains
strong semantic alignment, outperforming base-
lines on the CLAP metric. For detection, we report

TPR, FPR, and decode accuracy. Our method out-

performs baselines in both detection and watermark

recovery. To evaluate robustness, we subject water-
marked audio to 11 common audio transformations
and adversarial attacks, comparing the decoding
error rates with those of WavMark, AudioSeal, and
SilentCipher. Besides, subjective MUSHRA evalu-
ations further confirm that GenMark preserves per-
ceptual quality and the ablation studies show that
each component of GenMark contributes to the bal-
ance between fidelity, robustness, and detection
precision. We summarize contributions as follows:

* We propose GenMark, a novel framework that
embeds inaudible watermarks directly into gen-
erative audio models during training.

* GenMark introduces a multi-scale discriminator
and a mask model to improve audio quality and
watermark robustness.

* Experiments show near-perfect detection rates
(TPR: 99.9% for Bark, 100.0% for MusicGen)
with FPR <0.1%. GenMark maintains low decod-
ing error rates under 11 distortions and less than
2% perceptual degradation in MUSHRA tests,
outperforming state-of-the-art baselines.

2 Preliminaries

2.1 Audio Generation

The current neural audio generation systems follow
a hierarchical processing pipeline. Multi-modal
inputs—such as text or speech prompts—are first
encoded into discrete acoustic tokens through cas-
caded transformer layers (Vaswani et al., 2017).
These tokens serve as high-level latent represen-
tations of the target audio. To synthesize natural-
sounding waveforms, the tokens are then passed

through spectral enhancement modules, including
neural vocoders (Kong et al., 2020) and differen-
tiable signal processing components (Engel et al.,
2020). Finally, the decoder transforms the pro-
cessed acoustic tokens and synthesizes them into
the final audio waves.

2.2 Loss Balancer

In multi-objective training settings, gradients from
different loss terms can vary significantly in scale.
This imbalance may lead to unstable optimization
and make the effect of each loss weight A hard to
interpret. To address this, we adopt loss balancers
inspired by EnCodec (Défossez et al., 2022), which
dynamically rescales gradient contributions based
on their recent magnitude.

For each loss £;, we compute its gradient g; = ‘g—g
and track the exponential moving average of its
norm || gz||§ . Then, the rescaled gradient is,

Gi = R-Ai  gi

P = .
257 lgilly

The final gradient used for backpropagation is

>, Gi, instead of the original ) . \;g;, which helps

stabilize training. The R is a reference gradient

scale, and the (3 is a decay rate.

ey

3 Methodology

GenMark employs gradient steganography to em-
bed watermark signals directly into the generative
process by optimizing the decoder component of
the model. Instead of modifying the entire gener-
ation pipeline—which is often large and difficult
to fine-tune—we target the decoder, the final stage
responsible for converting discrete token sequences
into audio waveforms. This position makes it par-
ticularly suitable for learning robust watermark pat-
terns. By training the decoder to produce water-
marked audio without compromising perceptual
quality, we enable direct integration of watermark-
ing into the model. Once trained, the decoder can
be seamlessly substituted for the original one, en-
abling watermark embedding without modifying
the rest of the generation pipeline.

3.1 Train Pipeline

Overview. To embed watermark information m
into the parameters of the decoder, we guide the
decoder’s optimization using a joint loss, which
includes perceptual 10ss (Lime, Lspec), adversarial
loss (Lgen, Ldisc, Lfear), and decoding 1oss (Lmsg).
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Figure 1: Overview of the training pipeline. We use two audio codecs in this framework: C'is a frozen reference
codec used to produce clean (unwatermarked) audio, while C is a trainable version where only the decoder is
updated to embed watermarks. Losses are computed between clean and watermarked outputs to maintain quality.
A mask model further improves robustness, and a decoder network extracts the watermark from the output. In
addition to standard perceptual and adversarial losses, Lgicis used to optimize the discriminator, and the weight of
the message 10ss Lpgis tuned separately to ensure effective watermark embedding.

We balance these objectives during training by scal-
ing their gradient contributions using the Loss Bal-
ancer 2.2. The full training pipeline consists of
four stages, as illustrated in Figure 1.

Audio generation. Firstly, we extract the compres-
sion model (e.g., EnCodec) from the audio gen-
eration model (e.g., Bark). The codec C consists
of an encoder, a quantizer, and a decoder, which
together map raw waveforms to discrete tokens
and reconstruct audio from them. During optimiza-
tion, we freeze the encoder and quantizer of C and
only update its decoder, which converts tokens into
waveforms. This setup enables efficient watermark
embedding by modifying only the decoder.

Given an input audio signal w, € R”', the codec C
generates a watermarked version @ € R For ref-
erence, we use an untrained copy of the same codec,
denoted C, to reconstruct a non-watermarked ver-
sion w. In the subsequent training steps, we simul-
taneously optimize for two objectives: enabling
reliable watermark decoding from w, and minimiz-
ing the difference between w and w to preserve
audio quality.

Feature extractions. To preserve perceptual au-
dio quality, we compute time-domain Ljpeand
frequency-domain Lgpeclosses between w and
w. The time-domain loss constrains waveform-
level distortions, promoting time-domain align-
ment. The frequency-domain loss is calculated

using multi-scale Mel spectrograms, which are
widely used to reflect human auditory perception
and capture perceptual differences across resolu-
tions (Kong et al., 2020; You et al., 2021). This
hybrid loss strategy has been shown effective in
maintaining perceptual fidelity in neural audio syn-
thesis (Tan et al., 2024; Zhang et al., 2019; Ya-
mamoto et al., 2020) and compression tasks (Dé-
fossez et al., 2022; Zeghidour et al., 2021).

Adversarial Perceptual Optimization. To im-
prove audio quality and reduce perceptual arti-
facts, we adopt adversarial training following prior
works (Défossez et al., 2022). As illustrated in Fig-
ure 1, the decoder of the codec serves as the gen-
erator, producing watermarked audio w, while a
lightweight multi-scale discriminator distinguishes
w from the reference audio w. The adversarial loss
for the generator is Lgepand for the discriminator is
Lgic. Similarly to previous work (You et al., 2021;
Kong et al., 2020), we also incorporate a feature-
matching loss Lge,cfor the generator.

Maks Model and Watermark Injection. The wa-
termarked audio w is further processed by a mask
model M (in Section 3.4) designed to enhance ro-
bustness and enable fine-grained watermark local-
ization. The model comprises two components: a
Localization Refinement Module, and a Robust-
ness Enhancement Module module. They ensures
the watermark remains detectable under common



audio modifications while reducing false positives.
After that, the audio is fed to the watermark de-
tector Dge;, which outputs Dge () € [0, 1]18%7,
The first two dimensions of D .. (1) represent the
frame-level probabilities of watermark presence,
while the remaining 16 dimensions correspond to
the decoded 16-bit watermark sequence. This pre-
diction is then compared with the target watermark
message m, and the discrepancy is used to compute
the decoding loss L, guiding the model to em-
bed the watermark into the audio. The architecture
details of Dy, are provided in the Appendix E.

3.2 Feature Extractions.

Although the primary objective is to embed water-
mark signals into the audio, it is crucial that the
perceptual quality of the output remains unaffected.
To ensure this, the audio fidelity loss incorporates
complementary constraints across both time and
frequency domains, informed by principles of hu-
man auditory perception (Xiang et al., 2017).

Lime = Hw—lZ}Hh ()

Eq. (2) promotes robust waveform similarity while
remaining minor phase variations that have mini-
mal perceptual impact (Engel et al., 2020).
However, as human auditory perception varies
in sensitivity across different frequency ranges,
optimization in the time domain alone may not
suffice to achieve high-quality audio percep-
tion. To address this, we introduce a Multi-
scale Mel Spectrogram Loss (Gritsenko et al.,
2020), which constrains the spectral character-
istics (frequency domain feature) of the gener-
ated audio. Eq. ( 3) uses a multi-resolution Mel-
spectrogram analysis with window sizes set H =
{32,64,128,256,512,1024}. And Sy,(-) denotes
the function of the Mel-spectrogram using a fixed
window size h:

Loee = 3 O [I1Sw(w) = Su(@)i]. 3

heX i=1,2

The combination of absolute difference (¢1) and
squared difference (¢2) formulation balances spec-
tral magnitude alignment with overall distribution
consistency (Gritsenko et al., 2020), reducing the
over-smoothing effects often observed in pure ¢o
optimization (Kong et al., 2020).

3.3 Adversarial Perceptual Optimization.

Although feature-based losses help maintain the
overall perceptual quality of audio, they may not

fully capture subtle distortions or unnatural details
that can still affect the quality of audio. To further
enhance perceptual realism and improve watermark
robustness, we adopt an adversarial training strat-
egy using multi-scale spectral discriminators, in-
spired by prior work on neural vocoders and audio
synthesis (Défossez et al., 2022; You et al., 2021;
Kong et al., 2020).

The discriminator architecture follows a five-layer
dilated convolutional design with dilation rates
[1,2,4], weight normalization, and LeakyReLLU
activations (o« = 0.2) for stable convergence.
It processes the input across multiple spectral
resolutions in parallel, using STFTs with FFT
sizes {512,1024,2048} and corresponding win-
dow lengths {128,256,512}. This multi-scale
structure enables the discriminator to capture both
fine- and coarse-grained spectral artifacts, making
it a strong perceptual sensitivity.

Generator Objective. The generator G is trained
to generate watermarked audio that is perceptually
indistinguishable from original signals:

Lgen =Ey [EkefKHl - Dk(ﬁ))Hl] ) “)

where X represents the STFT window size set set,
and Dy (+) is the discriminator output.

In addition, inspired by prior work (Kumar et al.,
2019a; Kong et al., 2020; You et al., 2021; Défos-
sez et al., 2022), we include a feature-matching
loss Lgeacencourages the generator to produce in-
ternal representations that closely resemble those
extracted from real audio by the discriminator:

| D} (w) — Dy (@)[11
E[D! (w)] + € ’

Lear = Eies pex )
where 8 denotes the set of discriminator layers, and
DL represents the output of the [-th layer of the
discriminator corresponding to an STFT window
size k. The term ¢ = 107 is introduced to prevent
division by zero.

Discriminator Objective. The discriminator D is
optimized to differentiate between real and water-
marked audio signals:

Lgic = Ey [EkefK”l - Dk(w)Hl]
+Eg [Erex|| De(0)[1].  (6)
3.4 Maks Model and Watermark Injection

3.4.1 Maks Model

In order to reduce the false positive rate, improve lo-
calization accuracy, and enhance watermark robust-
ness, we additionally include an enhanced mask



module, which exposes the decoder to a variety
of masking patterns during training, enabling it to
better distinguish true watermark signals, improve
its resilience to common audio attacks.

(1) Localization Refinement Module: To reduce
false positives and improve spatial precision, this
module introduces two training strategies: (a) part
of watermarked segments are replaced with alter-
native watermark patterns to prevent overfitting
and improve generalization; (b) within each au-
dio, K regions are randomly selected and partially
replaced with clean, unrelated, or silent content.
These perturbations force the decoder to learn pre-
cise localization and improve extraction accuracy
by distinguishing true watermark regions from dis-
tractors. The detailed parameter settings are pro-
vided in Appendix B.

(2) Robustness Enhancement Module: To im-
prove the watermark’s resilience to signal process-
ing attacks, we develop a sequential transforma-
tion pipeline that applies nine fundamental audio
operations in carefully calibrated proportions, in-
cluding frequency filtering, resampling, dynamic
range adjustment, echo effects, noise addition, and
waveform smoothing. This transformation is com-
monly used in watermark removal attacks and wa-
termark robustness enhancement (Kirovski and
Malvar, 2003; Li et al., 2024). By simulating these
attacks during training, the decoder learns to main-
tain watermark fidelity. The probability and param-
eters of each operation (e.g., frequency thresholds
for filtering, signal strength for noise addition) are
carefully optimized, as outlined in Appendix C.

3.4.2 Watermark Injection

To ensure stable and accurate watermark recovery,
we define a message loss that guides the model to
retain the correct message content during decoding.
It consists of two core components:

Ldet = % ZZ:I [BCE (yt7 @t)] (7)
Lpayload = % Zthl [BCE (mt7 mt)] ,

where y; € {0, 1} denotes the presence of a water-

mark in frame ¢, and m; € {0, 1}'® corresponds

to the ground-truth 16-bit message. The overall

watermark loss function is formulated as:

Lmsg = Adetﬁ‘det + /\payloadeayloady (8)

where Ager and Apayioad balance the importance of
detection accuracy and payload reconstruction.

As described in the training pipeline, the decoder
D receives the masked audio output from the Mask
Model and produces a tensor D(w) € [0, 1]'8%7,
where each of the 7' frames contains detection and
decoding information. Guided by L, the de-
coder is trained not only to accurately determine
which frames contain watermark content, but also
to maintain robustness against typical audio attacks.
This enables precise frame-level localization of em-
bedded watermarks and ensures reliable decoding
performance even under signal distortions.

4 Experiments Setting

Models and Datasets. We use two state-of-
the-art generative models, Bark (Suno, 2023) for
speech synthesis and MusicGen (Copet et al.,
2024) for musical audio generation, to insert
watermark. Training and evaluation are con-
ducted on AudioSet (Gemmeke et al., 2017) and
CommonVoice (Foundation, 2020) dataset, ensur-
ing diverse coverage of both general acoustic en-
vironments and multilingual speech. Since Bark
requires textual prompts as input, we addition-
ally incorporate several text-based datasets as
test cases to evaluate watermarking performance:
HarvardSentences (on Subjective Measurements,
1969), LibriSpeech (Panayotov et al., 2015) and
LJSpeech (Ito, 2017). These setups enable a com-
prehensive assessment of our watermarking method
across speech and non-speech domains.

Training Configuration. All models are trained on
an NVIDIA RTX 3090 GPU with an initial learn-
ing rate of 1 x 10~%, which is gradually decreased
for stable convergence. Batch sizes are set to 24
for Bark and 16 for MusicGen, reflecting their re-
spective computational demands. To accommodate
the inherent sampling preferences of these mod-
els, Bark is trained at 24 kHz, while MusicGen is
trained at 32 kHz. We balance our multi-objective
loss using the balancer with Ajime = 1, Afreq = 6,
Agen = 9, Afeat = 9, Amsg = 10 . The discriminator
updates once every two epochs, allowing the gener-
ator sufficient adaptation time and ensuring more
stable adversarial training dynamics.

Baselines. Our method is benchmarked against sev-
eral competitive baselines: AudioSeal (San Roman
et al., 2024), Wavmark (Chen et al., 2024), Silent-
Cipher (Singh et al., 2024), and Timbre (Liu et al.,
2023a). These methods are recognized for their
effectiveness in audio watermarking, and together,
they provide a strong benchmark for evaluating im-



Dataset LibriSpeech HarvardSentence LISpeech

Model KLD CLAP FAD KLD CLAP FAD KLD CLAP FAD
AudioSeal 0.3360 1390  0.6727 | 0.2029 9.28 0.4533 | 0.1727 8.67 0.1976
WavMark 0.3926 13.89 1.3210 | 0.1526 9.15 1.6092 | 0.1641 9.49 1.5716
SilentCipher 0.3242 14.21 0.3251 | 0.1370 9.39 0.2936 | 0.1375 8.81 0.1794
Timbre 0.3961 14.00  0.9855 | 0.1704 9.29 0.7345 | 0.1588 8.57 0.5186
Ours (GenMark) | 0.3234 13.86  0.0957 | 0.1321 9.28 0.0615 | 0.1364 8.11 0.0227

Table 1: Model Comparison under Perceptual / Distributional Metrics. We use publicly available implementations

for CLAP and FAD

perceptibility, robustness, and decoding accuracy
across a range of audio conditions.

5 Experiments Result

We evaluate GenMark in four key aspects: audio
quality, detection accuracy, robustness, and human
perception. Specifically, we assess whether wa-
termarking affects perceptual and semantic qual-
ity, measure detection performance across different
models, test robustness under common audio per-
turbations, and conduct a subjective listening study
to understand the impact on human listeners. In
addition, we conduct ablation studies to validate
the effectiveness of key components, including the
mask model and the discriminator, in improving
watermark imperceptibility and robustness.

5.1 Quality of Audio

To explore GenMark’s capability to preserve per-
ceptual and semantic quality in synthetic audio, we
evaluate the similarity between the generated wa-
termarked audio and original audio samples based
on perceptual, distributional, and semantic metrics.
Perceptual and Distributional Quality. We use the
Frechet Audio Distance > (FAD) (Kilgour et al.,
2018), a reference-free perceptual quality metric
adapted from the Frechet Inception Distance (FID).
In addition, we use Kullback-Leibler Divergence
(KLD) to measure the distributional deviation be-
tween original and watermarked audio.

Table 1 shows that GenMark consistently achieves
lower FAD scores across all tested datasets. Specif-
ically, GenMark achieves significantly lower FAD
scores (0.0957 for LibriSpeech, 0.0615 for Har-
vardSentence, and 0.0227 for LJSpeech) compared
to existing methods, indicating minimal perceptual
distortion. Furthermore, GenMark also achieves
the lowest KLLD values across all datasets (0.3234
for LibriSpeech, 0.1321 for HarvardSentence, and
0.1364 for LISpeech), signifying excellent preser-
vation of distributional characteristics.

https://github.com/microsoft/fadtk

Bark Musicgan
Model TPR FPR Acc | TPR FPR Acc
Audioseal | 100.0 0.0 954 | 1000 0.1 733
Wavmark 998 00 998 | 952 0.1 944
SilentCipher | 924 314 96.6 | 98.2 39.6 97.8
Timbre \ V999 |\ \ 947
Ours 999 00 99.8 | 100.0 0.1 943

Table 2: Detection results for Bark, Musicgan with TPR,
FPR and Decode Accurate (%).

Semantic Consistency. We use the CLAP ® metric
derived from a contrastive language-audio pretrain-
ing model to assess semantic preservation, which
reflects alignment between the generated audio and
the original text prompt. Lower CLAP values im-
ply better semantic retention. GenMark achieves
the best CLAP scores on LibriSpeech (13.86) and
LJSpeech (8.11), outperforming all baselines. On
HarvardSentence, it is slightly behind WavMark
(9.28 vs. 9.15), but still ahead of other methods.
These results demonstrate that GenMark consis-
tently preserves semantic alignment while embed-
ding watermark signals.

5.2 Detection Accuracy

To assess the efficacy of our watermarking tech-
nique, we conducted comprehensive detection ex-
periments using two prominent generative audio
models: Bark and MusicGen. Bark is designed for
high-quality speech synthesis, whereas MusicGen
is tailored for generating musical audio. This selec-
tion enables a robust evaluation of the watermark-
ing technique across both linguistic and musical
contexts. We generate and analyze 10,000 audio
samples per method for each model to ensure sta-
tistically reliable results. Detection performance
is measured using TPR and FPR, as presented in
Table 2. TPR quantifies the proportion of correctly
identified watermarked samples, while FPR reflects
the ratio of non-watermarked samples being incor-
rectly flagged (Gong et al., 2024a).

As shown in Table 2, GenMark has strong detec-

Shttps://github.com/LAION-AI/CLAP
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Audio Transformations (Decoding Error Rates %)

Model Bandpass Highpass Lowpass Speed Resample Boost Duck Echo  Pink  White Smooth Total
AudioSeal 92.08 100.00 100.00  99.85 4.66 29.24 95.63 15.61 23.68 24.65 16.53 | 54.72
‘WavMark 0.21 0.13 100.00  97.57 0.12 7.83 489 395 7923 99.72 26.33 | 38.27
SilentCipher 34.58 43.26 97.70 99.16 7.01 6.66 6.78 79.79 100.00 100.00 70.06 | 58.72
Ours (GenMark) 0.05 68.57 50.97 1.36 0.15 124 017 017 1.62 3.12 1.04 11.55
Table 3: Decoding Error Rates (%) under different audio transformations.
tion performance. For the Bark model, our method MUSHRA
100 (o] g

achieves a TPR of 99.9% with zero false positives,
while attaining perfect detection (100.0% TPR) on
MusicGen with a minimal FPR of 0.1%. These
results highlight the precision and robustness of
our detector. Although AudioSeal also achieves
high TPRs, especially on Bark, it shows a notice-
able drop in accuracy on MusicGen. In contrast,
our method maintains balanced performance across
both domains. WavMark exhibits similar accuracy
to our method on Bark but falls short in TPR on
MusicGen. SilentCipher’s performance is less sta-
ble overall, with high false positives observed in
both settings. Besides, Timbre does not support
watermark detection, and only supports watermark
decoding. As such, TPR and FPR are not appli-
cable in this context. The consistent performance
across diverse audio domains highlights GenMark’s
suitability for practical.

5.3 Robustness of Watermark

To evaluate the robustness of GenMark under real-
world perturbations, we conduct a comprehensive
benchmark using the Bark model as the generative
backbone. We evaluate robustness by applying 11
common audio transformations, including various
signal processing operations, dynamic range modi-
fications, ambient noise interference, and smooth-
ing. For each transformation, we calculate the
decode error rate—the percentage of watermark
decoded incorrectly. Lower values mean better
robustness.

As shown in Table 3, GenMark achieves the lowest
error rates in 9 out of 11 transformations. It handles
distortions like echo, ducking, background noise,
and speed change especially well, with error rates
often below 2%. Even under challenging condi-
tions like lowpass filtering, where most methods
fail completely, our model reduces the error rate to
around 51%.

Although performance drops with highpass fil-
tering, GenMark still remains competitive over-
all. Its average decode error rate is just 11.55%,
much lower than WavMark (38.27%), SilentCi-
pher(58.72%), and AudioSeal (54.72%). This
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Figure 2: Distribution of MUSHRA scores for water-
marked audio in the subjective evaluation study. Some
extreme outliers beyond the whisker range are marked.

shows that our method keeps the watermark stable
and decodable even after heavy audio processing.

5.4 Usable Study

To assess perceptual audio quality from a human
perception perspective, we perform a subjective
evaluation using the standardized MUSHRA (MUI-
tiple Stimuli with Hidden Reference and Anchor)
protocol (ITU-T, 2015), a well-established method-
ology widely adopted for audio quality benchmark-
ing. We invite 20 audio experts to evaluate 20 audio
groups, each corresponding to a distinct prompt.
For every prompt, one sample was randomly se-
lected from 100 Bark-generated clips. Each group
includes the following: (1) three types of water-
marked audio samples (GenMark, AudioSeal, Wav-
Mark); (2) one clean reference; and (3) two anchor
signals, namely Anchor35 (filtered at 3.5 kHz) and
Anchor70 (filtered at 7 kHz). Participants rate each
sample on a scale of 0—100, with anchors and ref-
erences used to guide their judgments. Details are
provided in Appendix F.

As presented in Figure 2, our proposed method at-
tains the highest MUSHRA score (90.89), closely
followed by AudioSeal (90.06), with WavMark lag-
ging at 77.90. These results demonstrate that both
our method and AudioSeal effectively preserve
perceptual audio quality, whereas WavMark intro-
duces perceptible degradation. For comparison, the
clean reference audio achieves a MUSHRA score
of 92.17, while the Anchor70 and Anchor35 con-



ditions score 80.44 and 58.18, respectively. These
results confirm the evaluators’ consistency and sen-
sitivity in the subjective assessment.

5.5 Ablation study

To understand the contribution of each component
in our framework, we conduct an ablation study
focusing on three core modules: (1) adversarial per-
ceptual optimization, (2) the robustness enhance-
ment module, and (3) the localization refinement
module. For each variant, we remove or disable
one of the components and evaluate performance
on key metrics, including detection (TPR, FPR,
Acc), perceptual quality (FAD), and robustness (av-
erage decode error rate under transformations), as
shown in Table 4.

Removing adversarial training (NoAdversarial) re-
sults in a drop in perceptual quality, as indicated
by the increase in FAD from 0.0615 (full model)
to 0.1493. Disabling the robustness enhancement
module (NoRobustMask) has the most significant
effect on robustness, with the average decode error
rate (DER) surging from 11.55% to 46.22%. Re-
moving the localization refinement module (NoLoc-
Mask) improves robustness but at the cost of a
substantial increase in FPR, highlighting its im-
portance in maintaining detection precision.

6 Related Work

6.1 Audio Generation

Currently, audio generation has evolved signifi-
cantly through deep learning. For instance, autore-
gressive models such as WaveNet (Van Den Oord
et al., 2016) greatly improve audio quality, whereas
GAN-based approaches, like MelGAN (Kumar
et al., 2019b), enhance synthesis efficiency. These
advancements established the foundation for con-
temporary neural audio generation techniques.

Recent studies integrate transformers and diffusion
models to achieve further development for audio
generation. AudioLDM (Liu et al., 2023b) uses
contrastive language audio pretraining (Wu et al.,
2023) with latent diffusion (Rombach et al., 2022)
for text-guided generation. Audio language mod-
els such as Bark (Suno, 2023), MusicGAN (Copet
et al., 2024), and AudioLM (Borsos et al., 2023)
use text-generation techniques (Radford, 2018;
Brown et al., 2020a), encoding text and timbre
into tokens using EnCodec (Défossez et al., 2022)
and SoundStream (Zeghidour et al., 2021) for
transformer-based sequence-to-sequence synthesis.

Variant ‘ TPRT FPR| Acct FAD| DER]
NoAdversarial 99.8 0.0 99.8 0.1493 10.92
NoRobustMask | 99.9 0.0 99.9 0.0607 46.22
NoLocMask 100.0 357 100.0 0.0595 6.43

Full Model 99.9 0.0 99.8 0.0615 11.55

Table 4: Ablation study of GenMark evaluating the ef-
fect of each component on detection (TPR, FPR, Acc),
perceptual quality (FAD), and robustness (DER).

6.2 Audio Watermark

Traditional audio watermarking techniques (Cve-
jic and Seppanen, 2004; Anderson, 1996) typically
embed watermarks by manipulating information in
the time or frequency domains (Cox et al., 1997;
Xiang et al., 2018; Su et al., 2018; Liu et al., 2019).
These methods depend on manually crafted heuris-
tic rules and specialized domain expertise to guide
their design and implementation. Simultaneously
achieving a high imperceptibility, capacity, and
robustness watermark across diverse audio types
remains a significant challenge.

With advancements in deep learning, the ability
to automatically learn watermark embedding and
extraction techniques has simplified the design of
watermarking methods (Tai and Mansour, 2019;
Pavlovic et al., 2022). In particular, current deep
learning-based watermarking techniques generally
follow an Encoder-Decoder structure (Qu et al.,
2023; Ren et al., 2023; Chen et al., 2024; San Ro-
man et al., 2024), where the encoder generates
watermarked audio, and the decoder extracts the in-
formation from the watermarked audio. The entire
model is trained in an end-to-end manner, enabling
it to automatically learn the wa termark embedding
and extraction processes.

7 Conclusion

This work introduces GenMark, a robust and ef-
ficient method for embedding traceable, imper-
ceptible watermarks directly into generative au-
dio models. By integrating watermark objectives
directly into the generation model, GenMark effec-
tively addresses the vulnerabilities of traditional
post-generation watermarking. Extensive evalua-
tion across speech and music generation domains
confirms that GenMark offers superior detection ac-
curacy, resilience to a wide array of audio attacks,
and negligible perceptual degradation. These re-
sults establish GenMark as a strong tool for safe-
guarding audio synthesis systems.



Limitations

While GenMark demonstrates strong performance
across multiple generative audio tasks, it requires
model-specific integration during training. Since
the watermark is embedded directly into the de-
coder, each generative model (e.g., Bark, Mu-
sicGen) must be individually fine-tuned with
GenMark.
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A Extended related work

A.1 Security and Misuse in Generative
Models

The rapid advancement of generative models across
text (Brown et al., 2020b; Touvron et al., 2023),
image (Rombach et al., 2022), and audio (Kreuk
et al., 2022) domains has brought remarkable syn-
thesis quality and expressiveness. However, with
this growth comes increasing concern over misuse.
Recent work has shown that generative pipelines
can be tampered with or exploited, such as back-
door injection in offline reinforcement learning
datasets (Gong et al., 2024b), data poisoning in
large language models (Carlini et al., 2023), and
output evasion in diffusion models (Xu et al., 2023).
These studies highlight the importance of security-
aware generative model design, especially in ensur-
ing traceability and tamper resistance.

In the audio domain, the risk is amplified by
the realism of synthetic speech. Voice cloning and
TTS systems have been used for impersonation,
misinformation (News, 2024), and fraud (wes,
2020). Watermarking has emerged as a defense
strategy (Mou et al., 2023; Chen et al., 2023; Singh
et al., 2024), yet most approaches apply water-
marks after generation, leaving them vulnerable
to removal or circumvention. Our work addresses
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this gap by embedding watermarks directly dur-
ing training, offering stronger protection against
post-generation manipulation.

A.2 Compression Model

SoundStream (Zeghidour et al., 2021) and En-
Codec (Défossez et al., 2022) are neural audio
codecs designed for high-fidelity audio compres-
sion and reconstruction. SoundStream introduces a
fully learnable end-to-end framework using resid-
ual vector quantization, while EnCodec builds upon
this design with improved scalability and audio
quality through hierarchical quantization and ad-
versarial training. These models pioneer neural au-
dio compression through self-supervised learning
and hierarchical quantization. Unlike traditional
handcrafted feature methods, these approaches effi-
ciently encode high-dimensional audio into discrete
tokens, retaining semantic information.

This tokenization framework empowers
Transformer-based systems (e.g., Bark (Suno,
2023), MusicGAN (Copet et al., 2024), Audi-
oLM (Borsos et al., 2023)) to perform cross-modal
audio generation from text prompts and context-
aware audio continuation. By integrating audio
compression with language model architectures,
these methods improve efficiency and versatility
in generative Al, facilitating a wide range of
multimodal synthesis applications.

A.3 Attacks on Audio Watermarking Systems

While audio watermarking enables traceability of
generated content, ensuring robustness under ad-
versarial or lossy conditions remains a major chal-
lenge. Watermarks are often vulnerable to signal
manipulations such as compression, noise injection,
cropping, pitch shifting, or time-stretching (Cox
et al., 2007; Arnold et al., 2003). Attackers can
intentionally apply these distortions to remove or
degrade the watermark information without signifi-
cantly affecting audio perceptual quality.

Classical attack strategies include re-encoding,
filtering, jittering, or frequency band re-
moval (Wang et al., 2004). Recent works
even explore adversarial perturbations designed
specifically to confuse watermark extractors (Wu
et al., 2022). Therefore, the evaluation of wa-
termark robustness must consider both standard
degradations (e.g., MP3 compression, resampling)
and targeted attacks (e.g., masking, inversion,
audio remix).

In our experiments, we systematically test
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GenMark under 11 widely used audio transforma-
tions and adversarial manipulations to benchmark
its resistance. Our method demonstrates lower
decoding error rates compared to WavMark, Au-
dioSeal, and SilentCipher, showing enhanced wa-
termark durability under attack.

B Localization Refinement Module

To enhance the decoder’s ability to accurately lo-
calize watermarked regions and reduce false de-
tections, we introduce two replacement strategies
during training:

Mismatched Watermark Replacement: For each
watermarked audio sample, we randomly replace
85% of its embedded watermark segments with
segments carrying different (non-target) watermark
messages. This helps prevent the decoder from
memorizing fixed patterns and promotes general-
ization across diverse watermark structures.
Random Segment Perturbation: We divide the
audio into K segments and randomly select start-
ing points for content replacement. Each selected
segment (of length 27"/ K) is then altered with one
of the following: 40% probability of clean (unwa-
termarked) waveform insertion, 20% probability of
substitution with unrelated audio, and 20% proba-
bility of silence padding. The remaining 20% is left
unchanged. These manipulations simulate realistic
confusion patterns that the decoder may encounter
in practice.

By combining these techniques and optimizing us-
ing the decoding loss Ly, the decoder is explic-
itly trained to focus on truly watermarked regions
and reject irrelevant or misleading segments, sig-
nificantly improving localization reliability during
inference.

C Robustness Enhancement Module

To improve the watermark’s resilience against sig-
nal processing attacks, we introduce a robustness
enhancement module composed of 11 commonly
used audio transformations. These operations are
applied stochastically during training, with their pa-
rameters drawn from calibrated ranges. This helps
the decoder learn to preserve watermark fidelity
under real-world distortions.

Below we describe each transformation and its pa-
rameterization:

1. Bandpass Filter Removes both low- and
high-frequency components while preserving



a specific mid-frequency range. Parameters:
center frequency = 2750 Hz, quality factor
Q = 0.707

Highpass Filter Attenuates frequencies be-
low the cutoff, simulating microphone or chan-
nel filtering. Parameters: cutoff frequency =
1500 Hz

Lowpass Filter Attenuates frequencies above
the cutoff, emulating bandwidth-limited sce-
narios. Parameters: cutoff frequency = 500
Hz

Speed Adjustment Alters playback speed by
resampling, affecting both pitch and timing.
Parameters: speed factor € [0.8, 1.2]

Resampling Converts to an intermediate sam-
pling rate and back, introducing temporal in-
terpolation artifacts. Parameters: resampled
to 32kHz and then resampled back to the orig-
inal frequency

Boost Multiplies the audio amplitude to sim-
ulate volume spikes or clipping. Parameters:
boost factor = 10

Duck Reduces signal amplitude to mimic au-
dio underpowering or suppression. Parame-
ters: duck factor = 0.1

Echo Adds delayed and scaled versions of the
signal to simulate reverberation. Parameters:
delay time € [0.1, 0.5] seconds, echo volume
€ [0.1, 0.5]

Pink Noise Adds pknk noise to simulate natu-
ral ambient environments. Parameters: target
SNR =20 dB

10. White Noise Adds flat- Gaussian noise, re-
sembling synthetic interference. Parameters:

target SNR =20 dB

11. Smoothing Applies a moving-average filter to
blur waveform details. Parameters: window

size € [2, 10] samples

Each transformation is sampled independently and
applied with a certain probability during training.
The combination and diversity of these perturba-
tions guide the decoder to learn robust watermark
recovery even under aggressive post-processing.
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D TPR and FPR

First, we compared our method with the current
state-of-the-art models (WavMark and AudioSeal)
on several audio generation tasks, using True Posi-
tive Rate (TPR) and False Positive Rate (FPR) as
evaluation metrics. TPR represents the proportion
of watermarked audio correctly identified by the
model, and its formula is:

TP
TP+ FN

where TP refers to true positives (samples correctly
identified as watermarked) and FN refers to false
negatives (samples with watermarks not detected).
FPR represents the proportion of non-watermarked
audio that is incorrectly classified as watermarked,
and its formula is:

TPR &)

P
FPR= ———— 10
FP+TN 19)
where FP refers to false positives (non-

watermarked samples misclassified as water-
marked) and TN refers to true negatives (samples
correctly identified as non-watermarked). For
watermarking models, our optimization goal is to
maximize TPR while minimizing FPR.

E Detector Architecture

Inspired by the design of the AudioSeal watermark
detector (San Roman et al., 2024), we implement
a lightweight yet effective watermark detection
model tailored for generative audio. Our detector
operates directly on the raw audio waveform and
outputs both a detection confidence and an optional
binary message.

The architecture consists of two main compo-
nents: an audio encoder and a classification head.
The encoder, denoted as self.encoder, follows
the same architectural design as the EnCodec en-
coder (Défossez et al., 2022), consisting of a series
of downsampling convolutional blocks interleaved
with residual connections. Specifically, the encoder
comprises N convolutional layers with progres-
sively increasing channel dimensions and strides to
reduce temporal resolution, while preserving essen-
tial information for watermark detection. To restore
alignment with the input resolution, a transposed
convolution layer is applied after encoding.

Following the encoder, we apply a 1 x 1 convo-
Iution to produce a multi-head output. The first two



channels represent the confidence scores (via soft-
max) for the presence or absence of a watermark.
The remaining n channels represent the per-bit log-
its of the embedded binary watermark message,
which are decoded via a temporal average followed
by a sigmoid activation. This design allows the de-
tector to perform both binary watermark detection
and payload recovery in a unified forward pass.

F Subjective Evaluation Protocol and
Human Study Information

F.1 MUSHRA Test Setup

To evaluate the perceptual audio quality of water-
marked audio, we conducted a subjective study us-
ing the standardized MUSHRA protocol (Multiple
Stimuli with Hidden Reference and Anchor), fol-
lowing ITU-T Recommendation BS.1534-1. This
method is widely used in audio quality benchmark-
ing and provides robust human preference data
across fine-grained quality levels.
Each test session included:

* One fixed reference audio clip (original unwa-
termarked audio),

* Three watermarked outputs (GenMark, Au-
dioSeal, WavMark),

* Two lossy anchors: Anchor70 (band-limited
at 7 kHz), Anchor35 (band-limited at 3.5
kHz),

* One hidden reference (identical to the original,
included to assess rating consistency).

Participants evaluated the samples using an inter-
active web-based MUSHRA interface that supports
waveform visualization, looping playback, and
blind randomized ordering of stimuli. The interface
was customized to guide the listener through the
evaluation, showing condition names only during
the training phase, and hiding them during formal
scoring.

We recruited 20 expert listeners with back-
grounds in audio engineering or speech synthesis.
All participants voluntarily agreed to take part in
the study and were informed that their responses
would be used for academic research purposes only.
No personally identifying information (PII) was
collected. As the evaluation involved non-sensitive,
low-risk listening tasks, no formal IRB approval
was required.
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Each participant rated 20 audio groups, each
corresponding to a different prompt. Ratings were
provided on a 0-100 scale via slider interfaces, with
the ability to replay any sample as needed. Anchor
and reference scores were used to validate listener
consistency, and all results were aggregated by con-
dition across listeners. For quantitative analysis
and comparisons, please refer to Section 5.4 of the
main paper.

The testing interface was implemented as a
browser-based system supporting:

* Interactive MUSHRA scoring with waveform
display and audio looping,

* Randomized presentation of audio conditions
per trial,

* Automated anchor generation using standard
low-pass filters.

F.2 Instructions Provided to Participants

Participants received the following instructions
(translated and paraphrased from the interface):

Welcome to the Audio Quality Evalua-
tion Test

This test assesses your subjective percep-
tion of audio quality.

Testing Process:

* Left panel: Reference audio (al-
ways visible)

* Right panel: Six randomized test
samples (three algorithmic outputs,
two lossy anchors, one hidden ref-
erence)

Scoring Guide:

* 0-35: Severe degradation
* 45-60: Moderate degradation
* 61-80: Mild degradation

* 80-100: Nearly indistinguishable
from reference

Please ensure a quiet environment and
use high-quality headphones. Focus on
high-frequency regions (e.g., fricatives
like /s/, /z/) to detect perceptual differ-
ences.
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