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ABSTRACT

Network alignment (NA) aims to identify node correspondence across different net-
works and serves as a critical cornerstone behind various downstream multi-network
learning tasks. Despite growing research in NA, there lacks a comprehensive li-
brary that facilitates the systematic development and benchmarking of NA methods.
In this work, we introduce PLANETALIGN, a comprehensive Python library for
network alignment that features a rich collection of built-in datasets, methods, and
evaluation pipelines with easy-to-use APIs. Specifically, PLANETALIGN integrates
18 datasets and 14 NA methods with extensible APIs for easy use and development
of NA methods. Our standardized evaluation pipeline encompasses a wide range
of metrics, enabling a systematic assessment of the effectiveness, scalability, and
robustness of NA methods. Through extensive comparative studies, we reveal
practical insights into the strengths and limitations of existing NA methods. We
hope that PLANETALIGN can foster a deeper understanding of the NA problem
and facilitate the development and benchmarking of more effective, scalable, and
robust methods in the future. The source code of PLANETALIGN is available at
https://anonymous.4open.science/r/PlanetAlign-E9BA

1 INTRODUCTION

Multi-sourced and multi-layer networks are becoming ubiquitous across a wide range of domains in
the era of big data and AI, ranging from social network analysis (Shao et al., 2023; Rácz & Zhang,
2024; Peng et al., 2025), anti-money laundering (Zhang et al., 2021), bio-informatics (Hu et al.,
2024; Zare Mirak-Abad & Ghorbanali, 2025), to knowledge graph fusion (Yan et al., 2021a; Chen
et al., 2024). Identifying the same node across different networks, i.e., network alignment (NA),
enables joint learning across multiple networks and serves as the key cornerstone of multi-network
tasks. For example, aligning users across online social networks improve personalized services, e.g.,
cross-domain recommendation (Liu et al., 2023a; Zeng et al., 2023; Yu et al., 2025). In transaction
networks, aligning suspicious accounts from different transaction networks facilitates the detection
of fraudulent activity (Zhang et al., 2019b; Du et al., 2021; Yan et al., 2024). In protein interaction
networks, alignment of proteins across different species uncovers hidden biological homologies (Clark
& Kalita, 2014; Hu et al., 2024). In knowledge graphs (KG), merging incomplete KGs based on
aligned entities helps construct more unified knowledge bases (Yan et al., 2021a; Liu et al., 2023b;
Chen et al., 2024).

Despite growing interest in NA, there lacks a comprehensive benchmark to provide standardized
evaluation of NA methods on different datasets from various aspects. The absence of such benchmarks
leaves the genuine performance and usefulness of existing NA methods an open research question,
hindering the standardization of research in the NA community.

Although prior efforts, which are summarized in Table 1, have been made in benchmarking NA
methods (Clark & Kalita, 2014; Cao & Yu, 2016; Sun et al., 2020; Trung et al., 2020; Döpmann, 2013),
they suffer from at least one of the following limitations: (1) limited datasets within a single domain,
e.g. biological networks (Clark & Kalita, 2014) or social networks (Cao & Yu, 2016); (2) limited
methods exclusively focusing on a single category, e.g., consistency-based methods (Döpmann, 2013)
or embedding-based methods (Sun et al., 2020), while ignoring the most recent line of works, e.g.,
optimal transport (OT) based methods; (3) limited and inconsistent evaluation from a single aspect,
e.g. effectiveness (Clark & Kalita, 2014; Cao & Yu, 2016), without standardized dataset splits and
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evaluation metrics (Clark & Kalita, 2014; Cao & Yu, 2016; Sun et al., 2020; Trung et al., 2020;
Döpmann, 2013).

In response to these limitations, we introduce PLANETALIGN, an open-source PyTorch-based library
designed for unified evaluation and streamlined development of NA methods, which features the
following key design. Firstly, PLANETALIGN includes 18 different public datasets spanning 6
different domains which can be directly downloaded through a simple API call, including social
networks (Zhang & Philip, 2015; Zhang & Tong, 2016), publication networks (Tang et al., 2008;
Yang et al., 2016; Leskovec et al., 2007), biological networks (Stark et al., 2006; De Domenico
et al., 2015b; Zitnik & Leskovec, 2017; Park et al., 2010), knowledge graphs (Sun et al., 2017),
infrastructure networks (Yan et al., 2022; Zhu et al., 2021; Song et al., 2020), and communication
networks (Zhang et al., 2017; Kunegis, 2013), covering both real-world and synthetic scenarios
(Limitation #1). The wide range of datasets built into PLANETALIGN allows comprehensive evaluation
of NA methods on different types of networks, e.g., plain and attributed networks, fostering in-depth
understanding of the applicability of NA methods to different domains. Secondly, PLANETALIGN
features efficient implementations of 14 different NA methods including consistency-based (Singh
et al., 2008; Zhang & Tong, 2016), embedding-based (Liu et al., 2016; Heimann et al., 2018;
Chu et al., 2019; Zhang et al., 2020; Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu
et al., 2023a), and OT-based methods (Zeng et al., 2023; Tang et al., 2023; Zeng et al., 2024;
Yu et al., 2025), covering traditional and state-of-the-art baselines (Limitation #2). With easy-
to-use APIs, PLANETALIGN allows streamlined comparison between NA methods across diverse
benchmark settings. Thirdly, PLANETALIGN highlights a comprehensive list of evaluation metrics
and benchmarking tools (Limitation #3). For evaluation metrics, we include the most classical
effectiveness metrics, Hits@K and MRR, under different pairwise alignment settings. We also
include time and memory overheads for evaluating the efficiency and scalability of NA methods.
For benchmarking tools, we enforce consistent dataset split through a unified API design to ensure
reproducibility. PLANETALIGN also provides a rich collection of APIs and utility functions that
allows fair and reproducible benchmarking across key dimensions of NA performance. Finally,
PLANETALIGN implements extensible APIs and efficient utility functions which allow users to
streamline the implementation of customized NA methods and the integration of customized datasets
with minimal efforts. Specifically, our API design allows customized datasets and NA methods to
be built upon carefully designed base classes and integrated into PLANETALIGN’s pipeline with
only a few lines of code. PLANETALIGN further provides commonly used utility functions such
as random walk with restart (RWR) embedding, anchor-based embedding, etc. Empowered by
the aforementioned features, PLANETALIGN addresses the limitations of existing NA benchmarks
comprehensively.

Based on PLANETALIGN, we conduct comprehensive experiments to evaluate the effectiveness,
scalability, robustness, and sensitivity to supervision of 14 built-in NA methods across 18 built-in
datasets, revealing practical insights into the strength and limitations of existing NA methods. We
also compare PLANETALIGN’s implementation of NA algorithms with their official implementation
which shows that our implementation can achieve up to 3 times speed-up while maintaining similar
effectiveness performance, demonstrating the superiority of PLANETALIGN.

In summary, we introduce a unified, comprehensive, and efficient library PLANETALIGN featuring a
wide range of built-in datasets and NA methods, as well as extensible and easy-to-use utility functions
and APIs, facilitating the benchmarking and development of NA methods. We will continuously
update PLANETALIGN upon release of new benchmark datasets and methods.

2 PROBLEM DEFINITION

An illustration of NA problems are shown in Figure 1. Given two input networks
G1 = {V1,A1,X1,E1}, G2 = {V2,A2,X2,E2} and a set of anchor node pairs L =
{(x, y)|x ∈ V1, y ∈ V2} indicating pre-alignment, where V1,V2 denote the node sets, A1,A2 denote
the graph 1 adjacency matrices, X1,X2 denote the node attribute matrices, and E1,E2 denote the
edge attribute matrices, the semi-supervised attributed network alignment task aims to discover
node-level correspondence across two networks inferred from an output alignment matrix S, where
S(x, y) indicates the likelihood of alignment between node x ∈ V1 and node y ∈ V2. If neither

1In this work, the terms ‘network’ and ‘graph’ are used interchangeably.
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Figure 1: An illustration of NA problems.

node attributes X1,X2 nor edge attributes E1,E2 are available, this becomes the semi-supervised
plain network alignment task; If no anchor node pairs are available, i.e., |L| = 0, this becomes the
unsupervised attributed network alignment task.

3 RELATED WORK

3.1 NETWORK ALIGNMENT METHODS

Existing NA methods can be classified into three categories: consistency-based, embedding-based,
and OT-based approaches (Zhang & Tong, 2020). Consistency-based methods are among the
earliest approaches, formulated as optimization problems which assumes structural and/or attribute
consistency between node neighborhoods across networks (Singh et al., 2008; Zhang & Tong, 2016;
Zhang et al., 2019a; Bayati et al., 2009). Although recent works on NA have largely moved beyond
consistency principles, consistency-based methods remain important baselines for benchmarking
purpose.

Embedding-based and OT-based methods represent more recent advances in the NA community. For
embedding-based methods, nodes are mapped into a shared low-dimensional space and aligned based
on embedding similarity (Liu et al., 2016; Heimann et al., 2018; Chu et al., 2019; Zhang et al., 2020;
Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu et al., 2023a). By leveraging advances
in deep representation learning, embedding-based methods have shown strong performance and
remain an active research direction. For OT-based methods, they formulate the NA problem as an
optimization problem minimizing the total effort of transporting the node distribution of one graph to
another under a set of pre-defined or learnable cost functions (Tang et al., 2023; Zeng et al., 2023;
2024; Yu et al., 2025). The most OT-based methods consistently achieve SOTA performance, making
them a promising direction for future research. PLANETALIGN includes representative state-of-the-art
methods from all three kinds of methods, providing a comprehensive benchmarking library.

3.2 NETWORK ALIGNMENT LIBRARIES

There are five existing benchmarks/libraries for NA, and we include a comprehensive compari-
son on the inclusion of datasets, NA methods, and evaluation dimensions in Table 1. Specifically,
SGAPBSA (Döpmann, 2013) and CAPABN (Clark & Kalita, 2014) mainly focus on benchmarking
traditional consistency-based NA methods on biological networks. ASNets (Cao & Yu, 2016) bench-
marks the effectiveness of both consistency-based and embedding-based methods on social networks,
leaving the scalability and robustness of NA methods an open research question. NAB (Trung et al.,
2020) comprehensively evaluates the effectiveness, scalability, and robustness of both consistency-
based and embedding-based methods. However, NAB only includes social networks, lacking compre-
hensive datasets on other domains where NA is also an important research problem. OpenEA (Sun
et al., 2020) focuses on benchmarking embedding-based methods on knowledge graphs, ignoring
networks in other domains. In addition, none of the existing NA libraries includes OT-based methods
which have emerged as the most recent and effective line of work in the NA community.
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Table 1: Comparison with existing NA benchmarks/libraries (Clark & Kalita, 2014; Cao & Yu, 2016;
Sun et al., 2020; Trung et al., 2020; Döpmann, 2013). We denote whether a specific type of networks,
methods, and evaluations is included in the benchmark/library.

Benchmark/Library SGAPBSA CAPABN ASNets NAB OpenEA PLANETALIGN (ours)

Networks

Social ✗ ✗ ✓ ✓ ✗ ✓
Communication ✗ ✗ ✗ ✗ ✗ ✓
Publication ✗ ✗ ✗ ✗ ✗ ✓
Biological ✓ ✓ ✗ ✗ ✗ ✓
Knowledge ✗ ✗ ✗ ✗ ✓ ✓
Infrastructure ✗ ✗ ✗ ✗ ✗ ✓

Methods
Consistency-based ✓ ✓ ✓ ✓ ✗ ✓
Embedding-based ✗ ✗ ✓ ✓ ✓ ✓
OT-based ✗ ✗ ✗ ✗ ✗ ✓

Evaluations
Effectiveness ✓ ✓ ✓ ✓ ✓ ✓
Scalability ✓ ✗ ✗ ✓ ✓ ✓
Robustness ✗ ✗ ✗ ✓ ✗ ✓

4 DESIGN OF PLANETALIGN

In this section, we introduce the design features of PLANETALIGN, which includes comprehensive
built-in datasets and NA methods (Section 4.1), unified and easy-to-use APIs (Section 4.2), as well as
standardized and diverse benchmarking tools (Section 4.3).

4.1 COMPREHENSIVE DATASETS AND METHODS

PLANETALIGN collects and curates 18 NA datasets across 6 different domains, covering social
networks, publication networks, biological networks, knowledge graphs, infrastructure networks,
and communication networks. PLANETALIGN also implements 14 existing NA methods across all 3
categories, including consistency-based, embedding-based, and OT-based methods. An overview of
built-in datasets and NA methods in PLANETALIGN is summarized in Figure 2.

Dataset Collection and Synthesis. We collect 11 real-world datasets from existing NA works and
synthesize 7 additional datasets across 6 distinct domains. We follow the most classical method to
synthesize NA datasets from a single network, where we insert 10% noisy edges into and delete 15%
existing edges from the original network to create two permuted networks (Yang et al., 2016; Zhang
et al., 2020; Yan et al., 2021b; Zhang et al., 2021; Zeng et al., 2023; Yu et al., 2025).

Specifically, for social networks, where NA is used to align the same user for personalized recom-
mendation (Cao & Yu, 2016; Zhang & Philip, 2015; Liu et al., 2016), PLANETALIGN includes 4
real-world datasets: Foursquare-Twitter (Zhang & Philip, 2015), Douban (Zhang & Tong, 2016),
Flickr-LastFM (Zhang & Tong, 2016), and Flickr-MySpace (Zhang & Tong, 2016); for publication
networks, where NA is used for author disambiguation (Li et al., 2021), PLANETALIGN includes the
most representative real-world dataset ACM-DBLP (Tang et al., 2008), and synthesizes 2 additional
datasets from Cora (Yang et al., 2016) and ArXiv (Leskovec et al., 2007); for biological networks,
where NA uncovers hidden biological homologies by aligning proteins of different species (Clark &
Kalita, 2014; Faisal et al., 2015; Singh et al., 2008), PLANETALIGN includes 1 real-world dataset
SacchCere (Stark et al., 2006; De Domenico et al., 2015b) and 2 synthetical datasets PPI (Zitnik &
Leskovec, 2017) and GGI (Park et al., 2010). For knowledge graphs, where NA is used for knowledge
fusion (Liu et al., 2023b; Chen et al., 2023; Sun et al., 2020), PLANETALIGN includes 3 variants of a
real-world dataset DBP15K (Sun et al., 2017), namely DBP15K ZH-EN, JA-EN, and FR-EN. For
infrastructure networks, where NA plays an important role in cross layer dependency inference (Yan
et al., 2022), PLANETALIGN includes 1 real-world dataset Italy (Yan et al., 2022), and 2 synthetic
datasets Airport (Zhu et al., 2021) and PeMS08 (Song et al., 2020). For communication networks,
PLANETALIGN includes 1 real-world dataset Phone-Email (Zhang et al., 2017) and 1 synthetic
dataset Arenas (Kunegis, 2013). Detailed dataset statistics can be found in Appendix A.

Baseline Implementations. We implement 14 existing NA methods based on a unified API, in-
cluding 2 representative consistency-based methods, 8 embedding-based methods, and 4 OT-based

4
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Figure 2: An overview of built-in datasets and NA methods in PLANETALIGN. For built-in
datasets, we indicate if they consist of attributed (Attr.) or plain networks, and if they are real-world
(Real) or synthetic datasets. For built-in NA methods, we indicate if they are designed for attributed
or plain NA tasks, and if they are semi-supervised or unsupervised methods.

methods. Specifically, for consistency-based methods, PLANETALIGN includes IsoRank (Singh
et al., 2008) and FINAL (Zhang & Tong, 2016); for embedding-based methods, PLANETALIGN
includes IONE (Liu et al., 2016), REGAL (Heimann et al., 2018), CrossMNA (Chu et al., 2019),
NetTrans (Zhang et al., 2020), WAlign (Gao et al., 2021), BRIGHT (Yan et al., 2021b), NeXtAl-
ign (Zhang et al., 2021), and WLAlign (Liu et al., 2023a); for OT-based methods, PLANETALIGN
includes SLOTAlign (Tang et al., 2023), PARROT (Zeng et al., 2023), HOT (Zeng et al., 2024), and
JOENA (Yu et al., 2025). Detailed introductions of built-in NA methods can be found in Appendix B.

4.2 UNIFIED AND EASY-TO-USE APIS

PLANETALIGN is carefully designed to provide unified and easy-to-use APIs to streamline the
implementation, training, and evaluation of NA algorithms on customizable datasets. An exam-
ple usage of PLANETALIGN is shown in Figure 3. We also provide detailed documentation at
https://planetalign.netlify.app, covering quick-start tutorials as well as in-depth doc-
umentations of API usage of the major components.

Specifically, to train and evaluate an NA algorithm on a specific dataset, the user of PLANETALIGN

will first define a PlanetAlign.data.BaseData object and a Model object inherited from
the base class PlanetAlign.algorithm.BaseModel . For built-in datasets, PLANETALIGN

provides downloading options and reproducible train/test split with a customized training ratio; for
built-in algorithms, PLANETALIGN provides hyperparameter options upon definition of the algorithm,
and a unified API as PyTorch for GPU/CPU offloading. Both built-in dataset and algorithm objects
can be defined neatly in a single line of code. PLANETALIGN also provides unified and intuitive base
classes for defining customized datasets and algorithms, as shown in Figure 3.

Before training an NA algorithm, the user has an option to initialize a PlanetAlign.Logger

object used to log the training process of the algorithm. Then, the user can simply call the .train
method of the algorithm object with the dataset and logger object, IDs of graphs to be aligned, and
additional configuration of training, e.g., training epochs, learning rate, etc., to start the training.
Training outputs, including node embeddings, alignment matrix, and training performance are
returned by the .train after the training process ends, providing fine-grained intermediate results
of alignment that users can readily leverage for downstream tasks, such as cross-layer dependency
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# Built-in NA algorithm (e.g., FINAL)
alg = PlanetAlign.algorithms.FINAL(

**hyperparameters).to('cuda')

# Customized NA algorithm
class Model(PlanetAlign.algorithm.BaseModel):

def train(): …
def test(): …

alg = Model(**hyperparameters).to('cuda')

Algorithm

# Built-in NA dataset (e.g., Douban)
dataset = PlanetAlign.datasets.Douban(

root=root,
download=True,
train_ratio=train_ratio,
seed=seed)

# Customized NA dataset
dataset = PlanetAlign.data.BaseData(

graphs=graphs, # PyG.data.Data objects
anchor_links=anchor_links, # Tensor object
train_ratio=train_ratio,
seed=seed)

Dataset

output_dict = alg.train(dataset=dataset,
gids=gids, # graph IDs
use_attr=use_attr,
logger=logger,
**train_parameters)

# ouput_dict: {node_embeddings: …, 
alignment_matrix: …, logger: …}

Train & Test

result_dict = alg.test(dataset=dataset,
gids=gids, # graph IDs
use_attr=use_attr,
metrics=metrics)

logger = PlanetAlign.logger.TrainLogger(
log_path=log_path,
log_name=log_name,
metrics=metrics,
save=True)

# Plot training curve of the selected metric
logger.plot_curve(metric=metric,

save_path=save_path)

Logger

Figure 3: Example usage of PLANETALIGN for benchmarking NA. Users begin by initializing a
dataset and algorithm objects, along with a logger for training-time monitoring and visualization. The
training and evaluation can then be performed through simple API calls with user-defined parameters,
providing substantial flexibility in controlling the training and evaluation workflows.

inference (Yan et al., 2022), knowledge integration (Yan et al., 2021a), and cross-KG modality
fusion (Chen et al., 2023).

Finally, after the training process, the user can call the .test method of the algorithm object
with customized options of evaluation metrics. The optional logger object, which records and logs
comprehensive data during training, also provides a rich collection of APIs for visualizing the
evolution of different metrics along training, e.g., training loss, time and memory usage, etc.

4.3 STANDARDIZED AND DIVERSE BENCHMARKING TOOLS

Standard Evaluation Metrics. PLANETALIGN provides low-level utility functions for computing
standard and widely adopted evaluation metrics in the NA tasks with custom options for alignment
directions, such as left-to-right for pairwise alignment scenarios where the nodes in G1 is aligned to
G2, and vise versa. Specifically, PLANETALIGN includes the following metrics:

• Hits@K. In the case of aligning G1 to G2, Hits@K refers to the proportion of nodes in G1 whose
correct alignment in G2 is ranked within the top-K candidates by a NA algorithm. Formally,

Hits@K =
1

N

N∑
i=1

1{ranki ≤ K},

where N is the number of nodes in G1, ranki is the rank of the correct alignment for the i-th node
in G1, and 1{·} is the indicator function. Note that in NA, Precision@K (Trung et al., 2020) is
equivalent to Hits@K.

• Mean Reciprocal Rank (MRR). MRR refers to the average reciprocal of the rank at which the
correct alignment appears in the candidate list. Formally, In the case of aligning G1 to G2,

MRR =
1

N

N∑
i=1

1

ranki
,

where N is the number of nodes in G1, ranki is the rank of the correct alignment for the i-th node
in G1. Note that in NA, Mean Average Precision (MAP) (Trung et al., 2020) is equivalent to MRR.

6
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Diverse Benchmark Settings. The design of PLANETALIGN enables diverse and reproducible
benchmarking of existing NA algorithms with minimal efforts, providing a rich collection of APIs
and built-in utility functions that allow users to easily configure, run, and evaluate experiments along
key dimensions of NA performance, including effectiveness, scalability, and robustness.

Specifically, for effectiveness, PLANETALIGN supports custom training ratios and generates con-
sistent, reproducible train/test splits by a user-defined random seed, ensuring fair comparisons of
different NA algorithms. The APIs also supports experiments that evaluate the sensitivity of different
NA methods with respect to the amount of supervision, providing valuable insights into their applica-
bility to various supervision regimes. PLANETALIGN further provides unified utility functions to
selectively introduce or remove supervision, enabling side-by-side comparisons between supervised
and unsupervised algorithms under the same setting; for scalability, PLANETALIGN includes built-in
logging functionalities that automatically track the runtime and memory usage during training and
inference, allowing consistent and transparent evaluation of the efficiency of NA algorithms across
datasets of varying sizes; for robustness, PLANETALIGN provides utility functions for injecting edge-
level, attribute-level, and supervision noise into input graphs, allowing comprehensive evaluation of
the robustness of NA methods under diverse graph noises or data inconsistencies.

5 EXPERIMENTS

Based on PLANETALIGN, we carry out extensive experiments to benchmark a wide range of NA
algorithms across four key dimensions: effectiveness (Section 5.2), scalability (Section 5.3), robust-
ness (Appendix D.1), and sensitivity to supervision (Appendix D.2). Additionally, we compare our
implementation to the official implementation of built-in NA algorithms of PLANETALIGN to validate
the correctness and efficiency our library (Appendix D.3).

5.1 EXPERIMENTAL SETUP

Datasets and methods. We benchmarks the performance of 14 NA algorithms on 18 NA datasets
built into PLANETALIGN, as shown in Figure 2. Detailed dataset statistics and a brief introduction to
each algorithm can be found at Appendix A and B, respectively.
Metrics. To evaluate effectiveness, we report Hits@K and MRR introduced in Section 4.3. All
reported Hits@K and MRR are averaged results from both alignment directions. To evaluate
scalability, we report the runtime and peak memory usage.
Additional Setup. For each experiments, we run 5 times and report the mean and standard deviation
of the results. Additional experimental setup, such as the machine used to run the experiments and
hyperparameter settings, are detailed in Appendix C.

5.2 EFFECTIVENESS RESULTS

We first evaluate the effectiveness of existing NA algorithms on plain networks under a semi-
supervised setting with 20% training ratio. Datasets are randomly split for training and testing by a
fixed random seed to ensure fair and reproducible comparison. Table 2 shows the averaged results on
all 18 datasets group by their categories. Detailed results on plain and attributed NA datasets can be
found in Appendix D.

We can see from Table 2 that OT-based methods, particularly PARROT (Zeng et al., 2023) and
JOENA (Yu et al., 2025), consistently achieve SOTA alignment performance in Hits@K and MRR
across all datasets, demonstrating the effectiveness of optimal transport in aligning distributional
structures. Embedding-based methods such as IONE (Liu et al., 2016), NetTrans (Zhang et al.,
2020), and BRIGHT (Yan et al., 2021b) can be effective in aligning some networks. However, their
strong performance is not consistent across different datasets, potentially due to the space disparity
issue (Yan et al., 2021b; Zhang et al., 2021). Consistency-based methods, while occasionally perform
well on certain datasets, usually outperformed by best-performing embedding-based and OT-based
methods, suggesting that relying solely on consistency principles may lead to sub-optimal alignment.

In addition to empirical observations, we further provide theoretical analysis into the superior
performance of OT-based alignment methods. Compared with consistency-based methods, which are
restricted by local consistency principles, OT-based methods go beyond local assumptions by solving

7
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Table 2: Effectiveness and efficiency results of NA algorithms on plain networks with a training ratio
of 20%. We group the 18 datasets in PLANETALIGN by their categories and report the averaged
Hits@1, Hits@10, MRR (in %), inference time (Time), and peak memory usage (Memory). Cells
that contain the 1st/2nd/3rd best results are highlighted in red/blue/green, respectively. Detailed
results for each dataset can be found in Appendix D.5.

Dataset Social Publication Biological Knowledge Infrastructure Communication

Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

IsoRank 4.2 19.6 9.2 18.9 59.1 31.4 21.6 45.1 29.4 11.5 50.0 23.4 14.2 43.9 24.1 22.1 44.5 30.2
FINAL 4.9 22.3 10.1 22.3 68.6 37.3 22.9 56.6 34.1 13.9 55.4 27.3 15.1 53.6 28.0 21.7 57.7 33.9

IONE 7.9 20.0 12.1 28.7 63.6 40.1 46.1 60.5 51.0 4.7 20.3 10.0 29.6 51.2 37.0 50.4 69.0 56.7
REGAL 0.3 2.2 1.2 1.8 7.8 3.9 1.0 5.3 2.6 0.8 2.9 1.6 2.8 13.4 6.7 45.3 49.5 47.2

CrossMNA 1.2 11.1 4.5 13.2 58.1 27.2 40.2 58.7 46.5 2.7 28.8 10.7 14.6 30.9 20.2 22.8 53.3 33.9
NetTrans 7.2 21.8 11.9 40.7 77.3 52.7 34.2 57.5 41.8 28.8 62.8 39.7 29.3 59.5 39.6 45.2 62.6 51.8
WAlign 4.2 8.5 6.1 31.2 49.6 37.8 20.3 27.3 22.9 19.4 28.2 22.8 29.1 47.3 35.5 49.6 56.0 52.1

BRIGHT 5.1 17.0 9.0 40.4 74.0 51.8 30.5 48.0 36.5 30.4 61.7 40.9 29.9 57.0 39.5 50.9 62.3 55.0
NeXtAlign 7.1 19.5 11.3 43.2 76.9 54.7 25.9 44.8 32.8 27.5 59.9 38.3 28.0 55.1 37.8 29.6 51.4 37.2
WLAlign 7.6 14.8 10.1 35.9 58.1 43.2 41.2 50.7 44.3 25.9 44.2 31.7 29.5 42.8 34.1 34.1 49.1 39.5

PARROT 12.6 26.3 17.2 66.6 88.6 74.4 61.6 73.4 65.5 66.0 87.2 73.1 51.8 69.2 57.8 63.3 86.7 71.3
SLOTAlign 0.9 4.0 2.2 50.7 65.5 56.1 48.6 54.5 50.7 1.5 5.8 3.1 53.2 60.8 55.7 49.3 52.6 50.9

HOT 5.3 16.0 5.2 38.1 65.6 23.7 25.4 37.9 15.2 33.9 61.2 21.4 32.1 52.1 19.5 52.1 66.2 28.5
JOENA 18.7 35.1 24.4 73.2 92.1 80.2 63.7 72.9 66.8 66.3 87.8 73.0 62.9 75.0 67.2 66.3 89.0 74.3

Dataset Social Publication Biological Knowledge Infrastructure Communication

Metrics Time(s) Memory(GB) Time(s) Memory(GB) Time(s) Memory(GB) Time(s) Memory(GB) Time(s) Memory(GB) Time(s) Memory(GB)

IsoRank 25.17 3.54 57.99 6.89 13.01 2.67 1.54×102 15.97 0.28 0.66 0.17 0.80
FINAL 5.91 5.39 6.75 10.06 1.88 3.54 18.10 24.37 0.10 0.80 0.11 0.88

IONE 6.34×103 1.94 1.43×104 4.16 1.41×104 1.93 1.50×104 8.75 9.41×103 0.90 8.10×103 1.02
REGAL 9.38 1.16 16.14 3.18 7.28 1.55 30.83 5.96 0.76 0.81 1.17 0.77

CrossMNA 3.06×102 1.40 1.16×103 3.16 5.33×102 1.58 1.11×103 6.14 59.03 0.98 5.78×102 0.81
NetTrans 1.56×102 8.88 5.14×102 8.57 1.08×102 3.90 3.65×102 21.90 6.46 1.28 12.37 1.54
WAlign 0.61 2.65 9.41 9.88 2.46 3.86 10.05 15.40 0.12 1.43 0.20 1.11

BRIGHT 21.76 3.00 1.26×102 5.66 33.55 3.24 3.81×102 11.53 0.28 1.14 0.33 1.12
NeXtAlign 40.89 3.75 1.55×102 7.82 19.35 3.57 2.62×103 13.57 0.29 1.34 2.44 0.99
WLAlign 7.41×102 2.17 2.69×103 11.98 1.15×103 4.21 3.24×103 28.33 4.25×102 1.35 6.99×102 0.95

PARROT 76.76 6.26 2.99×102 11.68 84.63 3.98 8.95×102 28.47 0.76 0.85 0.82 0.90
SLOTAlign 46.31 6.40 5.64×102 11.55 67.66 3.96 1.03×104 28.27 3.85 1.03 1.23 0.80

HOT 4.01×102 3.85 7.89×102 7.75 7.08×102 4.44 2.08×103 18.43 8.95 2.12 7.04 4.46
JOENA 58.73 4.89 30.60 2.73 3.65 1.39 6.61×102 26.47 0.05 1.02 0.49 0.86

a globally constrained optimization problem. Compared with embedding-based methods, which infer
alignment from noisy embedding similarities, OT-based methods directly learns a robust alignment
matrix from transportation cost, thanks to the marginal constraints that naturally encourage one-to-one
node alignment. Empowered by constrained optimization and informative transportation cost encoded
by powerful graph proximity measures or learnable node embeddings, OT-based methods learns
robust, deterministic, and global-structure-aware alignment.

Takeaway #1: Optimal transport demonstrates significant potentials in NA.

Best-performing OT-based methods consistently outperform consistency and embedding-based
approaches by a significant margin in alignment performance across diverse domains, demon-
strating the power of constrained optimization and informative transport cost which lead to
robust, deterministic, and global-structure-aware alignment.

5.3 EFFICIENCY AND SCALABILITY RESULTS

We also include the efficiency results of NA algorithms on plain networks under a semi-supervised
setting with a 20% training ratio in Table 2. To further evaluate the scalability of NA algorithms, we
conduct another set of experiments on synthetic graphs generated by the Erdős–Rényi (ER) (Erdos
et al., 1960) model with a fixed average node degree of 10 under the same semi-supervised setting,
and record the inference time and peak memory usage as the number of nodes increases in Figure 4.

Embedding-based methods typically face a two-out-of-three trade-off among effectiveness, time
efficiency, and memory efficiency. Specifically, WAlign (Gao et al., 2021) and BRIGHT (Yan et al.,
2021b) are among the most scalable algorithms in terms of inference time thanks to simple neural

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#Nodes (×10 )

100

101

102

103

104

Ru
nt

im
e 

(s
)

Consistency-based Methods

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#Nodes (×10 )

Embedding-based Methods

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#Nodes (×10 )

OT-based Methods

IsoRank FINAL

IONE
REGAL
CrossMNA
NetTrans

WAlign
BRIGHT
NeXtAlign
WLAlign

PARROT
SLOTAlign

HOT
JOENA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#Nodes (×10 )

0

10

20

30

40

Pe
ak

 M
em

or
y 

(G
B)

Consistency-based Methods

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#Nodes (×10 )

Embedding-based Methods

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#Nodes (×10 )

OT-based Methods

Figure 4: Scalability results on ER graphs. The x-axis shows the number of nodes in the ER graphs (in
104), and the y-axis of the 1st/2nd row shows the inference time and peak memory usage, respectively.

network (NN) structures which only requires a forward pass during inference. However, they tends to
be less scalable in memory usage due to overheads of NN parameters. In terms of memory usage,
CrossMNA (Chu et al., 2019) and IONE (Liu et al., 2016) achieve the best scalability as they learn
low-dimensional embeddings without using NN. However, they tends to be less scalable in time
since their transductive embeddings requires retraining for different networks (Hamilton et al., 2017).
REGAL (Heimann et al., 2018) achieve both time and memory scalability by decomposition on
sampled embedding matrices but is less effective compared to other NA methods.

Takeaway #2: Embedding-based methods face a two-out-of-three trade-off among effec-
tiveness, time efficiency, and memory efficiency.

Embedding-based methods face trade-off among transductive embeddings for memory efficiency,
inductive embeddings for time efficiency, and learning-based approaches for effectiveness.

Consistency-based methods (Singh et al., 2008; Zhang & Tong, 2016), on the other hand, scale
moderately in terms of both time and memory usage. OT-based methods, in general, share similar
scalability results as consistency-based methods since the optimizations of both kinds of methods
involve matrix operations of quartic complexity. Although the original OT problem is non-convex
and computationally expensive to solve by gradient descent (Tang et al., 2023), PARROT (Zeng et al.,
2023) and JOENA (Yu et al., 2025) solve the OT problem efficiently by convex approximation (Peyré
et al., 2019) and proximal point methods (Xu et al., 2019a). HOT (Zeng et al., 2024) further utilizes a
hierarchical OT framework for cluster-level alignment to scale efficiently to large networks.

Takeaway #3: OT-based methods requires efficient optimization methods to scale similarly
as consistency-based methods.

OT-based methods requires efficient optimization of OT problem, e.g, convex approximation, to
scale moderately like consistency-based methods in terms of both time and memory usage.

5.4 ROBUSTNESS AND SENSITIVITY RESULTS

We evaluate the robustness of NA methods under various types of graph noises, as well as their
sensitivity to different levels of supervision. Our key findings are twofold. First, different NA methods
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show distinct sensitivities to different types of graph noises, suggesting that effective integration
of different alignment techniques can potentially improve the overall robustness of NA algorithms.
Second, current NA algorithms remain sensitive to supervision, underscoring the need for future
research on self-supervised alignment approaches. Due to space constraints, detailed experimental
results, analysis, and key takeaways are provided in Appendix D.1 and D.2.

6 CONCLUSION

In this paper, we introduce PLANETALIGN, a comprehensive library that facilitates the benchmarking
and development of network alignment methods. PLANETALIGN highlights a collection of 18 differ-
ent public datasets spanning 6 different domains, along with a unified and efficient implementation of
14 different NA algorithms of 3 different categories. With a comprehensive list of evaluation metrics,
benchmarking tools, and utility functions implemented as easy-to-use APIs, PLANETALIGN not only
enables fair and reproducible benchmarking of NA algorithms but also facilitates the development of
new NA methods. Through extensive benchmark, we reveal practical insights into the strengths and
limitations of existing NA methods which guides the development of future NA algorithms.

7 LIMITATIONS AND FUTURE WORK

While we introduce a comprehensive library for benchmarking NA, PLANETALIGN could be poten-
tially improved from the following two directions. First, although PLANETALIGN features a rich
collection of baselines, some variants of NA methods that targets a specific kind of network remain
uncovered, e.g., entity alignment approaches (Chen et al., 2023; Liu et al., 2023b; Yan et al., 2021a)
for aligning knowledge graphs. Second, PLANETALIGN focuses primarily on benchmarking pairwise
NA problems. Although multi-network alignment methods are included in PLANETALIGN (Chu
et al., 2019; Zeng et al., 2024), benchmarking under a simultaneous multi-network alignment setting
remains underexplored at this stage.

As for future work, we will continuously expand PLANETALIGN to incorporate new NA datasets,
algorithms, benchmark settings, and utility functions. Specifically, for NA datasets, we plan to
include 1) multi-network alignment datasets which consist of more than two networks, such as
multi-layered version of ArXiv (De Domenico et al., 2015a), Twitter (Omodei et al., 2015), and
SacchCere (De Domenico et al., 2015b), 2) dynamic networks which evolves over time, such as
synthetic datasets from (Vijayan et al., 2017) and (Yan et al., 2021a), and 3) cross-domain datasets
which consist of networks from different domains, such as text-image network constructed by
GOT (Chen et al., 2020); for NA algorithms, we plan to introduce 1) domain-specific alignment
algorithms, such as entity alignment methods DualMatch (Liu et al., 2023b) and MEAformer (Chen
et al., 2023), 2) multi-network alignment algorithms such as MrMine (Du & Tong, 2019), 3) dynamic
NA algorithms such as DynaMAGNA++ (Vijayan et al., 2017) and DINGA (Yan et al., 2021a); for
benchmark settings, we plan to add additional evaluation metrics for measure the uncertainty of the
alignment (Zhou et al., 2021), which are critical for developing active or self-improving NA methods
highlighted as important future directions in our paper; for utility functions, our immediate goal is to
introduce scalability tools to allow easy acceleration of NA algorithms built upon PLANETALIGN,
including distributed training APIs, sparse and low-rank matrix optimizations, and low-rank (Scetbon
& Cuturi, 2022) & sliced OT (Liu et al., 2024) optimization tools.
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ETHICS STATEMENT.

Our library uses only publicly available datasets and conducts evaluation in a transparent and
responsible manner in accordance with the code of ethics of ICLR. The research does not involve
human subjects, animal studies, or any other procedures that may raise ethical concerns.

REPRODUCIBILITY STATEMENT.

To ensure reproducibility, for datasets in PLANETALIGN, we include their detailed statis-
tics and description in Appendix A. For experimental setup, we include detailed de-
scription of adopted evaluation metrics, machines, dataset splits, and hyperparameter set-
tings in Section 5.1 and Appendix C. The source code of PLANETALIGN is available at
https://anonymous.4open.science/r/PlanetAlign-E9BA, with detailed documen-
tation at https://planetalign.netlify.app.
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A DATASETS DETAILS

A.1 DATASET STATISTICS

Table 3: Dataset Statistics.
Domain Networks # nodes # edges # node attr. # edge attr. Type

Social Networks

Foursquare 5,313 54,233 0 0 Real-worldTwitter 5,120 130,575 0 0

Douban(online) 3,906 8,164 538 2 Real-worldDouban(offline) 1,118 1,511 538 2

Flickr 12,974 16,149 3 3 Real-worldLastfm 15,436 16,319 3 3

Flickr 6,714 7,333 3 3 Real-worldMyspace 10,733 11,081 3 3

Communication Networks

Phone 1,000 41,191 0 0 Real-worldEmail 1,003 4,628 0 0

Arenas1 1,135 10,902 50 0 SyntheticArenas2 1,135 10,800 50 0

Publication Networks

ACM 9,872 39,561 17 0 Real-worldDBLP 9,916 44,808 17 0

Cora1 2,708 6,334 1,433 0 SyntheticCora2 2,708 4,542 1,433 0

ArXiv1 18,722 217,921 0 0 SyntheticArXiv2 18,722 168,394 0 0

Biological Networks

SacchCere1 5,928 66,150 0 0 Real-worldSacchCere2 5,042 29,599 0 0

PPI1 3,480 117,429 50 0 SyntheticPPI2 3,480 90,741 50 0

GGI1 10,403 115,755 0 0 SyntheticGGI2 10,403 89,448 0 0

Knowledge Graphs

DBP15K_ZH 19,388 70,414 300 0 Real-worldDBP15K_EN 19,572 95,142 300 0

DBP15K_JA 19,814 77,214 300 0 Real-worldDBP15K_EN 19,780 93,484 300 0

DBP15K_FR 19,661 105,997 300 0 Real-worldDBP15K_EN 19,993 115,722 300 0

Infrastructure Networks

Italy1 349 416 0 0 Real-worldItaly2 349 435 0 0

Airport1 1,190 14,958 4 0 SyntheticAirport2 1,190 11,560 4 0

PeMS08-1 170 301 3 0 SyntheticPeMS08-2 170 233 3 0

A.2 DATASET DESCRIPTIONS

Detailed datasets descriptions are introduced as follows

• Foursquare-Twitter (Zhang & Philip, 2015). A pair of online social networks, Foursquare and
Twitter. Nodes represent users and an edge exists between two users if they have follower/followee
relationships. Both networks are plain networks. There are 1,609 common users across two
networks.

• Douban (Zhang & Tong, 2016). A pair of online-offline social networks constructed from Douban.
Nodes represent users and edges represent user interactions on the website. The location of a suer
is treated as the node attribute, and the contact/friend relationship are treated as the edge attributes.
There are 1,118 common user across the two networks.
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• Flickr-LastFM (Zhang & Tong, 2016). A pair of social networks from Flickr and LastFM. Nodes
in both networks represent users, and edges represent friend / following relationships in Flickr
and LastFM, respectively. The gender of a user is treated as the node attributes (male, female,
unknown), and the level of people a user is connected to is treated as the edge attributes (e.g., leader
with leader). There are 452 common users across two networks.

• Flickr-MySpace (Zhang & Tong, 2016). A pair of social networks from Flickr and MySpace.
Nodes in both networks represent users, and edges represent friend / following relationships. The
gender of a user is treated as the node attributes (male, female, unknown), and the level of people
a user is connected to is treated as the edge attributes (e.g., leader with leader). There are 267
common users across two networks.

• ACM-DBLP (Tang et al., 2008). A pair of undirected co-authorship networks, ACM and DBLP.
Nodes represent authors and edges an edge exists between two authors if they co-author at least
one paper. Node attributes are available in both networks. There are 6,325 common authors across
two networks.

• Cora (Yang et al., 2016). A pair of networks synthesized from the citation network Cora. Each
network Nodes represent publications and an edge exists between two publications if they have a
citation relationship. The two networks are noisy permutations of the original network generated by
randomly inserting 10% edges (Cora1) and deleting 15% edges (Cora2) from the original network,
respectively. There are in total 2,708 common nodes across two networks.

• ArXiv (Leskovec et al., 2007). A pair of networks synthesized from the Arxiv ASTRO-PH (Astro
Physics) collaboration network (Leskovec et al., 2007). Nodes represent authors and an edge exists
between two authors if they have co-authored a paper. The two networks are noisy permutations of
the original network generated by randomly inserting 10% edges (ArXiv1) and deleting 15% edges
(ArXiv2) from the original network, respectively. Node and edge attributes are not available. There
are in total 18,722 common nodes across two networks.

• SacchCere (Stark et al., 2006; De Domenico et al., 2015b). A pair of direct interaction layer and
association layer from the SacchCere multiplex GPI network. The SacchCere network consider
different kinds of protein and genetic interactions for Saccharomyces Cerevisiae in BioGRID (Stark
et al., 2006), a public database that archives and disseminates genetic and protein interaction data
from humans and model organisms. There are in total 1,337 common nodes across two layers of
networks.

• PPI (Zitnik & Leskovec, 2017). A pair of networks synthesized from the protein-protein interaction
(PPI) network (Zitnik & Leskovec, 2017), where nodes represent human proteins and edges
represent physical interaction between proteins in a human cell. The immunological signatures
are included as node features. The two networks are noisy permutations of the original network
generated by randomly inserting 10% edges (PPI1) and deleting 15% edges (PPI2) from the original
network, respectively. There are in total 3,980 common nodes across two networks.

• GGI (Park et al., 2010). A pair of networks synthesized from the human gene-gene interaction
(PPI) network from IsoBase (Park et al., 2010). Nodes represent human genes and edges represent
gene-gene interactions. The two networks are noisy permutations of the original network generated
by randomly inserting 10% edges (GGI1) and deleting 15% edges (GGI2) from the original network,
respectively. There are in total 10,403 common nodes across two networks.

• DBP15K ZH-EN, JA-EN, FR-EN (Sun et al., 2017). Pairs of Chinese, Japanese, and French to
English version of multi-lingual DBpedia networks. The node attributes are given by pre-trained
and aligned monolingual word embeddings (Xu et al., 2019b). There are 15,000 pairs of aligned
entities in DBP15K ZH-EN (Chinese to English), JA-EN (Japanese to English), and FR-EN (French
to English), respectively.

• Italy (Yan et al., 2022). A pair of power grid networks from two regions in Italy. Nodes represent
power stations and edges represent the existence of power transfer lines. Node attributes are derived
from node labels. There are in total 377 common nodes across two networks inferred from the
ground-truth cross-layer dependencies.

• Airport (Zhu et al., 2021). A pair of networks synthesized from the American air-traffic net-
work (Ribeiro et al., 2017). Nodes represent airports and an edge exists between two aiports if there
are commercial flights between them. The level of activity in each airport is used as node attributes.
The two networks are noisy permutations of the original network generated by randomly inserting
10% edges (Airport1) and deleting 15% edges (Airport2) from the original network, respectively.
There are in total 1,190 common nodes across two networks.

• PeMS08 (Song et al., 2020). A pair of traffic networks synthesized from the Performance Mea-
surement System (PeMS) Data Source. Nodes represent sensors and edges indicate traffic flow
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correlation. Node attributes are averaged across all time interval. The two networks are noisy
permutations of the original network generated by randomly inserting 10% edges (PeMS08-1) and
deleting 15% edges (PeMS08-2) from the original network, respectively. There are in total 170
common nodes across two networks.

• Phone-Email (Zhang et al., 2017). A pair of communication networks among people via phone
or email. Nodes represent people and an edge exists between two people if they communicate
via phone or email at least once. Phone network includes 1,000 nodes and 41,191 edges. Email
network includes 1,003 nodes and 4,627 edges. Both networks are plain networks. There are 1,000
common people across two networks.

• Arenas (Kunegis, 2013). A pair of networks synthesized from the email communication network
Arenas at the University Rovira i Virgili. Nodes are users and each edge represents that at least one
email was sent. The two networks are noisy permutations of each other. There are in total 1,135
common nodes across two networks.

B NETWORK ALIGNMENT METHODS

B.1 CONSISTENCY-BASED METHODS

• IsoRank (Singh et al., 2008). IsoRank is originally designed for global alignment of multiple PPI
networks. It is built upon neighborhood topology consistency which assumes that the neighbors of
aligned anchor nodes should be aligned as well, and is formulated as an eigenvalue problem. (Yan
et al., 2021b) reveals that the formulation of IsoRank can be considered as conducting random walk
propagation of anchor links on the product graph to achieve topology consistency.

• FINAL (Zhang & Tong, 2016). FINAL interprets the alignment consistency principles as an
optimization problem and introduces additional consistency principles at node/edge attribute levels
to handle attributed network alignment.

B.2 EMBEDDING-BASED METHODS

• IONE (Liu et al., 2016). IONE modeled the follower/followee-ship of different nodes as input/out-
put context vectors to learn proximity-preserving node embeddings, and solve the node embedding
and network alignment problem based on a unified framework.

• REGAL (Heimann et al., 2018). REGAL designs an embedding learning methods called xNetMF
which learns powerful node embeddings by matrix factorization on a linear combination between
cross-network structural and attribute similarity matrix. Based on xNetMF embeddings, REGAL
infer node-level alignment of two networks based on Euclidean distance of nodes in the embedding
space.

• CrossMNA (Chu et al., 2019). CrossMNA leverages cross-network structural information to learn
inter and intra network embeddings simultaneously. By comparing inter network embeddings
across different networks, CrossMNA is capable of aligning multiple networks at the same time.

• NetTrans (Zhang et al., 2020). NetTrans approach the network alignment problem from a cross-
network transformation perspective. It learns the transformation of both network structure and
node attributes at different resolutions to identify node-level alignment.

• WAlign (Gao et al., 2021). WAlign learns node embeddings by a lightweight GCN model to
capture both local and global graph patterns and proposes a Wasserstein distance discriminator to
minimize the Wasserstein distance between node embeddings across different graphs.

• BRIGHT (Yan et al., 2021b). BRIGHT first generate positional node embeddings by random
walk with restart (RWR) (Tong et al., 2006) against anchor links. To handle plain network
alignment, BRIGHT-U learns position-aware embeddings by transforming RWR embeddings
through a shared MLP. To handle attributed network alignment, BRIGHT-A use a shared GCN
model for transforming node attributes and concatenates the output embeddings with RWR vectors
before feeding into the shared MLP.

• NeXtAlign (Zhang et al., 2021). NeXtAlign designs a spatial GCN model and learns node
embeddings that balance the alignment consistency and disparity by crafting the sampling strategy.

• WLAlign (Liu et al., 2023a). WLAlign proposes a cross-network Weisfeiler-Lehman relabeling
scheme to learn embeddings that preserves long-range connectivity to the anchor pairs on plain
networks.
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B.3 OT-BASED METHODS

• SLOTAlign (Tang et al., 2023). SLOTAlign utilizes a parameter-free GCN model to encode graph
structure. By integrating output embeddings of multiple layers of GCN through a learnable linear
combination, SLOTAlign encode the Gromov-Wasserstein distance between two networks via the
learned embeddings and optimize the embedding and optimal transport problem alternatively to
infer alignment.

• PARROT (Zeng et al., 2023). PARROT encodes a position-aware transportation cost by random
walk with restart (RWR) (Tong et al., 2006) on separate and product graphs, and integrate consis-
tency principle at node, edge, and neighborhood levels into the optimal transport formulation. Then,
it solves the resulting optimization problem efficiently via constrained proximal point methods to
infer node-level alignment.

• HOT (Zeng et al., 2024). HOT proposes a hierarchical multi-marginal optimal transport framework
which first decomposes multiple networks to aligned clusters via the fused Gromov-Wasserstein
(FGW) barycenter (Peyré et al., 2016) and then aligns node in aligned clusters simultaneous by
solving optimal transport problem within clusters.

• JOENA (Yu et al., 2025). JOENA transforms the transport plan of optimal transport into an
adaptive sampling strategy via a learnable transformation to learn node embeddings and alignment
in a mutual beneficial manner.

C DETAILED EXPERIMENTAL SETUP

Machine. All experiments are conducted on a computing server equipped with dual Intel® Xeon®
Gold 6240R CPUs and 4 NVIDIA Tesla V100-SXM2 GPUs with 32GB memory each.

Dataset split and hyperparameters. To mitigate the randomness introduced by a single random
dataset split, we report the average metrics of 5 different dataset split based on 5 randomly selected
seeds. All NA methods are evaluated under the same dataset splits to ensure a fair comparison. For
each dataset split, we run a NA algorithm 5 times and report the average metrics. Hyperparameters
are tuned with a fixed budget of 5 per key parameter based on the default values and hyperparameter
study in the original papers. Detailed hyperparameter search spaces can be found in Table 4.

Table 4: Hyperparameter search spaces.
NA Method Search Parameters
IsoRank α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
FINAL α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
IONE out_dim∈ {32, 64, 100, 128, 256}
REGAL k∈ {1, 5, 10, 15, 20}, num_layers∈ {1, 2, 3, 4, 5}, α ∈ {0.001, 0.005, 0.01, 0.05, 0.1}
CrossMNA d1 ∈ {10, 50, 100, 150, 200}, d2 ∈ {10, 50, 100, 150, 200}
NetTrans α ∈ {0.01, 0.1, 1, 10, 100}, β ∈ {0.01, 0.1, 1, 10, 100}, γ ∈ {0.01, 0.1, 1, 10, 100}, L ∈ {1, 2, 3, 4, 5}
WAlign h ∈ {128, 256, 512, 1024, 2048}, α ∈ {0.01, 0.02, 0.04, 0.06, 0.08}
BRIGHT β ∈ {0.05, 0.1, 0.15, 0.2, 0.25}, out_dim∈ {32, 64, 128, 256, 512}, neg_sample_size∈ {100, 300, 500, 700, 900}
NeXtAlign β ∈ {0.05, 0.1, 0.15, 0.2, 0.25}, out_dim∈ {32, 64, 128, 256, 512}, neg_sample_size∈ {100, 300, 500, 700, 900}
WLAlign out_dim∈ {32, 64, 128, 256, 512}, neg_sample_size∈ {20, 40, 60, 80, 100}
PARROT η ∈ {0.1, 0.5, 1, 5, 10}, λe ∈ ηλdefault

e , λn ∈ ηλdefault
n , λa ∈ ηλdefault

a , λp ∈ ηλdefault
p

SLOTAlign ϵ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, step_size∈ {1, 2, 3, 4, 5}
HOT ϵ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
JOENA α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, γp ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, λ0 ∈ {0.1, 0.5, 1.0, 1.5, 2.0}

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ROBUSTNESS RESULTS

To benchmark the robustness of existing NA algorithms, we conduct controlled experiments to study
the impact of edge, attribute, and supervision noises to alignment performance, offering practical
insights into the development of robust NA methods.

Edge noise. We introduce edge-level noise to simulate real-world edge perturbation (Jin et al.,
2020). Specifically, the p% edge noise level is defined as randomly adding/deleting p% edges in the
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Figure 5: Robustness results of NA methods under different levels of edge, attribute, and supervision
noises on representative datasets across 6 domains. The x-axis of the plots in the 1st/2nd/3rd row
shows the noise level of edge/attribute/supervision, respectively, and the y-axis shows the MRR.

second network to be aligned (Tang et al., 2023; Zeng et al., 2023). We conduct evaluations of all NA
methods under a semi-supervised (20% training ratio) plain NA setup to avoid potential interference
of node/edge attributes.

Attribute noise. We introduce attribute-level noise to simulate real-world attribute perturba-
tion (Zheng et al., 2021). Specifically, the p% attribute noise level is defined as randomly perturbing 2

p% node and edge attributes in the second network to be aligned (Zeng et al., 2023). We conduct
evaluations of attributed NA methods under a semi-supervised attributed NA setting with a training
ratio of 20%.

Supervision noise. We introduce supervision noise to evaluate the robustness of semi-supervised
NA methods against noisy anchor node pairs (Yan et al., 2021b; Tang et al., 2023). Specifically,
the p% supervision noise is defined as randomly setting p% anchor nodes in the second graph to
non-anchor nodes. To ensure fair comparison, we only evaluate the robustness of semi-supervised
attributed NA methods 3 against supervision noise under a semi-supervised attributed NA setting
with a training ratio of 20%.

Analysis. Robustness results on five representative datasets are shown in Figure 5. Firstly, for
edge noise, consistency-based methods, including IsoRank (Singh et al., 2008) and FINAL (Zhang
& Tong, 2016), are among the most robust methods with the slightest performance drop across all
datasets. Embedding-based methods (Liu et al., 2016; Heimann et al., 2018; Chu et al., 2019; Zhang
et al., 2020; Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu et al., 2023a), while slightly
less robust than consistency-based approaches, generally show descent performance degradation
ratio as edge noise level increases. OT-based methods (Zeng et al., 2023; Tang et al., 2023; Zeng
et al., 2024; Yu et al., 2025), on the other hand, differ significantly in terms of robustness to edge-
level noisel, indicating that although OT can reduce the negative effect of graph noises by marginal
constraint (Zeng et al., 2023; Yu et al., 2025), they require careful design of the transportation costs to
avoid noise amplification during optimization. Nevertheless, OT-based methods PARROT (Zeng et al.,
2023) and JOENA (Yu et al., 2025) consistently outperforms all other NA algorithms in alignment
performance across different noise levels.

2We flip binary attributes and add standard gaussian noise into normalized continuous attributes.
3We include FINAL (Zhang & Tong, 2016) which has a semi-supervised version in its original paper.
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Figure 6: Sensitivity results of semi-supervised NA algorithms to different levels of supervision. The
two rows correspond to plain and attributed NA settings respectively. The x-axis shows the training
ratio (i.e., supervision level), and the y-axis shows the MRR.

Secondly, for attribute noise, PARROT (Zeng et al., 2023) and JOENA (Yu et al., 2025) becomes the
most robust algorithms across all datasets. While both methods are OT-based, PARROT integrates
consistency principles which further improve its robustness, and JOENA adopts an embedding-
encoded OT cost learned via a MLP for robust alignment. Consistency-based methods remain robust
to attribute noise on most datasets. Embedding-based methods are generally more sensitive to attribute
noise than edge noise and suffer from significant performance drop under high attribute noise level,
which highlights the need for more robust embedding learning approaches, potentially through the
integration of optimal transport or consistency principles.

Finally, for supervision noise, the performance of most NA algorithms degrades significantly as the
noise level increase, indicating that the effectiveness of existing semi-supervised NA methods rely
heavy on the quality of anchor node pairs even when node/edge attributes are available. Nevertheless,
JOENA (Yu et al., 2025) consistently shows the mildest performance drop across all datasets,
demonstrating the power of effective combination of embedding and OT-based methods. Future
methods may explore more effective integration of consistency, embedding, and OT-based approaches
to better handle different kinds of real-world noise.

Takeaway #4: Different NA methods are sensitive to different kinds of noises. Effective
integration of different NA techniques could be a way out.

Different NA methods may be sensitive to different kinds of real-world noises. Integrating
different NA techniques effectively, such as consistency principles, embedding learning, and
optimal transport, could potentially improve the overall robustness of NA algorithms.

D.2 SENSITIVITY TO SUPERVISION RESULTS

To comprehensively evaluate the impact of supervision on the performance of NA algorithms, we
conduct a set of experiments to study the sensitivity of semi-supervised NA methods to different
levels of supervision. Specifically, we gradually increase the training ratio and report the MRR of
semi-supervised NA methods on five representative datasets under both plain and attributed NA
settings. The results are presented in Figure 6.

Analysis. Firstly, the performance of NA algorithms generally shows a growing trend as the training
ratio increases, with only a few exceptions such as JOENA (Yu et al., 2025) on Douban (Zhang &
Tong, 2016), potentially due to overfitting on training data or the presence of noisy anchor pairs from
real-world datasets. Nonetheless, most NA methods benefit significantly from increased supervision,
demonstrating its importance to the effectiveness of NA algorithms.
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Secondly, the use of attribute information typically improves the performance of NA algorithms
under low supervision. However, the performance gap between plain and attributed settings narrows
as the training ratio increases. For example, PARROT (Zeng et al., 2023) achieve an MRR of
approximately 0.7/0.3 on Douban with/without attribute information under 10% training ratio,
whereas the performance rises to about 0.95/0.9 under a 90% training ratio. This suggests that while
attributes can help in low-supervision scenarios, increasing supervision remains crucial even in the
presence of node and edge attributes in graphs. Combined with our previous robustness study against
supervision noise, we present the following findings:

Takeaway #5: Supervision greatly affect the effectiveness of NA algorithms.

The quality and quantity of supervision greatly affect the performance of NA algorithms even
in the presence of node and edge attributes, suggesting that self-supervised learning methods
which discover high-quality anchor pairs could be a promising directions for NA research.

D.3 COMPARISON WITH OFFICIAL IMPLEMENTATIONS

Table 5: Performance and runtime comparison with official implementations averaged against all
datasets. ∆ represents the absolute difference between official and PLANETALIGN’s implementation.

Metrics MRR Training Runtime(s)
Version Official PLANETALIGN ∆ Official PLANETALIGN ∆ Speedup

REGAL 0.079 0.080 +0.001 20 14 -6 1.43
CrossMNA 0.220 0.222 +0.002 298 210 -88 1.42
NetTrans 0.373 0.374 +0.001 919 817 -102 1.12
WAlign 0.271 0.270 -0.001 79 68 -11 1.16
BRIGHT 0.362 0.362 +0.000 768 619 -149 1.24
NeXtAlign 0.391 0.391 +0.000 1319 1234 -85 1.07
WLAlign 0.328 0.322 -0.006 4018 1276 -2742 3.15
SLOTAlign 0.200 0.200 -0.001 891 821 -70 1.09
HOT 0.173 0.172 -0.001 239 226 -13 1.06
JOENA 0.583 0.583 +0.000 691 679 -12 1.02
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Figure 7: Performance and runtime comparison between official and PLANETALIGN’s implemen-
tations. The x-axis shows the average training runtime, and the y-axis shows the average MRR of
different NA algorithms across 18 datasets. The average speedup in runtime of each method are
shown in green.

We conduct comparative experiments between the official and PLANETALIGN’s implementations
of NA algorithms to validate the correctness and efficiency of PLANETALIGN. To ensure a fair
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comparison, we only include algorithms that have official Python implementations to eliminate
the efficiency discrepancy of different programming languages. All training parameters, including
training epochs, are set as default in the official code. We report the average MRR and training
runtime of official and PLANETALIGN’s implementation across all 18 datasets in PLANETALIGN in
Table 5 and Figure 7

We can see that PLANETALIGN’s implementation show comparable performance across all baselines
while achieving up to 3 times speed-up over official implementations, demonstrating the correctness
and efficiency of our implementation of existing NA methods.

D.4 SCALABILITY RESULTS ON LARGE GRAPHS

To further demonstrate the efficiency of our implementation on large-scale networks, we compare the
training runtime with the official implementation on ER networks of 50K, 75K, and 100K nodes with
an average node degree of 5 per network. As we can see in Figure 6, PLANETALIGN consistently
outperform official implementations with up to 2.7 times speed-up.

Table 6: Runtime (s) comparison with official implementations on large-scale ER networks of 50K,
75K, and 100K nodes with average node degrees of 5. OOM represents out-of-memory.

# Nodes 50K 75K 100K
Version Official PLANETALIGN Speedup Official PLANETALIGN Speedup Official PLANETALIGN Speedup

REGAL 334 214 1.56 583 390 1.49 1.12×103 731 1.53
CrossMNA 4.12×103 3.02×103 1.36 7.36×103 5.13×103 1.43 1.37×104 8.91×103 1.54
WAlign 1.65×103 1.29×103 1.28 3.12×103 2.54×103 1.23 OOM OOM OOM
BRIGHT 2.82×104 2.15×104 1.31 8.95×104 6.90×104 1.29 3.47×105 2.49×105 1.40
NeXtAlign 6.55×104 6.08×104 1.08 3.68×105 3.41×105 1.08 OOM OOM OOM
WLAlign 2.46×105 9.12×104 2.70 OOM OOM OOM OOM OOM OOM
SLOTAlign 3.01×104 2.75×104 1.10 OOM OOM OOM OOM OOM OOM
HOT 3.14×103 2.87×103 1.10 6.17×103 5.74×103 1.07 1.08×104 9.43×103 1.15
JOENA 2.31×103 2.28×104 1.01 8.30×104 8.12×104 1.02 OOM OOM OOM

D.5 DETAILED EFFECTIVENESS RESULTS

Detailed effectiveness results on plain networks with a training ratio of 20% are shown in Table 7
and 8. Detailed effectiveness results on attributed networks with a training ratio of 20% are shown in
Table 9.

E STATEMENT OF LLM USAGE

In this paper, LLMs were used exclusively for formatting assistance and language polishing. At
no point were LLMs involved significantly in research ideation and/or writing to the extent that
they could be considered as a contributor. Therefore, the use of LLMs does not impact the core
methodology, the scientific rigorousness, or the originality of this research.
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Table 7: Detailed effectiveness results (Part I of II) on plain networks with a training ratio of 20%.
The 1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference
time and Mem. denotes the peak memory usage.

Dataset Foursquare-Twitter Phone-Email
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)
IsoRank .0241±.0000 .1487±.0000 .0645±.0000 5.70±0.60 1.60±0.10 .0431±.0000 .2156±.0000 .1100±.0000 0.25±0.12 0.59±0.00

FINAL .0474±.0000 .2407±.0000 .1062±.0000 0.96±0.03 2.30±0.00 .0494±.0000 .2725±.0000 .1257±.0000 0.10±0.04 0.63±0.01

IONE .0202±.0052 .0985±.0051 .0481±.0045 1.10±0.02×104 1.20±0.00 .0941±.0032 .4037±.0120 .1952±.0031 2.30±0.06×103 0.80±0.00

REGAL .0001±.0002 .0027±.0010 .0025±.0003 7.80±0.10 1.10±0.10 .0012±.0000 .0097±.0011 .0076±.0003 1.30±0.20 0.60±0.00

CrossMNA .0162±.0034 .1011±.0061 .0456±.0039 1.10±0.06×103 1.00±0.00 .0305±.0029 .2163±.0086 .0968±.0021 1.10±0.27×103 0.62±0.00

NetTrans .0809±.0043 .2470±.0074 .1347±.0048 5.90±0.86×102 3.50±1.20 .0216±.0027 .2546±.0020 .1020±.0016 2.40±1.70×101 0.85±0.02

WAlign .0039±.0004 .0150±.0005 .0095±.0003 1.30±0.04 2.30±0.00 .0206±.0018 .1235±.0093 .0585±.0009 0.29±0.08 0.89±0.01

BRIGHT .0537±.0027 .1784±.0012 .0923±.0019 9.20±0.20 1.40±0.00 .0476±.0033 .2516±.0028 .1186±.0029 0.29±0.01 0.95±0.01

NeXtAlign .0387±.0040 .1420±.0163 .0745±.0075 7.90±0.25×101 2.30±0.00 .0570±.0045 .3012±.0116 .1411±.0036 4.60±0.10 0.86±0.01

WLAlign .0924±.0016 .2103±.0036 .1325±.0009 1.20±0.14×103 3.00±0.00 .0764±.0012 .2669±.0047 .1412±.0014 7.50±1.10×102 1.00±0.00

PARROT .1203±.0000 .2908±.0000 .1776±.0000 1.60±0.02×101 2.60±0.10 .2887±.0000 .7331±.0000 .4374±.0000 0.76±0.09 0.69±0.00

SLOTAlign .0291±.0000 .1172±.0000 .0614±.0000 1.60±0.03×102 2.50±0.00 .0075±.0000 .0525±.0000 .0283±.0000 2.34±0.30 0.75±0.01

HOT .0518±.0030 .1627±.0044 .0457±.0018 1.10±0.21×102 1.70±0.10 .0775±.0025 .3273±.0069 .0801±.0020 5.30±0.60 0.72±0.01

JOENA .2673±.0069 .4478±.0083 .3304±.0083 2.80±0.05×101 2.50±0.06 .3468±.0029 .7809±.0037 .4973±.0018 0.76±0.08 0.72±0.01

Dataset ACM-DBLP SacchCere1-SacchCere2
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)

IsoRank .1641±.0003 .6329±.0008 .3023±.0002 4.70±1.70×101 4.30±0.10 .0335±.0009 .2284±.0016 .0976±.0002 0.95±0.10 1.50±0.60

FINAL .2082±.0000 .6893±.0000 .3612±.0000 3.90±0.10 6.60±0.10 .0467±.0000 .2379±.0000 .1083±.0000 0.54±0.03 1.70±0.60

IONE .2515±.0028 .7267±.0075 .3979±.0023 1.30±0.05×104 2.60±0.13 .0458±.0037 .2100±.0055 .0992±.0016 8.30±0.04×103 1.30±0.60

REGAL .0357±.0022 .1367±.0035 .0700±.0030 1.30±0.10×101 1.90±0.00 .0023±.0008 .0087±.0007 .0063±.0006 3.40±0.10 1.20±0.00

CrossMNA .0742±.0034 .6108±.0031 .2290±.0025 5.50±0.13×102 1.90±0.00 .0046±.0007 .1452±.0041 .0492±.0023 1.80±0.13×102 0.98±0.00

NetTrans .4148±.0018 .8107±.0009 .5429±.0012 1.10±0.34×102 1.50±0.50×101 .0523±.0017 .2534±.0038 .1150±.0020 1.20±0.30×101 2.20±0.20

WAlign .2871±.0018 .5538±.0025 .3797±.0021 2.80±0.30 4.90±0.10 .0207±.0006 .0516±.0032 .0336±.0019 0.28±0.01 1.90±0.00

BRIGHT .4052±.0011 .7957±.0011 .5346±.0013 6.80±0.10×101 3.80±0.00 .0353±.0015 .2188±.0062 .0915±.0021 4.60±0.00 1.60±0.00

NeXtAlign .4670±.0019 .8401±.0017 .5915±.0011 1.70±0.04×102 4.00±0.00 .0292±.0035 .2075±.0075 .0886±.0040 1.50±0.40 1.30±0.10

WLAlign .3152±.0012 .6446±.0008 .4183±.0008 1.40±0.04×103 7.00±0.00 .0535±.0011 .1639±.0014 .0888±.0007 5.80±0.99×102 1.50±0.00

PARROT .5749±.0000 .8784±.0000 .6766±.0000 1.30±0.04×102 7.80±0.00 .0645±.0000 .2720±.0000 .1312±.0000 5.90±0.20 1.90±0.60

SLOTAlign .4914±.0000 .7174±.0000 .5707±.0000 9.90±0.16×102 7.60±0.26 .0000±.0000 .0023±.0000 .0028±.0000 1.00±0.00 2.10±0.10

HOT .3261±.0040 .6787±.0053 .2210±.0026 4.30±0.15×102 5.00±0.00 .0344±.0023 .1993±.0039 .0564±.0012 1.20±0.11×103 1.50±0.10

JOENA .6149±.0458 .9062±.0219 .7136±.0389 3.50±0.50×101 3.00±2.00 .0589±.0026 .2284±.0062 .1129±.0027 0.31±0.01 1.10±0.00

Dataset DBP15K_ZH-EN Italy1-Italy2
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)

IsoRank .1092±.0001 .4878±.0001 .2276±.0000 1.60±0.16×102 1.60±0.00×101 .0424±.0009 .2076±.0009 .0954±.0003 0.49±0.13 0.60±0.00

FINAL .1327±.0000 .5347±.0000 .2634±.0000 1.80±0.00×101 2.40±0.00×101 .0430±.0000 .2202±.0000 .0958±.0000 0.13±0.01 0.84±0.00

IONE .0633±.0033 .2512±.0080 .1258±.0047 1.50±0.03×104 8.70±0.00 .0245±.0027 .1570±.0149 .0679±.0028 6.20±0.03×103 0.84±0.00

REGAL .0036±.0005 .0168±.0008 .0091±.0006 3.00±0.10×101 5.90±0.00 .0033±.0020 .0265±.0041 .0142±.0023 0.97±0.00 0.81±0.00

CrossMNA .0303±.0012 .2816±.0046 .1077±.0017 9.90±0.26×102 6.00±0.00 .0023±.0015 .1447±.0105 .0476±.0024 3.70±0.70×101 0.98±0.01

NetTrans .2625±.0011 .6022±.0010 .3717±.0009 5.00±0.22×102 3.00±1.30×101 .0503±.0019 .2248±.0027 .1110±.0020 0.62±0.15 1.10±0.00

WAlign .1856±.0103 .2823±.0170 .2231±.0127 9.10±0.44 1.50±0.00×101 .0609±.0014 .1580±.0034 .0938±.0020 0.09±0.00 1.10±0.00

BRIGHT .2715±.0007 .5938±.0015 .3789±.0007 3.20±0.03×102 1.10±0.00×101 .0904±.0025 .2566±.0045 .1443±.0010 0.33±0.03 1.00±0.00

NeXtAlign .2695±.0098 .5981±.0095 .3790±.0104 2.60±0.03×103 1.30±0.10×101 .0861±.0048 .2580±.0029 .1466±.0045 0.11±0.04 1.20±0.00

WLAlign .2349±.0006 .4122±.0006 .2911±.0001 2.90±0.26×103 2.70±0.00×101 .0404±.0048 .1536±.0051 .0778±.0037 2.40±0.86×102 1.40±0.00

PARROT .6334±.0000 .8528±.0000 .7074±.0000 8.70±0.10×102 2.80±0.00×101 .0993±.0000 .2848±.0000 .1655±.0000 0.90±0.00 0.83±0.00

SLOTAlign .0188±.0000 .0725±.0000 .0381±.0000 3.06±0.01×104 2.80±0.00×101 .0149±.0000 .0613±.0000 .0334±.0000 0.12±0.00 1.00±0.20

HOT .3143±.0038 .5832±.0058 .2006±.0020 2.10±0.08×103 2.00±0.03×101 .0639±.0114 .2408±.0036 .0586±.0046 1.10±0.10×101 2.10±0.00

JOENA .6476±.0037 .8496±.0034 .7170±.0037 6.70±0.08×102 2.60±0.00×101 .1010±.0049 .2930±.0161 .1697±.0061 0.06±0.00 1.00±0.10

Dataset Douban Flickr-LastFM
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)

IsoRank .1351±.0003 .5179±.0004 .2517±.0001 0.59±0.06 0.95±0.03 .0028±.0000 .0815±.0000 .0305±.0000 9.20±0.22×101 8.13±0.21

FINAL .1458±.0000 .5676±.0000 .2692±.0000 0.34±0.03 1.14±0.04 .0028±.0000 .0732±.0000 .0253±.0000 1.56±0.04×101 1.29±0.02×101

IONE .2777±.0046 .6312±.0098 .3936±.0040 9.08±1.57×103 0.89±0.04 .0113±.0033 .0437±.0044 .0239±.0036 4.09±1.41×103 3.77±0.21

REGAL .0025±.0009 .0198±.0034 .0105±.0006 2.57±0.19 0.82±0.00 .0042±.0026 .0340±.0062 .0177±.0023 1.78±0.06×101 1.65±0.16

CrossMNA .0187±.0044 .3241±.0054 .1172±.0049 6.34±0.24×101 0.78±0.01 .0061±.0008 .0091±.0030 .0078±.0011 3.18±3.40×101 2.46±0.01

NetTrans .2030±.0020 .6018±.0020 .3291±.0015 1.54±0.44 1.92±0.40 .0052±.0012 .0204±.0018 .0115±.0009 2.75±2.01×101 2.27±1.15×101

WAlign .1480±.0018 .2381±.0032 .1834±.0019 0.20±0.06 1.31±0.11 .0094±.0011 .0423±.0021 .0290±.0010 0.55±0.03 4.51±0.08

BRIGHT .1202±.0007 .4361±.0031 .2218±.0013 2.64±0.07 1.14±0.01 .0259±.0015 .0492±.0037 .0357±.0010 5.44±0.14×101 6.14±0.04

NeXtAlign .2154±.0062 .5701±.0144 .3305±.0084 1.86±0.08 1.66±0.00 .0260±.0030 .0541±.0075 .0375±.0023 6.11±0.29×101 6.85±0.07

WLAlign .2028±.0021 .3505±.0019 .2517±.0015 6.58±0.41×102 0.95±0.02 .0080±.0027 .0224±.0012 .0141±.0018 5.37±3.57×102 3.21±0.02

PARROT .3469±.0000 .6832±.0000 .4563±.0000 2.73±0.71 1.31±0.02 .0276±.0000 .0608±.0000 .0417±.0000 2.51±0.08×102 1.51±0.02×101

SLOTAlign .0000±.0000 .0078±.0000 .0048±.0000 7.01±0.32 1.40±0.03 .0041±.0000 .0235±.0000 .0145±.0000 8.44±4.05 1.54±0.04×101

HOT .1509±.0059 .4600±.0131 .1545±.0026 3.95±1.54×101 1.37±0.08 .0091±.0037 .0157±.0030 .0063±.0015 1.01±0.02×103 7.97±0.18

JOENA .4457±.0038 .8091±.0026 .5657±.0022 0.41±0.06 1.19±0.03 .0290±.0000 .0994±.0062 .0558±.0023 2.02±0.07×102 1.41±0.02×101

Dataset Flickr-MySpace Arenas
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)
IsoRank .0047±.0000 .0374±.0000 .0225±.0002 2.39±2.35 3.47±0.08 .3981±.0000 .6751±.0000 .4940±.0000 0.09±0.00 1.02±0.63

FINAL .0000±.0000 .0093±.0000 .0048±.0000 6.74±0.28 5.21±0.01 .3849±.0000 .8811±.0000 .5523±.0000 0.11±0.01 1.13±0.63

IONE .0056±.0027 .0266±.0058 .0170±.0023 1.19±0.64×103 1.88±0.07 .9130±.0069 .9763±.0042 .9393±.0060 1.39±0.14×104 1.25±0.63

REGAL .0061±.0013 .0322±.0042 .0173±.0017 9.36±0.10 1.06±0.14 .9053±.0052 .9803±.0008 .9354±.0034 1.04±0.02 0.94±0.11

CrossMNA .0070±.0037 .0107±.0021 .0090±.0032 2.93±3.03×101 1.36±0.01 .4261±.0175 .8492±.0120 .5812±.0158 5.61±0.10×101 1.00±0.00

NetTrans .0000±.0000 .0009±.0013 .0010±.0002 5.42±3.96 7.38±3.86 .8827±.0013 .9983±.0004 .9348±.0010 0.74±0.05 2.22±0.43

WAlign .0056±.0013 .0444±.0016 .0240±.0008 0.40±0.05 2.49±0.04 .9723±.0003 .9974±.0003 .9837±.0002 0.12±0.01 1.34±0.15

BRIGHT .0037±.0027 .0154±.0043 .0089±.0012 2.08±0.04×101 3.32±0.07 .9700±.0005 .9954±.0006 .9817±.0003 0.38±0.01 1.29±0.03

NeXtAlign .0047±.0017 .0140±.0024 .0089±.0014 2.16±0.06×101 4.20±0.01 .5347±.0012 .7269±.0031 .6034±.0089 0.28±0.02 1.11±0.08

WLAlign .0000±.0000 .0070±.0055 .0043±.0021 5.67±3.01×102 1.51±0.02 .6051±.0022 .7152±.0010 .6491±.0009 6.47±0.89×102 0.89±0.07

PARROT .0093±.0000 .0164±.0000 .0114±.0000 3.73±0.08×101 6.04±0.06 .9780±.0000 .9999±.0000 .9886±.0000 0.88±0.05 1.10±0.63

SLOTAlign .0021±.0000 .0135±.0000 .0075±.0000 9.78±0.13 6.31±0.04 .9785±.0000 .9999±.0000 .9889±.0000 0.12±0.00 0.86±0.01

HOT .0014±.0013 .0033±.0039 .0005±.0005 4.46±0.44×102 4.37±0.23 .9653±.0048 .9958±.0020 .4901±.0020 8.78±1.28 8.19±1.36

JOENA .0071±.0000 .0476±.0035 .0261±.0006 4.49±0.07 1.79±0.11 .9795±.0006 .9999±.0000 .9894±.0003 0.22±0.35 1.01±0.00
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Table 8: Detailed effectiveness results (Part II of II) on plain networks with a training ratio of 20%.
The 1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference
time and Mem. denotes the peak memory usage.

Dataset Cora ArXiv
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)

IsoRank .1793±.0000 .5877±.0000 .3127±.0001 0.98±0.30 1.17±0.15 .2247±.0001 .5537±.0000 .3281±.0000 1.26±0.17×102 1.52±0.06×101

FINAL .2065±.0000 .6442±.0000 .3488±.0000 0.25±0.01 1.38±0.15 .2551±.0000 .7250±.0000 .4102±.0000 1.61±0.02×101 2.22±0.06×101

IONE .3415±.0080 .6611±.0079 .4536±.0078 1.34±0.04×104 1.08±0.15 .2688±.0086 .5195±.0093 .3517±.0091 1.66±0.17×104 8.79±0.57

REGAL .0158±.0019 .0789±.0051 .0383±.0032 2.41±0.07 0.86±0.02 .0026±.0003 .0185±.0012 .0098±.0005 3.30±0.22×101 6.79±0.10

CrossMNA .0358±.0045 .4574±.0080 .1740±.0052 5.80±0.17×101 0.89±0.01 .2875±.0015 .6742±.0007 .4115±.0012 2.87±0.06×103 6.68±0.06

NetTrans .3703±.0023 .7238±.0017 .4891±.0020 1.38±0.28 1.88±0.26 .4359±.0015 .7831±.0006 .5503±.0010 1.43±0.11×103 8.84±0.09

WAlign .4176±.0041 .5650±.0048 .4753±.0039 0.23±0.04 1.85±0.06 .2308±.0041 .3684±.0073 .2785±.0049 2.52±0.08×101 2.29±0.01×101

BRIGHT .3839±.0019 .6966±.0025 .4934±.0013 3.61±0.05 1.88±0.02 .4216±.0006 .7263±.0010 .5270±.0007 3.06±0.02×102 1.13±0.00×101

NeXtAlign .4096±.0106 .7212±.0087 .5192±.0087 3.07±0.12 1.67±0.00 .4189±.0067 .7461±.0098 .5291±.0023 2.91±0.07×102 1.78±0.02×101

WLAlign .2754±.0011 .4398±.0010 .3349±.0002 7.02±0.43×102 1.25±0.03 .4873±.0007 .6593±.0010 .5425±.0006 5.98±0.08×103 2.77±0.00×101

PARROT .6961±.0000 .8639±.0000 .7599±.0000 6.02±0.99 1.73±0.12 .7259±.0000 .9169±.0000 .7948±.0000 7.60±0.22×102 2.55±0.06×101

SLOTAlign .6654±.0000 .7621±.0000 .7044±.0000 1.79±0.01 1.96±0.10 .3642±.3152 .4853±.4175 .4068±.3501 7.01±5.21×102 2.51±0.09×101

HOT .4173±.0071 .6413±.0084 .2481±.0036 3.83±0.07×101 2.36±0.58 .3994±.0014 .6475±.0022 .2417±.0009 1.90±0.18×103 1.59±0.18×101

JOENA .8238±.0033 .9212±.0005 .8646±.0021 0.50±0.01 1.00±0.04 .7578±.0011 .9370±.0006 .8271±.0004 5.63±0.50×101 4.19±0.00

Dataset PPI GGI
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)

IsoRank .3622±.0000 .6175±.0000 .4462±.0000 2.19±0.25 1.18±0.02 .2512±.0000 .5064±.0000 .3372±.0000 3.59±0.09×101 5.33±0.18

FINAL .4479±.0000 .8191±.0000 .5743±.0000 0.50±0.01 1.50±0.00 .1920±.0000 .6396±.0000 .3402±.0000 4.61±0.33 7.42±0.11

IONE .8350±.0047 .9218±.0036 .8658±.0042 1.68±0.07×104 1.17±0.02 .5021±.0101 .6829±.0079 .5652±.0094 1.72±0.06×104 3.32±0.18

REGAL .0110±.0024 .0724±.0047 .0330±.0029 4.83±0.12 0.94±0.00 .0171±.0011 .0780±.0038 .0387±.0017 1.36±0.01×101 2.52±0.04

CrossMNA .8045±.0029 .9179±.0046 .8445±.0028 6.55±0.11×102 1.09±0.02 .3961±.0030 .6964±.0041 .5017±.0028 7.65±0.14×102 2.67±0.00

NetTrans .5714±.0011 .8012±.0021 .6459±.0008 3.63±0.18×101 2.16±0.11 .4024±.0014 .6705±.0008 .4918±.0011 2.76±0.57×102 7.34±4.13

WAlign .2912±.0037 .3877±.0041 .3264±.0038 1.78±0.06 2.37±0.03 .2978±.0090 .3791±.0092 .3282±.0088 5.33±0.24 7.32±0.07

BRIGHT .4828±.0023 .6354±.0037 .5387±.0018 4.95±0.04 2.37±0.05 .3960±.0009 .5870±.0023 .4642±.0008 9.11±0.35×101 5.74±0.03

NeXtAlign .4576±.0012 .6098±.0019 .5248±.0031 4.65±0.07 2.54±0.01 .2899±.0067 .5263±.0025 .3717±.0056 5.19±0.03×101 6.87±0.04

WLAlign .7466±.0005 .8126±.0016 .7682±.0005 1.04±0.07×103 1.74±0.04 .4354±.0006 .5440±.0012 .4710±.0005 1.82±0.03×103 9.40±0.02

PARROT .9619±.0000 .9926±.0000 .9731±.0000 1.80±0.04×101 1.58±0.03 .8203±.0000 .9373±.0000 .8621±.0000 2.30±0.09×102 8.47±0.03

SLOTAlign .7398±.0000 .8219±.0000 .7684±.0000 3.98±0.29 1.64±0.02 .7170±.0003 .8097±.0017 .7500±.0011 1.98±0.04×102 8.15±0.03

HOT .3822±.0024 .4667±.0031 .2052±.0011 5.66±0.77×101 6.70±0.00 .3466±.0020 .4724±.0023 .1931±.0011 8.67±4.82×102 5.13±0.44

JOENA .9856±.0000 .9995±.0002 .9907±.0000 0.54±0.02 1.08±0.02 .8665±.0002 .9583±.0001 .9016±.0000 1.01±0.00×101 1.99±0.00

Dataset DBP15K_JA-EN DBP15K_FR-EN
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)

IsoRank .1285±.0000 .5095±.0001 .2465±.0001 1.51±0.07×102 1.60±0.00×101 .1072±.0000 .5024±.0001 .2281±.0000 1.50±0.05×102 1.59±0.03×101

FINAL .1437±.0000 .5580±.0000 .2784±.0000 1.82±0.03×101 2.46±0.00×101 .1414±.0000 .5701±.0000 .2781±.0000 1.81±0.01×101 2.45±0.03×101

IONE .0405±.0037 .1864±.0108 .0903±.0058 1.55±0.02×104 8.83±0.00 .0366±.0010 .1719±.0066 .0836±.0027 1.46±0.01×104 8.72±0.32

REGAL .0133±.0060 .0453±.0082 .0250±.0067 3.09±0.04×101 6.06±0.11 .0065±.0000 .0247±.0007 .0140±.0003 3.16±0.02×101 5.92±0.02

CrossMNA .0179±.0013 .2932±.0042 .1008±.0020 1.01±0.03×103 6.18±0.04 .0321±.0010 .2888±.0032 .1121±.0013 1.32±0.04×103 6.23±0.04

NetTrans .3044±.0011 .6373±.0015 .4103±.0010 2.96±0.70×102 2.14±0.56×101 .2975±.0003 .6457±.0007 .4080±.0004 2.98±0.82×102 1.43±0.45×101

WAlign .2334±.0030 .3207±.0029 .2673±.0031 9.46±0.14 1.52±0.00×101 .1638±.0053 .2432±.0077 .1946±.0059 1.16±0.04×101 1.60±0.00×101

BRIGHT .3264±.0019 .6255±.0078 .4267±.0011 3.91±0.84×102 1.17±0.00×101 .3143±.0010 .6313±.0018 .4203±.0004 4.31±0.29×102 1.19±0.01×101

NeXtAlign .2866±.0402 .6001±.0340 .3920±.0387 2.66±0.80×103 1.43±nan×101 .2695±.0983 .5981±.0953 .3790±.1004 2.60±0.03×103 1.34±0.07×101

WLAlign .2661±.0005 .4378±.0009 .3212±.0005 3.19±0.14×103 2.81±0.00×101 .2764±.0006 .4769±.0008 .3401±.0004 3.63±0.29×103 2.99±0.01×101

PARROT .6453±.0000 .8600±.0000 .7164±.0000 9.13±0.09×102 2.87±0.00×101 .6999±.0000 .9038±.0000 .7697±.0000 9.01±0.22×102 2.87±0.03×101

SLOTAlign .0063±.0015 .0294±.0054 .0157±.0029 2.17±0.12×102 2.84±nan×101 .0188±.0000 .0725±.0000 .0381±.0000 1.71±0.08×102 2.84±0.03×101

HOT .3512±.0034 .6174±.0045 .2199±.0017 2.08±0.04×103 1.91±0.10×101 .3504±.0029 .6352±.0041 .2210±.0016 2.07±0.06×103 1.62±0.06×101

JOENA .6278±.0029 .8631±.0047 .6989±.0036 6.42±0.33×102 2.67±0.00×101 .7133±.0053 .9210±.0033 .7739±.0041 6.72±0.33×102 2.67±0.03×101

Dataset Airport PeMS08
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)
IsoRank .1308±.0000 .3755±.0000 .2074±.0000 0.11±0.00 0.82±0.18 .2537±.0000 .7353±.0000 .4197±.0000 0.23±0.24 0.55±0.02

FINAL .2117±.0000 .6318±.0000 .3520±.0000 0.16±0.02 0.92±0.18 .1985±.0000 .7574±.0000 .3917±.0000 0.01±0.00 0.64±0.00

IONE .4809±.0054 .7073±.0078 .5575±.0063 1.46±0.10×104 1.03±0.19 .3824±.0252 .6728±.0351 .4833±.0202 7.43±4.40×103 0.84±0.02

REGAL .0302±.0036 .1477±.0054 .0698±.0031 1.17±0.02 0.81±0.00 .0493±.0115 .2272±.0126 .1167±.0087 0.14±0.00 0.81±0.00

CrossMNA .4304±.0061 .7186±.0178 .5241±.0081 1.40±0.02×102 0.98±0.00 .0066±.0048 .0640±.0178 .0336±.0082 0.10±0.00 0.98±0.00

NetTrans .4293±.0034 .6817±.0013 .5154±.0029 1.80±0.51×101 1.47±0.29 .3985±.0141 .8794±.0066 .5621±.0077 0.77±0.44 1.26±0.00

WAlign .2270±.0113 .4163±.0126 .2924±.0106 0.13±0.00 2.03±0.46 .5846±.0074 .8441±.0042 .6790±.0065 0.13±0.00 1.16±0.34

BRIGHT .3495±.0026 .5667±.0089 .4282±.0028 0.47±0.02 1.37±0.03 .4566±.0060 .8882±.0056 .6123±.0046 0.03±0.00 1.04±0.00

NeXtAlign .2946±.0078 .5273±.0012 .3748±.0039 0.71±0.02 1.64±0.03 .4596±.0054 .8676±.0123 .6139±.0087 0.04±0.00 1.17±0.04

WLAlign .4761±.0018 .6167±.0011 .5252±.0014 7.06±0.71×102 1.33±0.00 .3676±.0069 .5125±.0072 .4203±.0029 3.28±0.55×102 1.33±0.00

PARROT .6891±.0000 .8687±.0000 .7488±.0000 1.32±0.15 0.91±0.18 .7647±.0000 .9228±.0000 .8209±.0000 0.07±0.00 0.82±0.00

SLOTAlign .6691±.0008 .7873±.0010 .7098±.0012 9.89±0.32 1.12±0.02 .9118±.0000 .9743±.0000 .9280±.0000 1.54±0.18 0.96±0.00

HOT .2889±.0124 .4648±.0118 .1737±.0059 1.54±0.19×101 2.17±0.17 .6103±.0355 .8566±.0045 .3529±.0134 0.44±0.10 2.10±0.00

JOENA .8459±.0026 .9637±.0011 .8887±.0012 0.07±0.00 1.03±0.00 .9390±.0134 .9941±.0020 .9568±.0101 0.03±0.00 1.04±0.00
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Table 9: Detailed effectiveness results on attributed networks with a training ratio of 20%. The
1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference time
and Mem. denotes the peak memory usage.

Dataset Douban Flickr-LastFM
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)
FINAL .5397±.0012 .9838±.0013 .6999±.0032 0.90±0.01 0.87±0.02 .0152±.0002 .1022±.0004 .0422±.0000 3.66±0.80 3.70±0.00

REGAL .0352±0003 .1525±.0012 .0758±.0006 3.20±0.08 2.55±0.03 .0086±.0020 .0580±.0026 .0283±.0013 2.63±0.22×101 2.70±0.27

NetTrans .3274±.0006 .6145±.0002 .4226±.0004 1.51±0.06 1.23±0.00 .0041±.0001 .0401±.0012 .0201±.0021 3.15±0.51×101 2.41±0.15×101

WAlign .2855±.0012 .5698±.0027 .3798±.0023 0.03±0.00 1.25±0.01 .0169±.0006 .0710±.0029 .0416±.0008 2.30±0.05 4.62±0.05

BRIGHT .2813±.0075 .6095±.0119 .3966±.0083 1.52±0.45 1.45±0.04 .0345±.0031 .1019±.0059 .0602±.0022 6.15±0.57×101 3.80±0.00

NeXtAlign .1879±.0045 .4918±.0012 .2756±.0022 1.48±0.01 1.47±0.00 .0083±.0038 .0384±.0141 .0214±.0070 2.04±0.26 2.00±0.10

PARROT .6413±.0000 .9408±.0000 .7481±.0000 0.25±0.02 1.34±0.02 .0442±.0000 .1064±.0000 .0701±.0000 5.13±0.02×101 1.86±0.00

SLOTAlign .4397±.0000 .7207±.0000 .5394±.0000 0.01±0.00 1.31±0.01 .0055±.0000 .0387±.0000 .0205±.0000 2.58±0.02×101 1.63±0.02×101

HOT .3223±.0032 .6391±.0174 .2578±.0064 8.76±0.21 1.41±0.00 .0152±.0013 .0525±.0003 .0141±.0021 4.63±0.17×102 8.12±0.19

JOENA .6542±.0474 .9173±.0205 .7525±.0446 0.24±0.02 1.37±0.00 .0345±.0011 .1064±.0034 .0600±.0003 1.89±0.21×101 2.63±0.02

Dataset Flickr-MySpace Arenas
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)
FINAL .0023±.0000 .0234±.0000 .0113±.0000 1.57±0.31 2.33±0.00 .4284±.0000 .9069±.0000 .5928±.0000 0.61±0.24 0.88±0.01

REGAL .0065±.0030 .0355±.0061 .0197±.0040 1.45±0.12×101 1.65±0.07 .8961±.0255 .9815±.0030 .9281±.0179 2.02±0.55 1.32±0.12

NetTrans .0075±.0019 .0374±.0052 .0201±.0014 2.58±0.09 1.32±0.00 .9581±.0036 .9879±.0013 .9688±.0026 1.03±0.05 1.17±0.00

WAlign .0112±.0026 .0505±.0054 .0316±.0021 1.96±0.58 2.65±0.07 .9808±.0003 .9978±.0000 .9886±.0002 1.75±1.05 2.19±0.07

BRIGHT .0061±.0021 .0332±.0019 .0196±.0012 3.50±0.30×101 2.38±0.00 .9794±.0005 .9950±.0006 .9863±.0004 0.51±0.21 1.05±0.00

NeXtAlign .0037±.0027 .0243±.0173 .0162±.0075 0.91±0.04 1.48±0.03 .6684±.2300 .8230±.1401 .7244±.1974 0.47±0.33 1.09±0.04

PARROT .0070±.0000 .0397±.0000 .0223±.0000 1.01±0.02×101 1.40±0.00 .9879±.0000 .9999±.0000 .9936±.0000 2.56±1.51×101 0.77±0.01

SLOTAlign .0023±.0000 .0257±.0000 .0163±.0000 1.03±0.01×101 7.51±0.10 .9891±.0010 .9999±.0000 .9942±.0005 0.13±0.00 0.88±0.01

HOT .0000±.0000 .0257±.0000 .0024±.0000 3.26±0.05×102 2.71±0.00 .9714±.0026 .9927±.0015 .4909±.0009 4.20±0.62 1.15±0.00

JOENA .0117±.0001 .0584±.0000 .0345±.0000 4.15±0.02 1.71±0.01 .9873±.0002 .9999±.0000 .9929±.0000 0.34±0.00 1.02±0.04

Dataset ACM-DBLP Cora
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)
FINAL .4054±.0000 .7980±.0000 .5366±.0000 2.56±0.64 1.19±0.06 .7891±.0000 .9026±.0000 .8332±.0000 1.48±0.13 1.04±0.01

REGAL .4159±.0035 .6373±.0064 .4890±.0040 1.95±0.12×101 1.78±0.05×101 .3576±.0278 .4705±.0271 .3986±.0242 5.15±1.27 6.84±0.21

NetTrans .6874±.0015 .9300±.0019 .7716±.0012 2.64±2.18×102 1.48±0.02 .7907±.4417 .8005±.4454 .7955±.4428 1.47±0.07 1.32±0.00

WAlign .6675±.0024 .9109±.0012 .7524±.0016 6.82±1.00 4.85±0.03 .9551±.0012 .9724±.0010 .9621±.0011 3.38±1.28 2.36±0.05

BRIGHT .4858±.0025 .8740±.0020 .6163±.0021 1.22±0.53×102 2.35±0.00 .7989±.0051 .9902±.0012 .8813±.0029 6.07±3.03 1.32±0.04

NeXtAlign .3512±.0966 .7633±.0872 .4851±.0981 1.45±0.64×101 1.47±0.15 .3336±.0418 .6629±.0291 .4444±.0376 1.56±0.22 1.15±0.02

PARROT .6867±.0000 .9437±.0000 .7770±.0000 1.70±0.40×101 1.27±0.00 .9654±.0000 .9684±.0000 .9667±.0000 1.13±0.56 1.05±0.02

SLOTAlign .6673±.0011 .8720±.0003 .7409±.0009 8.34±0.04×101 7.45±0.16 .9949±.0000 .9999±.0000 .9974±.0000 1.92±0.13 2.01±0.10

HOT .3893±.0050 .6180±.0055 .2350±.0017 4.28±0.13×102 2.85±0.01 .7493±.0040 .7549±.0040 .3762±.0021 2.17±0.59×101 3.29±0.28

JOENA .7859±.0053 .9847±.0101 .8569±.0120 9.78±0.27 1.59±0.11 .9947±.0002 .9999±.0000 .9966±.0001 0.38±0.03 1.14±0.02

Dataset PPI DBP15K_FR-EN
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)

FINAL .0316±.0000 .1564±.0000 .0760±.0000 1.87±0.28 0.93±0.00 .1954±.0000 .4381±.0000 .2800±.0000 4.36±0.10×102 2.37±0.00×101

REGAL .1515±.0080 .2910±.0072 .2012±.0078 9.30±0.42 3.89±0.12 .0027±.0004 .0038±.0004 .0035±.0004 5.30±0.18×101 9.33±0.03×101

NetTrans .7356±.0027 .8581±.0024 .7783±.0027 2.39±0.50×101 1.22±0.00 .4308±.0012 .7789±.0081 .5412±.0109 1.38±1.03×101 1.03±0.01×101

WAlign .7657±.0021 .8733±.0007 .8041±.0009 6.84±1.54 3.15±0.01 .5077±.0034 .6492±.0046 .5572±.0037 2.03±0.26×101 1.67±0.00×101

BRIGHT .7156±.0030 .8623±.0036 .7691±.0026 8.76±3.53 1.29±0.01 .4393±.0029 .8020±.0023 .5652±.0029 2.48±0.05×102 9.55±0.03

NeXtAlign .0306±.0142 .1059±.0517 .0579±.0266 1.41±0.84×101 1.25±0.10 .4781±.0023 .8780±.0012 .6109±.0032 2.78±0.08×102 9.87±0.01

PARROT .9916±.0001 .9977±.0000 .9943±.0001 5.55±3.14×101 1.58±0.02 .8737±.0000 .9550±.0000 .9040±.0000 1.60±0.22×103 2.76±0.00×101

SLOTAlign .9531±.0000 .9777±.0000 .9618±.0000 3.70±0.01 1.71±0.00 .7619±.0012 .8721±.0029 .8091±.0012 1.70±0.12×102 2.18±0.00×101

HOT .6705±.0032 .7154±.0054 .3439±.0018 3.84±0.99×101 1.30±0.00 .6172±.0134 .7980±.0012 .6512±.0012 1.70±0.12×103 2.17±0.00×101

JOENA .9804±.0012 .9943±.0041 .9857±.0024 0.73±0.12 1.10±0.00 .9804±.0012 .9943±.0041 .9857±.0024 0.73±0.12 1.10±0.00

Dataset Airport PeMS08
Metrics Hits@1 Hits@10 MRR Time(s) Mem.(GB) Hits@1 Hits@10 MRR Time(s) Mem.(GB)
FINAL .3897±.0000 .8267±.0000 .5414±.0000 0.47±0.15 0.89±0.00 .2132±.0000 .7610±.0000 .4051±.0000 0.02±0.02 0.90±0.00

REGAL .0516±.0037 .2096±.0125 .1063±.0059 2.04±0.48 1.38±0.10 .3617±.0321 .5655±.0360 .4283±.0338 0.22±0.09 1.20±0.00

NetTrans .2430±.0038 .4667±.0034 .3192±.0028 2.32±0.33 1.18±0.00 .6353±.0048 .8963±.0048 .7127±.0022 0.07±0.04 1.18±0.00

WAlign .3041±.0054 .5803±.0049 .3987±.0059 1.50±0.98 2.33±0.04 .6963±.0118 .9066±.0076 .7689±.0070 2.15±0.41 2.20±0.01

BRIGHT .3343±.0062 .5671±.0028 .4153±.0044 1.29±0.56 1.06±0.00 .5280±.0166 .8765±.0159 .6524±.0074 0.53±1.04 1.06±0.00

NeXtAlign .0792±.0561 .2551±.1263 .1398±.0785 0.46±0.10 1.02±0.00 .2992±.0573 .7162±.1283 .4373±.0657 0.04±0.04 0.99±0.00

PARROT .8582±.0000 .9622±.0000 .8971±.0000 2.28±1.91×101 0.92±0.02 .8787±.0000 .9596±.0000 .9071±.0000 8.31±4.67 0.85±0.00

SLOTAlign .8918±.0000 .9816±.0000 .9256±.0000 0.15±0.01 0.98±0.01 .9853±.0000 .9999±.0000 .9926±.0000 0.01±0.00 0.90±0.00

HOT .4318±.0052 .5770±.0116 .2413±.0027 5.33±0.24 1.16±0.00 .7324±.0175 .8853±.0120 .3921±.0063 0.35±0.04 1.16±0.00

JOENA .8734±.0034 .9748±.0104 .9117±.0030 0.10±0.00 1.02±0.00 .9999±.0000 .9999±.0000 .9999±.0000 0.05±0.00 1.02±0.01
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