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Abstract001

Audio watermarking provides an effective ap-002
proach for tracing and protecting synthetic au-003
dio content. Traditional methods often apply004
watermarking as a post-processing step, which005
makes the watermark vulnerable to removal or006
degradation through signal processing or model007
editing. To address these issues, our paper intro-008
duces GenMark, a novel approach that embeds009
watermarks directly into the decoder of neural010
audio generation models during training. Our011
approach combines time-frequency perceptual012
losses, a mask-based localization model, and013
adversarial training to ensure high audio qual-014
ity and watermark robustness. Experimental015
results on speech and music generation tasks016
demonstrate superior detection accuracy (TPR:017
99.9% for speech, 100.0% for music). GenMark018
also preserves perceptual quality with less than019
2% degradation in MUSHRA scores, establish-020
ing it as a strong candidate for practical and021
secure watermarking in generative audio sys-022
tems. The replication package can be accessed023
at the anonymous link.1024

1 Introduction025

With the rapid advancement and increasing acces-026

sibility of generative audio technologies (Xiang027

et al., 2017; You et al., 2021; Wang et al., 2023;028

Borsos et al., 2023; Suno, 2023; Copet et al., 2024),029

concerns about the abuse of synthetic speech are030

growing. Modern speech synthesis models like031

deepfake technology (Shaaban et al., 2023) en-032

able voice cloning that could manipulate public033

discourse (News, 2024), damage individual repu-034

tations (Findlay, 2025), or compromise national035

security (Canadian Security Intelligence Service,036

2023). These risks highlight the critical need for037

effective detection tools and traceability measures038

to verify the authenticity of synthetic audio and039

enforce accountability.040
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In such cases, audio watermarking serves as an ef- 041

fective solution by embedding imperceptible iden- 042

tifiers to trace model-generated audio, which ef- 043

fectively prevents malicious users’ misuse of syn- 044

thetic audio. Current mainstream audio watermark- 045

ing methods embed watermarks directly into audio 046

signals. In audio generation scenarios, it requires 047

first generating audio by a generation model and 048

then embedding a watermark into the generated 049

audio. However, the post-processing watermarking 050

strategy poses a serious security risk: malicious 051

users can take control of the watermarking embed- 052

ding process. By circumventing the watermark 053

embedding stage, they are able to produce unwa- 054

termarked audio and exploit it in illicit scenarios. 055

This poses a huge challenge to the regulation of 056

synthetic audio. Moreover, audio generation poses 057

unique challenges for watermarking, such as deal- 058

ing with intricate frequency patterns and ensuring 059

that the watermark stays reliable without affecting 060

audio quality. These difficulties make it hard to 061

embed robust and imperceptible watermarks. 062

To address these issues, we propose GenMark, a 063

novel in-process injection watermark method that 064

embeds the watermark during the audio genera- 065

tion process. GenMark improves traditional post- 066

generation watermarking by directly generating au- 067

dio with embedded watermarks. Unlike traditional 068

post-generation watermarking methods, GenMark 069

allows direct generation of audio with embedded 070

watermarks. This prevents malicious attackers 071

from manipulating the watermarking process and 072

ensures reliable regulation of synthetic audio. In- 073

stead of modifying the entire generation pipeline, 074

we focus only on the decoder, which converts to- 075

kens into audio samples. This choice enables effi- 076

cient integration while maintaining generation qual- 077

ity. GenMark leverages joint time-frequency losses 078

to improve perceptual audio quality and incorpo- 079

rates a mask model to enhance watermark robust- 080

ness and location accuracy. In addition, it adopts 081
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GAN-based training to enhance the imperceptibil-082

ity of the watermark. As a result, the generated083

waveforms inherently encode persistent and iden-084

tifiable watermark signatures, regardless of input085

prompts or decoding parameters.086

We evaluate GenMark using four state-of-the-art087

watermarking models, WavMark (Chen et al.,088

2024), AudioSeal (San Roman et al., 2024),Silent-089

Cipher (Singh et al., 2024), and Timbre (Liu et al.,090

2023a) on both speech and music generation tasks.091

In terms of audio quality, GenMark consistently092

achieves lower Frechet Audio Distance (FAD) and093

Kullback-Leibler Divergence (KLD) scores across094

multiple datasets, indicating minimal perceptual095

and distributional distortion. It also maintains096

strong semantic alignment, outperforming base-097

lines on the CLAP metric. For detection, we report098

TPR, FPR, and decode accuracy. Our method out-099

performs baselines in both detection and watermark100

recovery. To evaluate robustness, we subject water-101

marked audio to 11 common audio transformations102

and adversarial attacks, comparing the decoding103

error rates with those of WavMark, AudioSeal, and104

SilentCipher. Besides, subjective MUSHRA evalu-105

ations further confirm that GenMark preserves per-106

ceptual quality and the ablation studies show that107

each component of GenMark contributes to the bal-108

ance between fidelity, robustness, and detection109

precision. We summarize contributions as follows:110

• We propose GenMark, a novel framework that111

embeds inaudible watermarks directly into gen-112

erative audio models during training.113
• GenMark introduces a multi-scale discriminator114

and a mask model to improve audio quality and115

watermark robustness.116
• Experiments show near-perfect detection rates117

(TPR: 99.9% for Bark, 100.0% for MusicGen)118

with FPR ≤0.1%. GenMark maintains low decod-119

ing error rates under 11 distortions and less than120

2% perceptual degradation in MUSHRA tests,121

outperforming state-of-the-art baselines.122

2 Preliminaries123

2.1 Audio Generation124

The current neural audio generation systems follow125

a hierarchical processing pipeline. Multi-modal126

inputs—such as text or speech prompts—are first127

encoded into discrete acoustic tokens through cas-128

caded transformer layers (Vaswani et al., 2017).129

These tokens serve as high-level latent represen-130

tations of the target audio. To synthesize natural-131

sounding waveforms, the tokens are then passed132

through spectral enhancement modules, including 133

neural vocoders (Kong et al., 2020) and differen- 134

tiable signal processing components (Engel et al., 135

2020). Finally, the decoder transforms the pro- 136

cessed acoustic tokens and synthesizes them into 137

the final audio waves. 138

2.2 Loss Balancer 139

In multi-objective training settings, gradients from 140

different loss terms can vary significantly in scale. 141

This imbalance may lead to unstable optimization 142

and make the effect of each loss weight λ hard to 143

interpret. To address this, we adopt loss balancers 144

inspired by EnCodec (Défossez et al., 2022), which 145

dynamically rescales gradient contributions based 146

on their recent magnitude. 147

For each loss Li, we compute its gradient gi = ∂L
∂x̂ 148

and track the exponential moving average of its 149

norm ∥gi∥β2 . Then, the rescaled gradient is, 150

g̃i =
R · λi∑

j λj
· gi

∥gi∥β2
. (1) 151

The final gradient used for backpropagation is 152∑
i g̃i, instead of the original

∑
i λigi, which helps 153

stabilize training. The R is a reference gradient 154

scale, and the β is a decay rate. 155

3 Methodology 156

GenMark employs gradient steganography to em- 157

bed watermark signals directly into the generative 158

process by optimizing the decoder component of 159

the model. Instead of modifying the entire gener- 160

ation pipeline—which is often large and difficult 161

to fine-tune—we target the decoder, the final stage 162

responsible for converting discrete token sequences 163

into audio waveforms. This position makes it par- 164

ticularly suitable for learning robust watermark pat- 165

terns. By training the decoder to produce water- 166

marked audio without compromising perceptual 167

quality, we enable direct integration of watermark- 168

ing into the model. Once trained, the decoder can 169

be seamlessly substituted for the original one, en- 170

abling watermark embedding without modifying 171

the rest of the generation pipeline. 172

3.1 Train Pipeline 173

Overview. To embed watermark information m 174

into the parameters of the decoder, we guide the 175

decoder’s optimization using a joint loss, which 176

includes perceptual loss (Ltime,Lspec), adversarial 177

loss (Lgen,Ldisc,Lfeat), and decoding loss (Lmsg). 178
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Figure 1: Overview of the training pipeline. We use two audio codecs in this framework: C is a frozen reference
codec used to produce clean (unwatermarked) audio, while Ĉ is a trainable version where only the decoder is
updated to embed watermarks. Losses are computed between clean and watermarked outputs to maintain quality.
A mask model further improves robustness, and a decoder network extracts the watermark from the output. In
addition to standard perceptual and adversarial losses, Ldicis used to optimize the discriminator, and the weight of
the message loss Lmsgis tuned separately to ensure effective watermark embedding.

We balance these objectives during training by scal-179

ing their gradient contributions using the Loss Bal-180

ancer 2.2. The full training pipeline consists of181

four stages, as illustrated in Figure 1.182

Audio generation. Firstly, we extract the compres-183

sion model (e.g., EnCodec) from the audio gen-184

eration model (e.g., Bark). The codec Ĉ consists185

of an encoder, a quantizer, and a decoder, which186

together map raw waveforms to discrete tokens187

and reconstruct audio from them. During optimiza-188

tion, we freeze the encoder and quantizer of Ĉ and189

only update its decoder, which converts tokens into190

waveforms. This setup enables efficient watermark191

embedding by modifying only the decoder.192

Given an input audio signal wo ∈ RT , the codec Ĉ193

generates a watermarked version ŵ ∈ RT . For ref-194

erence, we use an untrained copy of the same codec,195

denoted C, to reconstruct a non-watermarked ver-196

sion w. In the subsequent training steps, we simul-197

taneously optimize for two objectives: enabling198

reliable watermark decoding from ŵ, and minimiz-199

ing the difference between w and ŵ to preserve200

audio quality.201

Feature extractions. To preserve perceptual au-202

dio quality, we compute time-domain Ltimeand203

frequency-domain Lspeclosses between w and204

ŵ. The time-domain loss constrains waveform-205

level distortions, promoting time-domain align-206

ment. The frequency-domain loss is calculated207

using multi-scale Mel spectrograms, which are 208

widely used to reflect human auditory perception 209

and capture perceptual differences across resolu- 210

tions (Kong et al., 2020; You et al., 2021). This 211

hybrid loss strategy has been shown effective in 212

maintaining perceptual fidelity in neural audio syn- 213

thesis (Tan et al., 2024; Zhang et al., 2019; Ya- 214

mamoto et al., 2020) and compression tasks (Dé- 215

fossez et al., 2022; Zeghidour et al., 2021). 216

Adversarial Perceptual Optimization. To im- 217

prove audio quality and reduce perceptual arti- 218

facts, we adopt adversarial training following prior 219

works (Défossez et al., 2022). As illustrated in Fig- 220

ure 1, the decoder of the codec serves as the gen- 221

erator, producing watermarked audio ŵ, while a 222

lightweight multi-scale discriminator distinguishes 223

ŵ from the reference audio w. The adversarial loss 224

for the generator is Lgenand for the discriminator is 225

Ldic. Similarly to previous work (You et al., 2021; 226

Kong et al., 2020), we also incorporate a feature- 227

matching loss Lfeatfor the generator. 228

Maks Model and Watermark Injection. The wa- 229

termarked audio ŵ is further processed by a mask 230

model M (in Section 3.4) designed to enhance ro- 231

bustness and enable fine-grained watermark local- 232

ization. The model comprises two components: a 233

Localization Refinement Module, and a Robust- 234

ness Enhancement Module module. They ensures 235

the watermark remains detectable under common 236
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audio modifications while reducing false positives.237

After that, the audio is fed to the watermark de-238

tector Ddet, which outputs Ddet(ŵ) ∈ [0, 1]18×T .239

The first two dimensions of Ddet(ŵ) represent the240

frame-level probabilities of watermark presence,241

while the remaining 16 dimensions correspond to242

the decoded 16-bit watermark sequence. This pre-243

diction is then compared with the target watermark244

message m, and the discrepancy is used to compute245

the decoding loss Lmsg, guiding the model to em-246

bed the watermark into the audio. The architecture247

details of Ddet are provided in the Appendix E.248

3.2 Feature Extractions.249

Although the primary objective is to embed water-250

mark signals into the audio, it is crucial that the251

perceptual quality of the output remains unaffected.252

To ensure this, the audio fidelity loss incorporates253

complementary constraints across both time and254

frequency domains, informed by principles of hu-255

man auditory perception (Xiang et al., 2017).256

Ltime = ∥w − ŵ∥1, (2)257

Eq. (2) promotes robust waveform similarity while258

remaining minor phase variations that have mini-259

mal perceptual impact (Engel et al., 2020).260

However, as human auditory perception varies261

in sensitivity across different frequency ranges,262

optimization in the time domain alone may not263

suffice to achieve high-quality audio percep-264

tion. To address this, we introduce a Multi-265

scale Mel Spectrogram Loss (Gritsenko et al.,266

2020), which constrains the spectral character-267

istics (frequency domain feature) of the gener-268

ated audio. Eq. ( 3) uses a multi-resolution Mel-269

spectrogram analysis with window sizes set H =270

{32, 64, 128, 256, 512, 1024}. And Sh(·) denotes271

the function of the Mel-spectrogram using a fixed272

window size h:273

Lspec =
∑
h∈H

∑
i=1,2

[
∥Sh(w)− Sh(ŵ)∥i

]
. (3)274

The combination of absolute difference (ℓ1) and275

squared difference (ℓ2) formulation balances spec-276

tral magnitude alignment with overall distribution277

consistency (Gritsenko et al., 2020), reducing the278

over-smoothing effects often observed in pure ℓ2279

optimization (Kong et al., 2020).280

3.3 Adversarial Perceptual Optimization.281

Although feature-based losses help maintain the282

overall perceptual quality of audio, they may not283

fully capture subtle distortions or unnatural details 284

that can still affect the quality of audio. To further 285

enhance perceptual realism and improve watermark 286

robustness, we adopt an adversarial training strat- 287

egy using multi-scale spectral discriminators, in- 288

spired by prior work on neural vocoders and audio 289

synthesis (Défossez et al., 2022; You et al., 2021; 290

Kong et al., 2020). 291

The discriminator architecture follows a five-layer 292

dilated convolutional design with dilation rates 293

[1, 2, 4], weight normalization, and LeakyReLU 294

activations (α = 0.2) for stable convergence. 295

It processes the input across multiple spectral 296

resolutions in parallel, using STFTs with FFT 297

sizes {512, 1024, 2048} and corresponding win- 298

dow lengths {128, 256, 512}. This multi-scale 299

structure enables the discriminator to capture both 300

fine- and coarse-grained spectral artifacts, making 301

it a strong perceptual sensitivity. 302

Generator Objective. The generator G is trained 303

to generate watermarked audio that is perceptually 304

indistinguishable from original signals: 305

Lgen = Eŵ [Ek∈K∥1−Dk(ŵ)∥1] , (4) 306

where K represents the STFT window size set set, 307

andDk(·) is the discriminator output. 308

In addition, inspired by prior work (Kumar et al., 309

2019a; Kong et al., 2020; You et al., 2021; Défos- 310

sez et al., 2022), we include a feature-matching 311

loss Lfeatencourages the generator to produce in- 312

ternal representations that closely resemble those 313

extracted from real audio by the discriminator: 314
315

Lfeat = El∈S,k∈K

[
∥Dl

k(w)−Dl
k(ŵ)∥1

E[Dl
k(w)] + ϵ

]
, (5) 316

where S denotes the set of discriminator layers, and 317

Dl
k represents the output of the l-th layer of the 318

discriminator corresponding to an STFT window 319

size k. The term ϵ = 10−6 is introduced to prevent 320

division by zero. 321

Discriminator Objective. The discriminator D is 322

optimized to differentiate between real and water- 323

marked audio signals: 324

Ldic = Ew [Ek∈K∥1−Dk(w)∥1] 325

+ Eŵ [Ek∈K∥Dk(ŵ)∥1] . (6) 326

3.4 Maks Model and Watermark Injection 327

3.4.1 Maks Model 328

In order to reduce the false positive rate, improve lo- 329

calization accuracy, and enhance watermark robust- 330

ness, we additionally include an enhanced mask 331
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module, which exposes the decoder to a variety332

of masking patterns during training, enabling it to333

better distinguish true watermark signals, improve334

its resilience to common audio attacks.335

(1) Localization Refinement Module: To reduce336

false positives and improve spatial precision, this337

module introduces two training strategies: (a) part338

of watermarked segments are replaced with alter-339

native watermark patterns to prevent overfitting340

and improve generalization; (b) within each au-341

dio, K regions are randomly selected and partially342

replaced with clean, unrelated, or silent content.343

These perturbations force the decoder to learn pre-344

cise localization and improve extraction accuracy345

by distinguishing true watermark regions from dis-346

tractors. The detailed parameter settings are pro-347

vided in Appendix B.348

(2) Robustness Enhancement Module: To im-349

prove the watermark’s resilience to signal process-350

ing attacks, we develop a sequential transforma-351

tion pipeline that applies nine fundamental audio352

operations in carefully calibrated proportions, in-353

cluding frequency filtering, resampling, dynamic354

range adjustment, echo effects, noise addition, and355

waveform smoothing. This transformation is com-356

monly used in watermark removal attacks and wa-357

termark robustness enhancement (Kirovski and358

Malvar, 2003; Li et al., 2024). By simulating these359

attacks during training, the decoder learns to main-360

tain watermark fidelity. The probability and param-361

eters of each operation (e.g., frequency thresholds362

for filtering, signal strength for noise addition) are363

carefully optimized, as outlined in Appendix C.364

3.4.2 Watermark Injection365

To ensure stable and accurate watermark recovery,366

we define a message loss that guides the model to367

retain the correct message content during decoding.368

It consists of two core components:369 {
Ldet =

1
T

∑T
t=1 [BCE (yt, ŷt)]

Lpayload = 1
T

∑T
t=1 [BCE (mt, m̂t)] ,

(7)370

where yt ∈ {0, 1} denotes the presence of a water-371

mark in frame t, and mt ∈ {0, 1}16 corresponds372

to the ground-truth 16-bit message. The overall373

watermark loss function is formulated as:374

Lmsg = λdetLdet + λpayloadLpayload, (8)375

where λdet and λpayload balance the importance of376

detection accuracy and payload reconstruction.377

As described in the training pipeline, the decoder 378

D receives the masked audio output from the Mask 379

Model and produces a tensor D(ŵ) ∈ [0, 1]18×T , 380

where each of the T frames contains detection and 381

decoding information. Guided by Lmsg, the de- 382

coder is trained not only to accurately determine 383

which frames contain watermark content, but also 384

to maintain robustness against typical audio attacks. 385

This enables precise frame-level localization of em- 386

bedded watermarks and ensures reliable decoding 387

performance even under signal distortions. 388

4 Experiments Setting 389

Models and Datasets. We use two state-of- 390

the-art generative models, Bark (Suno, 2023) for 391

speech synthesis and MusicGen (Copet et al., 392

2024) for musical audio generation, to insert 393

watermark. Training and evaluation are con- 394

ducted on AudioSet (Gemmeke et al., 2017) and 395

CommonVoice (Foundation, 2020) dataset, ensur- 396

ing diverse coverage of both general acoustic en- 397

vironments and multilingual speech. Since Bark 398

requires textual prompts as input, we addition- 399

ally incorporate several text-based datasets as 400

test cases to evaluate watermarking performance: 401

HarvardSentences (on Subjective Measurements, 402

1969), LibriSpeech (Panayotov et al., 2015) and 403

LJSpeech (Ito, 2017). These setups enable a com- 404

prehensive assessment of our watermarking method 405

across speech and non-speech domains. 406

Training Configuration. All models are trained on 407

an NVIDIA RTX 3090 GPU with an initial learn- 408

ing rate of 1× 10−4, which is gradually decreased 409

for stable convergence. Batch sizes are set to 24 410

for Bark and 16 for MusicGen, reflecting their re- 411

spective computational demands. To accommodate 412

the inherent sampling preferences of these mod- 413

els, Bark is trained at 24 kHz, while MusicGen is 414

trained at 32 kHz. We balance our multi-objective 415

loss using the balancer with λtime = 1, λfreq = 6, 416

λgen = 9, λfeat = 9, λmsg = 10 . The discriminator 417

updates once every two epochs, allowing the gener- 418

ator sufficient adaptation time and ensuring more 419

stable adversarial training dynamics. 420

Baselines. Our method is benchmarked against sev- 421

eral competitive baselines: AudioSeal (San Roman 422

et al., 2024), Wavmark (Chen et al., 2024), Silent- 423

Cipher (Singh et al., 2024), and Timbre (Liu et al., 424

2023a). These methods are recognized for their 425

effectiveness in audio watermarking, and together, 426

they provide a strong benchmark for evaluating im- 427
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Dataset LibriSpeech HarvardSentence LJSpeech

Model KLD CLAP FAD KLD CLAP FAD KLD CLAP FAD
AudioSeal 0.3360 13.90 0.6727 0.2029 9.28 0.4533 0.1727 8.67 0.1976
WavMark 0.3926 13.89 1.3210 0.1526 9.15 1.6092 0.1641 9.49 1.5716
SilentCipher 0.3242 14.21 0.3251 0.1370 9.39 0.2936 0.1375 8.81 0.1794
Timbre 0.3961 14.00 0.9855 0.1704 9.29 0.7345 0.1588 8.57 0.5186
Ours (GenMark) 0.3234 13.86 0.0957 0.1321 9.28 0.0615 0.1364 8.11 0.0227

Table 1: Model Comparison under Perceptual / Distributional Metrics. We use publicly available implementations
for CLAP and FAD

perceptibility, robustness, and decoding accuracy428

across a range of audio conditions.429

5 Experiments Result430

We evaluate GenMark in four key aspects: audio431

quality, detection accuracy, robustness, and human432

perception. Specifically, we assess whether wa-433

termarking affects perceptual and semantic qual-434

ity, measure detection performance across different435

models, test robustness under common audio per-436

turbations, and conduct a subjective listening study437

to understand the impact on human listeners. In438

addition, we conduct ablation studies to validate439

the effectiveness of key components, including the440

mask model and the discriminator, in improving441

watermark imperceptibility and robustness.442

5.1 Quality of Audio443

To explore GenMark’s capability to preserve per-444

ceptual and semantic quality in synthetic audio, we445

evaluate the similarity between the generated wa-446

termarked audio and original audio samples based447

on perceptual, distributional, and semantic metrics.448

Perceptual and Distributional Quality. We use the449

Frechet Audio Distance 2 (FAD) (Kilgour et al.,450

2018), a reference-free perceptual quality metric451

adapted from the Frechet Inception Distance (FID).452

In addition, we use Kullback-Leibler Divergence453

(KLD) to measure the distributional deviation be-454

tween original and watermarked audio.455

Table 1 shows that GenMark consistently achieves456

lower FAD scores across all tested datasets. Specif-457

ically, GenMark achieves significantly lower FAD458

scores (0.0957 for LibriSpeech, 0.0615 for Har-459

vardSentence, and 0.0227 for LJSpeech) compared460

to existing methods, indicating minimal perceptual461

distortion. Furthermore, GenMark also achieves462

the lowest KLD values across all datasets (0.3234463

for LibriSpeech, 0.1321 for HarvardSentence, and464

0.1364 for LJSpeech), signifying excellent preser-465

vation of distributional characteristics.466

2https://github.com/microsoft/fadtk

Model
Bark Musicgan

TPR FPR Acc TPR FPR Acc
Audioseal 100.0 0.0 95.4 100.0 0.1 73.3
Wavmark 99.8 0.0 99.8 95.2 0.1 94.4
SilentCipher 92.4 31.4 96.6 98.2 39.6 97.8
Timbre \ \ 99.9 \ \ 94.7
Ours 99.9 0.0 99.8 100.0 0.1 94.3

Table 2: Detection results for Bark, Musicgan with TPR,
FPR and Decode Accurate (%).

Semantic Consistency. We use the CLAP 3 metric 467

derived from a contrastive language-audio pretrain- 468

ing model to assess semantic preservation, which 469

reflects alignment between the generated audio and 470

the original text prompt. Lower CLAP values im- 471

ply better semantic retention. GenMark achieves 472

the best CLAP scores on LibriSpeech (13.86) and 473

LJSpeech (8.11), outperforming all baselines. On 474

HarvardSentence, it is slightly behind WavMark 475

(9.28 vs. 9.15), but still ahead of other methods. 476

These results demonstrate that GenMark consis- 477

tently preserves semantic alignment while embed- 478

ding watermark signals. 479

5.2 Detection Accuracy 480

To assess the efficacy of our watermarking tech- 481

nique, we conducted comprehensive detection ex- 482

periments using two prominent generative audio 483

models: Bark and MusicGen. Bark is designed for 484

high-quality speech synthesis, whereas MusicGen 485

is tailored for generating musical audio. This selec- 486

tion enables a robust evaluation of the watermark- 487

ing technique across both linguistic and musical 488

contexts. We generate and analyze 10,000 audio 489

samples per method for each model to ensure sta- 490

tistically reliable results. Detection performance 491

is measured using TPR and FPR, as presented in 492

Table 2. TPR quantifies the proportion of correctly 493

identified watermarked samples, while FPR reflects 494

the ratio of non-watermarked samples being incor- 495

rectly flagged (Gong et al., 2024a). 496

As shown in Table 2, GenMark has strong detec- 497

3https://github.com/LAION-AI/CLAP
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Model
Audio Transformations (Decoding Error Rates %)

Total
Bandpass Highpass Lowpass Speed Resample Boost Duck Echo Pink White Smooth

AudioSeal 92.08 100.00 100.00 99.85 4.66 29.24 95.63 15.61 23.68 24.65 16.53 54.72
WavMark 0.21 0.13 100.00 97.57 0.12 7.83 4.89 3.95 79.23 99.72 26.33 38.27
SilentCipher 34.58 43.26 97.70 99.16 7.01 6.66 6.78 79.79 100.00 100.00 70.06 58.72
Ours (GenMark) 0.05 68.57 50.97 1.36 0.15 1.24 0.17 0.17 1.62 3.12 1.04 11.55

Table 3: Decoding Error Rates (%) under different audio transformations.

tion performance. For the Bark model, our method498

achieves a TPR of 99.9% with zero false positives,499

while attaining perfect detection (100.0% TPR) on500

MusicGen with a minimal FPR of 0.1%. These501

results highlight the precision and robustness of502

our detector. Although AudioSeal also achieves503

high TPRs, especially on Bark, it shows a notice-504

able drop in accuracy on MusicGen. In contrast,505

our method maintains balanced performance across506

both domains. WavMark exhibits similar accuracy507

to our method on Bark but falls short in TPR on508

MusicGen. SilentCipher’s performance is less sta-509

ble overall, with high false positives observed in510

both settings. Besides, Timbre does not support511

watermark detection, and only supports watermark512

decoding. As such, TPR and FPR are not appli-513

cable in this context. The consistent performance514

across diverse audio domains highlights GenMark’s515

suitability for practical.516

5.3 Robustness of Watermark517

To evaluate the robustness of GenMark under real-518

world perturbations, we conduct a comprehensive519

benchmark using the Bark model as the generative520

backbone. We evaluate robustness by applying 11521

common audio transformations, including various522

signal processing operations, dynamic range modi-523

fications, ambient noise interference, and smooth-524

ing. For each transformation, we calculate the525

decode error rate—the percentage of watermark526

decoded incorrectly. Lower values mean better527

robustness.528

As shown in Table 3, GenMark achieves the lowest529

error rates in 9 out of 11 transformations. It handles530

distortions like echo, ducking, background noise,531

and speed change especially well, with error rates532

often below 2%. Even under challenging condi-533

tions like lowpass filtering, where most methods534

fail completely, our model reduces the error rate to535

around 51%.536

Although performance drops with highpass fil-537

tering, GenMark still remains competitive over-538

all. Its average decode error rate is just 11.55%,539

much lower than WavMark (38.27%), SilentCi-540

pher(58.72%), and AudioSeal (54.72%). This541

referenceanchor35 anchor70 GenMark AudiosealWavmark

30

40

50

60

70

80

90

100

MUSHRA

Figure 2: Distribution of MUSHRA scores for water-
marked audio in the subjective evaluation study. Some
extreme outliers beyond the whisker range are marked.

shows that our method keeps the watermark stable 542

and decodable even after heavy audio processing. 543

5.4 Usable Study 544

To assess perceptual audio quality from a human 545

perception perspective, we perform a subjective 546

evaluation using the standardized MUSHRA (MUl- 547

tiple Stimuli with Hidden Reference and Anchor) 548

protocol (ITU-T, 2015), a well-established method- 549

ology widely adopted for audio quality benchmark- 550

ing. We invite 20 audio experts to evaluate 20 audio 551

groups, each corresponding to a distinct prompt. 552

For every prompt, one sample was randomly se- 553

lected from 100 Bark-generated clips. Each group 554

includes the following: (1) three types of water- 555

marked audio samples (GenMark, AudioSeal, Wav- 556

Mark); (2) one clean reference; and (3) two anchor 557

signals, namely Anchor35 (filtered at 3.5 kHz) and 558

Anchor70 (filtered at 7 kHz). Participants rate each 559

sample on a scale of 0–100, with anchors and ref- 560

erences used to guide their judgments. Details are 561

provided in Appendix F. 562

As presented in Figure 2, our proposed method at- 563

tains the highest MUSHRA score (90.89), closely 564

followed by AudioSeal (90.06), with WavMark lag- 565

ging at 77.90. These results demonstrate that both 566

our method and AudioSeal effectively preserve 567

perceptual audio quality, whereas WavMark intro- 568

duces perceptible degradation. For comparison, the 569

clean reference audio achieves a MUSHRA score 570

of 92.17, while the Anchor70 and Anchor35 con- 571
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ditions score 80.44 and 58.18, respectively. These572

results confirm the evaluators’ consistency and sen-573

sitivity in the subjective assessment.574

5.5 Ablation study575

To understand the contribution of each component576

in our framework, we conduct an ablation study577

focusing on three core modules: (1) adversarial per-578

ceptual optimization, (2) the robustness enhance-579

ment module, and (3) the localization refinement580

module. For each variant, we remove or disable581

one of the components and evaluate performance582

on key metrics, including detection (TPR, FPR,583

Acc), perceptual quality (FAD), and robustness (av-584

erage decode error rate under transformations), as585

shown in Table 4.586

Removing adversarial training (NoAdversarial) re-587

sults in a drop in perceptual quality, as indicated588

by the increase in FAD from 0.0615 (full model)589

to 0.1493. Disabling the robustness enhancement590

module (NoRobustMask) has the most significant591

effect on robustness, with the average decode error592

rate (DER) surging from 11.55% to 46.22%. Re-593

moving the localization refinement module (NoLoc-594

Mask) improves robustness but at the cost of a595

substantial increase in FPR, highlighting its im-596

portance in maintaining detection precision.597

6 Related Work598

6.1 Audio Generation599

Currently, audio generation has evolved signifi-600

cantly through deep learning. For instance, autore-601

gressive models such as WaveNet (Van Den Oord602

et al., 2016) greatly improve audio quality, whereas603

GAN-based approaches, like MelGAN (Kumar604

et al., 2019b), enhance synthesis efficiency. These605

advancements established the foundation for con-606

temporary neural audio generation techniques.607

Recent studies integrate transformers and diffusion608

models to achieve further development for audio609

generation. AudioLDM (Liu et al., 2023b) uses610

contrastive language audio pretraining (Wu et al.,611

2023) with latent diffusion (Rombach et al., 2022)612

for text-guided generation. Audio language mod-613

els such as Bark (Suno, 2023), MusicGAN (Copet614

et al., 2024), and AudioLM (Borsos et al., 2023)615

use text-generation techniques (Radford, 2018;616

Brown et al., 2020a), encoding text and timbre617

into tokens using EnCodec (Défossez et al., 2022)618

and SoundStream (Zeghidour et al., 2021) for619

transformer-based sequence-to-sequence synthesis.620

Variant TPR↑ FPR↓ Acc↑ FAD↓ DER↓
NoAdversarial 99.8 0.0 99.8 0.1493 10.92
NoRobustMask 99.9 0.0 99.9 0.0607 46.22
NoLocMask 100.0 35.7 100.0 0.0595 6.43
Full Model 99.9 0.0 99.8 0.0615 11.55

Table 4: Ablation study of GenMark evaluating the ef-
fect of each component on detection (TPR, FPR, Acc),
perceptual quality (FAD), and robustness (DER).

6.2 Audio Watermark 621

Traditional audio watermarking techniques (Cve- 622

jic and Seppanen, 2004; Anderson, 1996) typically 623

embed watermarks by manipulating information in 624

the time or frequency domains (Cox et al., 1997; 625

Xiang et al., 2018; Su et al., 2018; Liu et al., 2019). 626

These methods depend on manually crafted heuris- 627

tic rules and specialized domain expertise to guide 628

their design and implementation. Simultaneously 629

achieving a high imperceptibility, capacity, and 630

robustness watermark across diverse audio types 631

remains a significant challenge. 632

With advancements in deep learning, the ability 633

to automatically learn watermark embedding and 634

extraction techniques has simplified the design of 635

watermarking methods (Tai and Mansour, 2019; 636

Pavlović et al., 2022). In particular, current deep 637

learning-based watermarking techniques generally 638

follow an Encoder-Decoder structure (Qu et al., 639

2023; Ren et al., 2023; Chen et al., 2024; San Ro- 640

man et al., 2024), where the encoder generates 641

watermarked audio, and the decoder extracts the in- 642

formation from the watermarked audio. The entire 643

model is trained in an end-to-end manner, enabling 644

it to automatically learn the wa termark embedding 645

and extraction processes. 646

7 Conclusion 647

This work introduces GenMark, a robust and ef- 648

ficient method for embedding traceable, imper- 649

ceptible watermarks directly into generative au- 650

dio models. By integrating watermark objectives 651

directly into the generation model, GenMark effec- 652

tively addresses the vulnerabilities of traditional 653

post-generation watermarking. Extensive evalua- 654

tion across speech and music generation domains 655

confirms that GenMark offers superior detection ac- 656

curacy, resilience to a wide array of audio attacks, 657

and negligible perceptual degradation. These re- 658

sults establish GenMark as a strong tool for safe- 659

guarding audio synthesis systems. 660
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Limitations661

While GenMark demonstrates strong performance662

across multiple generative audio tasks, it requires663

model-specific integration during training. Since664

the watermark is embedded directly into the de-665

coder, each generative model (e.g., Bark, Mu-666

sicGen) must be individually fine-tuned with667

GenMark.668
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A Extended related work 953

A.1 Security and Misuse in Generative 954

Models 955

The rapid advancement of generative models across 956

text (Brown et al., 2020b; Touvron et al., 2023), 957

image (Rombach et al., 2022), and audio (Kreuk 958

et al., 2022) domains has brought remarkable syn- 959

thesis quality and expressiveness. However, with 960

this growth comes increasing concern over misuse. 961

Recent work has shown that generative pipelines 962

can be tampered with or exploited, such as back- 963

door injection in offline reinforcement learning 964

datasets (Gong et al., 2024b), data poisoning in 965

large language models (Carlini et al., 2023), and 966

output evasion in diffusion models (Xu et al., 2023). 967

These studies highlight the importance of security- 968

aware generative model design, especially in ensur- 969

ing traceability and tamper resistance. 970

In the audio domain, the risk is amplified by 971

the realism of synthetic speech. Voice cloning and 972

TTS systems have been used for impersonation, 973

misinformation (News, 2024), and fraud (wes, 974

2020). Watermarking has emerged as a defense 975

strategy (Mou et al., 2023; Chen et al., 2023; Singh 976

et al., 2024), yet most approaches apply water- 977

marks after generation, leaving them vulnerable 978

to removal or circumvention. Our work addresses 979
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this gap by embedding watermarks directly dur-980

ing training, offering stronger protection against981

post-generation manipulation.982

A.2 Compression Model983

SoundStream (Zeghidour et al., 2021) and En-984

Codec (Défossez et al., 2022) are neural audio985

codecs designed for high-fidelity audio compres-986

sion and reconstruction. SoundStream introduces a987

fully learnable end-to-end framework using resid-988

ual vector quantization, while EnCodec builds upon989

this design with improved scalability and audio990

quality through hierarchical quantization and ad-991

versarial training. These models pioneer neural au-992

dio compression through self-supervised learning993

and hierarchical quantization. Unlike traditional994

handcrafted feature methods, these approaches effi-995

ciently encode high-dimensional audio into discrete996

tokens, retaining semantic information.997

This tokenization framework empowers998

Transformer-based systems (e.g., Bark (Suno,999

2023), MusicGAN (Copet et al., 2024), Audi-1000

oLM (Borsos et al., 2023)) to perform cross-modal1001

audio generation from text prompts and context-1002

aware audio continuation. By integrating audio1003

compression with language model architectures,1004

these methods improve efficiency and versatility1005

in generative AI, facilitating a wide range of1006

multimodal synthesis applications.1007

A.3 Attacks on Audio Watermarking Systems1008

While audio watermarking enables traceability of1009

generated content, ensuring robustness under ad-1010

versarial or lossy conditions remains a major chal-1011

lenge. Watermarks are often vulnerable to signal1012

manipulations such as compression, noise injection,1013

cropping, pitch shifting, or time-stretching (Cox1014

et al., 2007; Arnold et al., 2003). Attackers can1015

intentionally apply these distortions to remove or1016

degrade the watermark information without signifi-1017

cantly affecting audio perceptual quality.1018

Classical attack strategies include re-encoding,1019

filtering, jittering, or frequency band re-1020

moval (Wang et al., 2004). Recent works1021

even explore adversarial perturbations designed1022

specifically to confuse watermark extractors (Wu1023

et al., 2022). Therefore, the evaluation of wa-1024

termark robustness must consider both standard1025

degradations (e.g., MP3 compression, resampling)1026

and targeted attacks (e.g., masking, inversion,1027

audio remix).1028

In our experiments, we systematically test1029

GenMark under 11 widely used audio transforma- 1030

tions and adversarial manipulations to benchmark 1031

its resistance. Our method demonstrates lower 1032

decoding error rates compared to WavMark, Au- 1033

dioSeal, and SilentCipher, showing enhanced wa- 1034

termark durability under attack. 1035

B Localization Refinement Module 1036

To enhance the decoder’s ability to accurately lo- 1037

calize watermarked regions and reduce false de- 1038

tections, we introduce two replacement strategies 1039

during training: 1040

Mismatched Watermark Replacement: For each 1041

watermarked audio sample, we randomly replace 1042

85% of its embedded watermark segments with 1043

segments carrying different (non-target) watermark 1044

messages. This helps prevent the decoder from 1045

memorizing fixed patterns and promotes general- 1046

ization across diverse watermark structures. 1047

Random Segment Perturbation: We divide the 1048

audio into K segments and randomly select start- 1049

ing points for content replacement. Each selected 1050

segment (of length 2T/K) is then altered with one 1051

of the following: 40% probability of clean (unwa- 1052

termarked) waveform insertion, 20% probability of 1053

substitution with unrelated audio, and 20% proba- 1054

bility of silence padding. The remaining 20% is left 1055

unchanged. These manipulations simulate realistic 1056

confusion patterns that the decoder may encounter 1057

in practice. 1058

By combining these techniques and optimizing us- 1059

ing the decoding loss Lmsg, the decoder is explic- 1060

itly trained to focus on truly watermarked regions 1061

and reject irrelevant or misleading segments, sig- 1062

nificantly improving localization reliability during 1063

inference. 1064

C Robustness Enhancement Module 1065

To improve the watermark’s resilience against sig- 1066

nal processing attacks, we introduce a robustness 1067

enhancement module composed of 11 commonly 1068

used audio transformations. These operations are 1069

applied stochastically during training, with their pa- 1070

rameters drawn from calibrated ranges. This helps 1071

the decoder learn to preserve watermark fidelity 1072

under real-world distortions. 1073

Below we describe each transformation and its pa- 1074

rameterization: 1075

1. Bandpass Filter Removes both low- and 1076

high-frequency components while preserving 1077
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a specific mid-frequency range. Parameters:1078

center frequency = 2750 Hz, quality factor1079

Q = 0.7071080

2. Highpass Filter Attenuates frequencies be-1081

low the cutoff, simulating microphone or chan-1082

nel filtering. Parameters: cutoff frequency =1083

1500 Hz1084

3. Lowpass Filter Attenuates frequencies above1085

the cutoff, emulating bandwidth-limited sce-1086

narios. Parameters: cutoff frequency = 5001087

Hz1088

4. Speed Adjustment Alters playback speed by1089

resampling, affecting both pitch and timing.1090

Parameters: speed factor ∈ [0.8, 1.2]1091

5. Resampling Converts to an intermediate sam-1092

pling rate and back, introducing temporal in-1093

terpolation artifacts. Parameters: resampled1094

to 32kHz and then resampled back to the orig-1095

inal frequency1096

6. Boost Multiplies the audio amplitude to sim-1097

ulate volume spikes or clipping. Parameters:1098

boost factor = 101099

7. Duck Reduces signal amplitude to mimic au-1100

dio underpowering or suppression. Parame-1101

ters: duck factor = 0.11102

8. Echo Adds delayed and scaled versions of the1103

signal to simulate reverberation. Parameters:1104

delay time ∈ [0.1, 0.5] seconds, echo volume1105

∈ [0.1, 0.5]1106

9. Pink Noise Adds pknk noise to simulate natu-1107

ral ambient environments. Parameters: target1108

SNR = 20 dB1109

10. White Noise Adds flat- Gaussian noise, re-1110

sembling synthetic interference. Parameters:1111

target SNR = 20 dB1112

11. Smoothing Applies a moving-average filter to1113

blur waveform details. Parameters: window1114

size ∈ [2, 10] samples1115

Each transformation is sampled independently and1116

applied with a certain probability during training.1117

The combination and diversity of these perturba-1118

tions guide the decoder to learn robust watermark1119

recovery even under aggressive post-processing.1120

D TPR and FPR 1121

First, we compared our method with the current 1122

state-of-the-art models (WavMark and AudioSeal) 1123

on several audio generation tasks, using True Posi- 1124

tive Rate (TPR) and False Positive Rate (FPR) as 1125

evaluation metrics. TPR represents the proportion 1126

of watermarked audio correctly identified by the 1127

model, and its formula is: 1128

TPR =
TP

TP + FN
(9) 1129

where TP refers to true positives (samples correctly 1130

identified as watermarked) and FN refers to false 1131

negatives (samples with watermarks not detected). 1132

FPR represents the proportion of non-watermarked 1133

audio that is incorrectly classified as watermarked, 1134

and its formula is: 1135

FPR =
FP

FP + TN
(10) 1136

where FP refers to false positives (non- 1137

watermarked samples misclassified as water- 1138

marked) and TN refers to true negatives (samples 1139

correctly identified as non-watermarked). For 1140

watermarking models, our optimization goal is to 1141

maximize TPR while minimizing FPR. 1142

E Detector Architecture 1143

Inspired by the design of the AudioSeal watermark 1144

detector (San Roman et al., 2024), we implement 1145

a lightweight yet effective watermark detection 1146

model tailored for generative audio. Our detector 1147

operates directly on the raw audio waveform and 1148

outputs both a detection confidence and an optional 1149

binary message. 1150

The architecture consists of two main compo- 1151

nents: an audio encoder and a classification head. 1152

The encoder, denoted as self.encoder, follows 1153

the same architectural design as the EnCodec en- 1154

coder (Défossez et al., 2022), consisting of a series 1155

of downsampling convolutional blocks interleaved 1156

with residual connections. Specifically, the encoder 1157

comprises N convolutional layers with progres- 1158

sively increasing channel dimensions and strides to 1159

reduce temporal resolution, while preserving essen- 1160

tial information for watermark detection. To restore 1161

alignment with the input resolution, a transposed 1162

convolution layer is applied after encoding. 1163

Following the encoder, we apply a 1× 1 convo- 1164

lution to produce a multi-head output. The first two 1165
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channels represent the confidence scores (via soft-1166

max) for the presence or absence of a watermark.1167

The remaining n channels represent the per-bit log-1168

its of the embedded binary watermark message,1169

which are decoded via a temporal average followed1170

by a sigmoid activation. This design allows the de-1171

tector to perform both binary watermark detection1172

and payload recovery in a unified forward pass.1173

F Subjective Evaluation Protocol and1174

Human Study Information1175

F.1 MUSHRA Test Setup1176

To evaluate the perceptual audio quality of water-1177

marked audio, we conducted a subjective study us-1178

ing the standardized MUSHRA protocol (Multiple1179

Stimuli with Hidden Reference and Anchor), fol-1180

lowing ITU-T Recommendation BS.1534-1. This1181

method is widely used in audio quality benchmark-1182

ing and provides robust human preference data1183

across fine-grained quality levels.1184

Each test session included:1185

• One fixed reference audio clip (original unwa-1186

termarked audio),1187

• Three watermarked outputs (GenMark, Au-1188

dioSeal, WavMark),1189

• Two lossy anchors: Anchor70 (band-limited1190

at 7 kHz), Anchor35 (band-limited at 3.51191

kHz),1192

• One hidden reference (identical to the original,1193

included to assess rating consistency).1194

Participants evaluated the samples using an inter-1195

active web-based MUSHRA interface that supports1196

waveform visualization, looping playback, and1197

blind randomized ordering of stimuli. The interface1198

was customized to guide the listener through the1199

evaluation, showing condition names only during1200

the training phase, and hiding them during formal1201

scoring.1202

We recruited 20 expert listeners with back-1203

grounds in audio engineering or speech synthesis.1204

All participants voluntarily agreed to take part in1205

the study and were informed that their responses1206

would be used for academic research purposes only.1207

No personally identifying information (PII) was1208

collected. As the evaluation involved non-sensitive,1209

low-risk listening tasks, no formal IRB approval1210

was required.1211

Each participant rated 20 audio groups, each 1212

corresponding to a different prompt. Ratings were 1213

provided on a 0–100 scale via slider interfaces, with 1214

the ability to replay any sample as needed. Anchor 1215

and reference scores were used to validate listener 1216

consistency, and all results were aggregated by con- 1217

dition across listeners. For quantitative analysis 1218

and comparisons, please refer to Section 5.4 of the 1219

main paper. 1220

The testing interface was implemented as a 1221

browser-based system supporting: 1222

• Interactive MUSHRA scoring with waveform 1223

display and audio looping, 1224

• Randomized presentation of audio conditions 1225

per trial, 1226

• Automated anchor generation using standard 1227

low-pass filters. 1228

F.2 Instructions Provided to Participants 1229

Participants received the following instructions 1230

(translated and paraphrased from the interface): 1231

Welcome to the Audio Quality Evalua- 1232

tion Test 1233

This test assesses your subjective percep- 1234

tion of audio quality. 1235

Testing Process: 1236

• Left panel: Reference audio (al- 1237

ways visible) 1238

• Right panel: Six randomized test 1239

samples (three algorithmic outputs, 1240

two lossy anchors, one hidden ref- 1241

erence) 1242

Scoring Guide: 1243

• 0–35: Severe degradation 1244

• 45–60: Moderate degradation 1245

• 61–80: Mild degradation 1246

• 80–100: Nearly indistinguishable 1247

from reference 1248

Please ensure a quiet environment and 1249

use high-quality headphones. Focus on 1250

high-frequency regions (e.g., fricatives 1251

like /s/, /z/) to detect perceptual differ- 1252

ences. 1253
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