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ABSTRACT

Reinforcement learning with human preference feedback is the gold-standard ap-
proach for making current AI systems helpful, safe, and aligned with human values.
Recent research has demonstrated that there is a tight connection between the ob-
jective functions used for alignment with human preferences, and voting rules from
social choice theory that aggregate diverse preferences. This connection provides
a principled way to study the advantages and disadvantages of a given alignment
objective by analyzing the social-choice theoretic properties of the correspond-
ing voting rule. Prior work in this direction has focused on variants of standard
alignment objective functions, and connected them with well-known social choice
rules such as the Borda count and von Neumann winner rules. However, practical
alignment algorithms typically perform regularization to a reference policy in order
to maintain the capabilities from pre-training. Such regularization could potentially
distort the objective and hence change the social-choice theoretic properties of
the corresponding voting rule. To address this question, we study the effect of
regularization on the social-choice rules corresponding to standard alignment meth-
ods, and discover that in the case of the alignment objective corresponding to the
von Neumann winner, regularization strictly improves the social-choice theoretic
properties of the rule. At the same time, we prove that the standard RLHF objec-
tive, which corresponds to the Borda count rule, offers no such improvement and
indeed has clear social-choice theoretic drawbacks compared to the von Neumann
winner. Taken together, our results provide principled justification from social
choice theory to use the von Neumann winner objective for practical alignment
with human preferences.

1 INTRODUCTION

Recent work on alignment of AI systems via human preference rankings has drawn strong connections
to social choice theory. The analogy is as follows: one can view the possible outputs of an AI model
as a set of candidates, human raters as a set of voters, and the algorithm used for alignment as
defining a rule to aggregate the individual voter preference rankings over the candidates. Thus the
problem of designing algorithms for aligning AI systems becomes a problem of designing social
choice rules. The advantage of this social-choice viewpoint is that it explicitly considers cases where
voters express legitimate differences of opinion in their preferences, going beyond many standard
models in machine learning which consider each human rating as a sample from a single, coherent
ground-truth preference ranking (Huang et al., 2024). By taking pluralistic value alignment into
account, we can foster a more democratic paradigm for human-AI interactions.

Quite recently, there has been substantial progress in analyzing alignment methods with the lens of
social choice theory. Standard approaches to reinforcement learning from human feedback (RLHF)
(Christiano et al., 2017; Bai et al., 2022) based on the Bradley-Terry model (Bradley & Terry, 1952)
have been shown to implicitly apply the Borda count social choice rule when aggregating human
preference rankings (Siththaranjan et al., 2024). That is, the optimal model output under the standard
RLHF objective is equal to the highest ranked output according to the Borda count rule when
considering raters as voters. Various alternative methods have also been proposed, including a recent
line of work utilizing the solution concept known as the von Neumann winner (Dudík et al., 2015;
Wang et al., 2023; Munos et al., 2024; Swamy et al., 2024), which optimizes an objective equivalent
to the randomized social choice rule known as maximal lotteries.
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In general, the theory of social choice takes an axiomatic approach to the selection of social choice
rules, with a focus on trade-offs between desirable axiomatic properties as exemplified by Arrow’s
theorem (Arrow, 1951). The key axioms studied in social choice theory include many that are
naturally desirable in the context of AI alignment. Independence of irrelevant alternatives ensures
that the final policy is invariant to changing preferences over irrelevant potential outputs that the
model is very unlikely to produce. Population consistency ensures that merging two sets of ratings,
each of which individually yield similar policies, will not cause a sudden change in the behavior of
the model. The requirement that a rule is strategy-proof ensures that no rater can influence the final
policy for their own gain by strategically misreporting their preferences.

While it is tempting to directly apply results from social choice in order to choose between alignment
methods, such an approach leaves out key components of standard algorithmic pipelines. In particular,
algorithms for alignment from preference rankings typically include a KL-divergence regularizer,
to ensure that the aligned policy does not deviate too far from some fixed reference policy. This
regularization is necessary in order to prevent the policy from straying so far that it forgets how to
write grammatical sentences, but also has an impact on how human preferences are aggregated.

In this paper, we investigate AI alignment within the context of social choice theory and ask the
following question:

What is the impact of explicitly preserving the initial pre-trained policy on alignment from the
perspective of axiomatic social choice?

1.1 OUR APPROACH.

We model the problem of aligning artificial intelligence to human preferences as a problem of social
choice theory. The alternatives for the output of the model play the role of candidates and individual
human raters play the role of voters. The overall goal of an alignment algorithm is to output a
distribution over candidates that aggregates human preferences in a principled way.

AI Alignment as probabilistic social choice. Our model of alignment directly corresponds to
the setting of probabilistic social choice, where rather than producing an aggregate ranking over
candidates, the social choice rule produces an aggregate ranking over distributions over candidates.
The probabilistic setting is quite natural in the case of aligning LLMs, where the model already
produces a distribution over possible responses, rather than one deterministic outcome.

The probabilistic social choice model of alignment is more general than that proposed in several
recent papers on social choice for alignment. A line of prior work that considers axiomatic social
choice in alignment assumes that the alignment algorithm initially learns a deterministic reward
function that aggregates individual preferences (Siththaranjan et al., 2024; Ge et al., 2024). After the
aggregate reward function is learned, it is assumed that standard reinforcement learning methods are
used to train a policy distribution that maximizes this learned reward. Due to the assumption that a
deterministic reward function is learned as an intermediate step, this line of prior work inherently
restricts itself to the setting of deterministic social choice. While this restriction is natural, in the
sense that it corresponds to the standard setup of the original RLHF algorithm as it is applied to LLM
alignment tasks, it brings with it all the limitations known to exist for deterministic social choice.

There are many cases where known impossibility results for deterministic social choice can be
circumvented in the probabilistic social choice setting. Most notably, Arrow’s theorem (Arrow, 1951)
proves that any deterministic social choice rule that satisfies pareto efficiency and independence
from irrelevant alternatives is a dictatorship. On the other hand, Brandl & Brandt (2020) recently
proved that Arrow’s impossibility can be avoided in the setting of probabilistic social choice. They
showed that, not only is it possible to satisfy Arrow’s axioms without resorting to dictatorship, but the
maximal lotteries social choice rule (Kreweras, 1965; Fishburn, 1984) is the unique rule satisfying
the axioms while utilizing anonymous votes (which precludes dictatorship).

Interestingly, the alignment objective known as the von Neumann winner (Dudík et al., 2015; Wang
et al., 2023; Munos et al., 2024) corresponds precisely to the maximal lotteries rule. There are by
now several different algorithms proposed to optimize a version of the von Neumann winner, and
hence many different practical approaches for training LLMs that enjoy the axiomatic advantages of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the maximal lotteries rule (Wang et al., 2023; Munos et al., 2024; Rosset et al., 2024; Swamy et al.,
2024).

The role of regularization. Commonly, alignment algorithms employ a KL-divergence regularizer
during training to prevent the learned policy from deviating too far from a given reference policy. The
reference policy is typically taken to be the initial pre-trained and instruction-tuned LLM, that has not
yet undergone alignment via RLHF or other methods. While this regularization is necessary to avoid
losing capabilities learned from pre-training, it clearly affects the final distribution on alternatives
output by the alignment algorithm, and hence the axiomatic guarantees of the social choice rule. A
priori, it seems that adding regularization to a probabilistic social choice rule could have a negative
impact on the set of social choice axioms that it satisfies. However, we will demonstrate that the
opposite is true in the case of the von Neumann winner rule.

1.2 OUR RESULTS

We prove that the KL-regularized von Neumann winner is approximately strategy-proof i.e. an
individual human rater cannot change the outcome distribution by more than O(1/n) in total-variation
distance, where n is the number of raters. This stands in contrast to the unregularized setting, where
we prove that a single rater can change the outcome by a constant (independent of n) via strategic
voting.

We further prove that the KL-regularized von Neumann winner still satisfies key properties of the
unregularized rule including independence of irrelevant alternatives, population consistence, and (a
regularized version of) Pareto efficiency.

Finally, we prove that KL-regularization does not resolve the issues of the Borda count rule, which
remains not independent of irrelevant alternatives. The Borda count rule is especially significant in
the context of alignment algorithms, as it is implicitly implemented by standard RLHF based on the
Bradley-Terry preference model. Taken together, these results suggest a strong axiomatic advantage
to using the KL-regularized von Neumann winner for AI alignment from human preferences.

Our results provide principled analysis on which practical alignment methods inherently satisfy
axioms of social choice theory for free, with the ultimate goal of achieving fair, pluralistic AI
alignment.

2 RELATED WORK

Along with the notable practical success of RLHF for aligning LLMs to human preferences, there
has been a growing body of work studying how to apply social choice theory to RLHF algorithms,
in order to take into account general human preferences that may contain legitimate disagreements
on values. The work of Siththaranjan et al. (2024) pointed out a crucial connection between social
choice and AI alignment: the standard RLHF objective based on the Bradley-Terry model implicitly
aggregates the preferences of different raters via the Borda count social choice rule. Concurrently, the
position papers of Conitzer et al. (2024); Mishra (2023) argued for the necessity of using social choice
theory to inform AI alignment from human preferences. More recently, Ge et al. (2024) proposed a
theoretical model for studying the social choice theoretic axioms satisfied by alignment algorithms.
This paper focused on axiomatic social choice theory, in the setting of linear reward functions, where
both the aggregated reward and the individual rater preferences are restricted to be linear in some
feature space. While the focus on evaluating alignment rules via social choice axioms is similar to
our paper, this work differs by working with deterministic, linear preferences, whereas we consider
probabilistic social choice with unrestricted preference functions.

There has also been a parallel line of work that attempts to directly address the issue of general,
possibly disagreeing preferences in RLHF. In particular, Wang et al. (2023); Swamy et al. (2024);
Munos et al. (2024) all propose different algorithms to implement the von Neumann winner rule.
Each of these papers provide explanations and examples of situations where general, incoherent
preferences are better captured by the von Neumann winner than alternative rules. Wang et al. (2023)
in particular mentions favorable social-choice theoretic properties of the von Neumann winner as
a justification for the use of the rule. Our paper builds on this work, by demonstrating that the
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regularization typically used in RL training can improve the social-choice theoretic properties of the
von Neumann winner, while maintaining the advantages of the unregularized rule.

3 THE MODEL OF ALIGNMENT AS SOCIAL CHOICE

We assume there is a set H of n human raters and a countable set U of alternatives corresponding to
all potential outputs of an AI model. For an LLM, U is the set of all grammatically valid text of finite
length. Each rater h ∈ H has an associated preference ranking ≻h over alternatives a ∈ U . That is,
a ≻h b means that rater h prefers alternative a to alternative b. For a subset of alternatives A ⊆ U
and a probability distribution π over A, we use the notation π|A to denote the restriction of π to A
i.e. the function on A that assigns probability π(a) to a ∈ A.

A probabilistic preference relation is an anti-symmetric mapping R : ∆U ×∆U → R, where for
any two distributions π, π′ over alternatives, R(π, π′) ≥ 0 means that the distribution π is preferred
to the distribution π′. For a subset of alternatives A ⊆ U , we use R|A to denote the restriction of the
preference relation to pairs of distributions (π, π′) ∈ ∆A×∆A.

An alignment rule is a function F takes as input a set of raters H and a subset A ⊆ U of m alternatives,
and outputs a probabilistic preference relation R = F (A,H) that represents an aggregation of
individual rater preferences. A distribution over a subset of alternatives π∗ ∈ ∆A is maximal for a
probabilistic preference relation R if R(π∗, π) ≥ 0 for all π ∈ ∆A. An alignment rule naturally
induces an objective for RLHF: the goal is to train the model to output a distribution over alternatives
π∗ that is maximal according to the probabilistic preference ranking R = F (A,H).

We now turn to a set of natural probabilistic preference relations induced by the individual rater
preferences. Formally, we define the individual pairwise preference relation to be

Ph(π, π
′) = Pr

a∼π
b∼π′

[a ≻ b]− Pr
a∼π
b∼π′

[b ≻ a]

That is the pairwise preference relation gives the probability that the rater h prefers alternatives
sampled from π to those from π′, minus the probability that the rater prefers the opposite. In particular,
Ph(π, π

′) ≥ 0 if and only if h prefers alternatives sampled from π to those sampled from π′ on
average. Observe that the pairwise preference relation is anti-symmetric i.e. Ph(π, π

′) = −Ph(π
′, π).

Given a set of raters H we define the corresponding aggregate pairwise preference relation to be the
function

PH(π, π′) = E
h∼H

[Ph(π, π
′)].

When the relevant set of raters is clear from context we will simply write P(π, π′). We will also use
the notation P(a, b) for a, b ∈ A to denote the preference P(1a, 1b) where 1a, 1b are the probability
distributions that puts all their mass on a and b respectively.

Standard reinforcement learning training utilizes KL-regularization to a reference policy. Thus, in our
setting the reference policy is a distribution µ on U , and we define the regularized preference relation

P̃(π, π′) = P(π, π′)− τDKL(π∥µ) + τDKL(π
′∥µ)

where τ > 0 is the KL-regularization parameter.

4 AXIOMS FOR PROBABILISTIC SOCIAL CHOICE.

We next formally define the key social-choice axioms that we will use to evaluate alignment rules.
Definition 4.1 (Pareto Optimality). Let F be an alignment rule, and let R = F (A,H). The alignment
rule F is Pareto optimal if Ph(π, π

′) ≥ 0 for all h ∈ H implies that R(π, π′) ≥ 0.

Pareto optimality is also referred to as unanimity in the the social choice setting. Intuitively, Pareto
optimality requires that there is no way to switch the aggregate preferences R for any pair π, π′

without making at least one rater less happy with the outcome. This intuition can be seen by taking
the contrapositive of the implication in Definition 4.1.

We next turn to independence of irrelevant alternatives, an axiom which intuitively says that changes
in raters’ preferences about alternatives outside of some subset A should not affect the relative
rankings of alternatives within A.
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Definition 4.2 (Independence of irrelevant alternatives). An alignment rule F satisfies independence
of irrelevant alternatives if, for all subsets of alternatives A ⊆ B ⊆ U , and all sets of raters H,H′

that have the same preferences over alternatives in A we have

F (B,H)|A = F (B,H′)|A

We next define an approximate notion of independence of irrelevant alternatives that can be more
applicable to practical settings of training LLM policies π from samples.

Definition 4.3 (Approximate independence of irrelevant alternatives). Let F be an alignment rule,
A ⊆ B ⊆ U be subsets of alternatives, and H,H′ be any two subsets that have the same prefer-
ences over alternatives in A. Let R = F (B,H)|A and R′ = F (B,H′)|A. The rule F satisfies
ϵ-approximate IIA if for every π, π′ such that R(π, π′) ≥ 0, then there exist policies π̂, π̂′ with
dTV(π, π̂) < ϵ and dTV(π

′, π̂′) < ϵ such that R′(π̂, π̂′) ≥ 0.

Intuitively, this definition says that the relative ranking of policies over A produced by F is not
sensitive to changes in irrelevant alternatives outside of A, so long as we are allowed to perturb the
policies in question by up to ϵ in total variation distance. That is, if π is preferred to π′ by R, then
there are two nearby policies π̂, π̂′ such that π̂ is preferred to π̂′ by R′. Clearly, if an alignment
rule F satisfies independence of irrelevant alternatives, then it immediately satisfies ϵ-approximate
independence of irrelevant alternatives with ϵ = 0.

We next turn to the axiom of population consistency, which requires that if two different sets of
raters share a maximal policy according to the alignment rule, then that policy is still maximal when
merging the two sets of raters. This axiom can be seen as a form of stability under combining sets of
raters with similar aggregate preferences.

Definition 4.4 (Population consistency). Let H and H′ be two sets of raters and A a set of alter-
natives. An alignment rule F satisfies population consistency if whenever π∗ is maximal for both
F (A,H), F (A,H′) then π∗ is also maximal for F (A,H ∪H′).

Finally, we introduce an axiom limiting the opportunity for strategic manipulation by raters. In
particular, an alignment rule is approximately strategy-proof, if a subset of raters that strategically
misreport their preferences cannot significantly improve their own outcomes.

Definition 4.5 (Approximately strategy-proof). Let k ≤ n, ϵ > 0, and H be a set of raters. Let
H∗ be a subset of k raters from H. Let H′ be the set where the raters h∗ ∈ H∗ replace their
preference rankings ≺h∗ with different preference ranking ≺′

h∗
. Let π be maximal for F (A,H)

and π′ be maximal for F (A,H′). An alignment rule F is (k, ϵ)-approximately strategy proof if
PH∗(π′, π) ≤ ϵ for all choices of H,H∗,H′ satisfying the above assumptions.

A rule that is (1, 0)-approximately strategy-proof corresponds to the classical deterministic social
choice definition of strategy-proof.

5 THE VON NEUMANN WINNER RULE

In this section, we analyze the axiomatic properties of the regularized von Neumann winner rule. Our
main results show that regularization improves the strategy-proofness of the von Neumann winner,
while at the same time preserving the other key axioms that the unregularized rule satisfies. We begin
with the definition of the standard von Neumann winner as follows. Given a set of alternatives A, the
von Neumann winner rule is defined by FvNw(A,H) = PH|A. Hence, the maximal distributions π∗

for FvNw(A,H) are given by

π∗ ∈ argmax
π∈∆A

min
π′∈∆A

PH(π, π′). (1)

The interpretation of this rule is game-theoretic. For a set of alternatives A the pairwise preference
relation PH|A induces a symmetric zero-sum game, where the pure strategies are alternatives a ∈ A,
and the mixed strategies are distributions π ∈ ∆A. The von Neumann winner is the minimax
optimal strategy in this game. Because the game is symmetric, the von Neumann minimax theorem
implies that there is always a solution π that achieves P(π, π′) ≥ 0 i.e. a single distribution π that is
preferred on average to all other distributions π′. The von Neumann winner is known to satisfy Pareto
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optimality, independence of irrelevant alternatives, and population consistency (Brandl & Brandt,
2020; Brandl et al., 2016). However, a classic theorem of Gibbard (1977), extending prior work
on deterministic social choice (Gibbard, 1973; Satterthwaite, 1975), implies that the von Neumann
winner is not strategy-proof.

Our main results in this section will concern the regularized version of the von Neumann winner,
which is defined using the regularized pairwise preferences F̃vNw(A,H) = P̃H|A. As above, the
maximal distributions for F̃vNw(A,H) are given by

π∗ ∈ argmax
π∈∆A

min
π′∈∆A

P̃H(π, π′). (2)

Due to convexity of the KL-divergence, the preference relation P̃ induces a convex-concave game
which has a unique Nash equilibrium (for proof see Munos et al. (2024)). As above, symmetry of the
game or equivalently anti-symmetry of P̃(π, π′) implies that the minimax value of the game, and
hence the value achieved by π, is zero. We summarize these facts in the following proposition.

Proposition 5.1. There is a unique maximal distribution π ∈ ∆A for preference relation F̃vNw(A,H)

satisfying P̃H(π, π′) ≥ 0 for all distributions π′ ∈ ∆A, with equality holding only when π′ = π.

5.1 STABILITY OF THE REGULARIZED VON NEUMANN WINNER

Our analysis of axioms for the regularized von Neumann winner in the subsequent section will
rely on stability properties of the regularized game. In particular, we will show that the maximal
distribution of the regularized von Neumann winner rule is stable under perturbations that preserve
the concavity/convexity properties of the preference relation. To begin, we recall the fact that the
KL-divergence is strongly convex in its first argument with respect to the ℓ1-norm.

Lemma 5.2 (Strong Convexity of KL-divergence). The KL-divergence is 1-strongly convex in its first
argument with respect to the ℓ1-norm. That is,

⟨∇πDKL(π∥µ)−∇π′DKL(π
′∥µ), π − π′⟩ ≥ ∥π − π′∥21

The proof of Lemma 5.2 is provided in Section A. We rely on strong convexity of the KL-regularizer
to prove that the regularized preference relation is stable under perturbations. The next theorem
precisely quantifies this notion of stability.

Theorem 5.3 (Stability of P̃). Let H(π, π′) be an anti-symmetric function such that P ′
H(π, π′) =

P̃H(π, π′)−H(π, π′) is concave in π and convex in π′. Let π∗ be maximal for F̃vNw(A,H) and let
π = argmaxπ1

minπ2
P ′
H(π1, π2). Then ∥π∗ − π∥1 ≤ 1

4τ ∥∇πH(π, π′)|π=π′∥∞.

The proof of Theorem 5.3 is provided in Section A. Intuitively, Theorem 5.3 states that a bounded
perturbation to the preferences will result in a bounded change to the output of the perturbed rule. We
now proceed to use this result to show that strategic manipulation by a small subset of raters cannot
lead to significant gains.

5.2 REGULARIZED VON NEUMANN WINNER IS APPROXIMATELY STRATEGY-PROOF

Our first main result in this section proves that adding regularization causes the von Neumann winner
rule to become approximately strategy-proof whenever the number of raters n is large. In particular,
the individual gains that a set of k raters can achieve by strategically misreporting their preferences is
at most k

2τn .

Theorem 5.4 (Approximate Strategy-Proofness of Regularized von Neuman Winner). Let τ > 0 be
the KL-regularization parameter and let k ≤ n. Then F̃vNw is (k, ϵ)-approximately strategy proof for
ϵ = k

2τn .

We are now ready to prove that the regularized von Neumann winner is approximately strategy proof.

Proof of Theorem 5.4. Let M be an |A| × |A| matrix where Ma,b = PH(a, b).

6
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Next consider the preference relation PH′ , where H′ is given by letting a subset H∗ of k raters
replacing their preferences ≻h∗ with some alternative set of preferences ≻h′

∗
denoted by H′

∗. Define
M ′ to be the matrix given by M ′

a,b = PH′(a, b). Since PH and PH′ are both averages over n raters’
preferences, and the only differences occur in the k/n fraction of raters in H∗, we have that for all
a, b,

|Ma,b −M ′
a,b| =

∣∣∣∣ E
h∼H

[Ph(a, b)]− E
h∼H′

[Ph(a, b)]

∣∣∣∣ = ∣∣∣∣knPH∗(a, b)−
k

n
PH′

∗
(a, b)

∣∣∣∣ ≤ 2k

n
. (3)

Now observe that P̃H′(π, π′) = P̃H(π, π′)− π⊤(M −M ′)π′. The function given by

H(π, π′) = π⊤(M −M ′)π′

is anti-symmetric because both M and M ′ are. Further P̃H′(π, π′) is concave in π and convex in π′.
Hence, if we let π∗ be maximal for F̃vNw(A,H) and π be maximal for F̃vNw(A,H′) we can apply
Theorem 5.3 followed by (3) to conclude that

∥π∗ − π∥1 ≤ 1

4τ
∥∇πH(π, π′)|π′=π∥∞ ≤ 1

4τ
max
a,b

|Ma,b −M ′
a,b| ≤

k

2τn
. (4)

Next we show a bound on the gain for H∗ when switching from π∗ to π in terms of the total variation
distance,

PH∗(π, π
∗) = E

h∼H∗

[
Pr
a∼π
b∼π∗

[a ≻h b]

]
− E

h∼H∗

[
Pr
a∼π
b∼π∗

[b ≻h a]

]

≤ E
h∼H∗

[
dTV(π, π

∗) + Pr
a∼π
b∼π

[a ≻h b]

]
− E

h∼H∗

[
Pr
a∼π
b∼π

[b ≻h a]− dTV(π, π
∗)

]
= 2dTV(π, π

∗) + PH∗(π, π) ≤ 2dTV(π, π
∗)

where the first inequality follows from the definition of the total variation distance dTV, and the final
inequality follows from anti-symmetry of PH∗ . Finally by (4) we conclude

PH∗(π, π
∗) ≤ 2dTV(π, π

∗) = ∥π − π∗∥1≤
k

2τn
.

Thus, if k raters strategically misreport their preferences, then their gain is at most ϵ = k
2τn .

Our next result shows that the level of approximate strategy-proofness obtained by Theorem 5.4 is a
significant improvement over the unregularized version of the rule. In fact, we show that strategic
misreporting by just 1 out of n raters can cause the unregularized rule to switch to outputting a
policy that that rater prefers with constant (i.e. independent of n) probability. Our result is based on
modifying and expanding a construction from prior work of Aziz et al. (2014), which showed that the
von Neumann winner rule (referred to in their paper as maximal lotteries) is not (1, 0)-strategy proof,
when n = 5. That is, strategic manipulation by 1 out of 5 raters can benefit that one rater. In contrast,
we are interested in the setting where n grows large, but still a single rater can significantly impact
the output of the rule for their own gain.

Theorem 5.5 (Asymptotic Non-Strategy-Proofness of Unregularized von Neumann Winner Rule). For
all natural numbers n0, there is an n > n0 such that the rule FvNw applied on sets of n raters is not
(1, ϵ)-approximately strategy-proof for any ϵ < 4/15.

The proof of Theorem 5.5 is provided in the appendix Section A. The combined results of Theorem
5.4 and Theorem 5.5 establish that regularization confers the property of strategy-proofness upon the
von Neumann winner rule.

7
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5.3 REGULARIZED VON NEUMANN WINNER MAINTAINS OTHER AXIOMS

We now turn to the question of how regularization affects the axioms that are already satisfied by
the unregularized von Neumann winner. The standard von Neumann winner satisfies independence
of irrelevant alternatives, population consistency, and Pareto optimality. We will show that these
axioms are also satisfied by the regularized von Neumann winner, with the single caveat that one
must consider a regularized variant of Pareto optimality.

Independence of irrelevant alternatives. We begin with independence of irrelevant alternatives,
which states that the output of the rule should be the same, regardless of the preferences over
independent alternatives that are not chosen. In the alignment setting, independence of irrelevant
alternatives seems likely to be quite desirable. Consider the setting of deciding whether or not to
include some additional alternative outputs judged by human raters in a preference dataset. If the
alignment rule is not independent of irrelevant alternatives, then the final policy output may change
significantly, even when the newly included alternatives were generally dispreferred by the raters
compared to those already in the dataset. Hence failing to satisfy this axiom makes the question of
how to compose and curate an alignment dataset much more difficult, whereas a rule that does satisfy
the axiom would simply be unaffected by the addition of irrelevant alternatives.

Proposition 5.6. The regularized von Neumann winner satisfies independence of irrelevant alterna-
tives.

The proof of Proposition 5.6 is provided in Section A.

Population consistency. We next consider population consistency, which intuitively implies π is
maximal for the rule when combining two distinct subpopulations of raters that each individually
would rate π as maximal.

Proposition 5.7. The regularized von Neumann winner satisfies population consistency.

The proof of Proposition 5.7 is provided in Section A.

Pareto Optimality Finally, we prove that the regularized von Neumann winner satisfies a regular-
ized variant of Pareto optimality. The standard definition requires that if R is the output of the rule,
then Ph(π, π

′) ≥ 0 for all h implies R(π, π′) ≥ 0. We will consider a regularized variant, where
instead we require that P̃h(π, π

′) ≥ 0 for all h implies R(π, π′) ≥ 0.

Proposition 5.8. The regularized von Neumann winner satisfies regularized Pareto optimality,
meaning that if R = F̃vNw(A,H) then P̃h(π, π

′) ≥ 0 for all h implies R(π, π′) ≥ 0.

The proof of Proposition 5.8 is provided in Section A. Overall, the results in this section show that
regularization substantially improves startegy-proofness, while maintaining other beneficial axiomatic
properties of the von Neumann winner rule.

6 THE BORDA COUNT RULE

In this section we analyze the axiomatic properties of the regularized Borda count rule. This rule is
of particular importance in the RLHF setting, where it has been shown that the standard methods
based on the Bradely-Terry model maximize a reward that produces precisely the same rankings as
the Borda count (Siththaranjan et al., 2024). We begin with the standard definition of the Borda count
rule. Given a set of H of raters and a set A of n alternatives, for each rater h ∈ H and alternative
a ∈ A, assign the score sh(a) = n − k if a is ranked in the k-th position by h i.e. the top ranked
alternative gets score n− 1, the second ranked gets n− 2 and so on. The Borda count rule then ranks
the alternatives by their total score s(a) =

∑
h sh(a). For the setting of probabilistic social choice,

the rule ranks alternatives by their expected total score. Formally, we define the preference relation
R = FBorda(A,H) output by the Borda count rule by

R(π, π′) =
2

n

(
E

a∼π

∑
h∈H

sh(a)− E
a′∼π′

∑
h∈H

sh(a
′)

)
.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The value of R(π, π′) is non-negative if and only if π has a higher expected total score than π′. We
have normalized the total score by 2

n above for convenience in the later analysis, and this does not
affect the relative ordering of any pair of distributions under R. Observe that the score sh(a) is equal
to the number of alternatives b such that a ≻h b. That is

sh(a) =
∑
b∈A

1 + Ph(a, b)

2
=

n

2
+

1

2

∑
b∈A

Ph(a, b)

Thus the relation R output by the Borda count rule can equivalently be expressed in the form

R(π, π′) = E
a∼π

E
h∼H

∑
b∈A

Ph(a, b)− E
a′∼π′

E
h∼H

∑
b′∈A

Ph(a
′, b′)

= E
a∼π

∑
b∈A

PH(a, b)− E
a′∼π′

∑
b′∈A

PH(a′, b′). (5)

Note that this form depends only on pairwise comparisons between alternatives.

In practical RLHF the reward function r(a) for a ∈ A produced via training with the Bradley-Terry
model yields the same ranking over alternatives as the Borda count. However, this reward function
is not numerically equal to the Borda score. Hence, to appropriately model practical RLHF, we
will be interested in any relation Q derived from a reward r which produces the same rankings over
alternatives as the Borda score s(a). That is, we consider all Q such that

Q(π, π′) = E
a∼π

r(a)− E
a′∼π′

r(a′)

where r(a) ≥ r(b) if and only if s(a) ≥ s(b).

As before, we will be interested in a regularized version of the Borda count rule, as this matches the
standard practice in RLHF. In particular, the standard RLHF algorithm will output a policy π that
maximizes the Borda count score plus a KL-divergence regularization term. Hence, we define the
output of the regularized Borda count rule R̃ = F̃Borda(A,H) by

R̃(π, π′) = E
a∼π

∑
b∈A

PH(a, b)− E
a′∼π′

∑
b′∈A

PH(a′, b′)−DKL(π∥µ) +DKL(π
′∥µ).

We similarly define Q̃(π, π′) = Q(π, π′) − DKL(π∥µ) + DKL(π
′∥µ) for any relation Q(π, π′)

induced by a reward r that produces the same rankings over alternatives as the Borda count.

Because the original, unregularized Borda count rule is a deterministic, non-dictatorial rule, Arrow’s
theorem (Arrow, 1951) implies that it must violate either Pareto optimality or independence of
irrelevant alternatives. As it turns out, it violates the latter i.e. FBorda is not independent of irrelevant
alternatives. However, as we saw for the von Neumann winner, regularization sometimes has
unexpected benefits. In spite of this initial optimism, we will next prove that the regularized Borda
count also violates independence of irrelevant alternatives.
Proposition 6.1. Let Q be any preference relation which yields the same ranking over alternatives as
the Borda count, and Q̃ be the regularized relation. For all ϵ < 1/2, the alignment rule that outputs
Q̃ is not ϵ-approximately independent of irrelevant alternatives.

The proof of Proposition 6.1 appears in Section A. Hence, the key axiom of independence of
irrelevant alternatives remains unsatisfied by the regularized Borda count rule. This is unlike the case
of the regularized von Neumann winner, where regularization was able to significantly improve the
strategy-proofness of the rule.

7 EXPERIMENTS

In this section we demonstrate the strategy proofness of the regularized von Neumann rule on
synthetic data. We consider the counterexample appearing in the proof of Theorem 5.5 in Section
A, with |A| = 3 alternatives and a set H of n = 64 raters. In this setting there are two preference
relations P and P ′ that differ only in that a single rater switches their preferences from a1 ≻ a3 ≻ a2
in P to a1 ≻ a2 ≻ a3 in P ′. We compare the regularized and unregularized von Neumann winner

9
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on the two preference relations P and P ′. We implement the Nash MD algorithm of Munos et al.
(2024) to compute the maximal policy given by the regularized von Neumann winner rule with
regularization parameter τ = 0.1. For the unregularized von Neumann winner, we implement the self-
play preference optimization (SPO) algorithm of Swamy et al. (2024). Both algorithms are initialized
with a policy µ that assigns probability 0.35, 0.21, and 0.43 to a1, a2, and a3 respectively. The
distribution µ also serves as the regularizer for the regularized von Neumann winner rule. In Figure 1
we then plot for each algorithm the probability assigned to each alternative a1, a2, a3 as function of
training steps. The results demonstrate that a strategic change in reported preferences in this setting
has a minor impact on the regularized von Neumann winner, but a results in a very large change for
the output of the unregularized rule. Notably, this change dramatically increases the probability of
outputting a1, which is the most preferred option of the single, strategically misreporting rater.

Figure 1: Regularized and un-regularized von Neumann winner policies throughout training for two
sets of rater preferences P and P ′ that only differ due to strategic misreporting by a single rater who
most prefers a1.

8 DISCUSSION

We have shown that regularization to a reference policy makes the von Neumann winner rule
approximately strategy-proof, while preserving other key social choice axioms. This is a clear
advantage over the Borda count rule implemented by standard RLHF, which is not independent of
irrelevant alternatives in its regularized or unregularized variants. We next discuss limitations and
potential future directions of research.

On the limitations side, our results show that the regularized von Neumann winner only satisfies a
regularized version of Pareto efficiency. This is in fact necessary for any regularized rule, as the
reference policy may assign arbitrarily small probability to a particular outcome which all raters may
have as their favorite. This also points to an interesting avenue for future research, where additional
assumptions on the reference policy might be used to recover (approximate) Pareto efficiency.
Another avenue for future theoretical work is to determine if there are additional probabilistic social
choice rules that interact positively with KL-regularization. Such rules could inform the design of
future alignment algorithms that could potentially improve upon the axiomatic properties of the von
Neumann winner.

10
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9 REPRODUCIBILITY STATEMENT

All assumptions and formal definitions for the theoretical results are included in the main body of the
paper. All proofs missing from the main body are included in Section A.
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A MISSING PROOFS FOR SECTION 5

In this section we provide proofs of the results regarding stability of the regularized von Neumann
rule from Section 5.

We begin with Lemma 5.2.

Proof of Lemma 5.2. Let H(π) = −
∑

x π(x) log π(x) denote the entropy of π. By Pinsker’s in-
equality DKL(π, µ) ≥ 1

2∥π − µ∥21
1

2
∥π − µ∥21 ≤ DKL(π, µ) = −H(π) +H(µ) + ⟨−∇µH(µ), π − µ⟩

Hence the negative entropy is 1-strongly convex with respect to the ℓ1-norm. Observe that

DKL(π, µ) =
∑
x

π(x) log

(
π(x)

µ(x)

)
= −H(π)−

∑
x

π(x) log(µ(x)).

The first term is 1-strongly convex with respect to the ℓ1-norm and the second term is linear. Hence
DKL(π, µ) is 1-strongly convex with respect to the ℓ1-norm.

We next turn to the proof of Theorem 5.3, that shows that the regularized von Neumann rule is stable
under sufficiently bounded perturbations to the regularized preferences.

Proof of Theorem 5.3. Let M be an |A|×|A| matrix where Ma,b = PH(a, b). Then we can rexpress
the von Neumann winner as the equilibrium in the symmetric two-player game with payoffs for π
and π′ given respectively by

RH(π, π′) = π⊤Mπ′ − τDKL(π∥µ) RH(π′, π) = π′⊤Mπ − τDKL(π
′∥µ)

The payoffs to each player are concave so the game has a Nash equilibrium by Theorem 1 of
Rosen (1965). Let π⃗ = (π, π′) and define G(π⃗) = (−∇πR(π, π′),−∇π′R(π′, π)). Then Rosen
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(1965) shows that if π⃗∗ = (π∗, π′∗) is an equilibrium of the game, then for any pair of distributions
η⃗ = (η, η′) we have

⟨G(π⃗∗), η⃗ − π⃗∗⟩ ≥ 0. (6)

Next consider the perturbed preference relation P ′
H(π, π′) = P̃H(π, π′)−H(π, π′), where by the

assumptions of the theorem we have that P ′
H(π, π′) is concave in π and convex in π′. As above

P ′
H(π, π′) defines a symmetric game with payoffs for π and π′ given by

R′
H(π, π′) = π⊤Mπ′ −H(π, π′)− τDKL(π∥µ)

R′
H(π′, π) = π′⊤Mπ −H(π′, π)− τDKL(π

′∥µ).

Furthermore, the payoffs are concave for both players, so as above we have that G′(π⃗) =
(−∇πR

′
H(π, π′),−∇π′R′

H(π′, π)) satisfies (6).

By Lemma 5.2, the negative payoff function −RH(π, π′) is τ -strongly convex in π with respect
to the ℓ1-norm because it is the sum of a linear function of π with the τ -strongly convex function
τDKL(π∥µ). Hence, for any π⃗ = (π, π′), η⃗ = (η, η′),

⟨G(π⃗)−G(η⃗), π⃗ − η⃗⟩ = ⟨−∇πR(π, π′), π − η⟩+ ⟨−∇π′R(π′, π), π′ − η′⟩
+ ⟨−∇ηR(η, η′), η − π⟩+ ⟨−∇η′R(η′, η), η′ − π′⟩

≥ 2τ∥π − η∥21 + 2τ∥π′ − η′∥21 (7)

Let π∗ = F̃vNw(A,H) and let π = argmaxπ1
minπ2

P ′
H(π1, π2). Further let π⃗∗ = (π∗, π∗) and

π⃗ = (π, π).

By (7) we have

4τ∥π − π∗∥21 ≤ ⟨G(π⃗)−G(π⃗∗), π⃗ − π⃗∗⟩
= ⟨G(π⃗), π⃗ − π⃗∗⟩ − ⟨G(π⃗∗), π⃗ − π⃗∗⟩
≤ ⟨G(π⃗), π⃗ − π⃗∗⟩ ((6) applied to G(π⃗∗))

=
〈
G(π⃗)−G′(π⃗) +G′⃗(π), π⃗ − π⃗∗

〉
= ⟨G(π⃗)−G′(π⃗), π⃗ − π⃗∗⟩+ ⟨G′(π⃗), π⃗ − π⃗∗⟩
≤ ⟨G(π⃗)−G′(π⃗), π⃗ − π⃗∗⟩ ((6) applied to G′(π⃗))

≤ ∥G(π⃗)−G′(π⃗)∥∞ · ∥π⃗ − π⃗∗∥1 (Hölder’s inequality)

= ∥∇πH(π, π′)|π′=π∥∞ · ∥π⃗ − π⃗∗∥1

Dividing both sides by 4τ ∥π − π∗∥1 yields the desired result.

Next, we turn to the proof that the standard von Neumann winner rule is not approximately strategy
proof.

Proof of Theorem 5.5. We proceed by constructing a set of alternatives A and raters H such that
there exists a subset H∗ of k = 1 raters that can strategically misreport preferences to obtain constant
gain. Consider a set A of three alternatives a1, a2, a3. We construct 8 disjoint subsets of raters
H1, . . . ,H4 and H1, . . . ,H4 as follows. Within each subset the preferences of the raters are identical
and are given by

H1 : a1 ≻ a3 ≻ a2 H1 : a2 ≻ a3 ≻ a1
H2 : a1 ≻ a2 ≻ a3 H2 : a3 ≻ a2 ≻ a1
H3 : a2 ≻ a3 ≻ a1 H3 : a1 ≻ a3 ≻ a2
H4 : a3 ≻ a1 ≻ a2 H4 : a2 ≻ a1 ≻ a3

(8)

Let n0 be any natural number, and set l such that n = 10l − 5 > n0. Let the subsets of raters have
sizes |H1| = |H2| = |H4| = l, |H3| = 2l, and let |H1| = |H2| = |H4| = l − 1, and |H3| = 2l − 2.
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Let H = ∪4
i=1(Hi ∪ Hi) and observe that |H| = n. We can now write the preference relation

PH(a, b) in the form of a 3× 3 matrix,

PH =

 0 1/n −1/n

−1/n 0 1/n

1/n −1/n 0

 (9)

This is just 1
n times the payoffs of rock-paper-scissors, and the unique Nash equilibrium (and hence

the von Neumann winner) is given by π = (1/3, 1/3, 1/3). However if one rater h∗ from H1

switches their preferences to a1 ≻ a2 ≻ a3 to produce a manipulated set of rater preferences H′ then
the preference relation PH′(a, b) becomes

PH′ =

 0 1/n −1/n

−1/n 0 3/n

1/n −3/n 0

 (10)

In this game the unique von Neumann winner is given by π′ = (3/5, 1/5, 1/5). Observe that π′

puts significantly more weight on h∗’s most preferred alternative. Further, direct calculation of the
preference relation for h∗ yields

Ph∗(π
′, π) = Pr

a∼π′

b∼π

[a ≻ b]− Pr
a∼π′

b∼π

[b ≻ a] = 7/15− 3/15 = 4/15

which completes the proof.

We now give the proof of Proposition 5.6, that the regularized von Neumann winner is independent
of irrelevant alternatives.

Proof of Proposition 5.6. Let A ⊆ B ⊆ U , and let H,H′ be two sets of raters that have identical
preferences over A. Let M be the matrix given by Ma,b = PH(a, b), and M ′ the matrix given by
M ′

a,b = PH′(a, b). Let MA be the submatrix of M restricted to A and M ′
A the submatrix of M ′

restricted to A. Because H and H′ have identical preferences over A, we have MA = M ′
A. Then for

any π, π′ supported on A we have

P̃H(π, π′) = π⊤Mπ′ − τDKL(π∥µ) + τDKL(π
′∥µ)

= π⊤M ′
Aπ

′ − τDKL(π∥µ) + τDKL(π
′∥µ) (π, π′ are supported on A)

= P̃H′(π, π′)

Hence F̃vNw(B,H)|A = P̃H|A = P̃H′ |A = F̃vNw(B,H′) i.e. F̃vNw is independent of irrelevant
alternatives.

Next we provide the proof of Proposition 5.7, demonstrating that the regularized von Neumann
winner satisfies population consistency.

Proof of Proposition 5.7. Let H and H′ be two disjoint sets of raters, and suppose that π is maximal
for both F̃vNw(A,H) and F̃vNw(A,H′). Let

λ =
|H|

|H|+ |H′|
.

Further let M be the matrix given by Ma,b = PH(a, b) and M ′ be the matrix given by M ′
a,b =

PH(a, b). Then PH∪H′(a, b) = λMa,b + (1− λ)M ′
a,b. Hence, for any π′ ∈ ∆A we have

P̃H∪H′(π, π′) = π⊤(λM + (1− λ)M ′)π − τDKL(π∥µ) + τDKL(π
′∥µ)

= λ(π⊤Mπ′ − τDKL(π∥µ) + τDKL(π
′∥µ))

+ (1− λ)(π⊤M ′π′ − τDKL(π∥µ) + τDKL(π
′∥µ))

= λP̃H(π, π′) + (1− λ)P̃H′(π, π′) ≥ 0

where the final inequality follows from Proposition 5.1. Thus P̃(π, π′) ≥ 0 for all π′ i.e. π is
maximal for F̃vNw(A,H ∪H′).
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Next, we prove Proposition 5.8, showing the regularized von Neumann winner rule satisfies regular-
ized Pareto optimality.

Proof of Proposition 5.8. Suppose that π, π′ ∈ ∆A satisfy P̃h(π, π
′) ≥ 0 for all h. Since R = P̃H

is the output of the von Neumann winner rule F̃vNw we have

P̃H(π, π′) = E
h∼H

[P̃h(π, π
′)] ≥ 0

implying that the von Neumann winner satisfies Pareto optimality.

Finally, we prove Proposition 6.1 showing that the regularized Borda count rule does not satisfy
approximate independence of irrelevant alternatives.

Proof of Proposition 6.1. We construct a counterexample with three alternatives and two raters for
which regularized Borda count violates independence of irrelevant alternatives. Let A = {a1, a2} ⊆
B = {a1, a2, a3} and let there be two raters H = {h1, h2} with preferences

a1 ≻h1 a2 ≻h1 a3

a2 ≻h2
a3 ≻h2

a1

Let s(a) =
∑

b∈A PH(a, b). Then s(a1) = 2, s(a2) = 3, and s(a3) = 1. Consider also the
alternative set of ratings H′ = {h′

1, h
′
2} with preferences

a1 ≻h1 a3 ≻h1 a2

a2 ≻h2
a1 ≻h2

a3

Observe that H and H′ have identical preferences over a1, a2. Letting s′(a) =
∑

b∈A PH′(a, b), we
then have s′(a1) = 3, s′(a2) = 2, and s′(a3) = 1.

Next let the reference measure be uniform i.e. µ(a1) = µ(a2) = µ(a3) = 1/3. Further consider the
two distributions π = 1a1

and π′ = 1a2
that put all their mass on a1 and a2 respectively. Hence for

any reward r that produces the same rankings as the Borda score s we have r(a1) < r(a2), and for
any reward r′ that produces the same rankings as the Borda score s′ we have r′(a1) ≥ r′(a2). Next
let Q be the relation induced by r, and Q̃ be its regularized version. Then we have

Q̃(π, π′) = Q(π, π′)−DKL(π∥µ) +DKL(π
′∥µ)

= r(a1)− r(a2)− log(3) + log(3) = r(a1)− r(a2) < 0

where the last line follows because s(a1) < s(a2) which implies that r(a1) < r(a2) as they
produce the same rankings. Note that for any distributions π̂, π̂′ satisfying dTV(π̂, π) < 1/2 and
dTV(π̂

′, π′) < 1/2 we have π̂(a1) > 1/2, π̂(a2) < 1/2, π̂′(a1) < 1/2, and π̂′(a2) > 1/2. Therefore,
for any relation Q′ induced by the reward r′ we have

Q̃′(π, π′) = Q′(π, π′)−DKL(π∥µ) +DKL(π
′∥µ)

= E
a∼π̂

r′(a)− E
a′∼π̂′

r′(a′)− log(3) + log(3)

= π̂(a1)r
′(a1) + π̂(a2)r

′(a2)− π̂′(a1)r(a1)− π̂′(a2)r
′(a2)

= r′(a1)(π̂(a1)︸ ︷︷ ︸
>1/2

− π̂′(a1)︸ ︷︷ ︸
<1/2

)− r′(a2)(π̂
′(a2)︸ ︷︷ ︸
<1/2

− π̂(a2)︸ ︷︷ ︸
>1/2

)

≥ 0

where the last line follows from the total variation bounds on π̂, π̂′ and because r′(a1) ≥ r′(a2).
Thus, even though H and H′ have identical preferences over a1, a2, the relative order under Q̃ and Q̃′

is swapped, violating the ϵ-approximate independence of irrelevant alternatives for any ϵ < 1/2.
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