Under review as a conference paper at ICLR 2026

PLANETALIGN: A COMPREHENSIVE PYTHON LIBRARY
FOR BENCHMARKING NETWORK ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Network alignment (NA) aims to identify node correspondence across different net-
works and serves as a critical cornerstone behind various downstream multi-network
learning tasks. Despite growing research in NA, there lacks a comprehensive li-
brary that facilitates the systematic development and benchmarking of NA methods.
In this work, we introduce PLANETALIGN, a comprehensive Python library for
network alignment that features a rich collection of built-in datasets, methods, and
evaluation pipelines with easy-to-use APIs. Specifically, PLANETALIGN integrates
18 datasets and 14 NA methods with extensible APIs for easy use and development
of NA methods. Our standardized evaluation pipeline encompasses a wide range
of metrics, enabling a systematic assessment of the effectiveness, scalability, and
robustness of NA methods. Through extensive comparative studies, we reveal
practical insights into the strengths and limitations of existing NA methods. We
hope that PLANETALIGN can foster a deeper understanding of the NA problem
and facilitate the development and benchmarking of more effective, scalable, and
robust methods in the future. The source code of PLANETALIGN is available at
https://anonymous.4open.science/r/PlanetAlign-E9BA

1 INTRODUCTION

Multi-sourced and multi-layer networks are becoming ubiquitous across a wide range of domains in
the era of big data and Al, ranging from social network analysis (Shao et al., 2023; Racz & Zhang,
2024; Peng et al., 2025), anti-money laundering (Zhang et al., 2021), bio-informatics (Hu et al.,
2024; Zare Mirak-Abad & Ghorbanali, 2025), to knowledge graph fusion (Yan et al., 2021a; Chen
et al., 2024). Identifying the same node across different networks, i.e., network alignment (NA),
enables joint learning across multiple networks and serves as the key cornerstone of multi-network
tasks. For example, aligning users across online social networks improve personalized services, e.g.,
cross-domain recommendation (Liu et al., 2023a; Zeng et al., 2023; Yu et al., 2025). In transaction
networks, aligning suspicious accounts from different transaction networks facilitates the detection
of fraudulent activity (Zhang et al., 2019b; Du et al., 2021; Yan et al., 2024). In protein interaction
networks, alignment of proteins across different species uncovers hidden biological homologies (Clark
& Kalita, 2014; Hu et al., 2024). In knowledge graphs (KG), merging incomplete KGs based on
aligned entities helps construct more unified knowledge bases (Yan et al., 2021a; Liu et al., 2023b;
Chen et al., 2024).

Despite growing interest in NA, there lacks a comprehensive benchmark to provide standardized
evaluation of NA methods on different datasets from various aspects. The absence of such benchmarks
leaves the genuine performance and usefulness of existing NA methods an open research question,
hindering the standardization of research in the NA community.

Although prior efforts, which are summarized in Table 1, have been made in benchmarking NA
methods (Clark & Kalita, 2014; Cao & Yu, 2016; Sun et al., 2020; Trung et al., 2020; Dépmann, 2013),
they suffer from at least one of the following limitations: (1) limited datasets within a single domain,
e.g. biological networks (Clark & Kalita, 2014) or social networks (Cao & Yu, 2016); (2) limited
methods exclusively focusing on a single category, e.g., consistency-based methods (Dopmann, 2013)
or embedding-based methods (Sun et al., 2020), while ignoring the most recent line of works, e.g.,
optimal transport (OT) based methods; (3) limited and inconsistent evaluation from a single aspect,
e.g. effectiveness (Clark & Kalita, 2014; Cao & Yu, 2016), without standardized dataset splits and
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evaluation metrics (Clark & Kalita, 2014; Cao & Yu, 2016; Sun et al., 2020; Trung et al., 2020;
Dopmann, 2013).

In response to these limitations, we introduce PLANETALIGN, an open-source PyTorch-based library
designed for unified evaluation and streamlined development of NA methods, which features the
following key design. Firstly, PLANETALIGN includes 18 different public datasets spanning 6
different domains which can be directly downloaded through a simple API call, including social
networks (Zhang & Philip, 2015; Zhang & Tong, 2016), publication networks (Tang et al., 2008;
Yang et al., 2016; Leskovec et al., 2007), biological networks (Stark et al., 2006; De Domenico
et al., 2015b; Zitnik & Leskovec, 2017; Park et al., 2010), knowledge graphs (Sun et al., 2017),
infrastructure networks (Yan et al., 2022; Zhu et al., 2021; Song et al., 2020), and communication
networks (Zhang et al., 2017; Kunegis, 2013), covering both real-world and synthetic scenarios
(Limitation #1). The wide range of datasets built into PLANETALIGN allows comprehensive evaluation
of NA methods on different types of networks, e.g., plain and attributed networks, fostering in-depth
understanding of the applicability of NA methods to different domains. Secondly, PLANETALIGN
features efficient implementations of 14 different NA methods including consistency-based (Singh
et al., 2008; Zhang & Tong, 2016), embedding-based (Liu et al., 2016; Heimann et al., 2018;
Chu et al., 2019; Zhang et al., 2020; Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu
et al., 2023a), and OT-based methods (Zeng et al., 2023; Tang et al., 2023; Zeng et al., 2024;
Yu et al., 2025), covering traditional and state-of-the-art baselines (Limitation #2). With easy-
to-use APIs, PLANETALIGN allows streamlined comparison between NA methods across diverse
benchmark settings. Thirdly, PLANETALIGN highlights a comprehensive list of evaluation metrics
and benchmarking tools (Limitation #3). For evaluation metrics, we include the most classical
effectiveness metrics, Hits@K and MRR, under different pairwise alignment settings. We also
include time and memory overheads for evaluating the efficiency and scalability of NA methods.
For benchmarking tools, we enforce consistent dataset split through a unified API design to ensure
reproducibility. PLANETALIGN also provides a rich collection of APIs and utility functions that
allows fair and reproducible benchmarking across key dimensions of NA performance. Finally,
PLANETALIGN implements extensible APIs and efficient utility functions which allow users to
streamline the implementation of customized NA methods and the integration of customized datasets
with minimal efforts. Specifically, our API design allows customized datasets and NA methods to
be built upon carefully designed base classes and integrated into PLANETALIGN’s pipeline with
only a few lines of code. PLANETALIGN further provides commonly used utility functions such
as random walk with restart (RWR) embedding, anchor-based embedding, etc. Empowered by
the aforementioned features, PLANETALIGN addresses the limitations of existing NA benchmarks
comprehensively.

Based on PLANETALIGN, we conduct comprehensive experiments to evaluate the effectiveness,
scalability, robustness, and sensitivity to supervision of 14 built-in NA methods across 18 built-in
datasets, revealing practical insights into the strength and limitations of existing NA methods. We
also compare PLANETALIGN’s implementation of NA algorithms with their official implementation
which shows that our implementation can achieve up to 3 times speed-up while maintaining similar
effectiveness performance, demonstrating the superiority of PLANETALIGN.

In summary, we introduce a unified, comprehensive, and efficient library PLANETALIGN featuring a
wide range of built-in datasets and NA methods, as well as extensible and easy-to-use utility functions
and APISs, facilitating the benchmarking and development of NA methods. We will continuously
update PLANETALIGN upon release of new benchmark datasets and methods.

2 PROBLEM DEFINITION

An illustration of NA problems are shown in Figure 1. Given two input networks
G = V,AL,X,E1}, Go = {V2, A5, X5, Eq} and a set of anchor node pairs £ =
{(z,y)|x € V1,y € Vo } indicating pre-alignment, where V;, Vs denote the node sets, A, Ao denote
the graph ! adjacency matrices, X1, X2 denote the node attribute matrices, and E;, E, denote the
edge attribute matrices, the semi-supervised attributed network alignment task aims to discover
node-level correspondence across two networks inferred from an output alignment matrix S, where
S(x,y) indicates the likelihood of alignment between node x € V; and node y € Vs. If neither

'In this work, the terms ‘network’ and ‘graph’ are used interchangeably.
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Figure 1: An illustration of NA problems.

node attributes X1, Xo nor edge attributes E; , E5 are available, this becomes the semi-supervised
plain network alignment task; If no anchor node pairs are available, i.e., |£| = 0, this becomes the
unsupervised attributed network alignment task.

3 RELATED WORK

3.1 NETWORK ALIGNMENT METHODS

Existing NA methods can be classified into three categories: consistency-based, embedding-based,
and OT-based approaches (Zhang & Tong, 2020). Consistency-based methods are among the
earliest approaches, formulated as optimization problems which assumes structural and/or attribute
consistency between node neighborhoods across networks (Singh et al., 2008; Zhang & Tong, 2016;
Zhang et al., 2019a; Bayati et al., 2009). Although recent works on NA have largely moved beyond
consistency principles, consistency-based methods remain important baselines for benchmarking

purpose.

Embedding-based and OT-based methods represent more recent advances in the NA community. For
embedding-based methods, nodes are mapped into a shared low-dimensional space and aligned based
on embedding similarity (Liu et al., 2016; Heimann et al., 2018; Chu et al., 2019; Zhang et al., 2020;
Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu et al., 2023a). By leveraging advances
in deep representation learning, embedding-based methods have shown strong performance and
remain an active research direction. For OT-based methods, they formulate the NA problem as an
optimization problem minimizing the total effort of transporting the node distribution of one graph to
another under a set of pre-defined or learnable cost functions (Tang et al., 2023; Zeng et al., 2023;
2024; Yu et al., 2025). The most OT-based methods consistently achieve SOTA performance, making
them a promising direction for future research. PLANETALIGN includes representative state-of-the-art
methods from all three kinds of methods, providing a comprehensive benchmarking library.

3.2 NETWORK ALIGNMENT LIBRARIES

There are five existing benchmarks/libraries for NA, and we include a comprehensive compari-
son on the inclusion of datasets, NA methods, and evaluation dimensions in Table 1. Specifically,
SGAPBSA (Dopmann, 2013) and CAPABN (Clark & Kalita, 2014) mainly focus on benchmarking
traditional consistency-based NA methods on biological networks. ASNets (Cao & Yu, 2016) bench-
marks the effectiveness of both consistency-based and embedding-based methods on social networks,
leaving the scalability and robustness of NA methods an open research question. NAB (Trung et al.,
2020) comprehensively evaluates the effectiveness, scalability, and robustness of both consistency-
based and embedding-based methods. However, NAB only includes social networks, lacking compre-
hensive datasets on other domains where NA is also an important research problem. OpenEA (Sun
et al., 2020) focuses on benchmarking embedding-based methods on knowledge graphs, ignoring
networks in other domains. In addition, none of the existing NA libraries includes OT-based methods
which have emerged as the most recent and effective line of work in the NA community.
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Table 1: Comparison with existing NA benchmarks/libraries (Clark & Kalita, 2014; Cao & Yu, 2016;
Sun et al., 2020; Trung et al., 2020; Dopmann, 2013). We denote whether a specific type of networks,
methods, and evaluations is included in the benchmark/library.

Benchmark/Library | SGAPBSA CAPABN ASNets NAB OpenEA | PLANETALIGN (ours)
Social X X X
Communication X X X X X

Networks Publication X X X X X
Biological X X X
Knowledge X X X X
Infrastructure X X X X X
Consistency-based X

Methods Embedding-based X X
OT-based X X X X X
Effectiveness

Evaluations Scalability X X
Robustness X X X X

4 DESIGN OF PLANETALIGN

In this section, we introduce the design features of PLANETALIGN, which includes comprehensive
built-in datasets and NA methods (Section 4.1), unified and easy-to-use APIs (Section 4.2), as well as
standardized and diverse benchmarking tools (Section 4.3).

4.1 COMPREHENSIVE DATASETS AND METHODS

PLANETALIGN collects and curates 18 NA datasets across 6 different domains, covering social
networks, publication networks, biological networks, knowledge graphs, infrastructure networks,
and communication networks. PLANETALIGN also implements 14 existing NA methods across all 3
categories, including consistency-based, embedding-based, and OT-based methods. An overview of
built-in datasets and NA methods in PLANETALIGN is summarized in Figure 2.

Dataset Collection and Synthesis. We collect 11 real-world datasets from existing NA works and
synthesize 7 additional datasets across 6 distinct domains. We follow the most classical method to
synthesize NA datasets from a single network, where we insert 10% noisy edges into and delete 15%
existing edges from the original network to create two permuted networks (Yang et al., 2016; Zhang
et al., 2020; Yan et al., 2021b; Zhang et al., 2021; Zeng et al., 2023; Yu et al., 2025).

Specifically, for social networks, where NA is used to align the same user for personalized recom-
mendation (Cao & Yu, 2016; Zhang & Philip, 2015; Liu et al., 2016), PLANETALIGN includes 4
real-world datasets: Foursquare-Twitter (Zhang & Philip, 2015), Douban (Zhang & Tong, 2016),
Flickr-LastFM (Zhang & Tong, 2016), and Flickr-MySpace (Zhang & Tong, 2016); for publication
networks, where NA is used for author disambiguation (Li et al., 2021), PLANETALIGN includes the
most representative real-world dataset ACM-DBLP (Tang et al., 2008), and synthesizes 2 additional
datasets from Cora (Yang et al., 2016) and ArXiv (Leskovec et al., 2007); for biological networks,
where NA uncovers hidden biological homologies by aligning proteins of different species (Clark &
Kalita, 2014; Faisal et al., 2015; Singh et al., 2008), PLANETALIGN includes 1 real-world dataset
SacchCere (Stark et al., 2006; De Domenico et al., 2015b) and 2 synthetical datasets PPI (Zitnik &
Leskovec, 2017) and GGI (Park et al., 2010). For knowledge graphs, where NA is used for knowledge
fusion (Liu et al., 2023b; Chen et al., 2023; Sun et al., 2020), PLANETALIGN includes 3 variants of a
real-world dataset DBP15K (Sun et al., 2017), namely DBP15K ZH-EN, JA-EN, and FR-EN. For
infrastructure networks, where NA plays an important role in cross layer dependency inference (Yan
etal., 2022), PLANETALIGN includes 1 real-world dataset Italy (Yan et al., 2022), and 2 synthetic
datasets Airport (Zhu et al., 2021) and PeMSO08 (Song et al., 2020). For communication networks,
PLANETALIGN includes 1 real-world dataset Phone-Email (Zhang et al., 2017) and 1 synthetic
dataset Arenas (Kunegis, 2013). Detailed dataset statistics can be found in Appendix A.

Baseline Implementations. We implement 14 existing NA methods based on a unified API, in-
cluding 2 representative consistency-based methods, 8 embedding-based methods, and 4 OT-based
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Figure 2: An overview of built-in datasets and NA methods in PLANETALIGN. For built-in
datasets, we indicate if they consist of attributed (Attr.) or plain networks, and if they are real-world
(Real) or synthetic datasets. For built-in NA methods, we indicate if they are designed for attributed
or plain NA tasks, and if they are semi-supervised or unsupervised methods.

methods. Specifically, for consistency-based methods, PLANETALIGN includes IsoRank (Singh
et al., 2008) and FINAL (Zhang & Tong, 2016); for embedding-based methods, PLANETALIGN
includes IONE (Liu et al., 2016), REGAL (Heimann et al., 2018), CrossMNA (Chu et al., 2019),
NetTrans (Zhang et al., 2020), WAlign (Gao et al., 2021), BRIGHT (Yan et al., 2021b), NeXtAl-
ign (Zhang et al., 2021), and WLAlign (Liu et al., 2023a); for OT-based methods, PLANETALIGN
includes SLOTAlign (Tang et al., 2023), PARROT (Zeng et al., 2023), HOT (Zeng et al., 2024), and
JOENA (Yu et al., 2025). Detailed introductions of built-in NA methods can be found in Appendix B.

4.2 UNIFIED AND EASY-TO-USE APIS

PLANETALIGN is carefully designed to provide unified and easy-to-use APIs to streamline the
implementation, training, and evaluation of NA algorithms on customizable datasets. An exam-
ple usage of PLANETALIGN is shown in Figure 3. We also provide detailed documentation at
https://planetalign.netlify.app, covering quick-start tutorials as well as in-depth doc-
umentations of API usage of the major components.

Specifically, to train and evaluate an NA algorithm on a specific dataset, the user of PLANETALIGN
will first definea PlanetAlign.data.BaseData objectand a Model object inherited from

the base class PlanetAlign.algorithm.BaseModel . For built-in datasets, PLANETALIGN
provides downloading options and reproducible train/test split with a customized training ratio; for
built-in algorithms, PLANETALIGN provides hyperparameter options upon definition of the algorithm,
and a unified API as PyTorch for GPU/CPU offloading. Both built-in dataset and algorithm objects
can be defined neatly in a single line of code. PLANETALIGN also provides unified and intuitive base
classes for defining customized datasets and algorithms, as shown in Figure 3.

Before training an NA algorithm, the user has an option to initialize a PlanetAlign.Logger

object used to log the training process of the algorithm. Then, the user can simply call the .train

method of the algorithm object with the dataset and logger object, IDs of graphs to be aligned, and
additional configuration of training, e.g., training epochs, learning rate, etc., to start the training.
Training outputs, including node embeddings, alignment matrix, and training performance are
returned by the .train after the training process ends, providing fine-grained intermediate results
of alignment that users can readily leverage for downstream tasks, such as cross-layer dependency
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# Built-in NA dataset (e.g., Douban)
dataset = PlanetAlign.datasets.Douban(
root=root,
download=True,
train_ratio=train_ratio,
seed=seed)

# Customized NA dataset

dataset = PlanetAlign.data.BaseData(
graphs=graphs, # PyG.data.Data objects
anchor_links=anchor_links, # Tensor object
train_ratio=train_ratio,
seed=seed)

Algorithm

# Built-in NA algorithm (e.g., FINAL)
alg = PlanetAlign.algorithms.FINAL(
**hyperparameters).to('cuda')

Train & Test

output_dict = alg.train(dataset=dataset,
gids=gids, # graph IDs
use_attr=use_attr,
logger=logger,
**train_parameters)

# ouput_dict: {node_embeddings: ..,

alignment_matrix: .., logger: ..}

result_dict = alg.test(dataset=dataset,
gids=gids, # graph IDs
use_attr=use_attr,
metrics=metrics)

1 |

Logger

logger = PlanetAlign.logger.TrainLogger(
log_path=log_path,
log_name=log_name,

metrics=metrics,

- save=True)
# Customized NA algorithm

class Model(PlanetAlign.algorithm.BaseModel):
def ()8 w # Plot training curve of the selected metric
def (): . logger.plot_curve(metric=metric,

alg = Model(**hyperparameters).to('cuda') save_path=save_path)

Figure 3: Example usage of PLANETALIGN for benchmarking NA. Users begin by initializing a
dataset and algorithm objects, along with a logger for training-time monitoring and visualization. The
training and evaluation can then be performed through simple API calls with user-defined parameters,
providing substantial flexibility in controlling the training and evaluation workflows.

inference (Yan et al., 2022), knowledge integration (Yan et al., 2021a), and cross-KG modality
fusion (Chen et al., 2023).

Finally, after the training process, the user can call the .test method of the algorithm object
with customized options of evaluation metrics. The optional logger object, which records and logs
comprehensive data during training, also provides a rich collection of APIs for visualizing the
evolution of different metrics along training, e.g., training loss, time and memory usage, etc.

4.3 STANDARDIZED AND DIVERSE BENCHMARKING TOOLS

Standard Evaluation Metrics. PLANETALIGN provides low-level utility functions for computing
standard and widely adopted evaluation metrics in the NA tasks with custom options for alignment
directions, such as left-to-right for pairwise alignment scenarios where the nodes in G, is aligned to
Go, and vise versa. Specifically, PLANETALIGN includes the following metrics:

» Hits@K. In the case of aligning G; to Go, Hits@K refers to the proportion of nodes in G; whose
correct alignment in G is ranked within the top- K candidates by a NA algorithm. Formally,
N
1
Hits @K = Zl 1{rank; < K},
where IV is the number of nodes in Gy, rank; is the rank of the correct alignment for the i-th node
in Gy, and 1{-} is the indicator function. Note that in NA, Precision@K (Trung et al., 2020) is
equivalent to Hits@K.
* Mean Reciprocal Rank (MRR). MRR refers to the average reciprocal of the rank at which the
correct alignment appears in the candidate list. Formally, In the case of aligning G; to Go,
N

1 1
MRR= =S
N Zl rank;’

i
where N is the number of nodes in Gy, rank; is the rank of the correct alignment for the i-th node
in Gi1. Note that in NA, Mean Average Precision (MAP) (Trung et al., 2020) is equivalent to MRR.
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Diverse Benchmark Settings. The design of PLANETALIGN enables diverse and reproducible
benchmarking of existing NA algorithms with minimal efforts, providing a rich collection of APIs
and built-in utility functions that allow users to easily configure, run, and evaluate experiments along
key dimensions of NA performance, including effectiveness, scalability, and robustness.

Specifically, for effectiveness, PLANETALIGN supports custom training ratios and generates con-
sistent, reproducible train/test splits by a user-defined random seed, ensuring fair comparisons of
different NA algorithms. The APIs also supports experiments that evaluate the sensitivity of different
NA methods with respect to the amount of supervision, providing valuable insights into their applica-
bility to various supervision regimes. PLANETALIGN further provides unified utility functions to
selectively introduce or remove supervision, enabling side-by-side comparisons between supervised
and unsupervised algorithms under the same setting; for scalability, PLANETALIGN includes built-in
logging functionalities that automatically track the runtime and memory usage during training and
inference, allowing consistent and transparent evaluation of the efficiency of NA algorithms across
datasets of varying sizes; for robustness, PLANETALIGN provides utility functions for injecting edge-
level, attribute-level, and supervision noise into input graphs, allowing comprehensive evaluation of
the robustness of NA methods under diverse graph noises or data inconsistencies.

5 EXPERIMENTS

Based on PLANETALIGN, we carry out extensive experiments to benchmark a wide range of NA
algorithms across four key dimensions: effectiveness (Section 5.2), scalability (Section 5.3), robust-
ness (Appendix D.1), and sensitivity to supervision (Appendix D.2). Additionally, we compare our
implementation to the official implementation of built-in NA algorithms of PLANETALIGN to validate
the correctness and efficiency our library (Appendix D.3).

5.1 EXPERIMENTAL SETUP

Datasets and methods. We benchmarks the performance of 14 NA algorithms on 18 NA datasets
built into PLANETALIGN, as shown in Figure 2. Detailed dataset statistics and a brief introduction to
each algorithm can be found at Appendix A and B, respectively.

Metrics. To evaluate effectiveness, we report Hits@K and MRR introduced in Section 4.3. All
reported Hits@K and MRR are averaged results from both alignment directions. To evaluate
scalability, we report the runtime and peak memory usage.

Additional Setup. For each experiments, we run 5 times and report the mean and standard deviation
of the results. Additional experimental setup, such as the machine used to run the experiments and
hyperparameter settings, are detailed in Appendix C.

5.2 EFFECTIVENESS RESULTS

We first evaluate the effectiveness of existing NA algorithms on plain networks under a semi-
supervised setting with 20% training ratio. Datasets are randomly split for training and testing by a
fixed random seed to ensure fair and reproducible comparison. Table 2 shows the averaged results on
all 18 datasets group by their categories. Detailed results on plain and attributed NA datasets can be
found in Appendix D.

We can see from Table 2 that OT-based methods, particularly PARROT (Zeng et al., 2023) and
JOENA (Yu et al., 2025), consistently achieve SOTA alignment performance in Hits@K and MRR
across all datasets, demonstrating the effectiveness of optimal transport in aligning distributional
structures. Embedding-based methods such as IONE (Liu et al., 2016), NetTrans (Zhang et al.,
2020), and BRIGHT (Yan et al., 2021b) can be effective in aligning some networks. However, their
strong performance is not consistent across different datasets, potentially due to the space disparity
issue (Yan et al., 2021b; Zhang et al., 2021). Consistency-based methods, while occasionally perform
well on certain datasets, usually outperformed by best-performing embedding-based and OT-based
methods, suggesting that relying solely on consistency principles may lead to sub-optimal alignment.

In addition to empirical observations, we further provide theoretical analysis into the superior
performance of OT-based alignment methods. Compared with consistency-based methods, which are
restricted by local consistency principles, OT-based methods go beyond local assumptions by solving
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Table 2: Effectiveness and efficiency results of NA algorithms on plain networks with a training ratio
of 20%. We group the 18 datasets in PLANETALIGN by their categories and report the averaged
Hits@1, Hits@10, MRR (in %), inference time (Time), and peak memory usage (Memory). Cells
that contain the [st/"1/  best results are highlighted in red/ 0o/ , respectively. Detailed
results for each dataset can be found in Appendix D.5.

Dataset Social Publication Biological Knowledge Infrastructure Communication

Metrics Hits@1 Hits@10 MRR‘Hits@l Hits@10 MRR‘Hits@l Hits@10 MRR‘Hits@l Hits@10 MRR |Hits@1 Hits@10 MRR|Hits@1 Hits@10 MRR

IsoRank 4.2 196 92| 189 59.1 314 21.6 451 294| 115 50.0 234| 142 439 241|221 445 302
FINAL 4.9 223 10.1| 223 686 373|229 566 341|139 554 273|151 536 280| 21.7 577 339

IONE 7.9 20.0 12.1| 287 63.6 40.1| 46.1 60.5 51.0| 47 203 10.0| 29.6 512 37.0| 504 69.0 56.7
REGAL 0.3 22 1.2 1.8 78 391 1.0 53 26| 08 2.9 1.6 | 28 134 6.7 | 453 495 472
CrossMNA 1.2 11.1 45| 132 58.1 272|402 587 465| 27 28.8 10.7| 146 309 202| 228 533 339
NetTrans 7.2 218 11.9| 407 773 52.7| 342 575 418|288 628 39.7| 293 595 396| 452 626 518
WAlign 42 8.5 6.1 | 312 496 37.8| 203 273 229| 194 282 228| 29.1 473 355|496 560 521
BRIGHT 5.1 170 9.0 | 404 740 51.8| 30.5 480 36.5| 304 617 409|299 570 395| 509 623 550
NeXtAlign 7.1 195 113|432 769 547|259 448 328|275 599 383|280 551 378|296 514 372
WLAlign 7.6 148 10.1| 359 581 432 41.2 507 443|259 442 31.7| 295 428 34.1| 341 491 395

PARROT 12,6 263 172| 666 886 744| 616 734 655| 660 872 73.1 518 692 57.8| 63.3 867 713
SLOTAlign 0.9 40 22| 507 655 56.1| 48.6 545 50.7| 1.5 58 31 532 608 557|493 526 509
HOT 5.3 160 52| 38.1 656 237|254 379 152|339 612 214 ‘ 321 521 195| 52.1 662 285
JOENA 187 351 244|732 921 802| 63.7 729 668 663 878 730 629 750 672] 663 89.0 743

Dataset Social Publication Biological Knowledge Infrastructure Communication

Metrics Time(s) Memory(GB)‘ Time(s) Memory(GB)‘ Time(s) Memory(GB)‘ Time(s) Memory(GB)‘ Time(s) Memory(GB)‘ Time(s) Memory(GB)

IsoRank  25.17 3.54 57.99 6.89 13.01 2.67 1.54x10%> 1597 0.28 0.66 0.17 0.80
FINAL 5.91 5.39 6.75 10.06 1.88 3.54 18.10 24.37 0.10 0.80 0.11 0.88
IONE  6.34x103 1.94 1.43x10* 416 1.41x10* 1.93 1.50x10* 875 [9.41x10®> 090  [8.10x10% 1.02
REGAL  9.38 1.16 16.14 3.18 7.28 1.55 30.83 5.96 0.76 0.81 1.17 0.77
CrossMNA 3.06x10? 1.40 1.16x10°  3.16  |5.33x10? 1.58 L11x10° 6.14 59.03 098  [5.78x10>  0.81
NetTrans 1.56x10>  8.88  [5.14x10%> 857 1.08x10> 390  [3.65x102  21.90 6.46 1.28 12.37 1.54
WAlign | 0.61 2.65 9.41 9.88 2.46 3.86 10.05 15.40 0.12 143 0.20 1.11
BRIGHT  21.76 3.00 1.26x10>  5.66 33.55 324 [3.81x10> 1153 0.28 1.14 0.33 1.12
NeXtAlign ~ 40.89 3.75 1.55x102  7.82 19.35 357  [2.62x10°  13.57 0.29 134 2.44 0.99
WLAlign 7.41x10? 217 2.69x10° 1198  |1.15x10% 421 3.24x10° 2833  |4.25x10? 1.35 6.99x10% 0.95
PARROT  76.76 626  [299x102  11.68 84.63 398  [8.95x10% 2847 0.76 0.85 0.82 0.90
SLOTAlign  46.31 640  |5.64x10%2 1155 67.66 3.96 1.03x10* 2827 3.85 1.03 123 0.80
HOT 4.01x10> 385 [7.89x10>  7.75  |7.08x10>  4.44  |2.08x10° 1843 8.95 2.12 7.04 4.46
JOENA 5873 4.89 30.60 2.73 3.65 139 |6.61x10% 2647 0.05 1.02 0.49 0.86

a globally constrained optimization problem. Compared with embedding-based methods, which infer
alignment from noisy embedding similarities, OT-based methods directly learns a robust alignment
matrix from transportation cost, thanks to the marginal constraints that naturally encourage one-to-one
node alignment. Empowered by constrained optimization and informative transportation cost encoded
by powerful graph proximity measures or learnable node embeddings, OT-based methods learns
robust, deterministic, and global-structure-aware alignment.

Takeaway #1: Optimal transport demonstrates significant potentials in NA.

Best-performing OT-based methods consistently outperform consistency and embedding-based
approaches by a significant margin in alignment performance across diverse domains, demon-
strating the power of constrained optimization and informative transport cost which lead to
robust, deterministic, and global-structure-aware alignment.

5.3 EFFICIENCY AND SCALABILITY RESULTS

We also include the efficiency results of NA algorithms on plain networks under a semi-supervised
setting with a 20% training ratio in Table 2. To further evaluate the scalability of NA algorithms, we
conduct another set of experiments on synthetic graphs generated by the Erd6s—Rényi (ER) (Erdos
et al., 1960) model with a fixed average node degree of 10 under the same semi-supervised setting,
and record the inference time and peak memory usage as the number of nodes increases in Figure 4.

Embedding-based methods typically face a two-out-of-three trade-off among effectiveness, time
efficiency, and memory efficiency. Specifically, WAlign (Gao et al., 2021) and BRIGHT (Yan et al.,
2021b) are among the most scalable algorithms in terms of inference time thanks to simple neural
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Figure 4: Scalability results on ER graphs. The x-axis shows the number of nodes in the ER graphs (in
10*), and the y-axis of the 1st/2nd row shows the inference time and peak memory usage, respectively.

network (NN) structures which only requires a forward pass during inference. However, they tends to
be less scalable in memory usage due to overheads of NN parameters. In terms of memory usage,
CrossMNA (Chu et al., 2019) and IONE (Liu et al., 2016) achieve the best scalability as they learn
low-dimensional embeddings without using NN. However, they tends to be less scalable in time
since their transductive embeddings requires retraining for different networks (Hamilton et al., 2017).
REGAL (Heimann et al., 2018) achieve both time and memory scalability by decomposition on
sampled embedding matrices but is less effective compared to other NA methods.

Takeaway #2: Embedding-based methods face a two-out-of-three trade-off among effec-
tiveness, time efficiency, and memory efficiency.

Embedding-based methods face trade-off among transductive embeddings for memory efficiency,
inductive embeddings for time efficiency, and learning-based approaches for effectiveness.

Consistency-based methods (Singh et al., 2008; Zhang & Tong, 2016), on the other hand, scale
moderately in terms of both time and memory usage. OT-based methods, in general, share similar
scalability results as consistency-based methods since the optimizations of both kinds of methods
involve matrix operations of quartic complexity. Although the original OT problem is non-convex
and computationally expensive to solve by gradient descent (Tang et al., 2023), PARROT (Zeng et al.,
2023) and JOENA (Yu et al., 2025) solve the OT problem efficiently by convex approximation (Peyré
et al., 2019) and proximal point methods (Xu et al., 2019a). HOT (Zeng et al., 2024) further utilizes a
hierarchical OT framework for cluster-level alignment to scale efficiently to large networks.

Takeaway #3: OT-based methods requires efficient optimization methods to scale similarly
as consistency-based methods.

OT-based methods requires efficient optimization of OT problem, e.g, convex approximation, to
scale moderately like consistency-based methods in terms of both time and memory usage.
5.4 ROBUSTNESS AND SENSITIVITY RESULTS

We evaluate the robustness of NA methods under various types of graph noises, as well as their
sensitivity to different levels of supervision. Our key findings are twofold. First, different NA methods
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show distinct sensitivities to different types of graph noises, suggesting that effective integration
of different alignment techniques can potentially improve the overall robustness of NA algorithms.
Second, current NA algorithms remain sensitive to supervision, underscoring the need for future
research on self-supervised alignment approaches. Due to space constraints, detailed experimental
results, analysis, and key takeaways are provided in Appendix D.1 and D.2.

6 CONCLUSION

In this paper, we introduce PLANETALIGN, a comprehensive library that facilitates the benchmarking
and development of network alignment methods. PLANETALIGN highlights a collection of 18 differ-
ent public datasets spanning 6 different domains, along with a unified and efficient implementation of
14 different NA algorithms of 3 different categories. With a comprehensive list of evaluation metrics,
benchmarking tools, and utility functions implemented as easy-to-use APIs, PLANETALIGN not only
enables fair and reproducible benchmarking of NA algorithms but also facilitates the development of
new NA methods. Through extensive benchmark, we reveal practical insights into the strengths and
limitations of existing NA methods which guides the development of future NA algorithms.

7 LIMITATIONS AND FUTURE WORK

While we introduce a comprehensive library for benchmarking NA, PLANETALIGN could be poten-
tially improved from the following two directions. First, although PLANETALIGN features a rich
collection of baselines, some variants of NA methods that targets a specific kind of network remain
uncovered, e.g., entity alignment approaches (Chen et al., 2023; Liu et al., 2023b; Yan et al., 2021a)
for aligning knowledge graphs. Second, PLANETALIGN focuses primarily on benchmarking pairwise
NA problems. Although multi-network alignment methods are included in PLANETALIGN (Chu
et al., 2019; Zeng et al., 2024), benchmarking under a simultaneous multi-network alignment setting
remains underexplored at this stage.

As for future work, we will continuously expand PLANETALIGN to incorporate new NA datasets,
algorithms, benchmark settings, and utility functions. Specifically, for NA datasets, we plan to
include 1) multi-network alignment datasets which consist of more than two networks, such as
multi-layered version of ArXiv (De Domenico et al., 2015a), Twitter (Omodei et al., 2015), and
SacchCere (De Domenico et al., 2015b), 2) dynamic networks which evolves over time, such as
synthetic datasets from (Vijayan et al., 2017) and (Yan et al., 2021a), and 3) cross-domain datasets
which consist of networks from different domains, such as text-image network constructed by
GOT (Chen et al., 2020); for NA algorithms, we plan to introduce 1) domain-specific alignment
algorithms, such as entity alignment methods DualMatch (Liu et al., 2023b) and MEAformer (Chen
et al., 2023), 2) multi-network alignment algorithms such as MrMine (Du & Tong, 2019), 3) dynamic
NA algorithms such as DynaMAGNA++ (Vijayan et al., 2017) and DINGA (Yan et al., 2021a); for
benchmark settings, we plan to add additional evaluation metrics for measure the uncertainty of the
alignment (Zhou et al., 2021), which are critical for developing active or self-improving NA methods
highlighted as important future directions in our paper; for utility functions, our immediate goal is to
introduce scalability tools to allow easy acceleration of NA algorithms built upon PLANETALIGN,
including distributed training APIs, sparse and low-rank matrix optimizations, and low-rank (Scetbon
& Cuturi, 2022) & sliced OT (Liu et al., 2024) optimization tools.

10
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ETHICS STATEMENT.

Our library uses only publicly available datasets and conducts evaluation in a transparent and
responsible manner in accordance with the code of ethics of ICLR. The research does not involve
human subjects, animal studies, or any other procedures that may raise ethical concerns.

REPRODUCIBILITY STATEMENT.

To ensure reproducibility, for datasets in PLANETALIGN, we include their detailed statis-
tics and description in Appendix A. For experimental setup, we include detailed de-
scription of adopted evaluation metrics, machines, dataset splits, and hyperparameter set-
tings in Section 5.1 and Appendix C. The source code of PLANETALIGN is available at
https://anonymous.4open.science/r/PlanetAlign-E9BA, with detailed documen-
tation at https://planetalign.netlify.app.
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A DATASETS DETAILS

A.1 DATASET STATISTICS

Table 3: Dataset Statistics.

Domain Networks | #nodes #edges #node attr. # edge attr. | Type
Foursquare 5,313 54,233 0 0
Twitter 5,120 130,575 0 o | Real-world
Douban(online) 3906 8,164 538 2 | Realworld
i Douban(offline) 1,118 1,511 538 2
Social Networks
Flickr 12,974 16,149 3 3 | Realworld
Lastfm 15436 16,319 3 3 W
Flickr 6,714 7,333 3 3 | Realoworld
Myspace 10,733 11,081 3 3
Phone 1,000 41,191 0 0 Real-world
. Email 1,003 4,628 0 0
Communication Networks
Arenasl 1,135 10,902 50 0| qunthet
Arenas? 1,135 10,800 50 0 ynthetic
ACM 9,872 39,561 17 0 | Realworld
DBLP 9916 44,808 17 o | neawor
o Coral 2,708 6,334 1,433 0 .
Publication Networks Cora2 2708 4542 1.433 0 Synthetic
ArXivl 18,722 217,921 0 0| gynthetic
ArXiv2 18,722 168,394 0 0 y
SacchCerel 5,928 66,150 0 0 Real-world
SacchCere2 5042 29,599 0 o | Rea-wo
L PPI1 3,480 117,429 50 0 )
Biological Networks PPI2 3480 90741 50 0 Synthetic
GGIl 10,403 115,755 0 0| gunthetic
GGI2 10,403 89,448 0 0 y
DBP15K_ZH 19,388 70,414 300 0 | Real-world
DBPI5K_EN 19,572 95,142 300 o | Reawor
DBPI5K_JA 19,814 77214 300 0
Knowledge Graphs DBPI5K_EN 19.780  93.484 300 o | Real-world
DBPI5K_FR 19,661 105,997 300 0 | Realworld
DBP15K_EN 19,993 115,722 300 o | neawor
Ttalyl 349 416 0 0
Ttaly2 349 435 0 o | Real-world
Airportl 1,190 14,958 4 0 .
Infrastructure Networks Airport2 1,190 11.560 4 0 Synthetic
PeMSO08-1 170 301 3 0| qunhe
PeMS08-2 170 233 3 0 ynthetic

A.2 DATASET DESCRIPTIONS

Detailed datasets descriptions are introduced as follows

Foursquare-Twitter (Zhang & Philip, 2015). A pair of online social networks, Foursquare and
Twitter. Nodes represent users and an edge exists between two users if they have follower/followee
relationships. Both networks are plain networks. There are 1,609 common users across two
networks.

Douban (Zhang & Tong, 2016). A pair of online-offline social networks constructed from Douban.
Nodes represent users and edges represent user interactions on the website. The location of a suer
is treated as the node attribute, and the contact/friend relationship are treated as the edge attributes.
There are 1,118 common user across the two networks.
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* Flickr-LastFM (Zhang & Tong, 2016). A pair of social networks from Flickr and LastFM. Nodes
in both networks represent users, and edges represent friend / following relationships in Flickr
and LastFM, respectively. The gender of a user is treated as the node attributes (male, female,
unknown), and the level of people a user is connected to is treated as the edge attributes (e.g., leader
with leader). There are 452 common users across two networks.

* Flickr-MySpace (Zhang & Tong, 2016). A pair of social networks from Flickr and MySpace.
Nodes in both networks represent users, and edges represent friend / following relationships. The
gender of a user is treated as the node attributes (male, female, unknown), and the level of people
a user is connected to is treated as the edge attributes (e.g., leader with leader). There are 267
common users across two networks.

* ACM-DBLP (Tang et al., 2008). A pair of undirected co-authorship networks, ACM and DBLP.
Nodes represent authors and edges an edge exists between two authors if they co-author at least
one paper. Node attributes are available in both networks. There are 6,325 common authors across
two networks.

* Cora (Yang et al., 2016). A pair of networks synthesized from the citation network Cora. Each
network Nodes represent publications and an edge exists between two publications if they have a
citation relationship. The two networks are noisy permutations of the original network generated by
randomly inserting 10% edges (Coral) and deleting 15% edges (Cora2) from the original network,
respectively. There are in total 2,708 common nodes across two networks.

* ArXiv (Leskovec et al., 2007). A pair of networks synthesized from the Arxiv ASTRO-PH (Astro
Physics) collaboration network (Leskovec et al., 2007). Nodes represent authors and an edge exists
between two authors if they have co-authored a paper. The two networks are noisy permutations of
the original network generated by randomly inserting 10% edges (ArXivl) and deleting 15% edges
(ArXiv2) from the original network, respectively. Node and edge attributes are not available. There
are in total 18,722 common nodes across two networks.

» SacchCere (Stark et al., 2006; De Domenico et al., 2015b). A pair of direct interaction layer and
association layer from the SacchCere multiplex GPI network. The SacchCere network consider
different kinds of protein and genetic interactions for Saccharomyces Cerevisiae in BioGRID (Stark
et al., 2006), a public database that archives and disseminates genetic and protein interaction data
from humans and model organisms. There are in total 1,337 common nodes across two layers of
networks.

* PPI (Zitnik & Leskovec, 2017). A pair of networks synthesized from the protein-protein interaction
(PPI) network (Zitnik & Leskovec, 2017), where nodes represent human proteins and edges
represent physical interaction between proteins in a human cell. The immunological signatures
are included as node features. The two networks are noisy permutations of the original network
generated by randomly inserting 10% edges (PPI1) and deleting 15% edges (PPI2) from the original
network, respectively. There are in total 3,980 common nodes across two networks.

* GGI (Park et al., 2010). A pair of networks synthesized from the human gene-gene interaction
(PPI) network from IsoBase (Park et al., 2010). Nodes represent human genes and edges represent
gene-gene interactions. The two networks are noisy permutations of the original network generated
by randomly inserting 10% edges (GGI1) and deleting 15% edges (GGI2) from the original network,
respectively. There are in total 10,403 common nodes across two networks.

* DBP15K ZH-EN, JA-EN, FR-EN (Sun et al., 2017). Pairs of Chinese, Japanese, and French to
English version of multi-lingual DBpedia networks. The node attributes are given by pre-trained
and aligned monolingual word embeddings (Xu et al., 2019b). There are 15,000 pairs of aligned
entities in DBP15K ZH-EN (Chinese to English), JA-EN (Japanese to English), and FR-EN (French
to English), respectively.

o Italy (Yan et al., 2022). A pair of power grid networks from two regions in Italy. Nodes represent
power stations and edges represent the existence of power transfer lines. Node attributes are derived
from node labels. There are in total 377 common nodes across two networks inferred from the
ground-truth cross-layer dependencies.

* Airport (Zhu et al., 2021). A pair of networks synthesized from the American air-traffic net-
work (Ribeiro et al., 2017). Nodes represent airports and an edge exists between two aiports if there
are commercial flights between them. The level of activity in each airport is used as node attributes.
The two networks are noisy permutations of the original network generated by randomly inserting
10% edges (Airportl) and deleting 15% edges (Airport2) from the original network, respectively.
There are in total 1,190 common nodes across two networks.

* PeMSO08 (Song et al., 2020). A pair of traffic networks synthesized from the Performance Mea-
surement System (PeMS) Data Source. Nodes represent sensors and edges indicate traffic flow
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correlation. Node attributes are averaged across all time interval. The two networks are noisy
permutations of the original network generated by randomly inserting 10% edges (PeMS08-1) and
deleting 15% edges (PeMS08-2) from the original network, respectively. There are in total 170
common nodes across two networks.

* Phone-Email (Zhang et al., 2017). A pair of communication networks among people via phone
or email. Nodes represent people and an edge exists between two people if they communicate
via phone or email at least once. Phone network includes 1,000 nodes and 41,191 edges. Email
network includes 1,003 nodes and 4,627 edges. Both networks are plain networks. There are 1,000
common people across two networks.

* Arenas (Kunegis, 2013). A pair of networks synthesized from the email communication network
Arenas at the University Rovira i Virgili. Nodes are users and each edge represents that at least one
email was sent. The two networks are noisy permutations of each other. There are in total 1,135
common nodes across two networks.

B NETWORK ALIGNMENT METHODS

B.1 CONSISTENCY-BASED METHODS

* IsoRank (Singh et al., 2008). IsoRank is originally designed for global alignment of multiple PPI
networks. It is built upon neighborhood topology consistency which assumes that the neighbors of
aligned anchor nodes should be aligned as well, and is formulated as an eigenvalue problem. (Yan
et al., 2021b) reveals that the formulation of IsoRank can be considered as conducting random walk
propagation of anchor links on the product graph to achieve topology consistency.

* FINAL (Zhang & Tong, 2016). FINAL interprets the alignment consistency principles as an
optimization problem and introduces additional consistency principles at node/edge attribute levels
to handle attributed network alignment.

B.2 EMBEDDING-BASED METHODS

* IONE (Liu et al., 2016). IONE modeled the follower/followee-ship of different nodes as input/out-
put context vectors to learn proximity-preserving node embeddings, and solve the node embedding
and network alignment problem based on a unified framework.

* REGAL (Heimann et al., 2018). REGAL designs an embedding learning methods called xNetMF
which learns powerful node embeddings by matrix factorization on a linear combination between
cross-network structural and attribute similarity matrix. Based on xNetMF embeddings, REGAL
infer node-level alignment of two networks based on Euclidean distance of nodes in the embedding
space.

* CrossMNA (Chu et al., 2019). CrossMNA leverages cross-network structural information to learn
inter and intra network embeddings simultaneously. By comparing inter network embeddings
across different networks, CrossMNA is capable of aligning multiple networks at the same time.

* NetTrans (Zhang et al., 2020). NetTrans approach the network alignment problem from a cross-
network transformation perspective. It learns the transformation of both network structure and
node attributes at different resolutions to identify node-level alignment.

* WAlign (Gao et al., 2021). WAlign learns node embeddings by a lightweight GCN model to
capture both local and global graph patterns and proposes a Wasserstein distance discriminator to
minimize the Wasserstein distance between node embeddings across different graphs.

* BRIGHT (Yan et al., 2021b). BRIGHT first generate positional node embeddings by random
walk with restart (RWR) (Tong et al., 2006) against anchor links. To handle plain network
alignment, BRIGHT-U learns position-aware embeddings by transforming RWR embeddings
through a shared MLP. To handle attributed network alignment, BRIGHT-A use a shared GCN
model for transforming node attributes and concatenates the output embeddings with RWR vectors
before feeding into the shared MLP.

* NeXtAlign (Zhang et al., 2021). NeXtAlign designs a spatial GCN model and learns node
embeddings that balance the alignment consistency and disparity by crafting the sampling strategy.

* WLAlign (Liu et al., 2023a). WLALlign proposes a cross-network Weisfeiler-Lehman relabeling
scheme to learn embeddings that preserves long-range connectivity to the anchor pairs on plain
networks.
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B.3 OT-BASED METHODS

* SLOTAIlign (Tang et al., 2023). SLOTALlign utilizes a parameter-free GCN model to encode graph
structure. By integrating output embeddings of multiple layers of GCN through a learnable linear
combination, SLOTAlign encode the Gromov-Wasserstein distance between two networks via the
learned embeddings and optimize the embedding and optimal transport problem alternatively to
infer alignment.

* PARROT (Zeng et al., 2023). PARROT encodes a position-aware transportation cost by random
walk with restart (RWR) (Tong et al., 2006) on separate and product graphs, and integrate consis-
tency principle at node, edge, and neighborhood levels into the optimal transport formulation. Then,
it solves the resulting optimization problem efficiently via constrained proximal point methods to
infer node-level alignment.

* HOT (Zeng et al., 2024). HOT proposes a hierarchical multi-marginal optimal transport framework
which first decomposes multiple networks to aligned clusters via the fused Gromov-Wasserstein
(FGW) barycenter (Peyré et al., 2016) and then aligns node in aligned clusters simultaneous by
solving optimal transport problem within clusters.

* JOENA (Yu et al., 2025). JOENA transforms the transport plan of optimal transport into an
adaptive sampling strategy via a learnable transformation to learn node embeddings and alignment
in a mutual beneficial manner.

C DETAILED EXPERIMENTAL SETUP

Machine. All experiments are conducted on a computing server equipped with dual Intel® Xeon®
Gold 6240R CPUs and 4 NVIDIA Tesla V100-SXM2 GPUs with 32GB memory each.

Dataset split and hyperparameters. To mitigate the randomness introduced by a single random
dataset split, we report the average metrics of 5 different dataset split based on 5 randomly selected
seeds. All NA methods are evaluated under the same dataset splits to ensure a fair comparison. For
each dataset split, we run a NA algorithm 5 times and report the average metrics. Hyperparameters
are tuned with a fixed budget of 5 per key parameter based on the default values and hyperparameter
study in the original papers. Detailed hyperparameter search spaces can be found in Table 4.

Table 4: Hyperparameter search spaces.
NA Method Search Parameters

IsoRank «a €{0.1,0.3,0.5,0.7,0.9}

FINAL a € {0.1,0.3,0.5,0.7,0.9}

IONE out_dime {32, 64, 100, 128,256}

REGAL ke {1,5,10, 15,20}, num_layerse {1,2,3,4,5}, a € {0.001,0.005,0.01,0.05,0.1}

CrossMNA dy € {10,50, 100,150,200}, d2 € {10,50,100, 150,200}

NetTrans o € {0.01,0.1,1, 10,100}, 8 € {0.01,0.1,1,10,100}, v € {0.01,0.1,1,10,100}, L € {1,2,3,4,5}

WAlign h € {128,256, 512, 1024, 2048}, o € {0.01, 0.02, 0.04, 0.06,0.08}

BRIGHT B € {0.05,0.1,0.15,0.2,0.25}, out_dime {32, 64, 128,256, 512}, neg_sample_sizee {100, 300, 500, 700, 900}
NeXtAlign S € {0.05,0.1,0.15,0.2,0.25}, out_dime {32, 64, 128, 256, 512}, neg_sample_sizee {100,300, 500,700,900}
WLAlign out_dime {32, 64, 128, 256,512}, neg_sample_sizec {20, 40, 60, 80,100}

PARROT 1€ {0.1,0.5,1,5,10}, A, € pALRUILN, € padefult N, @ padefault ) e p\default

SLOTAlign € € {0.001,0.005,0.01,0.05,0.1}, step_size€ {1,2,3,4, 5}

HOT e € {0.001,0.005,0.01,0.05,0.1}, o € {0.1,0.3,0.5,0.7, 0.9}

JOENA o € {0.1,0.3,0.5,0.7,0.9}, v, € {0.001,0.005,0.01,0.05,0.1}, Ay € {0.1,0.5,1.0,1.5,2.0}

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ROBUSTNESS RESULTS
To benchmark the robustness of existing NA algorithms, we conduct controlled experiments to study

the impact of edge, attribute, and supervision noises to alignment performance, offering practical
insights into the development of robust NA methods.

Edge noise. We introduce edge-level noise to simulate real-world edge perturbation (Jin et al.,
2020). Specifically, the p% edge noise level is defined as randomly adding/deleting p% edges in the
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Figure 5: Robustness results of NA methods under different levels of edge, attribute, and supervision
noises on representative datasets across 6 domains. The x-axis of the plots in the 1st/2nd/3rd row
shows the noise level of edge/attribute/supervision, respectively, and the y-axis shows the MRR.

second network to be aligned (Tang et al., 2023; Zeng et al., 2023). We conduct evaluations of all NA
methods under a semi-supervised (20% training ratio) plain NA setup to avoid potential interference
of node/edge attributes.

Attribute noise. We introduce attribute-level noise to simulate real-world attribute perturba-
tion (Zheng et al., 2021). Specifically, the p% attribute noise level is defined as randomly perturbing
p% node and edge attributes in the second network to be aligned (Zeng et al., 2023). We conduct
evaluations of attributed NA methods under a semi-supervised attributed NA setting with a training
ratio of 20%.

Supervision noise. We introduce supervision noise to evaluate the robustness of semi-supervised
NA methods against noisy anchor node pairs (Yan et al., 2021b; Tang et al., 2023). Specifically,
the p% supervision noise is defined as randomly setting p% anchor nodes in the second graph to
non-anchor nodes. To ensure fair comparison, we only evaluate the robustness of semi-supervised
attributed NA methods * against supervision noise under a semi-supervised attributed NA setting
with a training ratio of 20%.

Analysis. Robustness results on five representative datasets are shown in Figure 5. Firstly, for
edge noise, consistency-based methods, including IsoRank (Singh et al., 2008) and FINAL (Zhang
& Tong, 2016), are among the most robust methods with the slightest performance drop across all
datasets. Embedding-based methods (Liu et al., 2016; Heimann et al., 2018; Chu et al., 2019; Zhang
et al., 2020; Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu et al., 2023a), while slightly
less robust than consistency-based approaches, generally show descent performance degradation
ratio as edge noise level increases. OT-based methods (Zeng et al., 2023; Tang et al., 2023; Zeng
et al., 2024; Yu et al., 2025), on the other hand, differ significantly in terms of robustness to edge-
level noisel, indicating that although OT can reduce the negative effect of graph noises by marginal
constraint (Zeng et al., 2023; Yu et al., 2025), they require careful design of the transportation costs to
avoid noise amplification during optimization. Nevertheless, OT-based methods PARROT (Zeng et al.,
2023) and JOENA (Yu et al., 2025) consistently outperforms all other NA algorithms in alignment
performance across different noise levels.

We flip binary attributes and add standard gaussian noise into normalized continuous attributes.
3We include FINAL (Zhang & Tong, 2016) which has a semi-supervised version in its original paper.
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Figure 6: Sensitivity results of semi-supervised NA algorithms to different levels of supervision. The
two rows correspond to plain and attributed NA settings respectively. The x-axis shows the training
ratio (i.e., supervision level), and the y-axis shows the MRR.

Secondly, for attribute noise, PARROT (Zeng et al., 2023) and JOENA (Yu et al., 2025) becomes the
most robust algorithms across all datasets. While both methods are OT-based, PARROT integrates
consistency principles which further improve its robustness, and JOENA adopts an embedding-
encoded OT cost learned via a MLP for robust alignment. Consistency-based methods remain robust
to attribute noise on most datasets. Embedding-based methods are generally more sensitive to attribute
noise than edge noise and suffer from significant performance drop under high attribute noise level,
which highlights the need for more robust embedding learning approaches, potentially through the
integration of optimal transport or consistency principles.

Finally, for supervision noise, the performance of most NA algorithms degrades significantly as the
noise level increase, indicating that the effectiveness of existing semi-supervised NA methods rely
heavy on the quality of anchor node pairs even when node/edge attributes are available. Nevertheless,
JOENA (Yu et al., 2025) consistently shows the mildest performance drop across all datasets,
demonstrating the power of effective combination of embedding and OT-based methods. Future
methods may explore more effective integration of consistency, embedding, and OT-based approaches
to better handle different kinds of real-world noise.

Takeaway #4: Different NA methods are sensitive to different kinds of noises. Effective
integration of different NA techniques could be a way out.

Different NA methods may be sensitive to different kinds of real-world noises. Integrating
different NA techniques effectively, such as consistency principles, embedding learning, and
optimal transport, could potentially improve the overall robustness of NA algorithms.

D.2 SENSITIVITY TO SUPERVISION RESULTS

To comprehensively evaluate the impact of supervision on the performance of NA algorithms, we
conduct a set of experiments to study the sensitivity of semi-supervised NA methods to different
levels of supervision. Specifically, we gradually increase the training ratio and report the MRR of
semi-supervised NA methods on five representative datasets under both plain and attributed NA
settings. The results are presented in Figure 6.

Analysis. Firstly, the performance of NA algorithms generally shows a growing trend as the training
ratio increases, with only a few exceptions such as JOENA (Yu et al., 2025) on Douban (Zhang &
Tong, 2016), potentially due to overfitting on training data or the presence of noisy anchor pairs from
real-world datasets. Nonetheless, most NA methods benefit significantly from increased supervision,
demonstrating its importance to the effectiveness of NA algorithms.
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Secondly, the use of attribute information typically improves the performance of NA algorithms
under low supervision. However, the performance gap between plain and attributed settings narrows
as the training ratio increases. For example, PARROT (Zeng et al., 2023) achieve an MRR of
approximately 0.7/0.3 on Douban with/without attribute information under 10% training ratio,
whereas the performance rises to about 0.95/0.9 under a 90% training ratio. This suggests that while
attributes can help in low-supervision scenarios, increasing supervision remains crucial even in the
presence of node and edge attributes in graphs. Combined with our previous robustness study against
supervision noise, we present the following findings:

Takeaway #5: Supervision greatly affect the effectiveness of NA algorithms.

The quality and quantity of supervision greatly affect the performance of NA algorithms even
in the presence of node and edge attributes, suggesting that self-supervised learning methods
which discover high-quality anchor pairs could be a promising directions for NA research.

D.3 COMPARISON WITH OFFICIAL IMPLEMENTATIONS

Table 5: Performance and runtime comparison with official implementations averaged against all
datasets. A represents the absolute difference between official and PLANETALIGN’s implementation.

Metrics MRR Training Runtime(s)
Version Official PLANETALIGN A Official PLANETALIGN A Speedup
REGAL 0.079 0.080 +0.001 20 14 -6 1.43
CrossMNA 0.220 0.222 +0.002 298 210 -88 1.42
NetTrans 0.373 0.374 +0.001 919 817 -102 1.12
WAlign 0.271 0.270 -0.001 79 68 -11 1.16
BRIGHT 0.362 0.362 +0.000 768 619 -149 1.24
NeXtAlign 0.391 0.391 +0.000 1319 1234 -85 1.07
WLAlign 0.328 0.322 -0.006 4018 1276 -2742 3.15
SLOTAlign 0.200 0.200 -0.001 891 821 -70 1.09
HOT 0.173 0.172 -0.001 239 226 -13 1.06
JOENA 0.583 0.583 +0.000 691 679 -12 1.02
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e Official
PLANETALIGN
x1.02
0.6 J?ENA
x1.07
o x1.24 NeXtAlign
o 0.4 BRI j x3.15
= gt WLAgn
x1.16 /D
Wilign x1.42  x1A2
o Cross{lNA NetTrans
0.2 ‘
;El ‘}“ E X}-Ii(')('?' 6 SLXO%'ﬁ i%n
0.0 : : . . .
10! 102 103 104

Training Runtime (s)

Figure 7: Performance and runtime comparison between official and PLANETALIGN’s implemen-
tations. The x-axis shows the average training runtime, and the y-axis shows the average MRR of
different NA algorithms across 18 datasets. The average speedup in runtime of each method are
shown in green.

We conduct comparative experiments between the official and PLANETALIGN’s implementations
of NA algorithms to validate the correctness and efficiency of PLANETALIGN. To ensure a fair
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comparison, we only include algorithms that have official Python implementations to eliminate
the efficiency discrepancy of different programming languages. All training parameters, including
training epochs, are set as default in the official code. We report the average MRR and training
runtime of official and PLANETALIGN’s implementation across all 18 datasets in PLANETALIGN in
Table 5 and Figure 7

We can see that PLANETALIGN’s implementation show comparable performance across all baselines
while achieving up to 3 times speed-up over official implementations, demonstrating the correctness
and efficiency of our implementation of existing NA methods.

D.4 SCALABILITY RESULTS ON LARGE GRAPHS

To further demonstrate the efficiency of our implementation on large-scale networks, we compare the
training runtime with the official implementation on ER networks of 50K, 75K, and 100K nodes with
an average node degree of 5 per network. As we can see in Figure 6, PLANETALIGN consistently
outperform official implementations with up to 2.7 times speed-up.

Table 6: Runtime (s) comparison with official implementations on large-scale ER networks of 50K,
75K, and 100K nodes with average node degrees of 5. OOM represents out-of-memory.

# Nodes 50K 75K 100K

Version Official PLANETALIGN Speedup  Official PLANETALIGN Speedup  Official PLANETALIGN Speedup
REGAL 334 214 1.56 583 390 1.49 1.12x10% 731 1.53

CrossMNA ~ 4.12x10% 3.02x103 136 7.36x10% 5.13x103 1.43 1.37x10* 8.91x103 1.54

WALlign 1.65x10° 1.29x10% 1.28 3.12x103 2.54x103 1.23 OOM OOM OOM
BRIGHT 2.82x10* 2.15x10% 1.31 8.95x10* 6.90x10* 1.29 3.47x10° 2.49x10° 1.40

NeXtAlign ~ 6.55x10* 6.08x10% 1.08 3.68x10° 3.41x10° 1.08 OOM OOM OOM
WLAlign  2.46x10° 9.12x10% 2.70 OOM OOM OOM OOM OOM OOM
SLOTAlign  3.01x10* 2.75x10% 1.10 OOM OOM OOM OOM OOM OOM

HOT 3.14x103 2.87x103 1.10 6.17x10° 5.74x103 1.07 1.08x10* 9.43x103 1.15

JOENA 2.31x10° 2.28x10% 1.01 8.30x10* 8.12x10% 1.02 OOM OOM OOM

D.5 DETAILED EFFECTIVENESS RESULTS

Detailed effectiveness results on plain networks with a training ratio of 20% are shown in Table 7
and 8. Detailed effectiveness results on attributed networks with a training ratio of 20% are shown in
Table 9.

E STATEMENT OF LLM USAGE

In this paper, LLMs were used exclusively for formatting assistance and language polishing. At
no point were LLMs involved significantly in research ideation and/or writing to the extent that
they could be considered as a contributor. Therefore, the use of LLMs does not impact the core
methodology, the scientific rigorousness, or the originality of this research.
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Table 7: Detailed effectiveness results (Part I of II) on plain networks with a training ratio of 20%.
The 1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference

time and Mem. denotes the peak memory usage.

Dataset Foursquare-Twitter Phone-Email

Metrics Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB) ‘ Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB)
IsoRank 024140000 148740000 064540000 | 5.70-060 1.600.10 043140000 215640000 110040000 | 0.25-+0.12 0.59+0.00
FINAL 047440000 240740000 106240000 | 0.96-+003 2.30-0.00 049440000 272540000 125740000 | 0.10-+0.04 0.63+00
IONE 020240052 09850051 048140045 | 1.10£002x 101 1.20-0.00 0941+0052 403740120 195240031 | 2.304006x10%  0.80%0.00
REGAL 000140002 .0027=%.0010  .00254.0003 | 7.80=0.10 1.1040.10 .0012%.0000 009740011 00760003 | 1.30£020 0.60+0.00
CrossMNA  .01624.0034  .1011=£0061 045640039 | 1.10£006x 10 1.00-t0.00 030540020 216340086 .0968=.0021 | 1.102027x10%  0.62-+0.00
NetTrans 080940043 24700074 134740015 | 5.90+086x10%  3.50+120 02160027 25460020 102040016 | 2.40£170x 100 0.85+0.02
‘WALign .0039+4.0004 .0150+.000s .0095+.0003 | 1.30-+t0.04 2.30+0.00 02060018 123540003 .0585.0009 | 0.29-F0.08 0.89+0.01
BRIGHT 053740027 178440012 .09234.0019 | 9.20+020 1.4040.00 04760033 251640028 118640020 | 0.29-10.01 0.95+0.01
NeXtAlign  .0387-+0040 .1420%+0163 .0745+.0075 | 7.904025x 10" 2.30-+0.00 .0570+.0045 301240116 141140036 | 4.60%0.10 0.86+0.01
‘WLAlign 09240016 .2103%.003 132540000 | 1.2020.14x10%  3.0040.00 076420012 26690047 141240014 | 7.50£110x 102 1.00+000
PARROT 120340000 29080000 17760000 | 1.60+002x10"  2.6040.10 288740000 73310000 437440000 | 0.76=0.09 0.69+0.00
SLOTAlign .029140000 .117240000 061440000 | 1.604003%10%  2.5040.00 .0075+.0000 052540000 .02834.0000 | 2.34=+030 0.75%0.01
HOT 051840030 16270044 045740018 | 1.10£021x102  1.70=0.10 0775+0025  .3273+0069 08010020 | 5.30+0.60 0.724001
JOENA 26734+ 0060 447840083 330440083 | 2.804005x100  2.504006 346840029 780940037 49730018 | 0.7630.08 0.72%0.01
Dataset ACM-DBLP SacchCerel-SacchCere2

Metrics Hits@1 Hits@10 MRR | Time(s) Mem.(GB) | Hits@1 Hits@10 MRR | Time(s) Mem.(GB)
IsoRank 164140003 63290008 302340002 | 470170100 4.30=0.10 .0335+0009 22840016 09760002 | 0.95+0.10 1.50+0.60
FINAL 208240000 68930000 36120000 | 3.90+010 6.60+0.10 046740000 .2379-+F0000 10830000 | 0.54-+003 1.70+0.60
IONE 251540028 726740075 397940023 | 1.30+005x10%  2.60-t0.13 045840037 .2100£.0055  .0992+.0016 | 8.30%004x10°  1.30+060
REGAL 035740022 136740035 .07004.0030 | 1.30-L010x10 1.90=+0.00 .0023+.0008 008740007 006340006 | 3.40+0.10 1.20+0.00
CrossMNA ~ .0742+.0034 61080031 .22904.0025 | 5.50+013x 10> 1.90-0.00 00460007 14520041 049240023 | 1.80%0.13x10%  0.98-000
NetTrans 4148+001s 81070000 54290012 | 1.10+034x10%  1.50+050x10" | .0523£0017 .2534-L003s . 1150-£0020 | 1.20+030x101  2.204020
WAlign 287140018 553840025 379740021 | 2.80:030 4.9040.10 .0207+.0006 051640032 .03364-.0019 | 0.28-£001 1.90+0.00
BRIGHT 405240011 79570011 534640013 | 6.80=0.10x 101 3.80-0.00 .0353+0015  .2188+.0062 .0915+.0021 | 4.60+0.00 1.60+0.00
NeXtAlign 46700010 840140017 39150011 | 1.70£004x10%  4.00-0.00 2029240035 .2075+.0075  .0886=+.0040 | 1.50=+0.40 1.30+0.10
WLAlign 315240012 64460008 418340008 | 1.40-£004x 10 7.00-0.00 0535+0011 16390014 088840007 | 5.80+099x10%  1.50+0.00
PARROT 574940000 87840000 67660000 | 1.302004x102  7.80-0.00 064540000 .2720+.0000 .13124.0000 | 5.90+0.20 1.90+0.60
SLOTAlign 491440000 .717440000 570740000 | 9.9040.16x10%  7.6040.26 .0000+.0000 .00234.0000 .0028=.0000 | 1.0040.00 2.10+0.10
HOT 326140040 67870053 221040026 | 4.30+015x 10> 5.00-+000 034440023 .1993£0030 05640012 | 1.20£0.11x10°  1.50+0.10
JOENA 6149+ 0455 .9062+0219 71360389 | 3.50+050x10!  3.0042.00 058940026 228440062 112940027 | 0.31+001 1.10+0.00
Dataset DBP15K_ZH-EN Italy1-Italy2

Metrics Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB) ‘ Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB)
IsoRank 109240001 48780001 227640000 | 1.60+016x10%  1.60-£000x 10" | .04244.0000 20760000 09540003 | 0.49+0.13 0.60=0.00
FINAL 132740000 534740000 26340000 | 1.80+000x 10"  2.40+000x10' | .04304.0000 220240000 09580000 | 0.13-001 0.84+0.00
IONE 063340033 25120080 1258420047 | 1.50=£003x 101 8.70-+0.00 024540027 157040149 06790028 | 6.204003x10%  0.84-+000
REGAL 003610005 01680008 00910006 | 3.00+010>10" 5904000 .0033+0020 .0265+.0041 014240023 | 0.97=+0.00 0.8140.00
CrossMNA  .0303+0012 28160046 107740017 | 9.904026x10%  6.00-+0.00 .0023+.0015  .1447+0105 04760024 | 3.70+070x 101 0.980.01
NetTrans 262540011 60220010 371740009 | 5.00022x102  3.00£130x 101 | .050340019 22480027 111040020 | 0.620.15 1.10=0.00
‘WALign 185640103 .2823+0170 22310127 | 9.10+0.44 1.504000x 10" | .0609+.0014 .1580+.0034 093840020 | 0.09+0.00 1.10=0.00
BRIGHT 271540007 59380015 378940007 | 3.20-£003x10%  1.10£000x 101 | 090440025 25660045 .1443£.0010 | 0.33%0.03 1.00=0.00
NeXtAlign  .2695+0008 59810005 379040104 | 2.60+£003x10°  1.30+010x 10" | .086140048 .2580-L 0020 1466+ 00s5 | 0115004 1.2040.00
‘WLAlign 234940006 412240006 29110001 | 2.90+026x10%  2.70+000x10" | .0404-+0048 15360051 077840037 | 2.40+086x10%  1.4040.00
PARROT 63340000 85280000 70740000 | 8.70£0.10x10%  2.80+000x10' | 0993+ 0000 .2848+£0000 16550000 | 0.90+000 0.83+0.00
SLOTAlign .0188+0000 .07254+0000 038140000 | 3.064001x10*  2.804000x 10 | .01494+0000 061340000 033440000 | 0.1240.00 1.00+0.20
HOT 31430058 583240058 20060020 | 2.104008x 103 2.004003x 101 | 06390114 24080036 058640046 | 1.10£0.10x 101 2.10=000
JOENA 64760057 84960031 7170-+0037 | 6.704008x10%  2.60+0.00x 10" 1010£.0049  .2930+ 016 169740061 | 0.06=0.0¢ 1.0040.10
Dataset Douban Flickr-LastFM

Metrics Hits@1 Hits@10 MRR | Time(s) Mem.(GB) | Hits@1 Hits@10 MRR | Time(s) Mem.(GB)
IsoRank 135140003 517940004 25170001 | 0.59+0.06 0.9540.03 00280000 08150000 030540000 | 9.204022x 101 8.13%021
FINAL 145840000 56760000 269240000 | 0.34+0.03 1.144004 00280000 073240000 0253420000 | 1.56-004x 10" 1.294002x 101
IONE 277740046 631240098 393640040 | 9.08+157x10%  0.89400. 011340033 .0437+0044 023940036 | 4.09£141x10°  3.77+021
REGAL 002540009 .0198=4.0034  .01054.0006 | 2.5740.19 0.82+0.00 004240026 .034040062 017740023 | 1.7820.06x 10"  1.65t0.16
CrossMNA 01870044 32410054 .117240040 | 6.342024x 10"  0.78L0.01 006140008 .0091£.0030 00780011 | 3.18+340x10"  2.46-t00
NetTrans 203040020 601840020 329140015 | 1.54:40 1.92+0.40 005240012 .0204+0018 01150000 | 2.75£201x100  2.27+115x10!
WAlign 148040018 238140032 183440019 | 0.20-006 1.3140.11 009440011 042340021 029040010 | 0.55-003 4.51+008
BRIGHT 120240007 436140031 22180013 | 2.64+0.07 1.14=+001 025940015 04920037 035740010 | 5.444014x 101 6.14+004
NeXtAlign  .2154+0062 .5701%0144 330540084 | 1.86-005 1.6640.00 026040050 054140075 0375+ 0023 | 6114020100 6.85%0.07
WLAlign 202840021 .3505+.0019 251740015 | 6.58+041x10%  0.95+002 008040027 022440012 .0141F0018 | 5.37+357x10% 32100
PARROT 346940000 .68324.0000 456340000 | 2.73+071 1.31+002 02760000 .0608+0000 041740000 | 2.514008x10%  1.514002x 10"
SLOTAlign .0000+.0000 .0078+.0000 .0048+.0000 | 7.01+032 1.4040.03 .00414.0000 .02354.0000 .0145+.0000 | 8444005 1.54+004x 10
HOT 150940059 46000131 .1545+0026 | 3.95+154x10"  1.37-+oo0s 009140037 .0157+0030 00630015 | 1.01£002x10°  7.97+018
JOENA 445740038 809140026 565740022 | 0.4140.06 1.1940.03 .0290+.0000 .0994+.0062 .05 0023 | 2.024007x10%  1.414002x 10"
Dataset Flickr-MySpace Arenas

Metrics Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB) ‘ Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB)
IsoRank 004740000 037440000 02250002 | 2.394055 3.47+0.08 398140000 675140000 494040000 | 0.09-£0.0¢ 1.02+0.63
FINAL 000040000 .00934.0000 .0048=4.0000 | 6.7440.28 5.21+001 384940000 881140000 552340000 | O.11-+£001 1.13+063
IONE 005640027 02660058 017040023 | 1.19064x10°  1.880.07 91300060 97630042 939340060 | 1.3940.14x10%  1.25+063
REGAL 006140013 .0322+0042 01730017 | 9.36+0.10 1.0640.1 9053+0052  .9803+.0008 93540034 | 1.04=+0.02 0.94+0,
CrossMNA 007040037 01070021 .00904.0032 | 2.93+303x 101 1.36-001 42610175 849240120 581240158 | 5.61%0.10x 101 1.00=000
NetTrans 00000000 00090013 00100002 | 5.42+3.96 7.38+3.6 88270013 .9983+.0004 .9348+.0010 | 0.74=+0.05 2.224043
WAlign 005640013 0444+ 0016024040008 | 0.40+0.05 2.49-+0.04 972340003 997440003 983740002 | 0.12-+001 1.34+0.15
BRIGHT 003740027 .0154=£0043 008940012 | 2.08=004x 101 3.32:£007 97000005 995440006 98170003 | 0.38=0.01 1.29+0.03
NeXtAlign  .00474+0017 .0140+0024 008940014 | 2.164006x10"  4.2040.01 5347+0012 726940031 .6034+.0089 | 0.2830.02 1.1140.08
‘WLAlign .0000+.0000 .0070-£.0055 00430021 | 5.67+£301x10%  1.51 100 605140022 715240010 649140000 | 6.474089x 102  0.89-L007
PARROT 00930000 016420000 01140000 | 3.73£008x 10" 6.04=£0.06 978040000 .9999+.0000 .9886+.0000 | 0.88+0.05 1.10+0.63
SLOTAlign .0021=£.0000 .0135+.0000 .0075+.0000 | 9.7840.13 6.310.04 978540000 .9999+.0000 988940000 | 0.1240.00 0.86+00
HOT 001440013 0033003 000540005 | 4.46-£044x 102 4.37+023 9653+0048 995840020 .4901+.0020 | 8.78+128 8.19+136
JOENA 007 1=£.000¢ .0476+.0035  .0261+.0006 | 4.49+0.0 1.79+0.11 979540006 .9999+.0000 .9894+.0003 | 0.22+035 1.01+0.00
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Table 8: Detailed effectiveness results (Part II of II) on plain networks with a training ratio of 20%.
The 1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference

time and Mem. denotes the peak memory usage.

Dataset Cora ArXiv

Metrics Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB) ‘ Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB)
IsoRank 179340000 587740000 312740001 | 0.98+030 1.17+015 224740001 .5537+0000 328140000 | 1.262017x10%  1.524006x 10
FINAL 206540000 644240000 348840000 | 0.25:+00 1.38+0.15 255140000 72500000 410240000 | 1.61-002x 10" 2.224006x 10
IONE 341540080 66110079 453640078 | 1.34=£004x10*  1.08=+0.15 26880086 51950093 351740001 | 1.660.17x10%  8.79+057
REGAL 01580019 078940051 .0383+.0032 | 2.41+0.07 0.86=+0.02 00260003 018540012 .0098=.0005 | 3.30-022 10" 6.79+010
CrossMNA 035840045 .4574=£0080 174040052 | 5.804017x101  0.89-+001 287540015 67420007 411540012 | 2.874006x 103 6.68+006
NetTrans 370340023 723840017 489140020 | 1.3840.28 1.884026 43590015 78314+ 0006 55030010 | 1.432011x10%  8.84=0.09
‘WALlign 4176+.0041  .5650+.0048 .4753+.0039 | 0.23+004 1.85+0.06 230840041 368440073 278540049 | 2520005100 2.294+001x10"
BRIGHT 383940019 .6966+.0025 493440013 | 3.61%0.05 1.8840.02 421620006 72630010 527040007 | 3.06£002x 10> 1.13£000x 10*
NeXtAlign  .4096+0106 72120087 .5192+.0087 | 3.0740.12 1.67+0.00 418940067 746140008 529140023 | 2.914007x102  1.78+002x10"
‘WLAlign 275440011 .4398+0010 334940002 | 7.024043%x10%  1.25+003 487340007 659340010 542540006 | 5.98+008x10%  2.774000x 10"
PARROT 6961 =.000¢ 863940000 .7599+0000 | 6.02+0.99 1.73+0.12 725940000 916940000 7948+ 0000 | 7.604022x10%  2.554006x 10"
SLOTAlign 665440000 76210000 70440000 | 1.79%0.01 1.96%0.10 3642431520 48534175 406843501 | 7.01+521x102 2.514000x 101
HOT 417340011 6413008 248140036 | 3.83+007x100  2.36:+t058 39940014 64750022 241740009 | 1.9040.18x 103 1.59+0.18x 10%
JOENA 8238+.0033 921240005 .8646+.0021 | 0.50+00 1.00=+0.0- 757840011 937040006 .8271+.0004 | 5.63%050x101  4.19+0.00
Dataset PPI GGI

Metrics Hits@1 Hits@10 MRR \ Time(s) Mem.(GB) \ Hits@1 Hits@10 MRR \ Time(s) Mem.(GB)
IsoRank 362240000 .6175+0000 44620000 | 2.19+025 1.184002 251240000 50640000 337240000 | 3.594009x 101 5.33%0.18
FINAL 447940000 819140000 57430000 | 0.50+00 1.5040.00 1920+0000 63960000 340240000 | 4614033 7.42+0.11
IONE 83500047 9218003 86580002 | 1.68+007x10% 1174002 5021+0100 68294007 565240004 | 1.724006x10*  3.32+018
REGAL (011040024 .07244.0047  .03304.0029 | 4.83%0.12 0.94+0.00 01710011 07800038 038740017 | 1.362001x 10" 2.524004
CrossMNA  .8045+.0020 91790046 844540028 | 6.55+011x10%  1.09-t002 3961+0030 69640041 501740028 | 7.6540.14x 107 2. 0
NetTrans 571440011 80120021 64590008 | 3.63+018x101  2.16+0.11 402440014 67050008 491840011 | 2.762057x 107 7.34+413
‘WALign 291240037 387740041 326440038 | 1.78006 2.37+0.03 297840090 379140092 32820088 | 5.33-0.24 7.32+4007
BRIGHT 482840023 .63544.0037 538740018 | 4.95+0.04 2.37+0.0s 396040000 587040023 464240008 | 9.11£035x 10" 5.74=003
NeXtAlign  .4576+0012  .6098+.0019 .5248+.0031 | 4.65+007 2.54+0.01 289940067 526340025 371740056 | 5.194003x 10" 6.87+0.04
WLAlign 74660005 81260016 76820005 | 1.04£007x10%  1.74=t004 435440006 544020012 471040005 | 1.824003x10°  9.40-+002
PARROT 961940000 99260000 97310000 | 1.80+004x10"  1.58=0.03 820340000 937340000 862140000 | 2.30£009x10>  8.474003
SLOTAlign .7398+.0000 .82194.0000 .7684=4.0000 | 3.98+029 1.64+0.02 717040003 .8097+.0017 7500400 1.984004x 10> 8.15+003
HOT 382240024 466740031 20520011 | 5.66-£077x 10" 6.70+0.00 3466+0020 47240023 19310011 | 8.67+4s2x 102 5.13+044
JOENA 9856-£.000¢ 9995+.0002  .9907+.0000 | 0.54+0.02 1.08+0.02 .8665+.0002  .9583.000 9016 000¢ 1.014+0.00%x 10" 1.99+0.00
Dataset DBP15K_JA-EN DBP15K_FR-EN

Metrics Hits@1 Hits@10 MRR | Time(s) Mem.(GB) | Hits@1 Hits@10 MRR | Time(s) Mem.(GB)
IsoRank 128540000 50950001 246540001 | 1.51£007x10%  1.60-£000x 10" | .10724.0000 50240001 228140000 | 1.50+005x10%  1.59+003x 10}
FINAL 143740000 55800000 278440000 | 1.82-5003x 10" 2.46000x 10" | 141440000 57010000 278140000 | 1.81-t001x 10" 2.45+003x 10}
IONE 040540037 18640108 090340058 | 1.55+002x 101 8.83-+0.00 03660010 17190066 083640027 | 1.46=001x10%

REGAL 013340060 04530082 .0250+.0067 | 3.09+001 10" 6.06+011 006540000 024740007 014040003 | 3.16-002% 10"

CrossMNA 017940013 29320042 10080020 | 1.01003x10% 618400, 032140010 28880032 112140013 | 1.324004x 103 6.23+004
NetTrans 304440011 63730015 410340010 | 2.96:£070x 102 2.14k056x 101 | 2975470003 6457 Fo007 408040004 | 2.98+082x10%  1.43+045x 10!
WAlign 233440030 320740029 267340031 | 946014 1.524000x 10 | .1638+.0053 243240077 194640059 | 1.16-004x10"  1.60%0.00x 10"
BRIGHT 326440019 62550078 426740011 | 3.91+084x 102 1.17-000x 10" | 314340010 63130018 420340004 | 4.31+020%10%  1.19+0.01x 10}
NeXtAlign 286640402 .6001=£0340 392040387 | 2.66:£080x 10> 1.43£Enanx 101 | 269540083 59810053  .3790+.1004 | 2.60+003x10% 134200710}
‘WLAlign 266140005 437840000 32120005 | 3.19+014x10%  2.814000x10" | 276440006 476940008 34010004 | 3.634020x10%  2.99+001x10"
PARROT 645340000 86000000 716440000 | 9.13%009x10%  2.87+000x 10" | 699940000 903840000 769740000 | 9.01022x10%  2.87+003%x 10"
SLOTAlign .0063+0015 .0294200s4 015740020 | 2.1740.12x10%  2.84£nanx 101 | .018820000 .0725+0000 038140000 | 1.714008x 10>  2.84+003x 10"
HOT 351200031 61740045 21990017 | 2.084004x10%  1.914010x 10" | 35040020 63520041 221040016 | 2.07+006x10°  1.62+0.06x 10"
JOENA 627840000 863140017 6989+ 0036 | 6.424033x10%  2.67+000x10% | 713340053 921040033 7739+ 0041 | 6.724033x 102 2.67+003x 10"
Dataset Airport PeMS08

Metrics Hits@1 Hits@10 MRR | Time(s) Mem.(GB) | Hits@1 Hits@10 MRR | Time(s) Mem.(GB)
IsoRank 130840000 37550000 20740000 | O.11-+000 0.82+0.18 253740000 73530000 419740000 | 0.23+0.24 5

FINAL 211740000 63180000 .3520=+.0000 | 0.16+0.02 0.92-+0.18 19850000 75740000 39170000 | 0.01=+00c

IONE 480940054 70730078 557540063 | 1.46-£010x 101 1.03+0.19 3824+0252 67280351 483340202 | 7.43+440x10°  0.84+002
REGAL 030240036 147740054 .0698=4.0031 | 1.1740.02 0.81+0.00 .0493+o011s 227240126 116740087 | 0.144000 0.81+0.00
CrossMNA 430440061 71860178 524140081 | 1.40£002x10%  0.98=000 00660048 064010178 033640082 | 0.10%0.00 0.98=+0.00
NetTrans 429340034 681740013 51540029 | 1.80+0s51x10"  1.47-+029 .3985+.0141 879440066 562140077 | 0.77+044 1.26=0.00
‘WALign 227040113 416340126  .29244 0106 | 0.13000 2.03+046 .5846+.0074 844140042  .6790+.0065 | 0.1320.00 1.16+034
BRIGHT 349540026 566740089 428240028 | 0.4720.02 1374003 4566+.0060 888240056 .6123+.0046 | 0.03-0.00 1.04=0.00
NeXtAlign  .2946+0078 52730012 .3748=.0039 | 0.7140.02 1.64+0.03 4596+.0054 867610123 613940087 | 0.04=+0.00 1.17+0.04
‘WLAlign 476140018 61670011 525240014 | 7.06£071x 102 1.33=000 3676+0060 512540072 420340029 | 3.284055x 102 1.33+000
PARROT 689140000 .8687+.0000 74880000 | 1.32%0.15 0.91=+0.18 764740000 922840000 820940000 | 0.0720.00 0.82+0.00
SLOTAlign 66910008 787340010 .7098+.0012 | 9.89+032 1.12+40.02 911840000 974340000 .9280+.0000 | 1.54+0.18 0.9640.00
HOT 288940124 4648011 173740059 | 1.54019x 100 2.17+047 6103+.0355 85600045 352940134 | 0.44=0.10 2.10=£0.00
JOENA 845940026 .9637+.0011 88870012 | 0.07+0.00 1.03+0.00 9390+.013¢  .9941+.0020 956840101 | 0.03=0.0¢ 1.044-0.00
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Table 9: Detailed effectiveness results on attributed networks with a training ratio of 20%. The
Ist/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference time
and Mem. denotes the peak memory usage.

Dataset Douban Flickr-LastFM

Metrics Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB) ‘ Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB)
FINAL 539740012 983840013 .6999+4.0032 | 0.90%0.01 0.87+0.02 ‘ 015240002 102240004 042240000 | 3.66-0.5 3.70+0.00
REGAL 035240003 15250012 .0758=+.0006 | 3.20+0.08 2.554003 00860020 05800026 028340013 | 2.63%022x 101 2.70027
NetTrans 327440006 61450002 422640004 | 1.51=006 1.23-0.00 00410001 04010012 02010021 | 3.154051x10"  2.413015x 10"
WAlign 285540012 569840027 379840023 | 0.03+0.00 1.2540.01 016940006 .07104.0020 .04164.0008 | 2.30-+0.05 4.62+005
BRIGHT 281340075 .6095+0119 39660083 | 1.52+045 1.454004 03450031 10190050 060240022 | 6.154057x 101 3.80=+0.00
NeXtAlign  .1879+004s5 .4918=+.0012 .2756+.0022 | 1.4840.01 1.47+0.00 .0083+0038  .0384=40141  .0214+.0070 | 2.04+0.2¢ 2.000.10
PARROT 641340000 .9408-+.0000 .7481+.0000 | 0.25+0.02 1.34+0.02 044240000 106440000 070140000 | 5.13+002x10'  1.8640.00
SLOTAlign 439740000 .7207=.0000 .5394.0000 | 0.01-+000 1.3140.01 005540000 038740000 .0205+.0000 | 2.584002x 10" 1.63+0.02x10"
HOT 322340032 639140174 257840064 | 8.76+021 1.41+0.00 015240013 052540003 014140021 | 4.63%017x10>  8.12+0.19
JOENA 654240474 9173+.0205  .7525+.0446 | 0.24+0.02 1.3740.00 .0345+.0011 1064003 0600+ 0003 | 1.894021x10"  2.63+00>
Dataset Flickr-MySpace Arenas

Metrics Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB) ‘ Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB)
FINAL 002340000 .0234=4.0000 .0113.0000 ‘ 1.57403 2.33+0.00 ‘ 428440000 906940000 59280000 ‘ 0.614024 0.88+00
REGAL 006540030 03550061 019740040 | 1.45+012x100  1.65+007 8961+.0255 9815+0030 .9281+.0179 | 2.02+055 1.3240.12
NetTrans 007540019 03740052 02010014 | 2.58+0.09 1.3240.00 958140036 .9879+0013 .9688+.0026 | 1.03+0.05 1.17=0.00
WAlign 011240026 .0505+.0054 .0316+.0021 | 1.96+058 2.65+0.07 980840003 997840000 .9886+.0002 | 1.75+1.05 2.19+007
BRIGHT 006140021 .0332=£0019 019640012 | 3.50£030x 101 2.38=0.00 9794%000s 995040006 986340004 | 0.51=021 1.05=0.00
NeXtAlign  .00374.0027 .0243+0173  .0162+.0075 | 0.91+004 1.48-+0.03 6684+2300 82301401 724441974 | 0.47+053 1.09+004
PARROT 0070 .000¢ 039740000 .022340000 | 1.012002x10%  1.40-40.00 987940000 .9999+ 0000 993640000 | 2.56+151x101  0.77400
SLOTAlign .002320000 .025740000 016320000 | 1.0340.01x10'  7.51%0.10 989140010  .9999-+.0000 .994240005 | 0.13=0.0c 0.88+00

HOT 000040000 02570000 002440000 | 3.26=£005x 102 2.71=0.00 97140026 .9927+0015  .4909+.0009 | 4.20+0.62 1.150.00
JOENA 011740001 .0584=+.0000 .0345+.0000 | 4.15+0.02 1.71+0.01 987340002 .9999+.0000 .9929+.0000 | 0.34=0.0¢ 1.0240.04
Dataset ACM-DBLP Cora

Metrics Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB) ‘ Hits@1 Hits@10 MRR ‘ Time(s) Mem.(GB)
FINAL 405440000 .7980=4.0000 53660000 ‘ 2.56+0.6 1.19=+0.06 ‘ 789140000 902640000 83320000 ‘ 1.48+0.13 1.04+0.0
REGAL 415940035 63730064 489040040 | 1.95+012x 100 1.78+005x 101 | .357640278 47050271 39860242 | 5.15+127 6.844021
NetTrans 687440015 930040019 771640012 | 2.644218x102  1.48+002 7907x4417  8005t4454 795544428 | 147400 1.324-0.00
‘WALlign .6675+.0024  .9109+.0012 75240016 | 6.82+1.00 4.85+0.03 95510012 972440010 .9621+.0011 | 3.3841.28 2.363005
BRIGHT 485840025 87400020 616340021 | 1.22053x 102 2.35+000 79890051 990240012 881340029 | 6.07£3.03 1.32+0.04
NeXtAlign 351240966 .7633+0s72 485140081 | 1.454064x10" 1474015 33360418 662940291 444440376 | 1.56F022 1.15+0.02
PARROT 68670000 943740000 777040000 | 1.70+040x 10" 1.2740.00 965440000 968470000 9667+ 000 1.13%0.56 1.05+0.02
SLOTAlign 667340011 .8720-£.0003 740940009 | 8.34=£004x 10> 7.45+0.16 1994940000 .9999+0000 99740000 | 1.9240.13 2.01%0.10
HOT 389340050 61800055 235040017 | 4.28013x 102 2.85=+001 74930040 75490040 376240021 | 2.17+059x 101 3.29+028
JOENA 785940053 .9847=+.0101 8569+.0120 | 9.78+02 1.59+0.11 9947+ 0002 9999+.0000 .9966+.0001 | 0.38+0.03 1.14=+0.0;
Dataset PPI DBP15K_FR-EN

Metrics Hits@1 Hits@10 MRR | Time(s) Mem.(GB) | Hits@1 Hits@10 MRR | Time(s) Mem.(GB)
FINAL 031640000 15640000 07600000 | 1.87+02% 0.93+0.00 | 19540000 438140000 280040000 | 4.3640.10x10%  2.37+000x10"
REGAL 151540080 291040072 .20124.0078 | 9.30%0.42 3.89+0.12 002740004 00380004 003540004 | 5.30%018x 10" 9.33+003x 10
NetTrans 73560027 858140024 77830027 | 2.39+050x100  1.22-tooo 430840012 77890081 541240109 | 1.384103x 10" 1.03£001x 10
‘WALign 765740021 873340007 .8041+.0009 | 6.8441.54 3.15+001 507740034 649240046 557240037 | 2.03+026 10" 1.67+000x 10"
BRIGHT 715640030 .86234.0036 769140026 | 8.76+3.53 1.29+001 4393+0020 80200023 565240029 | 2.484005x 10> 9.551003
NeXtAlign  .0306+0142  .1059+0517 057940266 | 1.414084x10"  1.2540.10 478140023 87804002 610940032 | 2.784008x 10>  9.87-+00
PARROT 99160001 997740000 994340001 | 5.55+3.14x101  1.58=0.02 87370000 955040000 9040+ 0000 | 1.604022x10%  2.76%0.00x 10
SLOTAlign 9531 +.0000 977740000 .9618+.0000 | 3.70+00 1.71=40.00 761940012 87210029 8091+ .00 1.70£0.12x 102 2.18+000x10"
HOT 670540032 71540054 343940018 | 3.84099x 101 1.30=000 617240134 79800012 651240012 | 1.70£0.12x 103 2.17+000x 10*
JOENA 980440012 .9943+.0041  .9857+.0024 | 0.73F0.12 1.10+0.00 9804+.0012  .9943+.004 9857+.0024 | 0.73F0.12 1.10=0.00
Dataset Airport PeMS08

Metrics Hits@1 Hits@10 MRR | Time(s) Mem.(GB) | Hits@1 Hits@10 MRR | Time(s) Mem.(GB)
FINAL .3897+0000 82670000 54140000 | 0.47+0.15 0.89-+0.00 | 213240000 761040000 40510000 | 0.02+002 0.9040.00
REGAL 051640037 209640125 .1063%.0059 | 2.0410.48 1.38+0.10 3617+0321 565510360 428340338 | 0.2240.09 1.20+0.00
NetTrans 243040038 466740034 319240028 | 2.324033 1.180.00 .6353+.0048 896310048 712740022 | 0.07+0.04 1.18+0.00
‘WALign 304140054 .5803+.0049 .3987+.00s9 | 1.50+0.98 2.334+004 .6963+.0118 906640076 .7689+.0070 | 2.1540.41 2.20+0.01
BRIGHT 334310062 567140028 415340044 | 1.294056 1.06=+0.00 52800166 876510159 652440074 | 0.53%1.04 1.06=0.00
NeXtAlign  .0792+o0s61 .2551+.1263 13980785 | 0.46-0.10 1.02+0.00 299240573 716241283 .4373+0657 | 0.04L0.04 0.99+0.00
PARROT 85824.000¢ 9622+ 0000 89710000 | 2.284191x101  0.924002 8787+.0000 .9596+.0000 9071+ .000¢ 8.31+4.67 0.85+0.00
SLOTAlign 89180000 98160000 92560000 | 0.15400 0.98-+0.01 9853+.0000 999940000 .9926+.0000 | 0.01=0.00 0.90+0.00
HOT A4318+0052  .5770+0116 24130027 | 5.33+024 1.1630.00 7324+0175  .8853+0120 .3921+.0063 | 0.35+0.04 1.16%0.00
JOENA 873440034 .9748+0104 91170030 | 0.1040.00 1.0240.00 999940000 .9999-+.0000 99990000 | 0.0530.00 1.02+001
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