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Abstract

This paper addresses the problem of melodic harmonization –the automatic generation
of harmonic accompaniments that complement a given melody– using non-autoregressive,
encoder-only transformer models operating on a synchronized melody–harmony time grid.
The proposed framework allows flexible conditioning, such as fixing chords at specific po-
sitions, while maintaining high generative quality. Comparative experiments show that
single-encoder models outperform dual-encoder architectures despite using fewer parame-
ters. Interestingly, harmony-related attention patterns emerge even when harmony tokens
remain fully masked during training, and models using only cross-attention achieve com-
parable results, suggesting implicit modeling of harmony–harmony relations. Different
inference unmasking strategies further reveal notable effects on harmonic structure and
coherence.

Keywords: Melodic harmonization; Non-autoregressive transformer; Encoder-only archi-
tecture; Attention dynamics

1. Introduction

Transformer architectures have emerged as powerful sequence modeling frameworks across
domains such as language, vision, and music Vaswani et al. (2017); Huang et al. (2018).
Within symbolic music generation, melodic harmonization –the task of generating a har-
monic accompaniment given a melody–poses unique challenges: it requires local melodic
compatibility and long-range harmonic coherence. Harmonization therefore serves as a
strong testbed for studying how sequence models integrate and structure multiple musical
dimensions across time.

Early neural approaches to automatic harmonization relied on recurrent architectures Lim
et al. (2017); Yeh et al. (2021); Chen et al. (2021); Yi et al. (2022), while more recent
transformer-based methods Rhyu et al. (2022); Huang and Yang (2024); Wu et al. (2024a);
Bhandari et al. (2025) typically frame harmonization as a sequence-to-sequence translation
task, generating harmony autoregressively. However, autoregressive decoding enforces a
left-to-right generation order, limiting flexibility when imposing harmonic constraints (e.g.,
fixed cadences or key modulations) prior to generation. Some non-autoregressive approaches
perform diffusion in a continuous approximation of the discrete token space Mittal et al.
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(2021); Lv et al. (2023), while others apply diffusion in the latent space of a VAE Zhang
et al. (2023).

Non-autoregressive, encoder-only transformers offer a compelling alternative. Such mod-
els have been explored in other domains through the lens of discrete diffusion or masked
token modeling, as in MaskGIT Chang et al. (2022); Austin et al. (2021), which iteratively
refines partially masked token sequences. These approaches enable flexible conditioning and
substantially faster generation compared to autoregressive models.

Applied to melodic harmonization, this framework represents melody and harmony on
a synchronized temporal grid and progressively unmask harmony tokens until a complete
harmonization is produced Kaliakatsos-Papakostas et al. (2025). This formulation natu-
rally supports partial conditioning and parallel generation, aligning more closely with the
inherently bidirectional nature of harmonic reasoning.

Recent work has shown that training such models effectively requires careful curriculum
design. When harmony tokens are gradually unmasked during training, the model learns
to rely on melodic context for harmonic inference rather than trivial self-copying patterns.
Interestingly, even when all harmony tokens remain masked for long portions of training,
harmony-related self-attention patterns still emerge in the generative encoder. This suggests
that the model develops an implicit sense of harmonic organization purely through its
exposure to melodic structures.

Experiments presented in this paper with cross-attention-only architectures, where nei-
ther melody nor harmony use self-attention, reveal that performance remains comparable
to full-attention models. This finding hints that cross-attention can, to some degree, inter-
nalize self-like relational patterns among harmony tokens. Similar phenomena have been
observed in multimodal transformers Tsai et al. (2019); Alayrac et al. (2022), where cross-
modal layers spontaneously capture intra-modal dependencies despite the absence of explicit
self-attention mechanisms.

Finally, inference in non-autoregressive harmonization models introduces new challenges:
since generation need not proceed sequentially, the order of unmasking can be chosen flex-
ibly. We therefore investigate several unmasking strategies—starting from cadential posi-
tions, high-confidence predictions, or random tokens—and analyze their musical and struc-
tural implications through both quantitative metrics and attention visualizations.

In summary, this work explores how encoder-only, non-autoregressive transformers learn
harmonic structure under different attention and unmasking regimes. Beyond their practical
advantages for constraint-based harmonization, the observed emergent behaviors offer new
insights into how structured musical relations can arise from weak or indirect supervision.
Future work will further examine the underlying mechanisms and draw connections to
broader studies on emergent attention dynamics in multimodal and self-supervised learning
systems. The code of the work presented in this paper is available online1.

2. Method

This section describes the melody and harmony representations, the single- and dual-
encoder architectures, the training procedure, and the inference strategies.

1. https://github.com/NeuraLLMuse/EncoderOnlyMelHarmSelfCross.git

2

https://github.com/NeuraLLMuse/EncoderOnlyMelHarmSelfCross.git


Encoder-Only Melodic Harmonization

2.1. Melody and harmony representation

A quarter-note resolution is sufficient to capture all harmonic details in the datasets used
for training and testing, with no overlapping chords within the same segment. Melody
events occurring within each quarter note are grouped and represented as a binary pitch-
class piano roll with an additional binary column marking bar boundaries. Formally, the
pitch-class matrix is defined as PC ∈ {0, 1}L×13, where L is the number of quarter-note
steps. The first 12 columns correspond to the 12 pitch classes, following Rhyu et al. (2022),
where active pitch classes are indicated by 1. The 13th column is zero everywhere except
at bar onsets, where it is 1 and all other pitch-class columns are zero.

Harmony is represented as a sequence of chord tokens from a fixed vocabulary V, denoted
y ∈ VL. Chord symbols are normalized following the mir eval convention Raffel et al.
(2014) (e.g., Cmaj7 instead of C△). The vocabulary includes 12× 29 = 348 chord types (12
pitch classes × 29 chord qualities). Harmony is aligned to the same quarter-note grid: if a
chord spans multiple steps, it is repeated for its duration. For example, a C:maj7 spanning
two beats occupies two grid positions. Special tokens handle missing or padding cases:
<nc> denotes “no chord,” <pad> fills trailing positions beyond the harmonization length,
and <bar> marks bar boundaries. Both melody and harmony representations thus encode
bar-level structure explicitly. Figure 1 (a) shows an example segment from the test dataset.

(a) Music representation (b) SE and DE architectures

Figure 1: (a) Example of a pitch-class piano roll (13×T matrix) and the respective harmony
tokens as x-axis labels. (b) Overview of SE and DE architectures.

2.2. Model architectures

The proposed transformer architectures, abstractly illustrated in Figure 1 (b), are based on
BERT Devlin et al. (2019) and adapted for generation through masked language modeling
(MLM). Two variants are explored: (a) a single-encoder model (SE), where the input
sequence jointly encodes melody and harmony information, and (b) a dual-encoder model
(DE), with a dedicated melody encoder and a harmony-generative encoder connected via
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cross attention. Both models predict chord tokens conditioned on a melodic context and
on a varying proportion of visible (unmasked) harmony tokens.

During inference, the harmony sequence is initially fully masked using <mask> tokens.
The model then iteratively unmasks tokens in t steps, providing at each step a partially

masked harmony input y
(t)
in . Although accelerated multi-token unmasking strategies ex-

ist Kaliakatsos-Papakostas et al. (2025), we focus here on single-token unmasking for clarity.
During training, the models learn to estimate the conditional distribution:

pθ

(
y
(k)
target | y

(k)
in ,m

)
, (1)

where y
(k)
target denotes the subset of harmony tokens to be predicted at training step k, and

m is the melody matrix PC ∈ {0, 1}L×13.
The melody matrix is first projected through a linear layer before entering the melody

encoder of either architecture. The harmony input (masked and unmasked tokens) is passed
through an embedding layer. In the SE model, the transformer output corresponding to the
harmony portion is used to compute a cross-entropy loss for predicting masked harmony
tokens, while the melody portion of the output is ignored. In the DE model, the melody en-
coder provides contextual information to the harmony decoder via cross attention, enabling
the latter to learn to reconstruct harmony tokens at its output.

2.3. Training and inference

At the beginning of training, all harmony tokens are masked, and only the melody is visible.
This setup compels the model to establish cross-attention pathways between melody and
harmony. As training progresses, harmony tokens are gradually revealed, transitioning
from full masking to partial visibility. This progression enables the model to learn both
extreme regimes: full reliance on melody and partial self-reliance on visible harmony context.
Interestingly, models trained entirely in the fully masked regime still produce high-quality
harmonizations, as discussed in Section 3.

The number of visible harmony tokens at training step k is defined as

#unmasked = min(⌊v · L⌋, L− 1) , (2)

where the visible fraction v follows

v =

(
k

ktotal

)5

, (3)

with k the current training step and ktotal the total number of steps. The exponent of 5
allocates roughly half of the training duration to the fully masked regime; similar values
produce comparable performance.

Let H denote the set of all harmony tokens, M(k) ⊆ H the set of masked positions, and
U (k) = H \M(k) the visible tokens at step k. The model input is defined as

y
(k)
i =

{
yi, i ∈ U (k),

<mask>, i ∈ M(k).
(4)
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The prediction targets are the masked positions, y
(k)
target = {yi | i ∈ M(k)}, and the MLM

loss is computed as

L(k) = −
∑

i∈M(k)

log pθ

(
yi | m,y

(k)
in

)
. (5)

At inference time, generation begins from a fully masked harmony sequence and proceeds
for L unmasking steps. At each step, one masked token is selected and predicted according
to one of five unmasking strategies:

start Sequentially from the first to the last token, mimicking autoregressive decoding.

end From the last to the first token, prioritizing cadential regions Allan and Williams
(2004).

random Selecting masked positions uniformly at random.

certain Selecting the position with the lowest logit entropy (highest model confidence).

uncertain Selecting the position with the highest logit entropy (lowest model confidence).

Once a position is selected, the model samples a prediction from ŷ(t) ∼ pθ(· | m,y
(t)
in ), and

updates the input sequence: y
(t+1)
in = y

(t)
in ∪ ŷ(t). All experiments used nucleus sampling

(p = 0.9) with temperature 0.2.
All models had 8 layers and 8 heads per layer for each encoder – one encoder for the SE

and two for the DE architectures. Models were trained using AdamW with a learning rate
of 1 × 10−4, batch size 8, for 200 epochs. For models trained with the gradual unmasking
curriculum, the final-epoch version was retained, as it encompasses all curriculum stages.
For models trained entirely with masked harmony, the checkpoint with the lowest validation
loss was used. Training was performed on three NVIDIA RTX 3080 GPUs. The loss was
averaged over tokens and batches.

3. Results

Experiments are conducted on a curated version of the HookTheory dataset Yeh et al.
(2021) (15,440 MIDI lead sheets), following previous harmonization studies Rhyu et al.
(2022); Huang and Yang (2024). To reflect harmonic rhythm, redundant chord repetitions
within bars are removed, and all pieces are transposed to C major or A minor using the
Krumhansl key-finding algorithm Krumhansl (2001). The split comprises 14,679 training
and 761 validation/test pieces (95/5%). Training and validation losses are illustrated in
Figure 2. Training accuracy (i.e., percentage of correctly unmasked tokens) for all architec-
tures reached between 90-95% during the all-masked harmony epochs and increased to over
99% as harmony tokens were gradually unmasked. The v0 (no unmasking) versions reached
over 98%. Test-set accuracy reached over 65% for all architectures during the all-masked
harmony epochs (remained so for the v0 versions) and reached over 98% as the unmasked
input tokens gradually increased.

Generated melodic harmonizations are evaluated both in-domain (HookTheory test
split) and out-of-domain (650 curated jazz standards). Each model generates harmoniza-
tions for the melodies in these sets, which are evaluated against ground-truth harmonies us-
ing established chord- and rhythm-based metrics Sun et al. (2021); Wu et al. (2024b): CHE
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(a) Training loss DE (b) Validation loss

Figure 2: Training and validation loss for all examined models.

(Chord Histogram Entropy), CC (Chord Coverage), CTD (Chord Tonal Distance), CT-
nCTR (Chord Tone ratio), PCS (Pitch Consonance Score), MCTD (Melody–Chord Tonal
Distance), HRHE, HRC, and CBS. Average ground-truth statistics for both datasets are
shown in Table 1. In future extensions, we also plan to supplement quantitative metrics
with qualitative listening studies and curated harmonization examples, enabling a more
perceptual assessment.

Table 1: Average metric values for all pieces in the test set (in-domain) and jazz set (out-
of-domain) datasets.

Ground truth CHE CC CTD CTnCTR PCS MCTD HRHE HRC CBS

Test set 1.4078 4.9485 0.9748 0.7769 0.4060 1.4139 0.4542 1.9710 0.2314
Jazz set 2.2027 11.6471 0.8208 0.8297 0.3145 1.4042 0.5093 2.0607 0.2426

3.1. Effect of Unmasking Order

We first evaluate five unmasking strategies during inference: start, end, certain, uncertain,
and random. For this comparison we use the single-encoder (SE) model; all other models
produced similar results. Mean absolute error (MAE) is computed between generated and
reference harmonizations across all metrics.

Results (Table 2) show that the certain strategy—unmasking tokens for which the
model exhibits the highest confidence—consistently outperforms others in both in-domain
and out-of-domain settings. This suggests that harmonization generation benefits from
data-driven uncertainty guidance rather than fixed-order decoding. Notably, the same rank-
ing of strategies holds across all metrics, implying robust inference behavior independent of
musical style.

3.2. Ablation Study: Architectural Insights

We next compare single-encoder (SE) and dual-encoder (DE) architectures and their abla-
tions under the certain unmasking regime (Table 3).
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Table 2: Comparison of unmasking order strategies during inference in the in-domain test
set and out-of-domain jazz set using the SE model architecture. Mean absolute
errors (MAEs) are calculated, and the smallest differences per metric are shown
in bold. Results are presented in ascending order of average MAE, which is show
in the last column.

Instance CHE CC CTD CTnCTR PCS MCTD HRHE HRC CBS avg.

In-domain / Test set
certain 1.3235 4.8536 0.9126 0.7933 0.3940 1.4158 0.4520 2.0383 0.1225 1.3673
start 1.4521 5.4406 0.9467 0.7949 0.3910 1.4161 0.5312 2.2243 0.1489 1.4829
end 1.5202 5.8311 0.9525 0.7961 0.3879 1.4166 0.5865 2.3509 0.1640 1.5562
random 1.6076 6.3113 0.9862 0.7962 0.3968 1.4125 0.7235 2.7269 0.2094 1.6856
uncertain 1.7405 7.1583 0.9971 0.7877 0.3848 1.4178 0.8159 2.8958 0.2624 1.8289

Out-of-domain / Jazz set
certain 1.8768 8.6660 0.8723 0.8002 0.3890 1.3851 0.5401 2.5351 0.1098 1.9083
start 2.0047 9.5180 0.9115 0.7872 0.3924 1.3860 0.6048 2.6907 0.1252 2.0467
end 2.0551 9.8634 0.8978 0.8051 0.3863 1.3807 0.6424 2.7514 0.1381 2.1023
random 2.1457 10.7059 0.9466 0.8047 0.3948 1.3782 0.8397 3.2182 0.2006 2.2927
uncertain 2.2651 11.8899 0.9767 0.8021 0.3935 1.3810 0.9283 3.3795 0.2399 2.4729

The SE model achieves the best overall results, particularly in rhythm-related metrics for
the out-of-domain jazz set, despite having less than half the parameters of DE. In-domain,
DE noM (dual encoder without melody self-attention) performs slightly better, indicating
that cross-attention can compensate for missing melody self-context. Surprisingly, models
trained with fully masked harmony throughout training (v0) do not collapse, supporting the
hypothesis that harmonic structure can be indirectly inferred from melodic patterns alone.
Even more strikingly, the DE noMH variant (no self-attention in either encoder) remains
functional, suggesting that cross-attention alone can partially encode both melody–harmony
and harmony–harmony dependencies—a key insight for future investigation.

3.3. Attention Dynamics

Figure 3 visualizes averaged attention maps across layers and heads for representative mod-
els. Even when harmony tokens remain masked during all training epochs (DE v0), coherent
self-attention structures emerge in the harmony encoder. When melody self-attention is re-
moved (DE noM), harmony self-attention reorganizes, seemingly compensating for missing
melodic structure. Cross-attention in DE noM remains similar to the full model, while in
DE noMH it becomes diffuse, implying an adaptive redistribution of representational load.
These emergent behaviors highlight the model’s ability to develop internal harmonic orga-
nization even under heavily constrained or degenerate training regimes. A complete analysis
should compare these attention patterns with those of randomly initialized encoders. We
leave this comparison to future work, but note that such baselines would clarify which
structures truly reflect learned harmonic representations.maximoskalpap@gmail.com
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Table 3: Comparison of ablations in the in-domain test set and out-of-domain jazz set using
the certain unmasking order. Mean absolute errors (MAEs) are calculated, and
the smallest differences per metric are shown in bold. Results are presented in
ascending order of average MAE, which is show in the last column.

Instance CHE CC CTD CTnCTR PCS MCTD HRHE HRC CBS avg.

In-domain / Test set
DE noM 1.2017 4.0778 0.9547 0.7920 0.4217 1.4117 0.4492 2.0831 0.1263 1.2798
SE 1.3235 4.8536 0.9126 0.7933 0.3940 1.4158 0.4520 2.0383 0.1225 1.3673
DE 1.3181 4.6293 0.9235 0.7895 0.4235 1.4105 0.7327 2.7639 0.2220 1.4681
DE v0 1.4143 5.2916 0.9595 0.7981 0.4288 1.4049 0.8867 3.1161 0.2928 1.6214
DE noH 1.4295 5.3351 0.9547 0.8006 0.4264 1.4065 0.8821 3.1069 0.2871 1.6254
DE noMH 1.3928 5.3259 0.9484 0.8056 0.4349 1.4046 0.9980 3.4024 0.3093 1.6691
SE v0 1.5219 5.9354 0.9741 0.7999 0.4345 1.4045 1.0972 3.6240 0.3869 1.7976

Out-of-domain / Jazz set
SE 1.8768 8.6660 0.8723 0.8002 0.3890 1.3851 0.5401 2.5351 0.1098 1.9083
DE noH 1.7924 8.1879 0.8040 0.7630 0.3801 1.4018 0.9228 3.3510 0.2539 1.9841
DE noM 1.7932 8.1935 0.8030 0.7626 0.3795 1.4016 0.9253 3.3548 0.2543 1.9853
DE v0 1.7919 8.1879 0.8030 0.7631 0.3800 1.4015 0.9275 3.3662 0.2535 1.9861
SE v0 1.7919 8.1860 0.8030 0.7630 0.3794 1.4022 0.9276 3.3700 0.2537 1.9863
DE noMH 1.7925 8.1954 0.8040 0.7631 0.3800 1.4016 0.9263 3.3662 0.2543 1.9871
DE 1.7935 8.2030 0.8040 0.7633 0.3800 1.4016 0.9299 3.3700 0.2549 1.9889

4. Conclusions

This paper presented a non-autoregressive approach to melodic harmonization based on an
encoder-only transformer trained with a synchronized melody–harmony grid. The study
compared multiple architectural and inference variants, showing that single-encoder mod-
els can achieve superior harmonization quality with fewer parameters than dual-encoder
counterparts. Furthermore, the results highlighted two intriguing phenomena: (i) harmony-
related self-attention patterns emerge even when harmony tokens remain fully masked dur-
ing training, and (ii) models relying solely on cross-attention can perform comparably to
those using both self- and cross-attention, suggesting that cross-attention may implicitly
capture harmony–harmony relations.

Experiments on inference unmasking strategies revealed that different decoding orders
–such as starting from cadential regions or from high-confidence tokens– can meaningfully
affect the musical structure and coherence of generated harmonies. Future work will focus
on understanding the mechanisms underlying these emergent attention behaviors, refining
inference scheduling strategies, and exploring the cognitive and music-theoretical interpre-
tations of non-autoregressive harmonization dynamics.

This study focuses on objective chord and rhythm based metrics, which provide reliable
and widely used indicators of harmonization quality. Nevertheless, perceptual aspects such
as naturalness and stylistic preference are not captured by such metrics. Incorporating
listening-based evaluations is an important direction for future work and could further
validate the musical qualities observed in our generated harmonizations. Another promising
direction involves human-in-the-loop evaluation of controllable harmonization, assessing
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(a) Self DE (b) Self DE v0 (c) Self DE noM

(d) Cross DE (e) Cross DE noMH (f) Cross DE noM

Figure 3: Average attention maps in the harmony decoding encoder of some ablations across
all layers and heads, averaged across melodic harmonizations of all test data with
the certain unmasking method.

how flexible unmasking strategies and partial conditioning support real-world compositional
workflows.
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