

000 001 002 003 004 005 PLANETALIGN: A COMPREHENSIVE PYTHON LIBRARY 006 FOR BENCHMARKING NETWORK ALIGNMENT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 Network alignment (NA) aims to identify node correspondence across different net-
027 works and serves as a critical cornerstone behind various downstream multi-network
028 learning tasks. Despite growing research in NA, there lacks a comprehensive li-
029 brary that facilitates the systematic development and benchmarking of NA methods.
030 In this work, we introduce PLANETALIGN, a comprehensive Python library for
031 network alignment that features a rich collection of built-in datasets, methods, and
032 evaluation pipelines with easy-to-use APIs. Specifically, PLANETALIGN integrates
033 18 datasets and 14 NA methods with extensible APIs for easy use and development
034 of NA methods. Our standardized evaluation pipeline encompasses a wide range
035 of metrics, enabling a systematic assessment of the effectiveness, scalability, and
036 robustness of NA methods. Through extensive comparative studies, we reveal
037 practical insights into the strengths and limitations of existing NA methods. We
038 hope that PLANETALIGN can foster a deeper understanding of the NA problem
039 and facilitate the development and benchmarking of more effective, scalable, and
040 robust methods in the future. The source code of PLANETALIGN is available at
041 <https://anonymous.4open.science/r/PlanetAlign-E9BA>
042

1 INTRODUCTION

043 Multi-sourced and multi-layer networks are becoming ubiquitous across a wide range of domains in
044 the era of big data and AI, ranging from social network analysis (Shao et al., 2023; Rácz & Zhang,
045 2024; Peng et al., 2025), anti-money laundering (Zhang et al., 2021), bio-informatics (Hu et al.,
046 2024; Zare Mirak-Abad & Ghorbanali, 2025), to knowledge graph fusion (Yan et al., 2021a; Chen
047 et al., 2024). Identifying the same node across different networks, i.e., network alignment (NA),
048 enables joint learning across multiple networks and serves as the key cornerstone of multi-network
049 tasks. For example, aligning users across online social networks improve personalized services, e.g.,
050 cross-domain recommendation (Liu et al., 2023a; Zeng et al., 2023; Yu et al., 2025). In transaction
051 networks, aligning suspicious accounts from different transaction networks facilitates the detection
052 of fraudulent activity (Zhang et al., 2019b; Du et al., 2021; Yan et al., 2024). In protein interaction
053 networks, alignment of proteins across different species uncovers hidden biological homologies (Clark
054 & Kalita, 2014; Hu et al., 2024). In knowledge graphs (KG), merging incomplete KGs based on
055 aligned entities helps construct more unified knowledge bases (Yan et al., 2021a; Liu et al., 2023b;
056 Chen et al., 2024).

057 Despite growing interest in NA, there lacks a comprehensive benchmark to provide standardized
058 evaluation of NA methods on different datasets from various aspects. The absence of such benchmarks
059 leaves the genuine performance and usefulness of existing NA methods an open research question,
060 hindering the standardization of research in the NA community.

061 Although prior efforts, which are summarized in Table 1, have been made in benchmarking NA
062 methods (Clark & Kalita, 2014; Cao & Yu, 2016; Sun et al., 2020; Trung et al., 2020; Döpmann, 2013),
063 they suffer from at least one of the following limitations: (1) *limited datasets* within a single domain,
064 e.g. biological networks (Clark & Kalita, 2014) or social networks (Cao & Yu, 2016); (2) *limited
065 methods* exclusively focusing on a single category, e.g., consistency-based methods (Döpmann, 2013)
066 or embedding-based methods (Sun et al., 2020), while ignoring the most recent line of works, e.g.,
067 optimal transport (OT) based methods; (3) *limited and inconsistent evaluation* from a single aspect,
068 e.g. effectiveness (Clark & Kalita, 2014; Cao & Yu, 2016), without standardized dataset splits and

054 evaluation metrics (Clark & Kalita, 2014; Cao & Yu, 2016; Sun et al., 2020; Trung et al., 2020;
 055 Döpmann, 2013).

056 In response to these limitations, we introduce PLANETALIGN, an open-source PyTorch-based library
 057 designed for unified evaluation and streamlined development of NA methods, which features the
 058 following key design. Firstly, PLANETALIGN includes 18 different public datasets spanning 6
 059 different domains which can be directly downloaded through a simple API call, including social
 060 networks (Zhang & Philip, 2015; Zhang & Tong, 2016), publication networks (Tang et al., 2008;
 061 Yang et al., 2016; Leskovec et al., 2007), biological networks (Stark et al., 2006; De Domenico
 062 et al., 2015b; Zitnik & Leskovec, 2017; Park et al., 2010), knowledge graphs (Sun et al., 2017),
 063 infrastructure networks (Yan et al., 2022; Zhu et al., 2021; Song et al., 2020), and communication
 064 networks (Zhang et al., 2017; Kunegis, 2013), covering both real-world and synthetic scenarios
 065 (*Limitation #1*). The wide range of datasets built into PLANETALIGN allows comprehensive evaluation
 066 of NA methods on different types of networks, e.g., plain and attributed networks, fostering in-depth
 067 understanding of the applicability of NA methods to different domains. Secondly, PLANETALIGN
 068 features efficient implementations of 14 different NA methods including consistency-based (Singh
 069 et al., 2008; Zhang & Tong, 2016), embedding-based (Liu et al., 2016; Heimann et al., 2018;
 070 Chu et al., 2019; Zhang et al., 2020; Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu
 071 et al., 2023a), and OT-based methods (Zeng et al., 2023; Tang et al., 2023; Zeng et al., 2024;
 072 Yu et al., 2025), covering traditional and state-of-the-art baselines (*Limitation #2*). With easy-
 073 to-use APIs, PLANETALIGN allows streamlined comparison between NA methods across diverse
 074 benchmark settings. Thirdly, PLANETALIGN highlights a comprehensive list of evaluation metrics
 075 and benchmarking tools (*Limitation #3*). For evaluation metrics, we include the most classical
 076 effectiveness metrics, Hits@K and MRR, under different pairwise alignment settings. We also
 077 include time and memory overheads for evaluating the efficiency and scalability of NA methods.
 078 For benchmarking tools, we enforce consistent dataset split through a unified API design to ensure
 079 reproducibility. PLANETALIGN also provides a rich collection of APIs and utility functions that
 080 allows fair and reproducible benchmarking across key dimensions of NA performance. Finally,
 081 PLANETALIGN implements extensible APIs and efficient utility functions which allow users to
 082 streamline the implementation of customized NA methods and the integration of customized datasets
 083 with minimal efforts. Specifically, our API design allows customized datasets and NA methods to
 084 be built upon carefully designed base classes and integrated into PLANETALIGN’s pipeline with
 085 only a few lines of code. PLANETALIGN further provides commonly used utility functions such
 086 as random walk with restart (RWR) embedding, anchor-based embedding, etc. Empowered by
 087 the aforementioned features, PLANETALIGN addresses the limitations of existing NA benchmarks
 088 comprehensively.

089 Based on PLANETALIGN, we conduct comprehensive experiments to evaluate the effectiveness,
 090 scalability, robustness, and sensitivity to supervision of 14 built-in NA methods across 18 built-in
 091 datasets, revealing practical insights into the strength and limitations of existing NA methods. We
 092 also compare PLANETALIGN’s implementation of NA algorithms with their official implementation
 093 which shows that our implementation can achieve up to 3 times speed-up while maintaining similar
 094 effectiveness performance, demonstrating the superiority of PLANETALIGN.

095 In summary, we introduce a unified, comprehensive, and efficient library PLANETALIGN featuring a
 096 wide range of built-in datasets and NA methods, as well as extensible and easy-to-use utility functions
 097 and APIs, facilitating the benchmarking and development of NA methods. We will continuously
 098 update PLANETALIGN upon release of new benchmark datasets and methods.

2 PROBLEM DEFINITION

100 An illustration of NA problems are shown in Figure 1. Given two input networks
 101 $\mathcal{G}_1 = \{\mathcal{V}_1, \mathbf{A}_1, \mathbf{X}_1, \mathbf{E}_1\}$, $\mathcal{G}_2 = \{\mathcal{V}_2, \mathbf{A}_2, \mathbf{X}_2, \mathbf{E}_2\}$ and a set of anchor node pairs $\mathcal{L} =$
 102 $\{(x, y) | x \in \mathcal{V}_1, y \in \mathcal{V}_2\}$ indicating pre-alignment, where $\mathcal{V}_1, \mathcal{V}_2$ denote the node sets, $\mathbf{A}_1, \mathbf{A}_2$ denote
 103 the graph¹ adjacency matrices, $\mathbf{X}_1, \mathbf{X}_2$ denote the node attribute matrices, and $\mathbf{E}_1, \mathbf{E}_2$ denote the
 104 edge attribute matrices, the *semi-supervised attributed network alignment* task aims to discover
 105 node-level correspondence across two networks inferred from an output alignment matrix \mathbf{S} , where
 106 $\mathbf{S}(x, y)$ indicates the likelihood of alignment between node $x \in \mathcal{V}_1$ and node $y \in \mathcal{V}_2$. If neither

107 ¹In this work, the terms ‘network’ and ‘graph’ are used interchangeably.

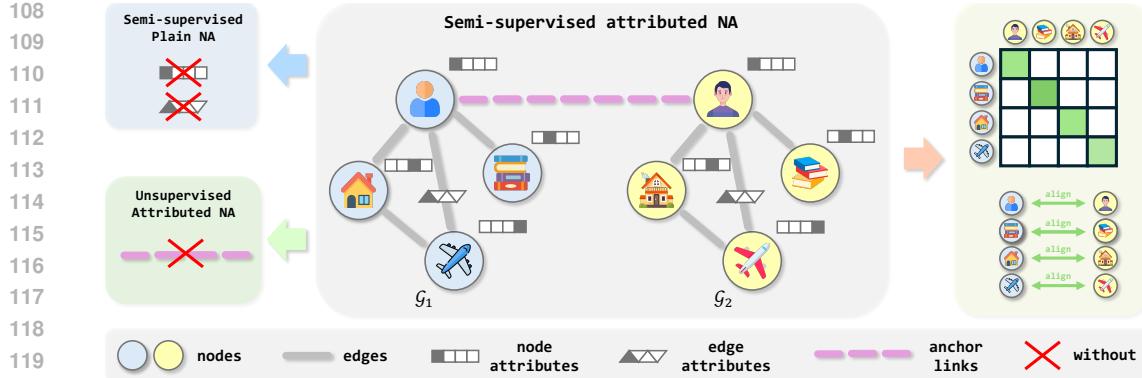


Figure 1: An illustration of NA problems.

node attributes $\mathbf{X}_1, \mathbf{X}_2$ nor edge attributes $\mathbf{E}_1, \mathbf{E}_2$ are available, this becomes the *semi-supervised plain network alignment* task; If no anchor node pairs are available, i.e., $|\mathcal{L}| = 0$, this becomes the *unsupervised attributed network alignment* task.

3 RELATED WORK

3.1 NETWORK ALIGNMENT METHODS

Existing NA methods can be classified into three categories: consistency-based, embedding-based, and OT-based approaches (Zhang & Tong, 2020). Consistency-based methods are among the earliest approaches, formulated as optimization problems which assumes structural and/or attribute consistency between node neighborhoods across networks (Singh et al., 2008; Zhang & Tong, 2016; Zhang et al., 2019a; Bayati et al., 2009). Although recent works on NA have largely moved beyond consistency principles, consistency-based methods remain important baselines for benchmarking purpose.

Embedding-based and OT-based methods represent more recent advances in the NA community. For embedding-based methods, nodes are mapped into a shared low-dimensional space and aligned based on embedding similarity (Liu et al., 2016; Heimann et al., 2018; Chu et al., 2019; Zhang et al., 2020; Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu et al., 2023a). By leveraging advances in deep representation learning, embedding-based methods have shown strong performance and remain an active research direction. For OT-based methods, they formulate the NA problem as an optimization problem minimizing the total effort of transporting the node distribution of one graph to another under a set of pre-defined or learnable cost functions (Tang et al., 2023; Zeng et al., 2023; 2024; Yu et al., 2025). The most OT-based methods consistently achieve SOTA performance, making them a promising direction for future research. PLANETALIGN includes representative state-of-the-art methods from all three kinds of methods, providing a comprehensive benchmarking library.

3.2 NETWORK ALIGNMENT LIBRARIES

There are five existing benchmarks/libraries for NA, and we include a comprehensive comparison on the inclusion of datasets, NA methods, and evaluation dimensions in Table 1. Specifically, SGAPBSA (Döpmann, 2013) and CAPABN (Clark & Kalita, 2014) mainly focus on benchmarking traditional consistency-based NA methods on biological networks. ASNets (Cao & Yu, 2016) benchmarks the effectiveness of both consistency-based and embedding-based methods on social networks, leaving the scalability and robustness of NA methods an open research question. NAB (Trung et al., 2020) comprehensively evaluates the effectiveness, scalability, and robustness of both consistency-based and embedding-based methods. However, NAB only includes social networks, lacking comprehensive datasets on other domains where NA is also an important research problem. OpenEA (Sun et al., 2020) focuses on benchmarking embedding-based methods on knowledge graphs, ignoring networks in other domains. In addition, none of the existing NA libraries includes *OT-based* methods which have emerged as the most recent and effective line of work in the NA community.

162
 163 Table 1: Comparison with existing NA benchmarks/libraries (Clark & Kalita, 2014; Cao & Yu, 2016;
 164 Sun et al., 2020; Trung et al., 2020; Döpmann, 2013). We denote whether a specific type of networks,
 165 methods, and evaluations is included in the benchmark/library.

Benchmark/Library	SGAPBSA	CAPABN	ASNets	NAB	OpenEA	PLANETALIGN (ours)
Networks	Social	✗	✗	✓	✓	✓
	Communication	✗	✗	✗	✗	✓
	Publication	✗	✗	✗	✗	✓
	Biological	✓	✓	✗	✗	✓
	Knowledge	✗	✗	✗	✓	✓
	Infrastructure	✗	✗	✗	✗	✓
Methods	Consistency-based	✓	✓	✓	✗	✓
	Embedding-based	✗	✗	✓	✓	✓
	OT-based	✗	✗	✗	✗	✓
Evaluations	Effectiveness	✓	✓	✓	✓	✓
	Scalability	✓	✗	✗	✓	✓
	Robustness	✗	✗	✓	✗	✓

4 DESIGN OF PLANETALIGN

In this section, we introduce the design features of PLANETALIGN, which includes comprehensive built-in datasets and NA methods (Section 4.1), unified and easy-to-use APIs (Section 4.2), as well as standardized and diverse benchmarking tools (Section 4.3).

4.1 COMPREHENSIVE DATASETS AND METHODS

PLANETALIGN collects and curates 18 NA datasets across 6 different domains, covering social networks, publication networks, biological networks, knowledge graphs, infrastructure networks, and communication networks. PLANETALIGN also implements 14 existing NA methods across all 3 categories, including consistency-based, embedding-based, and OT-based methods. An overview of built-in datasets and NA methods in PLANETALIGN is summarized in Figure 2.

Dataset Collection and Synthesis. We collect 11 real-world datasets from existing NA works and synthesize 7 additional datasets across 6 distinct domains. We follow the most classical method to synthesize NA datasets from a single network, where we insert 10% noisy edges into and delete 15% existing edges from the original network to create two permuted networks (Yang et al., 2016; Zhang et al., 2020; Yan et al., 2021b; Zhang et al., 2021; Zeng et al., 2023; Yu et al., 2025).

Specifically, for *social networks*, where NA is used to align the same user for personalized recommendation (Cao & Yu, 2016; Zhang & Philip, 2015; Liu et al., 2016), PLANETALIGN includes 4 real-world datasets: Foursquare-Twitter (Zhang & Philip, 2015), Douban (Zhang & Tong, 2016), Flickr-LastFM (Zhang & Tong, 2016), and Flickr-MySpace (Zhang & Tong, 2016); for *publication networks*, where NA is used for author disambiguation (Li et al., 2021), PLANETALIGN includes the most representative real-world dataset ACM-DBLP (Tang et al., 2008), and synthesizes 2 additional datasets from Cora (Yang et al., 2016) and ArXiv (Leskovec et al., 2007); for *biological networks*, where NA uncovers hidden biological homologies by aligning proteins of different species (Clark & Kalita, 2014; Faisal et al., 2015; Singh et al., 2008), PLANETALIGN includes 1 real-world dataset SacchCere (Stark et al., 2006; De Domenico et al., 2015b) and 2 synthetical datasets PPI (Zitnik & Leskovec, 2017) and GGI (Park et al., 2010). For *knowledge graphs*, where NA is used for knowledge fusion (Liu et al., 2023b; Chen et al., 2023; Sun et al., 2020), PLANETALIGN includes 3 variants of a real-world dataset DBP15K (Sun et al., 2017), namely DBP15K ZH-EN, JA-EN, and FR-EN. For *infrastructure networks*, where NA plays an important role in cross layer dependency inference (Yan et al., 2022), PLANETALIGN includes 1 real-world dataset Italy (Yan et al., 2022), and 2 synthetic datasets Airport (Zhu et al., 2021) and PeMS08 (Song et al., 2020). For *communication networks*, PLANETALIGN includes 1 real-world dataset Phone-Email (Zhang et al., 2017) and 1 synthetic dataset Arenas (Kunegis, 2013). Detailed dataset statistics can be found in Appendix A.

Baseline Implementations. We implement 14 existing NA methods based on a unified API, including 2 representative consistency-based methods, 8 embedding-based methods, and 4 OT-based

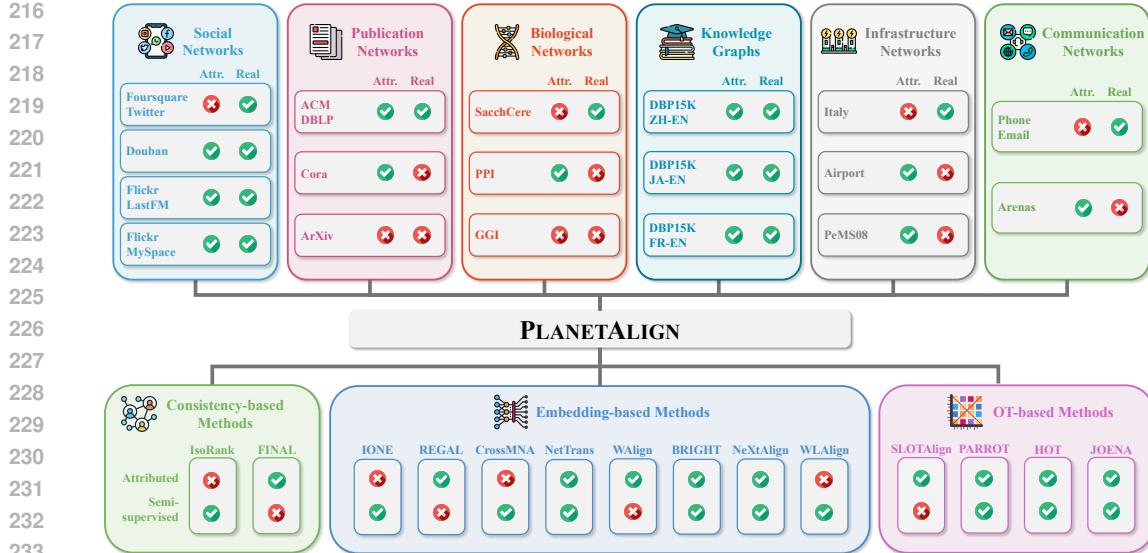


Figure 2: **An overview of built-in datasets and NA methods in PLANETALIGN.** For built-in *datasets*, we indicate if they consist of attributed (Attr.) or plain networks, and if they are real-world (Real) or synthetic datasets. For built-in *NA methods*, we indicate if they are designed for attributed or plain NA tasks, and if they are semi-supervised or unsupervised methods.

methods. Specifically, for *consistency-based* methods, PLANETALIGN includes IsoRank (Singh et al., 2008) and FINAL (Zhang & Tong, 2016); for *embedding-based* methods, PLANETALIGN includes IONE (Liu et al., 2016), REGAL (Heimann et al., 2018), CrossMNA (Chu et al., 2019), NetTrans (Zhang et al., 2020), WALign (Gao et al., 2021), BRIGHT (Yan et al., 2021b), NeXtAlign (Zhang et al., 2021), and WLAlign (Liu et al., 2023a); for *OT-based* methods, PLANETALIGN includes SLOTAlign (Tang et al., 2023), PARROT (Zeng et al., 2023), HOT (Zeng et al., 2024), and JOENA (Yu et al., 2025). Detailed introductions of built-in NA methods can be found in Appendix B.

4.2 UNIFIED AND EASY-TO-USE APIs

PLANETALIGN is carefully designed to provide unified and easy-to-use APIs to streamline the implementation, training, and evaluation of NA algorithms on customizable datasets. An example usage of PLANETALIGN is shown in Figure 3. We also provide detailed documentation at <https://planetalign.netlify.app>, covering quick-start tutorials as well as in-depth documentations of API usage of the major components.

Specifically, to train and evaluate an NA algorithm on a specific dataset, the user of PLANETALIGN will first define a `PlanetAlign.data.BaseData` object and a `Model` object inherited from the base class `PlanetAlign.algorithm.BaseModel`. For built-in datasets, PLANETALIGN provides downloading options and reproducible train/test split with a customized training ratio; for built-in algorithms, PLANETALIGN provides hyperparameter options upon definition of the algorithm, and a unified API as PyTorch for GPU/CPU offloading. Both built-in dataset and algorithm objects can be defined neatly in a single line of code. PLANETALIGN also provides unified and intuitive base classes for defining customized datasets and algorithms, as shown in Figure 3.

Before training an NA algorithm, the user has an option to initialize a `PlanetAlign.Logger` object used to log the training process of the algorithm. Then, the user can simply call the `.train` method of the algorithm object with the dataset and logger object, IDs of graphs to be aligned, and additional configuration of training, e.g., training epochs, learning rate, etc., to start the training. Training outputs, including node embeddings, alignment matrix, and training performance are returned by the `.train` after the training process ends, providing fine-grained intermediate results of alignment that users can readily leverage for downstream tasks, such as cross-layer dependency

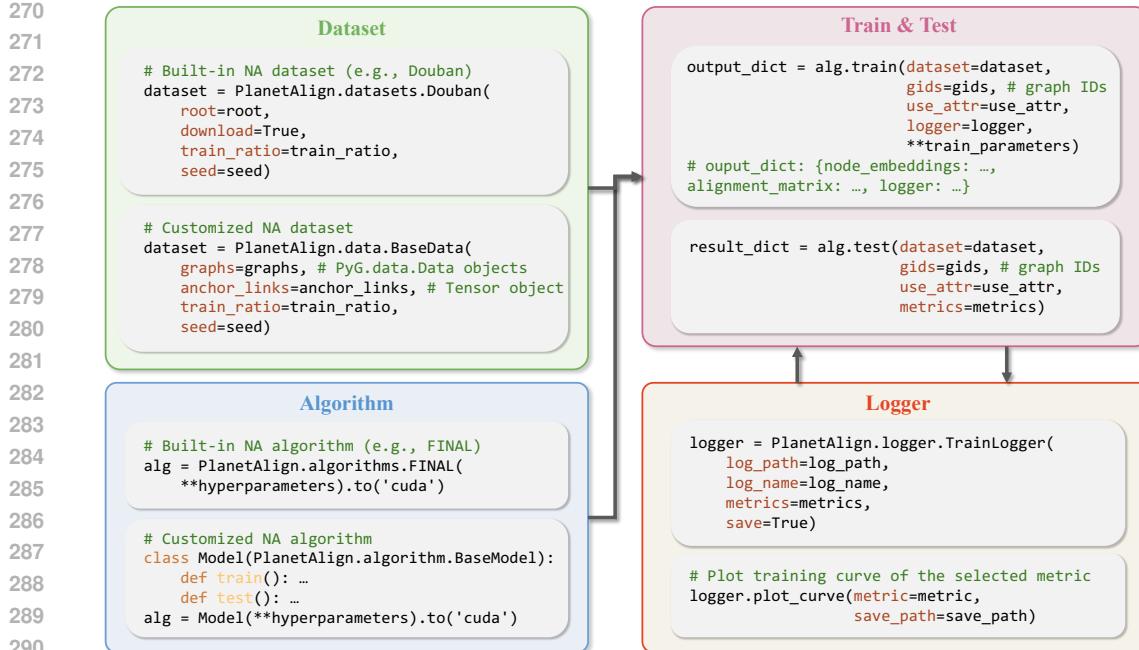


Figure 3: Example usage of PLANETALIGN for benchmarking NA. Users begin by initializing a dataset and algorithm objects, along with a logger for training-time monitoring and visualization. The training and evaluation can then be performed through simple API calls with user-defined parameters, providing substantial flexibility in controlling the training and evaluation workflows.

inference (Yan et al., 2022), knowledge integration (Yan et al., 2021a), and cross-KG modality fusion (Chen et al., 2023).

Finally, after the training process, the user can call the `.test` method of the algorithm object with customized options of evaluation metrics. The optional logger object, which records and logs comprehensive data during training, also provides a rich collection of APIs for visualizing the evolution of different metrics along training, e.g., training loss, time and memory usage, etc.

4.3 STANDARDIZED AND DIVERSE BENCHMARKING TOOLS

Standard Evaluation Metrics. PLANETALIGN provides low-level utility functions for computing standard and widely adopted evaluation metrics in the NA tasks with custom options for alignment directions, such as left-to-right for pairwise alignment scenarios where the nodes in \mathcal{G}_1 is aligned to \mathcal{G}_2 , and vice versa. Specifically, PLANETALIGN includes the following metrics:

- **Hits@K.** In the case of aligning \mathcal{G}_1 to \mathcal{G}_2 , Hits@K refers to the proportion of nodes in \mathcal{G}_1 whose correct alignment in \mathcal{G}_2 is ranked within the top- K candidates by a NA algorithm. Formally,

$$\text{Hits@K} = \frac{1}{N} \sum_{i=1}^N \mathbb{1}\{\text{rank}_i \leq K\},$$

where N is the number of nodes in \mathcal{G}_1 , rank_i is the rank of the correct alignment for the i -th node in \mathcal{G}_1 , and $\mathbb{1}\{\cdot\}$ is the indicator function. Note that in NA, Precision@K (Trung et al., 2020) is equivalent to Hits@K.

- **Mean Reciprocal Rank (MRR).** MRR refers to the average reciprocal of the rank at which the correct alignment appears in the candidate list. Formally, In the case of aligning \mathcal{G}_1 to \mathcal{G}_2 ,

$$\text{MRR} = \frac{1}{N} \sum_{i=1}^N \frac{1}{\text{rank}_i},$$

where N is the number of nodes in \mathcal{G}_1 , rank_i is the rank of the correct alignment for the i -th node in \mathcal{G}_1 . Note that in NA, Mean Average Precision (MAP) (Trung et al., 2020) is equivalent to MRR.

324 **Diverse Benchmark Settings.** The design of PLANETALIGN enables diverse and reproducible
 325 benchmarking of existing NA algorithms with minimal efforts, providing a rich collection of APIs
 326 and built-in utility functions that allow users to easily configure, run, and evaluate experiments along
 327 key dimensions of NA performance, including effectiveness, scalability, and robustness.

328 Specifically, for *effectiveness*, PLANETALIGN supports custom training ratios and generates con-
 329 sistent, reproducible train/test splits by a user-defined random seed, ensuring fair comparisons of
 330 different NA algorithms. The APIs also supports experiments that evaluate the sensitivity of different
 331 NA methods with respect to the amount of supervision, providing valuable insights into their applica-
 332 bility to various supervision regimes. PLANETALIGN further provides unified utility functions to
 333 selectively introduce or remove supervision, enabling side-by-side comparisons between supervised
 334 and unsupervised algorithms under the same setting; for *scalability*, PLANETALIGN includes built-in
 335 logging functionalities that automatically track the runtime and memory usage during training and
 336 inference, allowing consistent and transparent evaluation of the efficiency of NA algorithms across
 337 datasets of varying sizes; for *robustness*, PLANETALIGN provides utility functions for injecting edge-
 338 level, attribute-level, and supervision noise into input graphs, allowing comprehensive evaluation of
 339 the robustness of NA methods under diverse graph noises or data inconsistencies.

340 5 EXPERIMENTS

341 Based on PLANETALIGN, we carry out extensive experiments to benchmark a wide range of NA
 342 algorithms across four key dimensions: effectiveness (Section 5.2), scalability (Section 5.3), robust-
 343 ness (Appendix D.1), and sensitivity to supervision (Appendix D.2). Additionally, we compare our
 344 implementation to the official implementation of built-in NA algorithms of PLANETALIGN to validate
 345 the correctness and efficiency our library (Appendix D.3).

346 5.1 EXPERIMENTAL SETUP

347 **Datasets and methods.** We benchmarks the performance of 14 NA algorithms on 18 NA datasets
 348 built into PLANETALIGN, as shown in Figure 2. Detailed dataset statistics and a brief introduction to
 349 each algorithm can be found at Appendix A and B, respectively.

350 **Metrics.** To evaluate effectiveness, we report Hits@K and MRR introduced in Section 4.3. All
 351 reported Hits@K and MRR are averaged results from both alignment directions. To evaluate
 352 scalability, we report the runtime and peak memory usage.

353 **Additional Setup.** For each experiments, we run 5 times and report the mean and standard deviation
 354 of the results. Additional experimental setup, such as the machine used to run the experiments and
 355 hyperparameter settings, are detailed in Appendix C.

356 5.2 EFFECTIVENESS RESULTS

357 We first evaluate the effectiveness of existing NA algorithms on plain networks under a semi-
 358 supervised setting with 20% training ratio. Datasets are randomly split for training and testing by a
 359 fixed random seed to ensure fair and reproducible comparison. Table 2 shows the averaged results on
 360 all 18 datasets group by their categories. Detailed results on plain and attributed NA datasets can be
 361 found in Appendix D.

362 We can see from Table 2 that OT-based methods, particularly PARROT (Zeng et al., 2023) and
 363 JOENA (Yu et al., 2025), consistently achieve SOTA alignment performance in Hits@K and MRR
 364 across all datasets, demonstrating the effectiveness of optimal transport in aligning distributional
 365 structures. Embedding-based methods such as IONE (Liu et al., 2016), NetTrans (Zhang et al.,
 366 2020), and BRIGHT (Yan et al., 2021b) can be effective in aligning some networks. However, their
 367 strong performance is not consistent across different datasets, potentially due to the space disparity
 368 issue (Yan et al., 2021b; Zhang et al., 2021). Consistency-based methods, while occasionally perform
 369 well on certain datasets, usually outperformed by best-performing embedding-based and OT-based
 370 methods, suggesting that relying solely on consistency principles may lead to sub-optimal alignment.

371 In addition to empirical observations, we further provide theoretical analysis into the superior
 372 performance of OT-based alignment methods. Compared with consistency-based methods, which are
 373 restricted by local consistency principles, OT-based methods go beyond local assumptions by solving

378
379
380
381
382 Table 2: Effectiveness and efficiency results of NA algorithms on plain networks with a training ratio
of 20%. We group the 18 datasets in PLANETALIGN by their categories and report the averaged
Hits@1, Hits@10, MRR (in %), inference time (Time), and peak memory usage (Memory). Cells
that contain the 1st/2nd/3rd best results are highlighted in red/blue/green, respectively. Detailed
results for each dataset can be found in Appendix D.5.

Dataset	Social			Publication			Biological			Knowledge			Infrastructure			Communication						
	Metrics	Hits@1	Hits@10	MRR																		
IsoRank	4.2	19.6	9.2	18.9	59.1	31.4	21.6	45.1	29.4	11.5	50.0	23.4	14.2	43.9	24.1	22.1	44.5	30.2				
FINAL	4.9	22.3		10.1	22.3	68.6	37.3	22.9	56.6	34.1	13.9	55.4	27.3	15.1	53.6	28.0	21.7	57.7	33.9			
IONE	7.9		20.0	12.1	28.7	63.6	40.1	46.1	60.5		51.0	4.7	20.3	10.0	29.6	51.2	37.0	50.4	69.0	56.7		
REGAL	0.3	2.2	1.2	1.8	7.8	3.9	1.0	5.3	2.6	0.8	2.9	1.6	2.8	13.4	6.7	45.3	49.5	47.2				
CrossMNA	1.2	11.1	4.5	13.2	58.1	27.2	40.2	58.7	46.5	2.7	28.8	10.7	14.6	30.9	20.2	22.8	53.3	33.9				
NetTrans	7.2	21.8	11.9	40.7	77.3		52.7	34.2	57.5	41.8	28.8	62.8		39.7	29.3	59.5	39.6	45.2	62.6	51.8		
WAlign	4.2	8.5	6.1	31.2	49.6	37.8	20.3	27.3	22.9	19.4	28.2	22.8	29.1	47.3	35.5	49.6	56.0	52.1				
BRIGHT	5.1	17.0	9.0	40.4	74.0	51.8	30.5	48.0	36.5	30.4	61.7	40.9		29.9	57.0	39.5	50.9	62.3	55.0			
NeXtAlign	7.1	19.5	11.3	43.2	76.9	54.7	25.9	44.8	32.8	27.5	59.9	38.3	28.0	55.1	37.8	29.6	51.4	37.2				
WLAlign	7.6	14.8	10.1	35.9	58.1	43.2	41.2	50.7	44.3	25.9	44.2	31.7	29.5	42.8	34.1	49.1	39.5					
PARROT	12.6	26.3	17.2	66.6	88.6	74.4	61.6	73.4		65.5	66.0	87.2	73.1		51.8	69.2	57.8	63.3	86.7	71.3		
SLOTAAlign	0.9	4.0	2.2	50.7		65.5	56.1		48.6	54.5	50.7	1.5	5.8	3.1	53.2		60.8	55.7		49.3	52.6	50.9
HOT	5.3	16.0	5.2	38.1	65.6	23.7	25.4	37.9	15.2	33.9		61.2	21.4	32.1	52.1	19.5	52.1		66.2	28.5		
JOENA	18.7		35.1	24.4	73.2	92.1	80.2	63.7	72.9	66.8	66.3	87.8	73.0		62.9	75.0	67.2	66.3	89.0	74.3		
Dataset	Social			Publication			Biological			Knowledge			Infrastructure			Communication						
Metrics	Time(s)	Memory(GB)		Time(s)	Memory(GB)																	
IsoRank	25.17	3.54		57.99	6.89		13.01	2.67		1.54×10^2	15.97		0.28	0.66		0.17	0.80					
FINAL	5.91		5.39	6.75		10.06	1.88		3.54	18.10		24.37	0.10		0.80	0.11		0.88				
IONE	6.34×10^3		1.94	1.43×10^4		4.16	1.41×10^4		1.93	1.50×10^4		8.75	9.41×10^3		0.90	8.10×10^3		1.02				
REGAL	9.38		1.16	16.14		3.18	7.28		1.55	30.83		5.96	0.76		0.81	1.17		0.77				
CrossMNA	3.06×10^2		1.40	1.16×10^3		3.16	5.33×10^2		1.58	1.11×10^3		6.14	59.03		0.98	5.78×10^2		0.81				
NetTrans	1.56×10^2		8.88	5.14×10^2		8.57	1.08×10^2		3.90	3.65×10^2		21.90	6.46		1.28	12.37		1.54				
WAlign	0.61		2.65	9.41		9.88	2.46		3.86	10.05		15.40	0.12		1.43	0.20		1.11				
BRIGHT	21.76		3.00	1.26×10^2		5.66	33.55		3.24	3.81×10^2		11.53	0.28		1.14	0.33		1.12				
NeXtAlign	40.89		3.75	1.55×10^2		7.82	19.35		3.57	2.62×10^3		13.57	0.29		1.34	2.44		0.99				
WLAlign	7.41×10^2		2.17	2.69×10^3		11.98	1.15×10^3		4.21	3.24×10^3		28.33	4.25×10^2		1.35	6.99×10^2		0.95				
PARROT	76.76		6.26	2.99×10^2		11.68	84.63		3.98	8.95×10^2		28.47	0.76		0.85	0.82		0.90				
SLOTAAlign	46.31		6.40	5.64×10^2		11.55	67.66		3.96	1.03×10^4		28.27	3.85		1.03	1.23		0.80				
HOT	4.01×10^2		3.85	7.89×10^2		7.75	7.08×10^2		4.44	2.08×10^3		18.43	8.95		2.12	7.04		4.46				
JOENA	58.73		4.89	30.60		2.73	3.65		1.39	6.61×10^2		26.47	0.05		1.02	0.49		0.86				

410 a globally constrained optimization problem. Compared with embedding-based methods, which infer
411 alignment from noisy embedding similarities, OT-based methods directly learns a robust alignment
412 matrix from transportation cost, thanks to the marginal constraints that naturally encourage one-to-one
413 node alignment. Empowered by constrained optimization and informative transportation cost encoded
414 by powerful graph proximity measures or learnable node embeddings, OT-based methods learn
415 *robust, deterministic, and global-structure-aware* alignment.

416 Takeaway #1: Optimal transport demonstrates significant potentials in NA.

417 *Best-performing OT-based methods consistently outperform consistency and embedding-based
418 approaches by a significant margin in alignment performance across diverse domains, demon-
419 strating the power of constrained optimization and informative transport cost which lead to
420 robust, deterministic, and global-structure-aware alignment.*

423 5.3 EFFICIENCY AND SCALABILITY RESULTS

424 We also include the efficiency results of NA algorithms on plain networks under a semi-supervised
425 setting with a 20% training ratio in Table 2. To further evaluate the scalability of NA algorithms, we
426 conduct another set of experiments on synthetic graphs generated by the Erdős–Rényi (ER) (Erdos
427 et al., 1960) model with a fixed average node degree of 10 under the same semi-supervised setting,
428 and record the inference time and peak memory usage as the number of nodes increases in Figure 4.
429

430 Embedding-based methods typically face a two-out-of-three trade-off among effectiveness, time
431 efficiency, and memory efficiency. Specifically, WAlign (Gao et al., 2021) and BRIGHT (Yan et al.,
432 2021b) are among the most scalable algorithms in terms of inference time thanks to simple neural

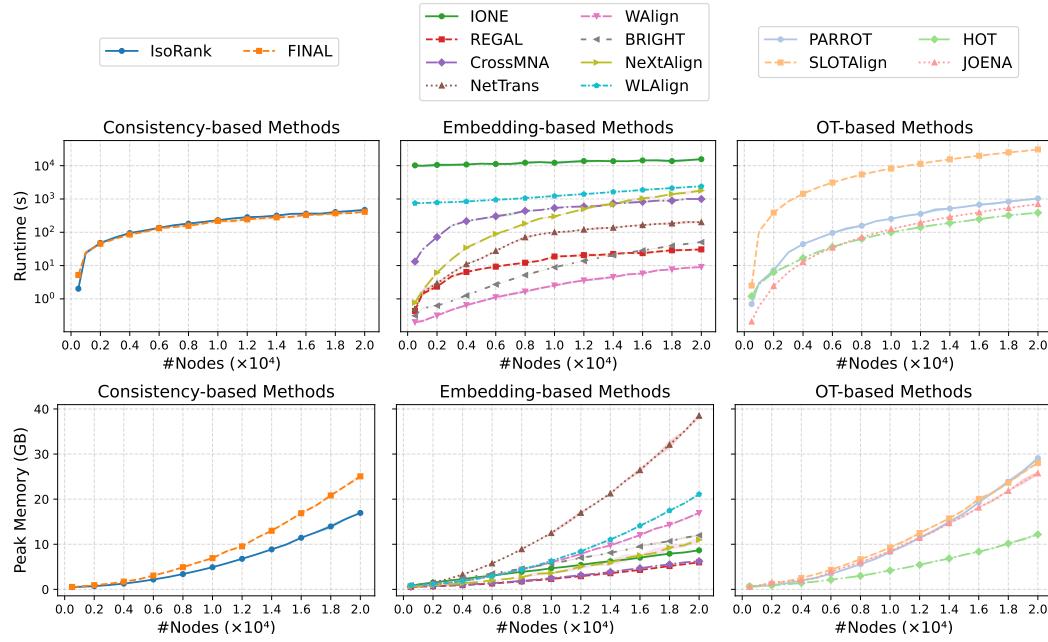


Figure 4: Scalability results on ER graphs. The **x-axis** shows the number of nodes in the ER graphs (in 10^4), and the **y-axis** of the 1st/2nd row shows the inference time and peak memory usage, respectively.

network (NN) structures which only requires a forward pass during inference. However, they tends to be less scalable in memory usage due to overheads of NN parameters. In terms of memory usage, CrossMNA (Chu et al., 2019) and IONE (Liu et al., 2016) achieve the best scalability as they learn low-dimensional embeddings without using NN. However, they tends to be less scalable in time since their transductive embeddings requires retraining for different networks (Hamilton et al., 2017). REGAL (Heimann et al., 2018) achieve both time and memory scalability by decomposition on sampled embedding matrices but is less effective compared to other NA methods.

Takeaway #2: Embedding-based methods face a two-out-of-three trade-off among effectiveness, time efficiency, and memory efficiency.

Embedding-based methods face trade-off among transductive embeddings for memory efficiency, inductive embeddings for time efficiency, and learning-based approaches for effectiveness.

Consistency-based methods (Singh et al., 2008; Zhang & Tong, 2016), on the other hand, scale moderately in terms of both time and memory usage. OT-based methods, in general, share similar scalability results as consistency-based methods since the optimizations of both kinds of methods involve matrix operations of quartic complexity. Although the original OT problem is non-convex and computationally expensive to solve by gradient descent (Tang et al., 2023), PARROT (Zeng et al., 2023) and JOENA (Yu et al., 2025) solve the OT problem efficiently by convex approximation (Peyré et al., 2019) and proximal point methods (Xu et al., 2019a). HOT (Zeng et al., 2024) further utilizes a hierarchical OT framework for cluster-level alignment to scale efficiently to large networks.

Takeaway #3: OT-based methods requires efficient optimization methods to scale similarly as consistency-based methods.

OT-based methods requires efficient optimization of OT problem, e.g., convex approximation, to scale moderately like consistency-based methods in terms of both time and memory usage.

5.4 ROBUSTNESS AND SENSITIVITY RESULTS

We evaluate the robustness of NA methods under various types of graph noises, as well as their sensitivity to different levels of supervision. Our key findings are twofold. *First*, different NA methods

486 show distinct sensitivities to different types of graph noises, suggesting that effective integration
 487 of different alignment techniques can potentially improve the overall robustness of NA algorithms.
 488 *Second*, current NA algorithms remain sensitive to supervision, underscoring the need for future
 489 research on self-supervised alignment approaches. Due to space constraints, detailed experimental
 490 results, analysis, and key takeaways are provided in Appendix D.1 and D.2.

492 6 CONCLUSION

494 In this paper, we introduce PLANETALIGN, a comprehensive library that facilitates the benchmarking
 495 and development of network alignment methods. PLANETALIGN highlights a collection of 18 different
 496 public datasets spanning 6 different domains, along with a unified and efficient implementation of
 497 14 different NA algorithms of 3 different categories. With a comprehensive list of evaluation metrics,
 498 benchmarking tools, and utility functions implemented as easy-to-use APIs, PLANETALIGN not only
 499 enables fair and reproducible benchmarking of NA algorithms but also facilitates the development of
 500 new NA methods. Through extensive benchmark, we reveal practical insights into the strengths and
 501 limitations of existing NA methods which guides the development of future NA algorithms.

503 7 LIMITATIONS AND FUTURE WORK

505 While we introduce a comprehensive library for benchmarking NA, PLANETALIGN could be potentially
 506 improved from the following two directions. *First*, although PLANETALIGN features a rich
 507 collection of baselines, some variants of NA methods that targets a specific kind of network remain
 508 uncovered, e.g., entity alignment approaches (Chen et al., 2023; Liu et al., 2023b; Yan et al., 2021a)
 509 for aligning knowledge graphs. *Second*, PLANETALIGN focuses primarily on benchmarking pairwise
 510 NA problems. Although multi-network alignment methods are included in PLANETALIGN (Chu
 511 et al., 2019; Zeng et al., 2024), benchmarking under a simultaneous multi-network alignment setting
 512 remains underexplored at this stage.

513 As for future work, we will continuously expand PLANETALIGN to incorporate new NA datasets,
 514 algorithms, benchmark settings, and utility functions. Specifically, *for NA datasets*, we plan to
 515 include 1) multi-network alignment datasets which consist of more than two networks, such as
 516 multi-layered version of ArXiv (De Domenico et al., 2015a), Twitter (Omodei et al., 2015), and
 517 SacchCere (De Domenico et al., 2015b), 2) dynamic networks which evolves over time, such as
 518 synthetic datasets from (Vijayan et al., 2017) and (Yan et al., 2021a), and 3) cross-domain datasets
 519 which consist of networks from different domains, such as text-image network constructed by
 520 GOT (Chen et al., 2020); *for NA algorithms*, we plan to introduce 1) domain-specific alignment
 521 algorithms, such as entity alignment methods DualMatch (Liu et al., 2023b) and MEAformer (Chen
 522 et al., 2023), 2) multi-network alignment algorithms such as MrMine (Du & Tong, 2019), 3) dynamic
 523 NA algorithms such as DynaMAGNA++ (Vijayan et al., 2017) and DINGA (Yan et al., 2021a); *for
 524 benchmark settings*, we plan to add additional evaluation metrics for measure the uncertainty of the
 525 alignment (Zhou et al., 2021), which are critical for developing active or self-improving NA methods
 526 highlighted as important future directions in our paper; for utility functions, our immediate goal is to
 527 introduce scalability tools to allow easy acceleration of NA algorithms built upon PLANETALIGN,
 528 including distributed training APIs, sparse and low-rank matrix optimizations, and low-rank (Scetbon
 529 & Cuturi, 2022) & sliced OT (Liu et al., 2024) optimization tools.

530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 ETHICS STATEMENT.
541542 Our library uses only publicly available datasets and conducts evaluation in a transparent and
543 responsible manner in accordance with the code of ethics of ICLR. The research does not involve
544 human subjects, animal studies, or any other procedures that may raise ethical concerns.
545546 REPRODUCIBILITY STATEMENT.
547548 To ensure reproducibility, for **datasets** in PLANETALIGN, we include their detailed statistics
549 and description in Appendix A. For **experimental setup**, we include detailed description of adopted
550 evaluation metrics, machines, dataset splits, and hyperparameter settings in Section 5.1 and Appendix C. The **source code** of PLANETALIGN is available at
551 <https://anonymous.4open.science/r/PlanetAlign-E9BA>, with detailed **documentation** at
552 <https://planetalign.netlify.app>.
553554 REFERENCES
555556 Mohsen Bayati, Margot Gerritsen, David F Gleich, Amin Saberi, and Ying Wang. Algorithms for
557 large, sparse network alignment problems. In *2009 Ninth IEEE International Conference on Data
558 Mining*, pp. 705–710. IEEE, 2009.559 Xuezhi Cao and Yong Yu. Asnets: A benchmark dataset of aligned social networks for cross-platform
560 user modeling. In *Proceedings of the 25th ACM International Conference on Information and
561 Knowledge Management*, pp. 1881–1884, 2016.562 Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. Graph optimal
563 transport for cross-domain alignment. In *International Conference on Machine Learning*, pp.
564 1542–1553. PMLR, 2020.565 Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen Hua, Qing Li, and Xiao Huang. Entity
566 alignment with noisy annotations from large language models. *Advances in Neural Information
567 Processing Systems*, 37:15097–15120, 2024.568 Zhuo Chen, Jiaoyan Chen, Wen Zhang, Lingbing Guo, Yin Fang, Yufeng Huang, Yichi Zhang, Yuxia
569 Geng, Jeff Z Pan, Wenting Song, et al. Meaformer: Multi-modal entity alignment transformer for
570 meta modality hybrid. In *Proceedings of the 31st ACM International Conference on Multimedia*,
571 pp. 3317–3327, 2023.572 Xiaokai Chu, Xinxin Fan, Di Yao, Zhihua Zhu, Jianhui Huang, and Jingping Bi. Cross-network
573 embedding for multi-network alignment. In *The world wide web conference*, pp. 273–284, 2019.574 Connor Clark and Jugal Kalita. A comparison of algorithms for the pairwise alignment of biological
575 networks. *Bioinformatics*, 30(16):2351–2359, 2014.576 Manlio De Domenico, Andrea Lancichinetti, Alex Arenas, and Martin Rosvall. Identifying modular
577 flows on multilayer networks reveals highly overlapping organization in interconnected systems.
578 *Physical Review X*, 5(1):011027, 2015a.579 Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Structural reducibility
580 of multilayer networks. *Nature communications*, 6(1):6864, 2015b.581 Christoph Döpmann. Survey on the graph alignment problem and a benchmark of suitable algorithms.
582 *Institut für Informatik*, 2013.583 Boxin Du and Hanghang Tong. Mrmine: Multi-resolution multi-network embedding. In *Proceedings
584 of the 28th ACM International Conference on Information and Knowledge Management*, pp.
585 479–488, 2019.586 Boxin Du, Si Zhang, Yuchen Yan, and Hanghang Tong. New frontiers of multi-network mining:
587 Recent developments and future trend. In *Proceedings of the 27th ACM SIGKDD Conference on
588 Knowledge Discovery & Data Mining*, pp. 4038–4039, 2021.

594 Paul Erdos, Alfr  d R  nyi, et al. On the evolution of random graphs. *Publ. math. inst. hung. acad. sci.*,
 595 5(1):17–60, 1960.

596

597 Fazle E Faisal, Lei Meng, Joseph Crawford, and Tijana Milenkovi . The post-genomic era of
 598 biological network alignment. *EURASIP Journal on Bioinformatics and Systems Biology*, 2015:
 599 1–19, 2015.

600

601 Ji Gao, Xiao Huang, and Jundong Li. Unsupervised graph alignment with wasserstein distance
 602 discriminator. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &*

603 *Data Mining*, pp. 426–435, 2021.

604

605 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 606 *Advances in neural information processing systems*, 30, 2017.

607

608 Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representation learning-based
 609 graph alignment. In *Proceedings of the 27th ACM international conference on information and*

610 *knowledge management*, pp. 117–126, 2018.

611

612 Yunfei Hu, Manfei Xie, Yikang Li, Mingxing Rao, Wenjun Shen, Can Luo, Haoran Qin, Jihoon Baek,
 613 and Xin Maizie Zhou. Benchmarking clustering, alignment, and integration methods for spatial
 614 transcriptomics. *Genome Biology*, 25(1):212, 2024.

615

616 Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
 617 learning for robust graph neural networks. In *Proceedings of the 26th ACM SIGKDD international*

618 *conference on knowledge discovery & data mining*, pp. 66–74, 2020.

619

620 J  r  me Kunegis. Konect: the koblenz network collection. In *Proceedings of the 22nd international*

621 *conference on world wide web*, pp. 1343–1350, 2013.

622

623 Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
 624 diameters. *ACM transactions on Knowledge Discovery from Data (TKDD)*, 1(1):2–es, 2007.

625

626 Na Li, Renyu Zhu, Xiaoxu Zhou, Xiangnan He, Wenyuan Cai, Ming Gao, and Aoying Zhou. On
 627 disambiguating authors: Collaboration network reconstruction in a bottom-up manner. In *2021*

628 *IEEE 37th International Conference on Data Engineering (ICDE)*, pp. 888–899. IEEE, 2021.

629

630 Li Liu, William K Cheung, Xin Li, and Lejian Liao. Aligning users across social networks using
 631 network embedding. In *Ijcai*, volume 16, pp. 1774–80, 2016.

632

633 Li Liu, Penggang Chen, Xin Li, William K Cheung, Youmin Zhang, Qun Liu, and Guoyin Wang.
 634 Wl-align: Weisfeiler-lehman relabeling for aligning users across networks via regularized rep-
 635 resentation learning. *IEEE Transactions on Knowledge and Data Engineering*, 36(1):445–458,
 636 2023a.

637

638 Xiaoze Liu, Junyang Wu, Tianyi Li, Lu Chen, and Yunjun Gao. Unsupervised entity alignment for
 639 temporal knowledge graphs. In *Proceedings of the ACM Web Conference 2023*, pp. 2528–2538,
 640 2023b.

641

642 Xinran Liu, Roc  o D  az Mart  n, Yikun Bai, Ashkan Shahbazi, Matthew Thorpe, Akram Aldroubi,
 643 and Soheil Kolouri. Expected sliced transport plans. *arXiv preprint arXiv:2410.12176*, 2024.

644

645 Elisa Omodei, Manlio De Domenico, and Alex Arenas. Characterizing interactions in online social
 646 networks during exceptional events. *Frontiers in Physics*, 3:59, 2015.

647

648 Daniel Park, Rohit Singh, Michael Baym, Chung-Shou Liao, and Bonnie Berger. Isobase: a database
 649 of functionally related proteins across ppi networks. *Nucleic acids research*, 39(suppl_1):D295–
 650 D300, 2010.

651

652 Yongjiang Peng, Xiaoliang Chen, Duoqian Miao, Xiaolin Qin, Xu Gu, and Peng Lu. Unveiling
 653 user identity across social media: a novel unsupervised gradient semantic model for accurate and
 654 efficient user alignment. *Complex & Intelligent Systems*, 11(1):24, 2025.

655

656 Gabriel Peyr  , Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
 657 distance matrices. In *International conference on machine learning*, pp. 2664–2672. PMLR, 2016.

648 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
 649 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.
 650

651 Miklós Z Rácz and Jifan Zhang. Harnessing multiple correlated networks for exact community
 652 recovery. *Advances in Neural Information Processing Systems*, 37:53834–53886, 2024.

653 Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
 654 representations from structural identity. In *Proceedings of the 23rd ACM SIGKDD international*
 655 *conference on knowledge discovery and data mining*, pp. 385–394, 2017.

656

657 Meyer Scetbon and Marco Cuturi. Low-rank optimal transport: Approximation, statistics and
 658 debiasing. *Advances in Neural Information Processing Systems*, 35:6802–6814, 2022.

659

660 Jiangli Shao, Yongqing Wang, Fangda Guo, Boshen Shi, Huawei Shen, and Xueqi Cheng. Cana:
 661 Causal-enhanced social network alignment. In *Proceedings of the 32nd ACM international*
 662 *conference on information and knowledge management*, pp. 2219–2228, 2023.

663

664 Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction networks
 665 with application to functional orthology detection. *Proceedings of the National Academy of*
 666 *Sciences*, 105(35):12763–12768, 2008.

667

668 Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
 669 convolutional networks: A new framework for spatial-temporal network data forecasting. In
 670 *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 914–921, 2020.

671

672 Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike
 673 Tyers. Biogrid: a general repository for interaction datasets. *Nucleic acids research*, 34(suppl_1):
 674 D535–D539, 2006.

675

676 Zequn Sun, Wei Hu, and Chengkai Li. Cross-lingual entity alignment via joint attribute-preserving
 677 embedding. In *International semantic web conference*, pp. 628–644. Springer, 2017.

678

679 Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muham Chen, Farahnaz Akrami, and
 680 Chengkai Li. A benchmarking study of embedding-based entity alignment for knowledge graphs.
 681 *arXiv preprint arXiv:2003.07743*, 2020.

682

683 Jianheng Tang, Weiqi Zhang, Jiajin Li, Kangfei Zhao, Fugee Tsung, and Jia Li. Robust attributed
 684 graph alignment via joint structure learning and optimal transport. In *2023 IEEE 39th International*
 685 *Conference on Data Engineering (ICDE)*, pp. 1638–1651. IEEE, 2023.

686

687 Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
 688 mining of academic social networks. In *Proceedings of the 14th ACM SIGKDD international*
 689 *conference on Knowledge discovery and data mining*, pp. 990–998, 2008.

690

691 Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and its applications.
 692 In *Sixth international conference on data mining (ICDM’06)*, pp. 613–622. IEEE, 2006.

693

694 Huynh Thanh Trung, Nguyen Thanh Toan, Tong Van Vinh, Hoang Thanh Dat, Duong Chi Thang,
 695 Nguyen Quoc Viet Hung, and Abdul Sattar. A comparative study on network alignment techniques.
 696 *Expert Systems with Applications*, 140:112883, 2020.

697

698 Vipin Vijayan, Dominic Critchlow, and Tijana Milenković. Alignment of dynamic networks. *Bioin-*
 699 *formatics*, 33(14):i180–i189, 2017.

700

701 Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
 702 partitioning and matching. *Advances in neural information processing systems*, 32, 2019a.

703

704 Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, and Dong Yu. Cross-lingual
 705 knowledge graph alignment via graph matching neural network. *arXiv preprint arXiv:1905.11605*,
 706 2019b.

707

708 Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, and Hanghang Tong. Dynamic knowledge graph
 709 alignment. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp.
 710 4564–4572, 2021a.

702 Yuchen Yan, Si Zhang, and Hanghang Tong. Bright: A bridging algorithm for network alignment. In
 703 *Proceedings of the web conference 2021*, pp. 3907–3917, 2021b.
 704

705 Yuchen Yan, Qinghai Zhou, Jinning Li, Tarek Abdelzaher, and Hanghang Tong. Dissecting cross-
 706 layer dependency inference on multi-layered inter-dependent networks. In *Proceedings of the 31st*
 707 *ACM International Conference on Information & Knowledge Management*, pp. 2341–2351, 2022.

708 Yuchen Yan, Yongyi Hu, Qinghai Zhou, Shurang Wu, Dingsu Wang, and Hanghang Tong. Topological
 709 anonymous walk embedding: A new structural node embedding approach. In *Proceedings of the*
 710 *33rd ACM International Conference on Information and Knowledge Management*, pp. 2796–2806,
 711 2024.

712 Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
 713 graph embeddings. In *International conference on machine learning*, pp. 40–48. PMLR, 2016.
 714

715 Qi Yu, Zhichen Zeng, Yuchen Yan, Lei Ying, R Srikant, and Hanghang Tong. Joint optimal transport
 716 and embedding for network alignment. In *Proceedings of the ACM on Web Conference 2025*, pp.
 717 2064–2075, 2025.

718 F Zare Mirak-Abad and Z Ghorbanali. Praf framework for global protein-protein interaction network
 719 alignment. *Modares Journal of Biotechnology*, 10(2):329–334, 2025.
 720

721 Zhichen Zeng, Si Zhang, Yinglong Xia, and Hanghang Tong. Parrot: Position-aware regularized
 722 optimal transport for network alignment. In *Proceedings of the ACM Web Conference 2023*, pp.
 723 372–382, 2023.

724 Zhichen Zeng, Boxin Du, Si Zhang, Yinglong Xia, Zhining Liu, and Hanghang Tong. Hierarchical
 725 multi-marginal optimal transport for network alignment. In *Proceedings of the AAAI Conference*
 726 *on Artificial Intelligence*, volume 38, pp. 16660–16668, 2024.

727 Jiawei Zhang and S Yu Philip. Integrated anchor and social link predictions across social networks.
 728 In *IJCAI*, pp. 2125–2132, 2015.
 729

730 Si Zhang and Hanghang Tong. Final: Fast attributed network alignment. In *Proceedings of the 22nd*
 731 *ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1345–1354,
 732 2016.

733 Si Zhang and Hanghang Tong. Network alignment: recent advances and future directions. In
 734 *Proceedings of the 29th ACM international conference on information & knowledge management*,
 735 pp. 3521–3522, 2020.
 736

737 Si Zhang, Hanghang Tong, Jie Tang, Jiejun Xu, and Wei Fan. ineat: Incomplete network alignment.
 738 In *2017 IEEE International Conference on Data Mining (ICDM)*, pp. 1189–1194. IEEE, 2017.
 739

740 Si Zhang, Hanghang Tong, Ross Maciejewski, and Tina Eliassi-Rad. Multilevel network alignment.
 741 In *The World Wide Web Conference*, pp. 2344–2354, 2019a.

742 Si Zhang, Hanghang Tong, Ross Maciejewski, and Tina Eliassi-Rad. Multilevel network alignment.
 743 In *The World Wide Web Conference*, pp. 2344–2354, 2019b.

744 Si Zhang, Hanghang Tong, Yinglong Xia, Liang Xiong, and Jiejun Xu. Nettrans: Neural cross-
 745 network transformation. In *Proceedings of the 26th ACM SIGKDD International Conference on*
 746 *Knowledge Discovery & Data Mining*, pp. 986–996, 2020.
 747

748 Si Zhang, Hanghang Tong, Long Jin, Yinglong Xia, and Yunsong Guo. Balancing consistency
 749 and disparity in network alignment. In *Proceedings of the 27th ACM SIGKDD conference on*
 750 *knowledge discovery & data mining*, pp. 2212–2222, 2021.

751 Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, and Jie Tang.
 752 Graph robustness benchmark: Benchmarking the adversarial robustness of graph machine learning.
 753 *arXiv preprint arXiv:2111.04314*, 2021.
 754

755 Qinghai Zhou, Liangyue Li, Xintao Wu, Nan Cao, Lei Ying, and Hanghang Tong. Attent: Active
 attributed network alignment. In *Proceedings of the Web Conference 2021*, pp. 3896–3906, 2021.

756 Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
757 graph neural networks with ego-graph information maximization. *Advances in Neural Information
758 Processing Systems*, 34:1766–1779, 2021.

759

760 Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
761 networks. *Bioinformatics*, 33(14):i190–i198, 2017.

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 TABLE OF APPENDIX
811

812	A Datasets Details	17
813	A.1 Dataset Statistics	17
814	A.2 Dataset Descriptions	17
815		
816		
817	B Network Alignment Methods	19
818	B.1 Consistency-based Methods	19
819	B.2 Embedding-based Methods	19
820	B.3 OT-based Methods	20
821		
822		
823		
824	C Detailed Experimental Setup	20
825		
826	D Additional Experimental Results	20
827	D.1 Robustness Results	20
828	D.2 Sensitivity to Supervision Results	22
829	D.3 Comparison with official implementations	23
830		
831		
832	D.4 Scalability Results on Large Graphs	24
833	D.5 Detailed Effectiveness Results	24
834		
835		
836	E Statement of LLM Usage	24
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

A DATASETS DETAILS

A.1 DATASET STATISTICS

Table 3: Dataset Statistics.

Domain	Networks	# nodes	# edges	# node attr.	# edge attr.	Type
Social Networks	Foursquare	5,313	54,233	0	0	Real-world
	Twitter	5,120	130,575	0	0	Real-world
	Douban(online)	3,906	8,164	538	2	Real-world
	Douban(offline)	1,118	1,511	538	2	Real-world
	Flickr	12,974	16,149	3	3	Real-world
	Lastfm	15,436	16,319	3	3	Real-world
	Flickr	6,714	7,333	3	3	Real-world
	Myspace	10,733	11,081	3	3	Real-world
Communication Networks	Phone	1,000	41,191	0	0	Real-world
	Email	1,003	4,628	0	0	Real-world
	Arenas1	1,135	10,902	50	0	Synthetic
	Arenas2	1,135	10,800	50	0	Synthetic
Publication Networks	ACM	9,872	39,561	17	0	Real-world
	DBLP	9,916	44,808	17	0	Real-world
	Cora1	2,708	6,334	1,433	0	Synthetic
	Cora2	2,708	4,542	1,433	0	Synthetic
	ArXiv1	18,722	217,921	0	0	Synthetic
	ArXiv2	18,722	168,394	0	0	Synthetic
Biological Networks	SacchCere1	5,928	66,150	0	0	Real-world
	SacchCere2	5,042	29,599	0	0	Real-world
	PPI1	3,480	117,429	50	0	Synthetic
	PPI2	3,480	90,741	50	0	Synthetic
	GGI1	10,403	115,755	0	0	Synthetic
	GGI2	10,403	89,448	0	0	Synthetic
Knowledge Graphs	DBP15K_ZH	19,388	70,414	300	0	Real-world
	DBP15K_EN	19,572	95,142	300	0	Real-world
	DBP15K_JA	19,814	77,214	300	0	Real-world
	DBP15K_EN	19,780	93,484	300	0	Real-world
	DBP15K_FR	19,661	105,997	300	0	Real-world
	DBP15K_EN	19,993	115,722	300	0	Real-world
Infrastructure Networks	Italy1	349	416	0	0	Real-world
	Italy2	349	435	0	0	Real-world
	Airport1	1,190	14,958	4	0	Synthetic
	Airport2	1,190	11,560	4	0	Synthetic
	PeMS08-1	170	301	3	0	Synthetic
	PeMS08-2	170	233	3	0	Synthetic

A.2 DATASET DESCRIPTIONS

Detailed datasets descriptions are introduced as follows

- **Foursquare-Twitter** (Zhang & Philip, 2015). A pair of online social networks, Foursquare and Twitter. Nodes represent users and an edge exists between two users if they have follower/followee relationships. Both networks are plain networks. There are 1,609 common users across two networks.
- **Douban** (Zhang & Tong, 2016). A pair of online-offline social networks constructed from Douban. Nodes represent users and edges represent user interactions on the website. The location of a user is treated as the node attribute, and the contact/friend relationship are treated as the edge attributes. There are 1,118 common user across the two networks.

- **Flickr-LastFM** (Zhang & Tong, 2016). A pair of social networks from Flickr and LastFM. Nodes in both networks represent users, and edges represent friend / following relationships in Flickr and LastFM, respectively. The gender of a user is treated as the node attributes (male, female, unknown), and the level of people a user is connected to is treated as the edge attributes (e.g., leader with leader). There are 452 common users across two networks.
- **Flickr-MySpace** (Zhang & Tong, 2016). A pair of social networks from Flickr and MySpace. Nodes in both networks represent users, and edges represent friend / following relationships. The gender of a user is treated as the node attributes (male, female, unknown), and the level of people a user is connected to is treated as the edge attributes (e.g., leader with leader). There are 267 common users across two networks.
- **ACM-DBLP** (Tang et al., 2008). A pair of undirected co-authorship networks, ACM and DBLP. Nodes represent authors and edges an edge exists between two authors if they co-author at least one paper. Node attributes are available in both networks. There are 6,325 common authors across two networks.
- **Cora** (Yang et al., 2016). A pair of networks synthesized from the citation network Cora. Each network Nodes represent publications and an edge exists between two publications if they have a citation relationship. The two networks are noisy permutations of the original network generated by randomly inserting 10% edges (Cora1) and deleting 15% edges (Cora2) from the original network, respectively. There are in total 2,708 common nodes across two networks.
- **ArXiv** (Leskovec et al., 2007). A pair of networks synthesized from the Arxiv ASTRO-PH (Astro Physics) collaboration network (Leskovec et al., 2007). Nodes represent authors and an edge exists between two authors if they have co-authored a paper. The two networks are noisy permutations of the original network generated by randomly inserting 10% edges (ArXiv1) and deleting 15% edges (ArXiv2) from the original network, respectively. Node and edge attributes are not available. There are in total 18,722 common nodes across two networks.
- **SacchCere** (Stark et al., 2006; De Domenico et al., 2015b). A pair of direct interaction layer and association layer from the SacchCere multiplex GPI network. The SacchCere network consider different kinds of protein and genetic interactions for *Saccharomyces Cerevisiae* in BioGRID (Stark et al., 2006), a public database that archives and disseminates genetic and protein interaction data from humans and model organisms. There are in total 1,337 common nodes across two layers of networks.
- **PPI** (Zitnik & Leskovec, 2017). A pair of networks synthesized from the protein-protein interaction (PPI) network (Zitnik & Leskovec, 2017), where nodes represent human proteins and edges represent physical interaction between proteins in a human cell. The immunological signatures are included as node features. The two networks are noisy permutations of the original network generated by randomly inserting 10% edges (PPI1) and deleting 15% edges (PPI2) from the original network, respectively. There are in total 3,980 common nodes across two networks.
- **GGI** (Park et al., 2010). A pair of networks synthesized from the human gene-gene interaction (PPI) network from IsoBase (Park et al., 2010). Nodes represent human genes and edges represent gene-gene interactions. The two networks are noisy permutations of the original network generated by randomly inserting 10% edges (GGI1) and deleting 15% edges (GGI2) from the original network, respectively. There are in total 10,403 common nodes across two networks.
- **DBP15K ZH-EN, JA-EN, FR-EN** (Sun et al., 2017). Pairs of Chinese, Japanese, and French to English version of multi-lingual DBpedia networks. The node attributes are given by pre-trained and aligned monolingual word embeddings (Xu et al., 2019b). There are 15,000 pairs of aligned entities in DBP15K ZH-EN (Chinese to English), JA-EN (Japanese to English), and FR-EN (French to English), respectively.
- **Italy** (Yan et al., 2022). A pair of power grid networks from two regions in Italy. Nodes represent power stations and edges represent the existence of power transfer lines. Node attributes are derived from node labels. There are in total 377 common nodes across two networks inferred from the ground-truth cross-layer dependencies.
- **Airport** (Zhu et al., 2021). A pair of networks synthesized from the American air-traffic network (Ribeiro et al., 2017). Nodes represent airports and an edge exists between two airports if there are commercial flights between them. The level of activity in each airport is used as node attributes. The two networks are noisy permutations of the original network generated by randomly inserting 10% edges (Airport1) and deleting 15% edges (Airport2) from the original network, respectively. There are in total 1,190 common nodes across two networks.
- **PeMS08** (Song et al., 2020). A pair of traffic networks synthesized from the Performance Measurement System (PeMS) Data Source. Nodes represent sensors and edges indicate traffic flow

972 correlation. Node attributes are averaged across all time interval. The two networks are noisy
 973 permutations of the original network generated by randomly inserting 10% edges (PeMS08-1) and
 974 deleting 15% edges (PeMS08-2) from the original network, respectively. There are in total 170
 975 common nodes across two networks.

976 • **Phone-Email** (Zhang et al., 2017). A pair of communication networks among people via phone
 977 or email. Nodes represent people and an edge exists between two people if they communicate
 978 via phone or email at least once. Phone network includes 1,000 nodes and 41,191 edges. Email
 979 network includes 1,003 nodes and 4,627 edges. Both networks are plain networks. There are 1,000
 980 common people across two networks.

981 • **Arenas** (Kunegis, 2013). A pair of networks synthesized from the email communication network
 982 Arenas at the University Rovira i Virgili. Nodes are users and each edge represents that at least one
 983 email was sent. The two networks are noisy permutations of each other. There are in total 1,135
 984 common nodes across two networks.

985 986 B NETWORK ALIGNMENT METHODS

987 988 B.1 CONSISTENCY-BASED METHODS

989 • **IsoRank** (Singh et al., 2008). IsoRank is originally designed for global alignment of multiple PPI
 990 networks. It is built upon neighborhood topology consistency which assumes that the neighbors of
 991 aligned anchor nodes should be aligned as well, and is formulated as an eigenvalue problem. (Yan
 992 et al., 2021b) reveals that the formulation of IsoRank can be considered as conducting random walk
 993 propagation of anchor links on the product graph to achieve topology consistency.

994 • **FINAL** (Zhang & Tong, 2016). FINAL interprets the alignment consistency principles as an
 995 optimization problem and introduces additional consistency principles at node/edge attribute levels
 996 to handle attributed network alignment.

997 998 B.2 EMBEDDING-BASED METHODS

999 • **IONE** (Liu et al., 2016). IONE modeled the follower/followee-ship of different nodes as input/output
 1000 context vectors to learn proximity-preserving node embeddings, and solve the node embedding
 1001 and network alignment problem based on a unified framework.

1002 • **REGAL** (Heimann et al., 2018). REGAL designs an embedding learning methods called xNetMF
 1003 which learns powerful node embeddings by matrix factorization on a linear combination between
 1004 cross-network structural and attribute similarity matrix. Based on xNetMF embeddings, REGAL
 1005 infer node-level alignment of two networks based on Euclidean distance of nodes in the embedding
 1006 space.

1007 • **CrossMNA** (Chu et al., 2019). CrossMNA leverages cross-network structural information to learn
 1008 inter and intra network embeddings simultaneously. By comparing inter network embeddings
 1009 across different networks, CrossMNA is capable of aligning multiple networks at the same time.

1010 • **NetTrans** (Zhang et al., 2020). NetTrans approach the network alignment problem from a cross-
 1011 network transformation perspective. It learns the transformation of both network structure and
 1012 node attributes at different resolutions to identify node-level alignment.

1013 • **WAlign** (Gao et al., 2021). WAlign learns node embeddings by a lightweight GCN model to
 1014 capture both local and global graph patterns and proposes a Wasserstein distance discriminator to
 1015 minimize the Wasserstein distance between node embeddings across different graphs.

1016 • **BRIGHT** (Yan et al., 2021b). BRIGHT first generate positional node embeddings by random
 1017 walk with restart (RWR) (Tong et al., 2006) against anchor links. To handle plain network
 1018 alignment, BRIGHT-U learns position-aware embeddings by transforming RWR embeddings
 1019 through a shared MLP. To handle attributed network alignment, BRIGHT-A use a shared GCN
 1020 model for transforming node attributes and concatenates the output embeddings with RWR vectors
 1021 before feeding into the shared MLP.

1022 • **NeXtAlign** (Zhang et al., 2021). NeXtAlign designs a spatial GCN model and learns node
 1023 embeddings that balance the alignment consistency and disparity by crafting the sampling strategy.

1024 • **WLAlign** (Liu et al., 2023a). WLAlign proposes a cross-network Weisfeiler-Lehman relabeling
 1025 scheme to learn embeddings that preserves long-range connectivity to the anchor pairs on plain
 networks.

1026 B.3 OT-BASED METHODS
1027

- 1028 • **SLOTAlign (Tang et al., 2023).** SLOTAlign utilizes a parameter-free GCN model to encode graph
1029 structure. By integrating output embeddings of multiple layers of GCN through a learnable linear
1030 combination, SLOTAlign encode the Gromov-Wasserstein distance between two networks via the
1031 learned embeddings and optimize the embedding and optimal transport problem alternatively to
1032 infer alignment.
- 1033 • **PARROT (Zeng et al., 2023).** PARROT encodes a position-aware transportation cost by random
1034 walk with restart (RWR) (Tong et al., 2006) on separate and product graphs, and integrate consist-
1035 ency principle at node, edge, and neighborhood levels into the optimal transport formulation. Then,
1036 it solves the resulting optimization problem efficiently via constrained proximal point methods to
1037 infer node-level alignment.
- 1038 • **HOT (Zeng et al., 2024).** HOT proposes a hierarchical multi-marginal optimal transport framework
1039 which first decomposes multiple networks to aligned clusters via the fused Gromov-Wasserstein
1040 (FGW) barycenter (Peyré et al., 2016) and then aligns node in aligned clusters simultaneous by
1041 solving optimal transport problem within clusters.
- 1042 • **JOENA (Yu et al., 2025).** JOENA transforms the transport plan of optimal transport into an
1043 adaptive sampling strategy via a learnable transformation to learn node embeddings and alignment
1044 in a mutual beneficial manner.

1045 C DETAILED EXPERIMENTAL SETUP
1046

1047 **Machine.** All experiments are conducted on a computing server equipped with dual Intel® Xeon®
1048 Gold 6240R CPUs and 4 NVIDIA Tesla V100-SXM2 GPUs with 32GB memory each.

1049 **Dataset split and hyperparameters.** To mitigate the randomness introduced by a single random
1050 dataset split, we report the average metrics of 5 different dataset split based on 5 randomly selected
1051 seeds. All NA methods are evaluated under the same dataset splits to ensure a fair comparison. For
1052 each dataset split, we run a NA algorithm 5 times and report the average metrics. Hyperparameters
1053 are tuned with a fixed budget of 5 per key parameter based on the default values and hyperparameter
1054 study in the original papers. Detailed hyperparameter search spaces can be found in Table 4.

1055 Table 4: Hyperparameter search spaces.

1056 NA Method	1057 Search Parameters
1058 IsoRank	$\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$
1059 FINAL	$\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$
1060 IONE	$\text{out_dim} \in \{32, 64, 100, 128, 256\}$
1061 REGAL	$k \in \{1, 5, 10, 15, 20\}$, $\text{num_layers} \in \{1, 2, 3, 4, 5\}$, $\alpha \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$
1062 CrossMNA	$d_1 \in \{10, 50, 100, 150, 200\}$, $d_2 \in \{10, 50, 100, 150, 200\}$
1063 NetTrans	$\alpha \in \{0.01, 0.1, 1, 10, 100\}$, $\beta \in \{0.01, 0.1, 1, 10, 100\}$, $\gamma \in \{0.01, 0.1, 1, 10, 100\}$, $L \in \{1, 2, 3, 4, 5\}$
1064 WAlign	$h \in \{128, 256, 512, 1024, 2048\}$, $\epsilon \in \{0.01, 0.02, 0.04, 0.06, 0.08\}$
1065 BRIGHT	$\beta \in \{0.05, 0.1, 0.15, 0.2, 0.25\}$, $\text{out_dim} \in \{32, 64, 128, 256, 512\}$, $\text{neg_sample_size} \in \{100, 300, 500, 700, 900\}$
1066 NeXtAlign	$\beta \in \{0.05, 0.1, 0.15, 0.2, 0.25\}$, $\text{out_dim} \in \{32, 64, 128, 256, 512\}$, $\text{neg_sample_size} \in \{100, 300, 500, 700, 900\}$
1067 WLAgn	$\text{out_dim} \in \{32, 64, 128, 256, 512\}$, $\text{neg_sample_size} \in \{20, 40, 60, 80, 100\}$
1068 PARROT	$\eta \in \{0.1, 0.5, 1, 5, 10\}$, $\lambda_e \in \eta \lambda_e^{\text{default}}$, $\lambda_n \in \eta \lambda_n^{\text{default}}$, $\lambda_a \in \eta \lambda_a^{\text{default}}$, $\lambda_p \in \eta \lambda_p^{\text{default}}$
1069 SLOTAlign	$\epsilon \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$, $\text{step_size} \in \{1, 2, 3, 4, 5\}$
HOT	$\epsilon \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$, $\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$
JOENA	$\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$, $\gamma_p \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$, $\lambda_0 \in \{0.1, 0.5, 1.0, 1.5, 2.0\}$

1070 D ADDITIONAL EXPERIMENTAL RESULTS
10711072 D.1 ROBUSTNESS RESULTS
1073

1074 To benchmark the robustness of existing NA algorithms, we conduct controlled experiments to study
1075 the impact of edge, attribute, and supervision noises to alignment performance, offering practical
1076 insights into the development of robust NA methods.

1077 **Edge noise.** We introduce edge-level noise to simulate real-world edge perturbation (Jin et al.,
1078 2020). Specifically, the p% edge noise level is defined as randomly adding/deleting p% edges in the

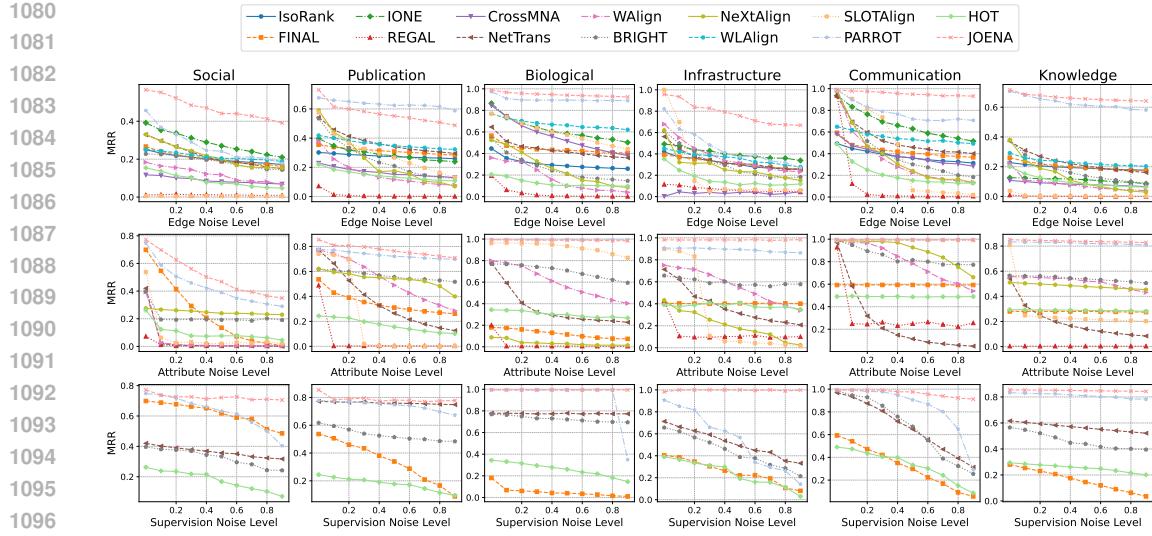


Figure 5: Robustness results of NA methods under different levels of edge, attribute, and supervision noises on representative datasets across 6 domains. The **x-axis** of the plots in the 1st/2nd/3rd row shows the noise level of edge/attribute/supervision, respectively, and the **y-axis** shows the MRR.

second network to be aligned (Tang et al., 2023; Zeng et al., 2023). We conduct evaluations of all NA methods under a semi-supervised (20% training ratio) plain NA setup to avoid potential interference of node/edge attributes.

Attribute noise. We introduce attribute-level noise to simulate real-world attribute perturbation (Zheng et al., 2021). Specifically, the $p\%$ attribute noise level is defined as randomly perturbing ² $p\%$ node and edge attributes in the second network to be aligned (Zeng et al., 2023). We conduct evaluations of attributed NA methods under a semi-supervised attributed NA setting with a training ratio of 20%.

Supervision noise. We introduce supervision noise to evaluate the robustness of semi-supervised NA methods against noisy anchor node pairs (Yan et al., 2021b; Tang et al., 2023). Specifically, the $p\%$ supervision noise is defined as randomly setting $p\%$ anchor nodes in the second graph to non-anchor nodes. To ensure fair comparison, we only evaluate the robustness of semi-supervised attributed NA methods ³ against supervision noise under a semi-supervised attributed NA setting with a training ratio of 20%.

Analysis. Robustness results on five representative datasets are shown in Figure 5. Firstly, for **edge noise**, consistency-based methods, including IsoRank (Singh et al., 2008) and FINAL (Zhang & Tong, 2016), are among the most robust methods with the slightest performance drop across all datasets. Embedding-based methods (Liu et al., 2016; Heimann et al., 2018; Chu et al., 2019; Zhang et al., 2020; Gao et al., 2021; Yan et al., 2021b; Zhang et al., 2021; Liu et al., 2023a), while slightly less robust than consistency-based approaches, generally show descent performance degradation ratio as edge noise level increases. OT-based methods (Zeng et al., 2023; Tang et al., 2023; Zeng et al., 2024; Yu et al., 2025), on the other hand, differ significantly in terms of robustness to edge-level noise, indicating that although OT can reduce the negative effect of graph noises by marginal constraint (Zeng et al., 2023; Yu et al., 2025), they require careful design of the transportation costs to avoid noise amplification during optimization. Nevertheless, OT-based methods PARROT (Zeng et al., 2023) and JOENA (Yu et al., 2025) consistently outperforms all other NA algorithms in alignment performance across different noise levels.

²We flip binary attributes and add standard gaussian noise into normalized continuous attributes.

³We include FINAL (Zhang & Tong, 2016) which has a semi-supervised version in its original paper.

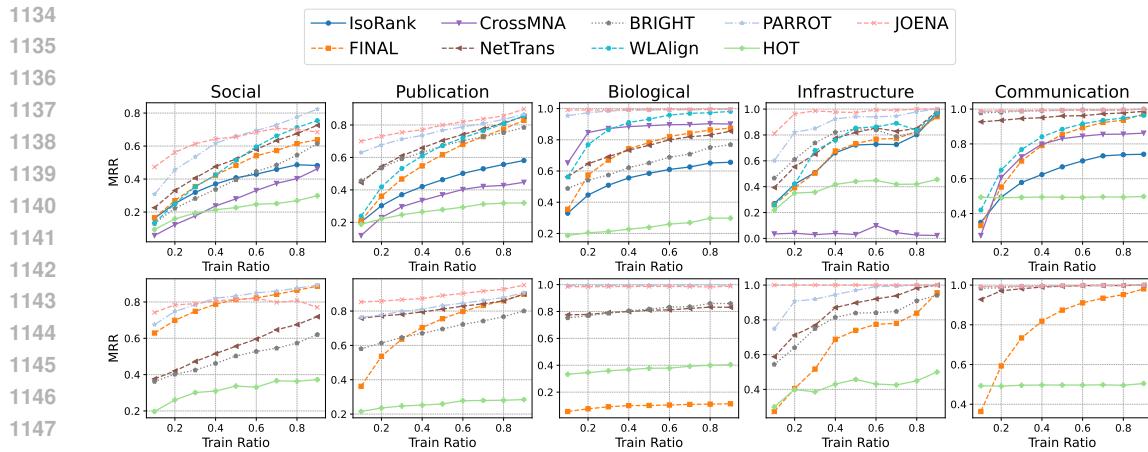


Figure 6: Sensitivity results of semi-supervised NA algorithms to different levels of supervision. The two rows correspond to plain and attributed NA settings respectively. The **x-axis** shows the training ratio (i.e., supervision level), and the **y-axis** shows the MRR.

Secondly, for **attribute noise**, PARROT (Zeng et al., 2023) and JOENA (Yu et al., 2025) becomes the most robust algorithms across all datasets. While both methods are OT-based, PARROT integrates consistency principles which further improve its robustness, and JOENA adopts an embedding-encoded OT cost learned via a MLP for robust alignment. Consistency-based methods remain robust to attribute noise on most datasets. Embedding-based methods are generally more sensitive to attribute noise than edge noise and suffer from significant performance drop under high attribute noise level, which highlights the need for more robust embedding learning approaches, potentially through the integration of optimal transport or consistency principles.

Finally, for **supervision noise**, the performance of most NA algorithms degrades significantly as the noise level increase, indicating that the effectiveness of existing semi-supervised NA methods rely heavy on the quality of anchor node pairs even when node/edge attributes are available. Nevertheless, JOENA (Yu et al., 2025) consistently shows the mildest performance drop across all datasets, demonstrating the power of effective combination of embedding and OT-based methods. Future methods may explore more effective integration of consistency, embedding, and OT-based approaches to better handle different kinds of real-world noise.

Takeaway #4: Different NA methods are sensitive to different kinds of noises. Effective integration of different NA techniques could be a way out.

Different NA methods may be sensitive to different kinds of real-world noises. Integrating different NA techniques effectively, such as consistency principles, embedding learning, and optimal transport, could potentially improve the overall robustness of NA algorithms.

D.2 SENSITIVITY TO SUPERVISION RESULTS

To comprehensively evaluate the impact of supervision on the performance of NA algorithms, we conduct a set of experiments to study the sensitivity of semi-supervised NA methods to different levels of supervision. Specifically, we gradually increase the training ratio and report the MRR of semi-supervised NA methods on five representative datasets under both plain and attributed NA settings. The results are presented in Figure 6.

Analysis. Firstly, the performance of NA algorithms generally shows a growing trend as the training ratio increases, with only a few exceptions such as JOENA (Yu et al., 2025) on Douban (Zhang & Tong, 2016), potentially due to overfitting on training data or the presence of noisy anchor pairs from real-world datasets. Nevertheless, most NA methods benefit significantly from increased supervision, demonstrating its importance to the effectiveness of NA algorithms.

Secondly, the use of attribute information typically improves the performance of NA algorithms under low supervision. However, the performance gap between plain and attributed settings narrows as the training ratio increases. For example, PARROT (Zeng et al., 2023) achieve an MRR of approximately 0.7/0.3 on Douban with/without attribute information under 10% training ratio, whereas the performance rises to about 0.95/0.9 under a 90% training ratio. This suggests that while attributes can help in low-supervision scenarios, increasing supervision remains crucial even in the presence of node and edge attributes in graphs. Combined with our previous robustness study against supervision noise, we present the following findings:

Takeaway #5: Supervision greatly affect the effectiveness of NA algorithms.

The quality and quantity of supervision greatly affect the performance of NA algorithms even in the presence of node and edge attributes, suggesting that self-supervised learning methods which discover high-quality anchor pairs could be a promising directions for NA research.

D.3 COMPARISON WITH OFFICIAL IMPLEMENTATIONS

Table 5: Performance and runtime comparison with official implementations averaged against all datasets. Δ represents the absolute difference between official and PLANETALIGN’s implementation.

Metrics	MRR			Training Runtime(s)			
	Version	Official	PLANETALIGN	Δ	Official	PLANETALIGN	Δ
REGAL	0.079	0.080	+0.001	20	14	-6	1.43
CrossMNA	0.220	0.222	+0.002	298	210	-88	1.42
NetTrans	0.373	0.374	+0.001	919	817	-102	1.12
WAlign	0.271	0.270	-0.001	79	68	-11	1.16
BRIGHT	0.362	0.362	+0.000	768	619	-149	1.24
NeXtAlign	0.391	0.391	+0.000	1319	1234	-85	1.07
WLAlign	0.328	0.322	-0.006	4018	1276	-2742	3.15
SLOTAlign	0.200	0.200	-0.001	891	821	-70	1.09
HOT	0.173	0.172	-0.001	239	226	-13	1.06
JOENA	0.583	0.583	+0.000	691	679	-12	1.02

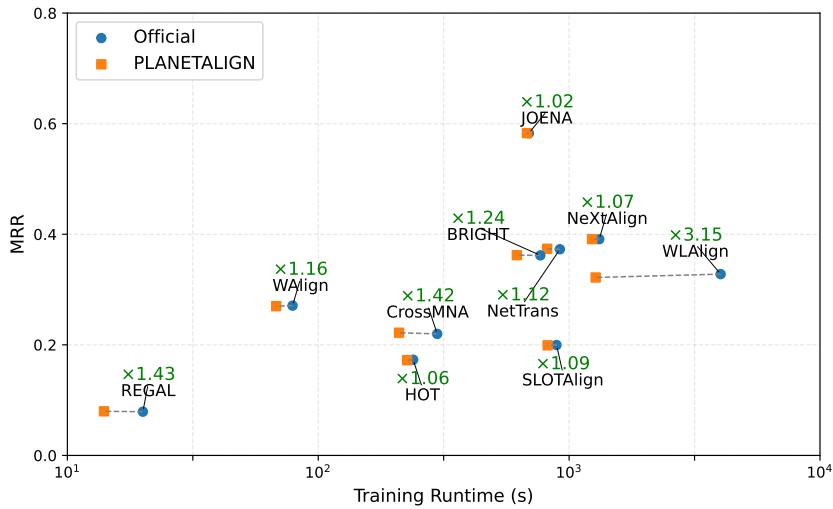


Figure 7: Performance and runtime comparison between official and PLANETALIGN’s implementations. The x-axis shows the average training runtime, and the y-axis shows the average MRR of different NA algorithms across 18 datasets. The average speedup in runtime of each method are shown in green.

We conduct comparative experiments between the official and PLANETALIGN’s implementations of NA algorithms to validate the correctness and efficiency of PLANETALIGN. To ensure a fair

comparison, we only include algorithms that have official Python implementations to eliminate the efficiency discrepancy of different programming languages. All training parameters, including training epochs, are set as default in the official code. We report the average MRR and training runtime of official and PLANETALIGN’s implementation across all 18 datasets in PLANETALIGN in Table 5 and Figure 7

We can see that PLANETALIGN’s implementation show comparable performance across all baselines while achieving up to 3 times speed-up over official implementations, demonstrating the correctness and efficiency of our implementation of existing NA methods.

D.4 SCALABILITY RESULTS ON LARGE GRAPHS

To further demonstrate the efficiency of our implementation on large-scale networks, we compare the training runtime with the official implementation on ER networks of 50K, 75K, and 100K nodes with an average node degree of 5 per network. As we can see in Figure 6, PLANETALIGN consistently outperform official implementations with up to 2.7 times speed-up.

Table 6: Runtime (s) comparison with official implementations on large-scale ER networks of 50K, 75K, and 100K nodes with average node degrees of 5. OOM represents out-of-memory.

# Nodes	50K			75K			100K		
	Version	Official	PLANETALIGN	Speedup	Official	PLANETALIGN	Speedup	Official	PLANETALIGN
REGAL	334	214	1.56	583	390	1.49	1.12×10^3	731	1.53
CrossMNA	4.12×10^3	3.02×10^3	1.36	7.36×10^3	5.13×10^3	1.43	1.37×10^4	8.91×10^3	1.54
WAlign	1.65×10^3	1.29×10^3	1.28	3.12×10^3	2.54×10^3	1.23	OOM	OOM	OOM
BRIGHT	2.82×10^4	2.15×10^4	1.31	8.95×10^4	6.90×10^4	1.29	3.47×10^5	2.49×10^5	1.40
NeXtAlign	6.55×10^4	6.08×10^4	1.08	3.68×10^5	3.41×10^5	1.08	OOM	OOM	OOM
WLAlign	2.46×10^5	9.12×10^4	2.70	OOM	OOM	OOM	OOM	OOM	OOM
SLOTAlign	3.01×10^4	2.75×10^4	1.10	OOM	OOM	OOM	OOM	OOM	OOM
HOT	3.14×10^3	2.87×10^3	1.10	6.17×10^3	5.74×10^3	1.07	1.08×10^4	9.43×10^3	1.15
JOENA	2.31×10^3	2.28×10^4	1.01	8.30×10^4	8.12×10^4	1.02	OOM	OOM	OOM

D.5 DETAILED EFFECTIVENESS RESULTS

Detailed effectiveness results on *plain* networks with a training ratio of 20% are shown in Table 7 and 8. Detailed effectiveness results on *attributed* networks with a training ratio of 20% are shown in Table 9.

E STATEMENT OF LLM USAGE

In this paper, LLMs were used exclusively for formatting assistance and language polishing. At no point were LLMs involved significantly in research ideation and/or writing to the extent that they could be considered as a contributor. Therefore, the use of LLMs does not impact the core methodology, the scientific rigorosity, or the originality of this research.

1296

1297

1298 Table 7: Detailed effectiveness results (Part I of II) on plain networks with a training ratio of 20%.
1299 The 1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference
1300 time and Mem. denotes the peak memory usage.

Dataset	Foursquare-Twitter					Phone-Email					
	Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)
IsoRank	.0241±.0000	.1487±.0000	.0645±.0000	.570±.060	1.60±.010		.0431±.0000	.2156±.0000	.1100±.0000	.025±.012	.059±.000
FINAL	.0474±.0000	.2407±.0000	.1062±.0000	.966±.003	2.30±.000		.0494±.0000	.2725±.0000	.1257±.0000	.010±.004	.063±.001
IONE	.0202±.0052	.0985±.0051	.0481±.0045	1.10±.02×10 ⁴	1.20±.000		.0941±.0032	.4037±.0120	.1952±.0031	2.30±.06×10 ³	0.80±.000
REGAL	.0001±.0002	.0027±.0010	.0025±.0003	7.80±.010	1.10±.010		.0012±.0002	.0097±.0011	.0076±.0003	1.30±.020	.060±.000
CrossMNA	.0162±.0034	.1011±.0061	.0456±.0039	1.10±.06×10 ³	1.00±.000		.0305±.0029	.2163±.0086	.0968±.0021	1.10±.027×10 ³	.062±.000
NetTrans	.0809±.0043	.2470±.0074	.1347±.0048	5.90±.08×10 ²	3.50±.120		.0216±.0027	.2546±.0020	.1020±.0011	2.40±.17×10 ⁴	0.85±.002
WAlign	.0039±.0004	.0150±.0005	.0095±.0003	1.30±.004	2.30±.000		.0206±.0018	.1235±.0093	.0585±.0009	.029±.008	0.89±.001
BRIGHT	.0537±.0027	.1784±.0012	.0923±.0019	9.20±.020	1.40±.000		.0476±.0033	.2516±.0028	.1186±.0029	.029±.001	0.95±.001
NeXtAlign	.0387±.0040	.1420±.0163	.0745±.0075	7.90±.02×10 ²	2.30±.000		.0570±.0045	.3012±.0116	.1411±.0038	4.60±.10	0.86±.001
WLAalign	.0924±.0016	.2103±.0036	.1325±.0009	1.20±.01×10 ³	3.00±.000		.0764±.0012	.2669±.0047	.1412±.0014	7.50±.10×10 ²	1.00±.000
PARROT	.1203±.0000	.2908±.0000	.1776±.0000	1.60±.02×10 ¹	2.60±.010		.2887±.0000	.7331±.0000	.4374±.0000	0.76±.009	0.69±.000
SLOTAlign	.0291±.0000	.1172±.0000	.0614±.0000	1.60±.03×10 ²	2.50±.000		.0075±.0000	.0525±.0000	.0283±.0000	2.34±.30	0.75±.001
HOT	.0518±.0030	.1627±.0044	.0457±.0018	1.10±.02×10 ²	1.70±.010		.0775±.0025	.3273±.0069	.0801±.0020	5.30±.60	0.72±.001
JOENA	.2673±.0069	.4478±.0083	.3304±.0083	2.80±.05×10 ¹	2.50±.006		.3468±.0029	.7809±.0037	.4973±.0018	0.76±.008	0.72±.001
Dataset	ACM-DBLP					SacchCere1-SacchCere2					
	Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)
IsoRank	.1641±.0003	.6329±.0008	.3023±.0002	4.70±.17×10 ¹	4.30±.010		.0335±.0009	.2284±.0016	.0976±.0002	0.95±.010	1.50±.060
FINAL	.2082±.0000	.6893±.0000	.3612±.0000	3.90±.10	6.60±.010		.0467±.0000	.2379±.0000	.1083±.0000	.054±.003	1.70±.060
IONE	.2515±.0028	.7267±.0075	.3979±.0023	1.30±.05×10 ⁴	2.60±.013		.0458±.0037	.2100±.0005	.0992±.0016	8.30±.04×10 ³	1.30±.060
REGAL	.0357±.0022	.1367±.0035	.0700±.0030	1.30±.01×10 ¹	1.90±.000		.0023±.0008	.0087±.0007	.0063±.0006	3.40±.10	1.20±.000
CrossMNA	.0742±.0034	.6108±.0031	.2290±.0025	5.50±.01×10 ²	1.90±.000		.0046±.0007	.1452±.0041	.0492±.0023	1.80±.13×10 ²	.098±.000
NetTrans	.4148±.0018	.8107±.0009	.5429±.0012	1.10±.04×10 ²	1.50±.05×10 ¹		.0521±.0017	.2534±.0038	.1150±.0020	1.20±.30×10 ⁴	2.20±.20
WAlign	.2871±.0018	.5538±.0025	.3797±.0021	2.80±.30	4.90±.010		.0207±.0006	.0516±.0032	.0336±.0019	.028±.001	1.90±.000
BRIGHT	.4052±.0011	.7957±.0011	.5346±.0013	6.80±.10×10 ¹	3.80±.000		.0353±.0015	.2188±.0062	.0915±.0021	4.60±.00	1.60±.000
NeXtAlign	.4670±.0019	.8401±.0017	.5915±.0011	1.70±.04×10 ²	4.00±.000		.0292±.0035	.2075±.0075	.0886±.0040	1.50±.40	1.30±.010
WLAalign	.3152±.0012	.6446±.0008	.4183±.0008	1.40±.04×10 ³	7.00±.000		.0533±.0011	.1639±.0014	.0888±.0007	5.80±.09×10 ²	1.50±.000
PARROT	.5749±.0000	.8784±.0000	.6766±.0000	1.30±.04×10 ²	7.80±.000		.0645±.0000	.2720±.0000	.1312±.0000	5.90±.20	1.90±.060
SLOTAlign	.4914±.0000	.7174±.0000	.5707±.0000	9.90±.16×10 ²	7.60±.26		.0000±.0000	.0023±.0000	.0028±.0000	1.00±.00	2.10±.010
HOT	.3261±.0040	.6787±.0053	.2210±.0026	4.30±.05×10 ²	5.00±.000		.0344±.0023	.1993±.0039	.0564±.0012	1.20±.11×10 ³	1.50±.010
JOENA	.6149±.0458	.9062±.0219	.7136±.0389	3.50±.05×10 ¹	3.00±.200		.0589±.0026	.2284±.0062	.1129±.0027	.031±.001	1.10±.000
Dataset	DBP15K_ZH-EN					Italy1-Italy2					
	Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)
IsoRank	.1092±.0001	.4878±.0001	.2276±.0000	1.60±.16×10 ²	1.60±.00×10 ¹		.0424±.0009	.2076±.0009	.0954±.0003	0.49±.013	0.60±.000
FINAL	.1327±.0000	.5347±.0000	.2634±.0000	1.80±.00×10 ¹	2.40±.00×10 ¹		.0430±.0000	.2202±.0000	.0958±.0000	.013±.001	0.84±.000
IONE	.0633±.0033	.2512±.0080	.1258±.0047	1.50±.03×10 ⁴	8.70±.000		.0245±.0027	.1570±.0149	.0679±.0028	6.20±.03×10 ³	0.84±.000
REGAL	.0036±.0005	.0168±.0008	.0091±.0006	3.00±.10×10 ¹	5.90±.000		.0033±.0020	.0265±.0041	.0142±.0023	0.97±.000	0.81±.000
CrossMNA	.0303±.0012	.2816±.0046	.1077±.0017	9.90±.02×10 ²	6.00±.000		.0023±.0015	.1447±.0105	.0476±.0024	3.70±.70×10 ¹	0.98±.001
NetTrans	.2625±.0011	.6022±.0010	.3717±.0009	5.00±.22×10 ²	3.00±.13×10 ¹		.0503±.0019	.2248±.0027	.1110±.0020	0.62±.15	1.10±.000
WAlign	.1856±.0013	.2823±.0170	.2231±.0127	9.10±.044	1.50±.01×10 ¹		.0609±.0014	.1580±.0034	.0938±.0020	0.09±.000	1.10±.000
BRIGHT	.2715±.0007	.5938±.0015	.3789±.0007	3.20±.03×10 ²	1.10±.00×10 ¹		.0904±.0025	.2566±.0045	.1443±.0010	0.33±.003	1.00±.000
NeXtAlign	.2695±.0008	.5981±.0095	.3790±.0104	2.60±.03×10 ²	1.30±.10×10 ¹		.0861±.0048	.2580±.0029	.1466±.0045	0.11±.004	1.20±.000
WLAalign	.2349±.0006	.4122±.0006	.2911±.0001	2.90±.02×10 ³	2.70±.00×10 ¹		.0404±.0048	.1535±.0051	.0778±.0037	2.40±.08×10 ²	1.40±.000
PARROT	.6334±.0000	.8528±.0000	.7074±.0000	8.70±.10×10 ²	2.80±.00×10 ¹		.0993±.0000	.2848±.0000	.1655±.0000	0.90±.000	0.83±.000
SLOTAlign	.0188±.0000	.0725±.0000	.0381±.0000	3.06±.01×10 ⁴	2.80±.00×10 ¹		.0149±.0000	.0613±.0000	.0334±.0000	0.12±.000	1.00±.020
HOT	.3143±.0038	.5832±.0058	.2006±.0020	2.10±.08×10 ³	2.00±.03×10 ¹		.0639±.014	.2408±.0036	.0586±.0040	1.10±.10×10 ¹	2.10±.000
JOENA	.6476±.0037	.8496±.0034	.7170±.0037	6.70±.08×10 ²	2.60±.00×10 ¹		.1010±.0049	.2930±.0161	.1697±.0061	0.06±.000	1.00±.010
Dataset	Douban					Flickr-LastFM					
	Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)
IsoRank	.1351±.0003	.5179±.0004	.2517±.0001	0.59±.006	0.95±.003		.0028±.0000	.0815±.0000	.0305±.0000	9.20±.22×10 ¹	8.13±.021
FINAL	.1458±.0000	.5676±.0000	.2692±.0000	0.34±.000	1.14±.004		.0028±.0000	.0732±.0000	.0253±.0000	1.56±.04×10 ¹	1.29±.02×10 ²
IONE	.2777±.0046	.6312±.0098	.3936±.0040	9.08±.15×10 ³	8.99±.004		.0113±.0033	.0437±.0044	.0239±.0036	4.09±.14×10 ³	3.77±.021
REGAL	.0025±.0006	.0198±.0034	.0105±.0006	2.57±.019	8.82±.000		.0042±.0026	.0340±.0062	.0177±.0023	1.78±.06×10 ¹	1.65±.016
CrossMNA	.0187±.0044	.3241±.0054	.1172±.0049	6.34±.24×10 ²	1.78±.001		.0061±.0008	.0091±.0030	.0078±.0011	3.18±.40×10 ¹	2.46±.001
NetTrans	.2030±.0020	.6018±.0020	.3291±.0015	1.54±.044	1.92±.040		.0052±.0012	.0204±.0018	.0115±.0009	2.75±.01×10 ¹	2.27±.15×10 ¹
WAlign	.1480±.0018	.2381±.0032	.1834±.0019	0.20±.006	1.31±.011		.0094±.0011	.0423±.0021	.0290±.0010	.055±.003	4.51±.008
BRIGHT	.1202±.0007	.4361±.0031	.2218±.0013	2.64±.007	1.14±.001		.0259±.0015	.0492±.0037	.0357±.0010	0.33±.003	1.00±.000
NeXtAlign	.2154±.0062	.5701±.0144	.3305±.0084	1.86±.000	1.66±.000		.0260±.0030	.0541±.0075	.0375±.0023	6.11±.29×10 ¹	6.85±.007
WLAalign	.2028±.0021	.3505±.0019	.2517±.0015	6.58±.041×10 ²	0.95±.002		.0080±.0027	.0224±.0012	.0141±.0018	5.37±.37×10 ²	3.21±.002
PARROT	.3469±.0000	.6832±.0000	.4563±.0000	2.73±.071	1.31±.002		.0276±.0000	.0608±.0000	.0417±.0000	2.51±.08×10 ²	1.51±.002×10 ¹
SLOTAlign	.0000±.0000	.0078±.0000	.0048±.0000	7.01±.032	1.40±.003		.0041±.0000	.0235±.0000	.0145±.0000	8.44±.405	1.54±.004×10 ¹
HOT	.1509±.0059	.4600±.0131	.1545±.0026	3.95±.15×10 ²	1.37±.008		.0091±.0037	.0157±.0030	.0063±.0015	1.01±.02×10 ³	7.97±.018
JOENA	.4457±.0038	.8091±.0026	.5657±.0022	0.41±.006	1.19±.003		.0290±.0000	.0994±.0062	.0558±.0023	2.02±.07×10 ²	1.41±.002×10 ¹
Dataset	Flickr-MySpace					Arenas					
	Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)
IsoRank	.0047±.0000	.0374±.0000	.0225±.0002	2.39±.235	3.47±.008		.3981±.0000				

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

Table 8: Detailed effectiveness results (Part II of II) on plain networks with a training ratio of 20%. The 1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference time and Mem. denotes the peak memory usage.

Dataset		Cora					ArXiv				
		Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)
1360	IsoRank	.1793±.0000	.5877±.0000	.3127±.0001	0.98±0.30	1.17±0.15	.2247±.0001	.5537±.0000	.3281±.0000	1.26±0.17×10 ²	1.52±0.06×10 ¹
	FINAL	.2065±.0000	.6442±.0000	.3488±.0000	0.25±0.00	1.38±0.15	.2551±.0000	.7250±.0000	.4102±.0000	1.61±0.02×10 ¹	2.22±0.06×10 ¹
1361	IONE	.3415±.0080	.6611±.0079	.4536±.0078	1.34±0.04×10 ⁴	1.08±0.15	.2688±.0086	.5195±.0093	.3517±.0091	1.66±0.17×10 ⁴	8.79±0.57
	REGAL	.0158±.0019	.0789±.0051	.0383±.0032	2.41±0.00	0.86±0.02	.0026±.0003	.0185±.0012	.0098±.0006	3.30±0.22×10 ¹	6.79±0.10
1362	CrossMNA	.0358±.0045	.4574±.0080	.1740±.0052	5.80±0.17×10 ¹	0.89±0.01	.2875±.0015	.6742±.0007	.4115±.0012	2.87±0.06×10 ³	6.68±0.06
	NetTrans	.3703±.0023	.7238±.0017	.4891±.0020	1.38±0.28	1.88±0.26	.4359±.0015	.7831±.0006	.5503±.0010	1.43±0.11×10 ³	8.84±0.09
1363	WAlign	.4176±.0041	.5650±.0048	.4753±.0039	0.23±0.04	1.85±0.06	.2308±.0041	.3684±.0073	.2785±.0049	2.52±0.08×10 ¹	2.29±0.01×10 ¹
	BRIGHT	.3839±.0019	.6966±.0025	.4934±.0013	3.61±0.05	1.88±0.02	.4216±.0006	.7263±.0010	.5270±.0007	3.06±0.02×10 ²	1.13±0.00×10 ¹
1364	NeXtAlign	.4096±.0106	.7212±.0087	.5192±.0087	3.07±0.12	1.67±0.06	.4189±.0067	.7461±.0098	.5291±.0023	2.91±0.07×10 ²	1.78±0.00×10 ¹
	WLAlign	.2754±.0011	.4398±.0010	.3349±.0002	7.02±0.43×10 ²	1.25±0.03	.4873±.0007	.6593±.0010	.5425±.0006	5.98±0.08×10 ³	2.77±0.00×10 ¹
1365	PARROT	.6961±.0000	.8639±.0000	.7599±.0000	6.02±0.99	1.73±0.12	.7259±.0000	.9169±.0000	.7948±.0000	7.60±0.22×10 ²	2.55±0.06×10 ¹
	SLOTAlign	.6654±.0000	.7621±.0000	.7044±.0000	1.79±0.01	1.96±0.10	.3642±.3152	.4853±.4175	.4068±.3501	7.01±0.21×10 ²	2.51±0.00×10 ¹
1366	HOT	.4173±.0071	.6413±.0084	.2481±.0036	3.83±0.07×10 ¹	2.36±0.58	.3994±.0014	.6475±.0022	.2417±.0009	1.90±0.18×10 ³	1.59±0.18×10 ¹
	JOENA	.8238±.0033	.9212±.0005	.8646±.0021	0.50±0.01	1.00±0.04	.7578±.0011	.9370±.0006	.8271±.0004	5.63±0.50×10 ¹	4.19±0.00
Dataset		PPI					GGI				
		Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)
1367	IsoRank	.3622±.0000	.6175±.0000	.4462±.0000	2.19±0.25	1.18±0.02	.2512±.0000	.5064±.0000	.3372±.0000	3.59±0.09×10 ¹	5.33±0.18
	FINAL	.4479±.0000	.8191±.0000	.5743±.0000	0.50±0.00	1.50±0.06	.1920±.0000	.6396±.0000	.3402±.0000	4.61±0.33	7.42±0.11
1368	IONE	.8350±.0047	.9218±.0036	.8658±.0042	1.68±0.07×10 ⁴	1.17±0.02	.5021±.0101	.6829±.0079	.5652±.0094	1.72±0.06×10 ⁴	3.32±0.18
	REGAL	.0110±.0024	.0724±.0047	.0330±.0029	4.83±0.12	0.94±0.00	.0171±.0011	.0780±.0038	.0387±.0017	1.36±0.01×10 ¹	2.52±0.04
1369	CrossMNA	.8045±.0029	.9179±.0046	.8445±.0028	6.55±0.11×10 ²	1.09±0.02	.3961±.0030	.6964±.0041	.5017±.0023	7.65±0.14×10 ²	2.67±0.00
	NetTrans	.5714±.0011	.8012±.0021	.6459±.0008	3.63±0.18×10 ¹	2.16±0.11	.4024±.0014	.6705±.0008	.4918±.0011	2.76±0.57×10 ²	7.34±4.13
1370	WAlign	.2912±.0037	.3877±.0041	.3264±.0038	1.78±0.06	2.37±0.03	.2978±.0090	.3791±.0092	.3282±.0088	5.33±0.24	7.32±0.07
	BRIGHT	.4828±.0023	.6554±.0037	.5387±.0018	4.95±0.04	2.37±0.05	.3960±.0009	.5870±.0023	.4642±.0008	9.11±0.35×10 ¹	5.74±0.03
1371	NeXtAlign	.4576±.0012	.6098±.0019	.5248±.0031	4.65±0.07	2.54±0.01	.2899±.0067	.5263±.0022	.3717±.0058	5.19±0.03×10 ¹	6.87±0.04
	WLAlign	.7466±.0005	.8126±.0016	.7682±.0005	1.04±0.07×10 ³	1.74±0.04	.4354±.0006	.5440±.0012	.4710±.0005	1.82±0.03×10 ³	9.40±0.02
1372	PARROT	.9619±.0000	.9926±.0000	.9731±.0000	1.80±0.04×10 ¹	1.58±0.03	.8203±.0000	.9373±.0000	.8621±.0000	2.30±0.09×10 ²	8.47±0.03
	SLOTAlign	.7398±.0000	.8219±.0000	.7684±.0000	3.98±0.29	1.64±0.02	.7170±.0003	.8097±.0017	.7500±.0011	1.98±0.04×10 ²	8.15±0.03
1373	HOT	.3822±.0024	.4667±.0031	.2052±.0011	5.66±0.77×10 ¹	6.70±0.00	.3466±.0020	.4724±.0023	.1931±.0011	8.67±0.82×10 ²	5.13±0.44
	JOENA	.9856±.0000	.9995±.0002	.9907±.0000	0.54±0.02	1.08±0.02	.8665±.0002	.9583±.0001	.9016±.0000	1.01±0.00×10 ¹	1.99±0.00
Dataset		DBP15K_JA-EN					DBP15K_FR-EN				
		Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)
1374	IsoRank	.1285±.0000	.5095±.0001	.2465±.0001	1.51±0.07×10 ²	1.60±0.00×10 ¹	.1072±.0000	.5024±.0001	.2281±.0000	1.50±0.05×10 ²	1.59±0.03×10 ¹
	FINAL	.1437±.0000	.5580±.0000	.2784±.0000	1.82±0.00	2.46±0.00×10 ¹	.1414±.0000	.5701±.0000	.2781±.0000	1.81±0.01×10 ¹	2.45±0.03×10 ¹
1375	IONE	.0405±.0037	.1864±.0108	.0903±.0058	1.55±0.02×10 ⁴	8.83±0.00	.0366±.0010	.1719±.0066	.0836±.0027	1.46±0.01×10 ⁴	8.72±0.52
	REGAL	.0133±.0060	.0453±.0082	.0250±.0067	3.09±0.00×10 ⁴	6.06±0.11	.0065±.0000	.0247±.0007	.0140±.0003	3.16±0.02×10 ⁴	5.92±0.02
1376	CrossMNA	.0179±.0013	.2932±.0042	.1008±.0020	1.01±0.03×10 ³	6.18±0.04	.0321±.0010	.5878±.0032	.1121±.0013	1.32±0.04×10 ³	6.23±0.04
	NetTrans	.3044±.0011	.6373±.0015	.4103±.0010	2.96±0.70×10 ²	2.14±0.56×10 ¹	.2975±.0003	.6457±.0007	.4080±.0004	2.98±0.82×10 ²	1.43±0.45×10 ¹
1377	WAlign	.2334±.0030	.3207±.0029	.2673±.0031	9.46±0.14	1.52±0.00×10 ¹	.1638±.0053	.2432±.0077	.1946±.0059	1.16±0.04×10 ¹	1.60±0.00×10 ¹
	BRIGHT	.3264±.0019	.6255±.0078	.4267±.0011	3.91±0.84×10 ²	1.17±0.00×10 ¹	.3143±.0010	.6313±.0018	.4203±.0008	4.31±0.29×10 ²	1.19±0.01×10 ¹
1378	NeXtAlign	.2866±.0040	.6001±.0040	.3920±.0087	2.66±0.80×10 ³	1.43±0.00×10 ¹	.2695±.0083	.5981±.0093	.3790±.0008	2.60±0.03×10 ³	1.34±0.00×10 ¹
	WLAlign	.2661±.0005	.4378±.0009	.3212±.0005	3.19±0.14×10 ³	2.81±0.00×10 ¹	.2764±.0006	.4769±.0008	.3401±.0004	3.63±0.29×10 ³	2.99±0.01×10 ¹
1379	PARROT	.6453±.0000	.8600±.0000	.7164±.0000	9.13±0.09×10 ²	2.87±0.00×10 ¹	.6999±.0000	.9038±.0000	.7697±.0000	9.01±0.22×10 ²	2.87±0.03×10 ¹
	SLOTAlign	.0063±.0003	.0294±.0054	.0157±.0029	2.17±0.12×10 ²	2.84±0.00×10 ¹	.0188±.0000	.0725±.0000	.0381±.0000	1.71±0.08×10 ²	2.84±0.03×10 ¹
1380	HOT	.3512±.0034	.6174±.0045	.2199±.0017	2.08±0.04×10 ³	1.91±0.10×10 ¹	.3504±.0029	.6352±.0041	.2210±.0016	2.07±0.06×10 ³	1.62±0.06×10 ¹
	JOENA	.6278±.0029	.8631±.0047	.6989±.0036	6.42±0.33×10 ²	2.67±0.00×10 ¹	.7133±.0053	.9210±.0033	.7739±.0041	6.72±0.33×10 ²	2.67±0.03×10 ¹
Dataset		Airport					PeMS08				
		Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)
1381	IsoRank	.1308±.0000	.3755±.0000	.2074±.0000	0.11±0.00	0.82±0.18	.2537±.0000	.7353±.0000	.4197±.0000	0.23±0.24	0.55±0.02
	FINAL	.2117±.0000	.6318±.0000	.3520±.0000	0.16±0.02	0.92±0.18	.1985±.0000	.7574±.0000	.3917±.0000	0.01±0.00	0.64±0.00
1382	IONE	.4809±.0054	.7073±.0078	.5575±.0063	1.46±0.10×10 ⁴	1.03±0.19	.3824±.0052	.6728±.00351	.4833±.0020	7.43±4.40×10 ³	0.84±0.02
	REGAL	.0302±.0036	.1477±.0054	.0698±.0031	1.17±0.02	0.81±0.00	.0493±.0015	.2272±.00126	.1167±.0087	0.14±0.00	0.81±0.00
1383	CrossMNA	.4304±.0061	.7186±.0178	.5241±.0081	1.40±0.00×10 ²	0.98±0.00	.0066±.0048	.0640±.0178	.0336±.0082	0.10±0.00	0.98±0.00
	NetTrans	.4293±.0034	.6817±.0013	.5154±.0029	1.80±0.51×10 ¹	1.47±0.29	.3983±.0141	.8794±.0066	.5621±.0077	0.77±0.44	1.26±0.00
1384	WAlign	.2270±.0113	.4163±.0126	.2924±.0106	0.13±0.00	2.03±0.46	.5846±.0074	.8441±.0042	.6790±.0065	0.13±0.00	1.16±0.34
	BRIGHT	.3495±.0026	.5667±.0089	.4282±.0028	0.47±0.02	1.37±0.03	.4566±.0060	.8882±.0056	.6123±.0046	0.03±0.00	1.04±0.00
1385	NeXtAlign	.2946±.0078	.5273±.0012	.3748±.0039	0.71±0.00	1.					

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

Table 9: Detailed effectiveness results on attributed networks with a training ratio of 20%. The 1st/2nd/3rd best results are marked in red/blue/green respectively. Time denotes the inference time and Mem. denotes the peak memory usage.

Douban										Flickr-LastFM				
Dataset	Douban					Flickr-LastFM								
Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)				
FINAL	.5397\pm.0012	.9838\pm.0013	.6999\pm.0032	0.90 \pm .001	.87\pm.02	.0152\pm.0002	.1022\pm.0004	.0422\pm.0000	3.66\pm.80	3.70 \pm .00				
REGAL	.0352 \pm .0006	.1525 \pm .0012	.0758 \pm .0006	3.20 \pm .008	2.55 \pm .003	.0086 \pm .0020	.0580 \pm .0026	.0283 \pm .0013	2.63 \pm .022 \times 10 ¹	2.70 \pm .027				
NetTrans	.3274 \pm .0006	.6145 \pm .0002	.4226 \pm .0004	1.51 \pm .006	1.23\pm.00	.0041 \pm .0001	.0401 \pm .0012	.0201 \pm .0021	3.15 \pm .051 \times 10 ¹	2.41 \pm .015 \times 10 ¹				
WAlign	.2855 \pm .0012	.5698 \pm .0027	.3798 \pm .0023	.03\pm.00	1.25\pm.01	.0169 \pm .0006	.0710 \pm .0029	.0416 \pm .0008	2.30\pm.005	4.62 \pm .005				
BRIGHT	.2813 \pm .0075	.6095 \pm .0119	.3966 \pm .0083	1.52 \pm .045	1.45 \pm .004	.0345\pm.0031	.1019 \pm .0059	.0602\pm.0022	6.15 \pm .057 \times 10 ¹	3.80 \pm .00				
NeXtAlign	.1879 \pm .0045	.4918 \pm .0012	.2756 \pm .0022	1.48 \pm .001	1.47 \pm .000	.0083 \pm .0038	.0384 \pm .0141	.0214 \pm .0070	2.04\pm.026	2.00 \pm .010				
PARROT	.6413\pm.0000	.9408\pm.0000	.7481\pm.0000	0.25 \pm .002	1.34 \pm .002	.0442\pm.0000	.1064\pm.0000	.0701\pm.0000	5.13 \pm .002 \times 10 ¹	1.86\pm.000				
SLOTAlign	.4397 \pm .0026	.7207 \pm .0000	.5394 \pm .0000	.01\pm.00	1.31 \pm .001	.0055 \pm .0000	.0387 \pm .0000	.0205 \pm .0000	2.58 \pm .002 \times 10 ¹	1.63 \pm .002 \times 10 ¹				
HOT	.3223 \pm .0032	.6391 \pm .0174	.2578 \pm .0064	8.76 \pm .021	1.41 \pm .000	.0152 \pm .0013	.0525 \pm .0003	.0141 \pm .0021	4.63 \pm .017 \times 10 ²	8.12 \pm .019				
JOENA	.6542\pm.0474	.9173\pm.0205	.7525\pm.0446	.24\pm.002	1.37 \pm .000	.0345\pm.0011	.1064\pm.0034	.0600\pm.0003	1.89 \pm .021 \times 10 ¹	2.63\pm.002				
Flickr-MySpace										Arenas				
Dataset	Flickr-MySpace					Arenas								
Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)				
FINAL	.0023 \pm .0000	.0234 \pm .0000	.0113 \pm .0000	1.57\pm.031	2.33 \pm .00	.4284 \pm .0000	.9069 \pm .0000	.5928 \pm .0000	0.61 \pm .024	0.88\pm.001				
REGAL	.0065 \pm .0030	.0355 \pm .0061	.0197 \pm .0040	1.45 \pm .012 \times 10 ¹	1.65 \pm .007	.8961 \pm .0255	.9815 \pm .0030	.9281 \pm .0179	2.02 \pm .055	1.32 \pm .012				
NetTrans	.0075 \pm .0019	.0374 \pm .0052	.0201 \pm .0014	2.58 \pm .009	1.32\pm.00	.9581 \pm .0036	.9879 \pm .0013	.9688 \pm .0028	1.03 \pm .005	1.17 \pm .000				
WAlign	.0112\pm.0026	.0505\pm.0054	.0316\pm.0021	1.96\pm.058	2.65 \pm .007	.9805 \pm .0003	.9978 \pm .0000	.9886 \pm .0002	1.75 \pm .005	2.19 \pm .007				
BRIGHT	.0061 \pm .0021	.0332 \pm .0019	.0196 \pm .0012	3.50 \pm .030 \times 10 ¹	2.38 \pm .000	.9794 \pm .0005	.9950 \pm .0006	.9863 \pm .0004	0.51 \pm .021	1.05 \pm .000				
NeXtAlign	.0037 \pm .0027	.0243 \pm .0173	.0162 \pm .0075	0.91\pm.004	1.48 \pm .003	.6684 \pm .2300	.8230 \pm .1401	.7244 \pm .1974	0.47\pm.033	1.09 \pm .004				
PARROT	.0070\pm.0000	.0397\pm.0000	.0223\pm.0000	1.01 \pm .002 \times 10 ¹	1.40\pm.000	.9879\pm.0000	.9999\pm.0000	.9936\pm.0000	2.56\pm.015\times10¹	0.77\pm.001				
SLOTAlign	.0023 \pm .0000	.0257 \pm .0000	.0163 \pm .0000	1.03 \pm .001 \times 10 ¹	7.51 \pm .010	.9891\pm.0010	.9999\pm.0000	.9942\pm.0005	0.13 \pm .000	0.88\pm.001				
HOT	.0000 \pm .0000	.0257 \pm .0000	.0024 \pm .0000	3.26 \pm .003 \times 10 ²	2.71 \pm .000	.9714 \pm .0026	.9927 \pm .0015	.9490 \pm .0006	4.20 \pm .062	1.15 \pm .000				
JOENA	.0117\pm.0001	.0584\pm.0000	.0345\pm.0000	4.15 \pm .000	1.71 \pm .001	.9873\pm.0002	.9999\pm.0000	.9929\pm.0000	0.34 \pm .000	1.02 \pm .004				
ACM-DBLP										Cora				
Dataset	ACM-DBLP					Cora								
Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)				
FINAL	.4054 \pm .0000	.7980 \pm .0000	.5366 \pm .0000	2.56\pm.064	1.19\pm.006	.7891 \pm .0000	.9026 \pm .0000	.8332 \pm .0000	1.48 \pm .013	1.04\pm.001				
REGAL	.4159 \pm .0035	.6373 \pm .0064	.4890 \pm .0040	1.95 \pm .012 \times 10 ¹	1.78 \pm .005 \times 10 ¹	.3576 \pm .0278	.4705 \pm .0271	.3986 \pm .0242	5.15 \pm .027	6.84 \pm .021				
NetTrans	.6874\pm.0015	.9300\pm.0019	.7716\pm.0012	2.64 \pm .021 \times 10 ²	1.48 \pm .002	.7907\pm.0447	.8005\pm.0454	.7955\pm.0428	1.47\pm.007	1.32 \pm .000				
WAlign	.6675 \pm .0024	.9109 \pm .0122	.7524 \pm .0016	6.82\pm.100	4.85 \pm .003	.9551 \pm .0012	.9724 \pm .0010	.9621 \pm .0011	3.38 \pm .128	2.36 \pm .005				
BRIGHT	.4858 \pm .0025	.8740 \pm .0020	.6163 \pm .0021	1.22 \pm .053 \times 10 ²	2.35 \pm .000	.7989 \pm .0051	.9902\pm.0012	.8813\pm.0029	6.07 \pm .03	1.32 \pm .004				
NeXtAlign	.3512 \pm .0066	.7633 \pm .0872	.4851 \pm .0081	1.45 \pm .064 \times 10 ¹	1.47\pm.015	.3336 \pm .0418	.6629 \pm .0291	.4444 \pm .0376	1.56 \pm .022	1.15 \pm .002				
PARROT	.6867\pm.0000	.9437\pm.0000	.7770\pm.0000	1.70 \pm .040 \times 10 ¹	1.27\pm.000	.9654\pm.0000	.9684\pm.0000	.9667\pm.0000	1.13\pm.006	1.05\pm.002				
SLOTAlign	.6673 \pm .0011	.8720 \pm .0003	.7409 \pm .0009	8.34 \pm .004 \times 10 ³	7.45 \pm .016	.9949\pm.0000	.9999\pm.0000	.9974\pm.0000	1.92 \pm .013	2.01 \pm .010				
HOT	.3893 \pm .0050	.6180 \pm .0055	.2350 \pm .0017	4.28 \pm .013 \times 10 ²	2.85 \pm .001	.7493 \pm .0040	.7549 \pm .0040	.3762 \pm .0021	2.17 \pm .059 \times 10 ¹	3.29 \pm .028				
JOENA	.7859\pm.0053	.9847\pm.0101	.8569\pm.0120	9.78\pm.027	1.59 \pm .011	.9947\pm.0002	.9999\pm.0000	.9966\pm.0000	0.38 \pm .003	1.14 \pm .002				
PPI										DBP15K_FR-EN				
Dataset	PPI					DBP15K_FR-EN								
Metrics	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)	Hits@1	Hits@10	MRR	Time(s)	Mem.(GB)				
FINAL	.0316 \pm .0000	.1564 \pm .0000	.0760 \pm .0000	1.87\pm.028	0.93\pm.000	.1954 \pm .0000	.4381 \pm .0000	.2800 \pm .0000	4.36 \pm .003 \times 10 ²	2.37\pm.003\times10¹				
REGAL	.1515 \pm .0080	.2910 \pm .0072	.2012 \pm .0078	9.30 \pm .042	3.89 \pm .012	.0027 \pm .0004	.0038 \pm .0004	.0035 \pm .0006	5.30 \pm .018 \times 10 ¹	9.33\pm.003\times10¹				