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ABSTRACT

Large language models (LLMs) often show unwarranted preference for certain
choice options when responding to multiple-choice questions, posing significant
reliability concerns in LLM-automated systems. To mitigate this selection bias
problem, previous solutions utilized debiasing methods to adjust the model’s input
and/or output. Our work, in contrast, investigates the model’s internal representa-
tion of the selection bias. Specifically, we introduce a novel debiasing approach,
Bias Node Pruning (BNP), which eliminates the linear layer parameters that con-
tribute to the bias. Furthermore, we present Auxiliary Option Injection (AOI),
a simple yet effective input modification technique for debiasing, which is com-
patible even with black-box LLMs. To provide a more systematic evaluation of
selection bias, we review existing metrics and introduce Choice Kullback-Leibler
Divergence (CKLD), which addresses the insensitivity of the commonly used met-
rics to imbalance in choice labels. Experiments show that our methods are robust
and adaptable across various datasets when applied to three LLMs.

1 INTRODUCTION

The advent of large language models (LLMs) has revolutionized artificial intelligence applications,
particularly in the domain of natural language processing. These models have demonstrated out-
standing performance across a variety of use cases, including chatbots, machine translation, text
generation, data annotation, etc. Their ability to answer questions with high precision has opened
up new avenues for automated systems.

Figure 1: We propose BNP and
AOI to reduce selection bias for
white-box and black-box models.
The CKLD metric is also proposed
to encourage a more standardized
evaluation of the bias.

Despite their remarkable abilities, LLMs suffer from the se-
lection bias problem that often occurs in answering multiple-
choice questions (MCQs). When selecting the answer for an
MCQ, many LLMs prefer the choices in a given position (e.g.,
the last choice), or with a specific choice symbol (e.g., (A)
or (3)) (Zheng et al., 2024; Wei et al., 2024; Pezeshkpour &
Hruschka, 2024). This phenomenon degrades model perfor-
mance.

Many previous works have attempted to explain this phe-
nomenon and/or propose diverse ways to mitigate selection
bias. While there are a few works focused on either modi-
fying the input format (Li et al., 2023b; Robinson et al., 2023)
or calibrating the output probabilities (Zheng et al., 2024; Reif
& Schwartz, 2024; Wei et al., 2024), to the best of our knowl-
edge, no embedding or parameter-level investigation has been
performed. Because selection bias originates from internal
parameter-level computations, it is crucial to explore how the
LLM embeddings contribute to the bias in their output re-
sponses.

Understanding the internal representation of selection bias can help us combat it. By scrutinizing
the interaction between the internal representation and the LLM parameters, we develop a novel ap-
proach to debias the model. Specifically, we propose Bias Node Pruning (BNP), which eliminates
nodes in the final linear layer that contribute to selection bias. By dropping as few as 32 out of 4096
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nodes in the final layer, we can significantly reduce selection bias and improve question-answering
performance. In addition, we find that introducing an “I don’t know” option in the input reduces
bias and enhances task performance. This Auxiliary Option Injection (AOI) technique is a simple
method that can be applied to even black-box scenarios.

Although mitigating selection bias is an important task, even quantifying the extent of selection
bias is in itself a difficult problem. Previous research has adopted several bias evaluation metrics,
such as the Standard Deviation of Recalls (RStd) (Zheng et al., 2024)) and the Relative Standard
Deviation (RSD) (Reif & Schwartz, 2024)). However, these metrics are insensitive to imbalance of
choices, which can lead them to incorrectly indicate selection bias when none exists. To address this
concern, we propose the Choice Kullback-Leibler Divergence (CKLD), a novel bias evaluation
metric that is sensitive to the imbalance. Figure 1 depicts our contributions to the overall pipeline.

We conducted experiments and analyses to evaluate the debiasing performance of our methods,
adopting the proposed CKLD metric. We validate the efficacy of our approach on widely used
public benchmark datasets with various LLMs. Results show that our method generally improves
debiasing and task performance, and can be utilized together with other baseline methods (e.g.,
Chain-of-Thought, In-Context Learning, or Decoding by Contrasting Layers).

Our contributions are four-fold. In this work, we:

• Propose Bias Node Pruning (BNP), a novel debiasing approach that removes parameters from the
final linear layer that contribute to selection bias.

• Introduce Auxiliary Option Injection (AOI), which is a simple prompting tactic for MCQ answer-
ing. Along with BNP, our debiasing methods improve accuracy by upto 24.9%.

• Review existing metrics to systematically evaluate selection bias, and introduce Choice Kullback-
Leibler Divergence (CKLD) to address their weakness with imbalanced labels.

• Underscore the broad applicability of our approach to various baselines and also demonstrate that
our AOI method can debias black-box large language models.

2 SELECTION BIAS IN LLMS

Although LLMs are most often used for text generation, some tasks involve responding to multiple-
choice questions (MCQs). For example, LLMs are increasingly used to annotate data samples, a task
that requires selecting the best choice from several options. When responding to MCQs, however,
LLMs suffer from selection bias, which is the model’s inclination to prefer a choice option bound
with a specific symbol or located in a certain order. In this section, we formally define selection
bias (§ 2.1) and discuss when and where the signs of selection bias are observed (§ 2.2).

2.1 SELECTION BIAS PROBLEM

Figure 2: Comparison of the original and vot-
ing accuracy with different LLMs via zero-shot
querying. Note, Claude3-Sonnet is evaluated
under the black-box setting (Section 5.2)

Selection bias refers to a model’s tendency to se-
lect options in a given position or with a given
symbol among MCQ choices, regardless of the
correctness of its choice. This includes the model’s
a priori preference of a certain choice symbol, and
its inclination to favor the choice presented at a
specific ordering position (Zheng et al., 2024). In
this work, we define selection bias as the discrep-
ancy between the model’s selection for the original
choice ordering of a question and its expected op-
tion selection across all possible choice orderings
of a question. If the model consistently selects the
same choice option (i.e., the content of the option)
regardless of its position, the discrepancy is zero,
indicating no selection bias. Conversely, a high
level of selection bias suggests that the model’s selection for certain choice orderings may deviate
from expectation.
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Figure 3: (a) Choice frequency tends to have a sharper distribution when the model’s response is
incorrect. (b) In Llama-3, selection bias is predominantly observed to be in the final output layer of
the decoder. Other model figures are in Appendix D.

Empirical demonstration. Motivated by this definition, Figure 2 shows the existence of selec-
tion bias on four LLMs. The lighter bars show each model’s accuracy on the ARC-Challenge
dataset (Clark et al., 2018). The darker bars, on the other hand, show the accuracy of the answers
retrieved by majority voting across all possible choice permutations, which can be interpreted as
the expected output across all choice orderings. If the model is free of selection bias, voting will
always output the same choice as the original question, rendering the same accuracy in all cases. If
the model entails selection bias, on the other hand, its response to the original question may devi-
ate from the expected response, leading to a bigger gap between the voting accuracy and original
accuracy. In the figure, selection bias exists with all four models and is greatest with Llama-3.

2.2 MOTIVATING ANALYSES

While selection bias is a prevalent problem in querying the large language model (LLM), it is impor-
tant to properly identify when and where the bias is captured. Here, we provide two simple analyses
that motivate the design of our debiasing methods.

Selection bias is prominently captured when the model is incorrect. Figure 3(a) shows the fre-
quency of choices of the four response options on the ARC-Challenge dataset (Clark et al., 2018)
using Llama-3-8B-Instruct (Meta, 2024) and Bloomz-7b1 (Muennighoff et al., 2023). We manipu-
lated the test dataset to include all possible orderings of the MCQ choices. Thus, the bars should be
at 0.25. However, the models prefer answer choices ‘D’ and ‘A’, respectively. These preferences are
pronounced in cases where the models produce incorrect responses, as opposed to correct ones. This
observation highlights the role of selection bias in incorrect predictions and motivates our focus on
analyzing cases where the model’s output is incorrect.

Selection bias is prominently observed in the final decoder layers. To capture the selection bias,
we investigate the difference between the correct and incorrect sample embeddings extracted from
different locations. Specifically, we explore the discrepancies within a single sample by permuting
the sequence of choices in the question. The difference between the embeddings within the choice-
permuted set removes the sample-specific semantic information while the pure effect of the selection
bias remains in the difference.

Accordingly, we first retrieve the intermediate embeddings of an LLM by computing the t-th token
embedding from the ℓ-th decoder layer as zℓ,t = fℓ(xA)t, where fℓ is the LLM decoder up to the
ℓ-th layer and xA is the input with answer choices A. For brevity of notation, let z ∈ Rd be the
embedding from an arbitrary layer and token location. Then, we quantify the selection bias by com-
puting the embedding difference between the correct and incorrect questions within the permutations
of A. That is, the bias vector b for a sample x is defined as

bx =
1

n−

n−∑
i=1

z
(i)
− − 1

n+

n+∑
i=1

z
(i)
+ , (1)

where z− is the embedding vector of the choice-permuted questions that the model answered incor-
rectly, and z+ is from the correctly answered questions. Also, n− and n+ correspond to the number
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Figure 4: Bias Node Pruning with Auxiliary Option Injection. (a) The bias vector bx is computed
for each sample using its choice-permuted embeddings (equation 1). The bias vectors are averaged
across a small subset of training data to retrieve the average bias vector, b (equation 2). Then, b is
used to select nodes to prune in W , where

⊗
refers to the operation in equation 4. (b) The pruned

W̃ is used to retrieve answers for the test questions, along with our Auxiliary Option Injection
technique that injects the “I don’t know” option in the inputs (§ 3.2). Our debiasing approaches may
correct potentially erroneous responses retrieved with W and without AOI, as in (c).

of incorrect and correct questions, respectively. To balance the number of correct and incorrect
samples, we use the vector sets {z−, z+} only when 1 ≤ n+/n− ≤ 2. Then, we average the bias
vectors across the samples in data subset X to define the average bias vector

b =
1

|X |
∑
x∈X

bx, (2)

where we use a subset size |X | of 32 in this work. Refer to Figure 4(a) for visual aid.

We use the L2 norm of the average bias vector retrieved from different layers and tokens as a proxy
for the magnitude of selection bias. Figure 3(b) shows the norm value from each location as a
heatmap, where the x-axis lists the layer indices, and the y-axis shows the last 50 token embeddings
of the inputs. Interestingly, the magnitude of the bias vector is prominent only in the final layer,
motivating us to focus on the interaction of the average bias vector with the linear output head.

3 METHODS

Motivated by our observations that the selection bias is (1) prominently seen when the model is
wrong, and (2) captured in the final decoder layers, we introduce two methods for debiasing the
model predictions: Bias Node Pruning (BNP) and Auxiliary Option Injection (AOI). As the
names suggest, BNP drops nodes in the final output layer that contribute to the selection bias, and
AOI utilizes an auxiliary “I don’t know” option to eliminate bias induced by ignorance.

3.1 BIAS NODE PRUNING

As shown in § 2.2, the average bias vector b ∈ Rd is most prominent in the final layer, and the
selection bias materializes in the final output projection parameters, W ∈ Rd×|V|, where V is
the vocabulary set. To mitigate the selection bias problem induced by the linear layer, we prune
the parameters in W that contribute to the bias. In choosing which parameters to prune, we gain
intuition by approximating a biased model, F , as

F(xA) ≈ (D(xA) + b) ·W , (3)
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where D is a conceptual LLM decoder with zero selection bias, and b is the average bias vector de-
fined in equation 2. Then, b ·W is the factor that contributes to the selection bias, and removing the
parameters in W that has the most active interaction with b will reduce selection bias. Accordingly,
we choose the top-k rows in W with respect to

K = Top-k
i∈[1,d]

( |V|∑
j=1

bi ×Wij

)
, (4)

where |V| is the vocabulary size of the output. Then, we use the index in K to zero out the cor-
responding rows (i.e., nodes) in W . Bias Node Pruning (BNP) is a one-time process with the
average bias vector b being pre-computed, and the pruned weight W̃ is applied to all test samples
as f(xA) · W̃ where f is the LLM decoder. Refer to Appendix B for complexity analysis. Another
design choice would deduct b from the decoder output embedding; however, we observed more
stable performance by pruning the parameters in W .

3.2 AUXILIARY OPTION INJECTION

Because selection bias is more likely when a model is incorrect, we hypothesized that providing an
“I don’t know” (IDK) option would reduce selection bias. The auxiliary option oaux is applied as

A := A ∪ {oaux} (5)

â = argmax
a∈A\oaux

P (ŷ = a |xA), (6)

where A is the set of answer choices, and xA is the input question with choices A. How we retrieve
the probability for each choice a will be later discussed in the implementation details in § 5 and
Appendix A.2. Further analyses on AOI will be provided in § 6.2.

4 EVALUATION

There is no consensus in the literature on how to measure selection bias. Here, we first review two
selection bias metrics, Standard Deviation of Recalls (RStd) and Relative Standard Deviation (RSD),
which evaluate the consistency of performance across choices. By scrutinizing their limitations, we
propose Choice Kullback-Leibler Divergence (CKLD), which is a novel distribution-based bias
metric.

Definition 1. (Standard Deviation of Recalls) is the standard deviation of the class-wise recall:

RStd =

√√√√1

k

k∑
i=1

(ri − r̄)2, (7)

where k is the number of choices, ri is the recall of the i-th class, and r̄ is the arithmetic mean of ri
values (Zheng et al., 2024).

Definition 2. (Relative Standard Deviation) is the class-wise accuracy standard deviation normal-
ized by the overall accuracy:

RSD =

√
1
k

∑k
i=1(si − s̄)2

s̄
, (8)

where k is the number of choices, si is the accuracy of the i-th class, and s̄ is the mean accuracy
averaged across classes (Croce et al., 2021; Reif & Schwartz, 2024).

We empirically show how these performance-based metrics, RStd and RSD, behave across different
data characteristics. We constructed synthetic 4-way MCQ datasets by varying the choice selection
ratio under different ground-truth ratios. For instance, in the third column of Figure 5, labeled “‘A’
Label Ratio = 0.55”, answer choice ‘A’ is the correct choice in 55% of the samples and the rest are
labeled ‘B’, ‘C’, or ‘D’ 15% of the time, respectively. To simulate realistic predictions, we have the
model render correct predictions half of the time, and predict with respect to the choice selection
ratio (i.e., ‘A’ selection rate) for the other half. For example, if ‘A’ Selection Rate is 0.4, each choice
will be sampled with respect to P (A) = 0.4 and P (B) = P (C) = P (D) = 0.2 half of the time,
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Figure 5: Empirical analyses of selection bias metrics. The metrics are tested on a 4-way clas-
sification task using synthetic data with varying levels of label ratios (outer x axis) and selection
rates (inner x axis). We randomly generate 3000 samples and run 100 times to retrieve the mean and
standard deviation of the metrics. The corresponding ‘A’ Ratios are denoted with dashed lines.

and will predict the correct answer for the other half. With this set up, the selection bias metrics
should be lowest at the ‘A’ Label Ratio, shown with a vertical dashed line in Figure 5.

In contrast, the minimum points of RStd and RSD are not in the expected locations (Figure 5). Both
metrics are insensitive to the ground-truth ratios. (RSD is lowest when the ‘A’ Selection Rate is

1
# Choices = 1

4 regardless of the ‘A’ Label Ratio.) These results highlight the inability of RStd and
RSD to measure selection bias in datasets with skewed distributions of the correct label. Therefore,
we propose Choice Kullback-Leibler Divergence (CKLD), a distribution-based metric sensitive to
data distribution and imbalance of choice labels.

Definition 3. (Choice Kullback-Leibler Divergence) is the KL divergence between the ratio of each
predicted choice and the ratio of each ground truth choice label:

CKLD =

k∑
i=1

pi log
pi
qi
, (9)

where k is the number of choices, pi is the ratio of ground truth label choices, and qi is the ratio of
each predicted choice label.

CKLD is minimized when the predictions match the ground-truth ratio without bias towards certain
choices (bottom row of Figure 5; proof in Appendix C and further discussion in Appendix C.1).
However, CKLD does not account for the model performance in downstream tasks. Hence, it is
important to refer to multiple metrics for a robust assessment. In this work, we leverage both RSD
and our CKLD metrics to evaluate selection bias. We chose RSD because the groundtruth ratios
of the benchmark datasets are close to uniform, and we can expect RSD to be minimized when the
predictions are uniform.

5 EXPERIMENTS

In this section, we evaluate our Bias Node Pruning (BNP) and Auxiliary Option Injection (AOI) in
various settings. We demonstrate the effect of our methods in § 5.1 and show that AOI can debias
black-box models in § 5.2.

Datasets and Models. We evaluate our method on three multiple-choice question answering data
test sets, ARC-Challenge (Clark et al., 2018), MMLU-Redux (Gema et al., 2024), and Common-
senseQA (Talmor et al., 2019). To retrieve the average bias vectors (equation 2), a separate set of
out-of-bag samples is used. Further dataset details are provided in Appendix A.1. For the models, we
mainly evaluate our approach on Llama-3-8B-Instruct (Meta, 2024), Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023), and Bloomz-7b1 (Muennighoff et al., 2023).

Implementation Details. As discussed in Section § 4, we employ RSD and CKLD to measure
selection bias and assess the debiasing performance of our approach. We use Accuracy and the

6
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Table 1: Bias Node Pruning (BNP) and Auxiliary Option Injection (AOI) are tested on three datasets
with Llama-3, Bloomz, and Mistral. The best performances are in bold.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Llama-3 52.3 54.1 0.562 0.494 41.8 46.7 1.021 0.589 65.4 66.2 0.261 0.095
Llama-3 + BNP 56.7 57.0 0.434 0.302 43.1 47.2 0.965 0.501 66.6 66.8 0.218 0.074
Llama-3 + AOI 60.7 61.0 0.364 0.231 47.3 49.9 0.807 0.321 67.4 67.8 0.211 0.065
Llama-3 + BNP + AOI 65.3 65.1 0.262 0.124 48.3 50.5 0.531 0.288 68.1 68.2 0.174 0.049
Bloomz 43.9 44.2 0.461 0.283 28.0 32.8 1.003 0.661 58.5 57.2 0.215 0.136
Bloomz + BNP 46.8 47.0 0.352 0.191 31.0 33.0 0.537 0.326 61.4 60.9 0.178 0.083
Bloomz + AOI 48.9 48.5 0.590 0.147 29.5 32.7 0.808 0.456 64.2 63.6 0.134 0.060
Bloomz + BNP + AOI 48.8 48.9 0.208 0.088 32.0 33.3 0.672 0.205 64.9 64.9 0.159 0.052
Mistral 67.4 67.6 0.156 0.040 46.4 47.6 0.366 0.186 63.6 63.9 0.184 0.042
Mistral + BNP 67.2 67.3 0.157 0.040 46.4 47.6 0.366 0.186 63.7 64.0 0.180 0.041
Mistral + AOI 69.8 69.9 0.108 0.019 48.6 49.3 0.308 0.139 66.8 66.8 0.101 0.016
Mistral + BNP + AOI 69.5 69.5 0.108 0.019 48.6 49.3 0.309 0.140 66.8 66.8 0.099 0.016

Table 2: Comparison with Baselines. Ours (BNP + AOI) is compared and applied to baseline
methods. Best performances are in bold, and values denoted with * are Ours with only BNP. Note
that Bloomz + DoLa performed poorly and was meaningless to compare with baselines.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Llama-3 52.3 54.1 0.562 0.494 41.8 46.7 1.021 0.589 65.4 66.2 0.261 0.095
Llama-3 + Ours 65.3 65.1 0.262 0.124 48.3 50.5 0.531 0.288 68.1 68.2 0.174 0.049
Llama-3 + CoT 66.2 66.3 0.178 0.050 50.2 51.0 0.641 0.124 65.3 65.7 0.161 0.025
Llama-3 + CoT + Ours 69.2 69.5 0.156 0.024 50.4 51.1 0.281 0.095 65.9 66.0 0.123 0.012
Llama-3 + ICL 62.2 61.7 0.292 0.169 42.6 46.4 0.735 0.486 69.0 69.0 0.116 0.026
Llama-3 + ICL + Ours 70.0 70.0 0.167 0.054 46.9 49.2 0.526 0.280 69.5 69.3 0.124 0.037
Llama-3 + DoLa 51.1 52.8 0.578 0.524 41.5 46.3 1.033 0.581 65.1 65.6 0.244 0.087
Llama-3 + DoLa + Ours 64.1 63.7 0.271 0.139 47.6 49.8 0.545 0.292 66.7 66.7 0.178 0.052

Bloomz 43.9 44.2 0.461 0.283 28.0 32.8 1.003 0.661 58.5 57.2 0.215 0.136
Bloomz + Ours 48.8 48.9 0.208 0.088 32.0 33.3 0.672 0.205 64.9 64.9 0.159 0.052
Bloomz + CoT 47.5 47.2 0.169 0.070 30.7 32.2 0.445 0.162 62.7 62.6 0.093 0.020
Bloomz + CoT + Ours 50.2 50.1 0.058 0.013 34.3 34.7 0.215 0.019 62.8* 62.8* 0.104* 0.020*
Bloomz + ICL 39.9 42.2 0.534 0.298 30.4 32.0 0.566 0.272 50.3 52.1 0.434 0.239
Bloomz + ICL + Ours 42.8* 45.2* 0.433* 0.249* 30.7* 31.1* 0.310* 0.135* 55.5 57.3 0.365 0.167

Mistral 67.4 67.6 0.156 0.040 46.4 47.6 0.366 0.186 63.6 63.9 0.184 0.042
Mistral + Ours 69.5 69.5 0.108 0.019 48.6 49.3 0.309 0.140 66.8 66.8 0.099 0.016
Mistral + CoT 66.6 66.5 0.510 0.021 50.3 50.5 0.551 0.063 63.2 63.4 0.476 0.025
Mistral + CoT + Ours 66.9 66.8 0.071 0.014 50.6 50.7 0.527 0.032 64.5 64.5 0.127 0.021
Mistral + ICL 65.7 66.0 0.183 0.054 43.1 44.5 0.410 0.253 61.7 61.7 0.167 0.046
Mistral + ICL + Ours 65.7 65.7 0.127 0.032 44.6 45.8 0.382 0.203 63.4 63.5 0.118 0.026
Mistral + DoLa 67.4 67.5 0.155 0.040 46.4 47.6 0.363 0.184 63.6 63.9 0.184 0.042
Mistral + DoLa + Ours 69.4 69.4 0.106 0.019 48.7 49.4 0.305 0.135 66.8 66.9 0.098 0.015

weighted F1 score for question answering performance evaluation. In predicting the answers from
LLMs, we follow previous works (Zheng et al., 2024): we select the choice symbol (e.g., A, B,
C, D) with the highest probability. For BNP, we prune 32 nodes for Llama-3 and Mistral, and 128
nodes for Bloomz. Because we modify the inference step, the entire process is not stochastic. More
detailed explanation and further implementation details are provided in Appendix A.2.

5.1 MAIN EXPERIMENTS

BNP + AOI consistently improves base model performance by reducing selection bias. Table 1
shows the performance of our methods with three LLMs and MCQ datasets. For all models and
data sets, BNP and/or AOI increased accuracy and F1 score and decreased RSD and CKLD. It is
especially noteworthy that Llama-3’s accuracy on ARC-Challenge improves from 52.3% to 65.3%
when both BNP and AOI are applied; an outstanding 24.9% increase.

Our method can be applied together with other debiasing and decoding methods. For fur-
ther insight, we compare our methods with other debiasing and decoding approaches: Chain-of-
Thought (CoT; Wei et al. (2022)), In-Context Learning (ICL; Brown et al. (2020)), and Decoding by
Contrasting Layers (DoLa; Chuang et al. (2023)). For CoT, we follow the implementation of Ope-
nAI Evals (OpenAI) by first prompting with “Let’s think step by step”, and then using the generated
explanation to regenerate the final prediction. In the case of ICL, we take one question from the
training set to retrieve N ! choice-permuted questions, where N is the number of choices. Then, we
randomly select three questions from the choice-permuted pool and create demonstrative examples
from them, where the LLM agent always answers the choice-permuted questions correctly. Con-
crete prompt formats and details are provided in Appendix A.3. These baseline methods can be
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Table 3: Applying AOI to black-box settings. For Llama-3, Bloomz, and Mistral, we assume that
we do not have access to the parameters nor the probability outputs, identical to black-box models.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Llama-3 65.7 65.8 0.086 0.007 51.9 52.2 0.184 0.034 69.9 69.8 0.051 0.003
Llama-3 + AOI 66.9 66.9 0.076 0.007 52.6 53.0 0.177 0.033 71.3 71.2 0.030 0.003

Bloomz 41.9 42.6 0.703 0.208 27.6 31.0 1.102 0.523 55.9 55.3 0.252 0.142
Bloomz + AOI 44.7 45.0 0.305 0.155 29.4 31.8 0.972 0.413 59.2 58.2 0.180 0.105

Mistral 55.2 55.2 0.140 0.036 47.4 47.6 0.216 0.069 54.6 54.8 0.155 0.031
Mistral + AOI 59.0 59.0 0.117 0.020 48.5 48.8 0.217 0.069 62.8 62.8 0.082 0.013

Claude-3-Haiku 65.3 65.0 0.095 0.024 52.1 52.0 0.057 0.008 36.4 37.3 0.587 0.331
Claude-3-Haiku + AOI 71.4 71.5 0.087 0.004 51.7 51.7 0.052 0.004 47.0 47.9 0.302 0.023

Claude-3-Sonnet 86.9 86.9 0.034 0.001 60.6 60.7 0.133 0.024 71.0 70.8 0.072 0.015
Claude-3-Sonnet + AOI 87.6 87.6 0.027 0.001 60.3 60.4 0.111 0.019 73.1 72.7 0.057 0.022

Figure 6: BNP Analyses. (a) BNP improves the base performances (dashed lines) regardless of the
number of nodes pruned. The number of nodes to prune can be adjusted to achieve better perfor-
mance. More figures are in Appendix D. (b) Each metric improvement (%) from its base Llama-3
performance when using the average bias vector from different sources is shown in heatmaps.

used along with our debiasing methods. Both question answering and debiasing improve when our
methods are applied together (Table 2), even achieving the best performance in collaboration with
appropriate baselines. Note that the values denoted with ‘∗’ are measured only when our BNP is
applied because AOI did not fare well in those cases.

5.2 BLACK-BOX SETTINGS

Several state-of-the-art models are black-box and their parameters are not open to the public. In
these cases, BNP is not feasible, leaving AOI as the only available technique for debiasing the model,
using text outputs for prediction. For this reason, we devise a comparative experiment where only
AOI is applied to the models. For white-box models Llama-3, Bloomz, and Mistral, we compute the
Jaccard similarity between each choice option and the generated text to select the choice with the
highest similarity score, instead of the probability-based answer selection method used in our main
experiments. This approach simulates a black-box setting with the white-box models. Moreover,
we extend our experiment to Claude-3 Haiku and Sonnet models (Anthropic, 2023), which are
closed-source black-box models. In Table 3, AOI generally improves black-box model performance
(accuracy and F1) and reduces selection bias (RDS and CKLD).

6 ANALYSES

In this section, we provide in-depth analyses on the mechanism and efficacy of our methods: Bias
Node Pruning (§ 6.1) and Auxiliary Option Injection (§ 6.2). The qualitative findings from our
experiments are discussed in § 6.3.

6.1 ANALYZING BIAS NODE PRUNING

BNP is not sensitive to the number of nodes pruned. Figure 6(a) reveals how the performance
metrics change as the number of pruned nodes varies. Regardless of the number of nodes pruned
from 8 to 128, our method improves the base performance (dashed lines in the figure) by great
margins. While our method is robust to the amount of nodes pruned, searching for the adequate
level of pruning may achieve better debiasing performance on the downstream task. Full list of the
figure is provided in Appendix D.3.

The average bias vector can be generalized across datasets. The average bias vector represents
the direction of selection bias in the embedding space. If the bias vector captures pure information
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Figure 7: Effect of our methods on choice distributions. Our methods reduce the level of selection
bias, and the choice distributions become flatter. Dashed lines are the uniform ratios (gold standard).

about selection bias, it should generalize across datasets. To test this hypothesis, we used the bias
vector from one dataset on another. Figure 6(b) shows a heatmap of the improvement in each
performance metric. Interestingly, there is no diagonal pattern, indicating bias vectors retrieved
from one dataset can reduce selection bias in other datasets. For instance, the bias vector from the
ARC-Challenge dataset improves the CKLD value of the CSQA dataset by 36%, which is even
higher than the 22% improvement using the bias vector retrieved from its own CSQA dataset.

6.2 ANALYZING AUXILIARY OPTION INJECTION

Table 4: AOI with different option contents on the
MMLU-Redux dataset.

Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Llama-3 41.8 46.7 1.021 0.589
Llama-3 + ”None” 42.4 42.7 0.833 0.487
Llama-3 + ”know” 45.6 46.5 0.790 0.366
Llama-3 + Ours 48.3 50.5 0.531 0.288
Bloomz 28.0 32.8 1.003 0.661
Bloomz + ”None” 26.5 25.9 0.730 0.518
Bloomz + ”Know” 28.0 26.1 0.618 0.314
Bloomz + Ours 32.0 33.3 0.672 0.205
Mistral 46.4 47.6 0.366 0.186
Mistral + ”None” 48.0 47.8 0.596 0.159
Mistral + ”Know” 9.7 3.9 0.762 1.888
Mistral + Ours 48.6 49.3 0.309 0.140

Content of the auxiliary option matters.
Our experiments above used “I don’t know” as
the auxiliary option, but other options are also
possible. We conducted an experiment where
we substituted it with “None of the above”
and “I know the answer”. In Table 4, “None”
refers to the former, and “Know” refers to the
latter type of auxiliary option. For Llama-3
and Bloomz, the inclusion of an auxiliary op-
tion improves performance and reduces selec-
tion bias relative to the baseline (Table 4), but
the “I don’t know” (Ours) performs better in
most cases. With the Mistral model, however,
the ”I know the answer” option degrades model performance and increases selection bias. A full
table with other datasets and more ablation experiments are in Appendix E

6.3 QUALITATIVE EVALUATION

Impact on choice distributions. In Figure 7, we show how the distribution of the selected answer
choices changes when we introduce BNP and AOI. In all three datasets, the distribution becomes
more uniform when BNP and/or AOI are applied, indicating lower levels of selection bias. More
qualitative examples are provided in Appendix F.

Qualitative examples. In addition to disclosing the distributional effect, we provide below the
qualitative question-response examples of Llama-3 and Bloomz on the ARC-Challenge dataset. As
in Figure 3(a), Llama-3 often showed a preference for choice ‘D’, regardless of the order of choices.
Our method successfully corrects such errors. Bloomz, on the other hand, showed a preference for
choice ‘A’. Again, our methods corrected the model’s response.

Original Question: Which of the following organs in fish has the same function as the human lung? (A)
kidney (B) heart (C) skin (D) gill

⇒ Llama-3 Response: (D) Ground-truth: (D)

9
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Permuted Question: Which of the following organs in fish has the same function as the human lung?
(A) kidney (B) heart (C) gill (D) skin

⇒ Llama-3 Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Cells take in food for energy. The part of the cell that aids in the digestion of the
food is the lysosome. What is the main role of lysosomes in the process of food digestion? (A) breaking
down wastes (B) building proteins (C) controlling the activities of the cell (D) converting energy from
one form into another

⇒ Bloomz Response: (A) Ground-truth: (A)

Permuted Question: Cells take in food for energy. The part of the cell that aids in digestion of the food is
the lysosome. What is the main role of lysosomes in the process of food digestion? (A) building proteins
(B) breaking down wastes (C) controlling the activities of the cell (D) converting energy from one form
into another

⇒ Bloomz Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

7 RELATED WORKS

Selection Bias. The large language models’ tendency to favor choices in a certain order or with
a specific symbol has been discussed in many previous works. Some of the works investigated
the skewed pattern of responses for MCQs (Zheng et al., 2024; Wei et al., 2024; Pezeshkpour &
Hruschka, 2024), emphasizing that selection bias is a critical problem. Many works have approached
this problem by calibrating the output probabilities (Wang et al., 2023; Zheng et al., 2024; Reif
& Schwartz, 2024; Wei et al., 2024; Pezeshkpour & Hruschka, 2024; Wang et al., 2024; Balepur
et al., 2024; Li & Gao, 2024; Gupta et al., 2024), while others change the way queries are input (Li
et al., 2023b; Robinson et al., 2023). Additional approaches include debiasing the LLM through
distillation training (Liusie et al., 2024) and training the model to enforce its multiple choice symbol
binding (MCSB) property (Xue et al., 2024). While parameter pruning methods are often used for
efficient deep learning (Srinivas & Babu, 2015; Han et al., 2016; Zhu & Gupta, 2017; Molchanov
et al., 2019; 2022) or to have the LLM unlearn certain factual knowledge (Liu et al., 2024; Pochinkov
& Schoots, 2024), parameter pruning has rarely been discussed for debiasing. Thus, our Bias Node
Pruning is a novel approach in the context of the selection bias.

Auxiliary Options. Inclusion of the “I don’t know” option can improve the quality of data col-
lected in surveys (Schuman & Presser, 1996) but does not meaningfully impact the labels assigned
by annotators (Beck et al., 2022). Recent research has drawn attention to the similarities between
surveys, labeling tasks, and model responses to MCQs (Tjuatja et al., 2023; Eckman et al., 2024;
Chen et al., 2024) Further research into LLMs’ response behavior would benefit from incorporating
insights from the survey science domain: see the discussion in (Eckman et al., 2024).

8 CONCLUSION

When LLMs answer MCQs, selection bias is a critical problem. Previous research has predomi-
nantly focused on modifying the LLM’s input and/or output. In contrast, we uncover the internal
source of the bias by scrutinizing the embedding-level discrepancies introduced by this bias. Build-
ing on these insights, we propose Bias Node Pruning (BNP) and Auxiliary Option Injection (AOI).
Additionally, we address the limitations of existing performance-based evaluation metrics by in-
troducing a new distribution-based metric, Choice Kullback-Leibler Divergence (CKLD), which ad-
dresses the insensitivity of prior metrics to imbalance of choice labels. Our approach improved MCQ
answering performance by reducing the level of selection bias across widely used MCQ datasets
using both open-source (white box) and closed-source (black-box) models. BNP and AOI work
alongside other debiasing/decoding methods to improve the base performance of Llama-3 by up to
33.8% on the ARC-Challenge dataset. We also conducted in-depth analyses to better understand the
effect of each component, along with case studies to provide qualitative insight. Overall, our method
provides a novel intuition in scrutinizing the internal source of selection bias, and also provides a
new approach in debiasing LLMs.
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A FURTHER EXPERIMENTAL DETAILS

A.1 DATASETS

We experiment on three datasets: ARC-Challenge (Clark et al., 2018), MMLU-Redux (Gema et al.,
2024), and CommonsenseQA Talmor et al. (2019). We also provide the ground-truth choice ratios
in the test dataset in Table 5.

ARC-Challenge is a dataset from the AI2 Reasoning Challenge, which contains grade-school
level multiple-choice science questions. Among the ‘Challenge’ and the ‘Easy’ sets, we use the
former set with 1.17K test and 1.12K training questions. The training questions are used to extract
the average bias vectors.

MMLU-Redux is a dataset derived from the original Massive Multitask Language Understand-
ing (MMLU) (Hendrycks et al., 2021) dataset, which comprises multiple-choice questions from 57
different branches of knowledge. Gema et al. (2024) discovered that this original version contains
numerous errors, and curated the dataset to have 3,000 manually re-annotated questions across 30
subjects in the original MMLU dataset. In the case of MMLU-Redux, there is no training set avail-
able. So we utilize the validation set from the original MMLU dataset to pre-compute the average
bias vectors.

CommonsenseQA is a dataset of multiple-choice questions that require commonsense knowledge
to respond. The dataset questions are extracted using the knowledge graph, ConceptNet (Speer et al.,
2017), which consists of 9.74K training and 1.22K validation questions. We use the training set to
retrieve the average bias vectors and evaluate on the validation set.
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Table 5: Ground-truth Label ratios of each dataset.
Datasets A ratio B ratio C ratio D ratio E ratio
ARC-Challenge 22.4% 25.7% 25.9% 24.1% -
MMLU-Redux 22.3% 24..6% 25.4% 27.7% -
CSQA 19.6% 20.9% 19.7% 20.6% 19.2%

A.2 IMPLEMENTATION DETAILS

Here, we detail how we retrieve model predictions and list hyperparameters used for each model-
dataset experiment.

How are predictions retrieved? As discussed in the main paper, we use the token output prob-
ability distribution to select a token ID for prediction. For instance, if z ∈ R|V| is the output logit
vector of the first output token, we use z[‘A’] + z[‘ A’] to retrieve the logit value for choice ‘A’, and
do the same for other choices as well. Note that ’ A’ is a token that represents ”A” with a space
in front of it, whereas ’A’ is a one-character token. Since these two represent the same choice, we
aggregate their logits, z, for accurate evaluation. Then, we take the softmax over all the choice logits
to retrieve the final probability distribution over the choices.

System prompt. We use the same system prompt across all experiments: “You are an AI assistant
that answers multiple choice questions. Please respond with capitalized alphabet(s) that correspond
to the correct answer”. For Chain-of-Thought reasoning baseline experiments, we use a slightly
different version of “You are an AI assistant that answers multiple choice questions. Please think
step by step and respond with capitalized alphabet(s) that correspond to the correct answer” to
encourage the model to output a step-by-step reasoning process.

Hyperparameters. The number of nodes pruned is the main hyperparameter of our experiments.
As disclosed in the main paper, we pruned 32 nodes in all experiments with Llama-3 and Mistral,
and pruned 128 nodes in experiments with Bloomz. We did a simple hyperparameter search among
{16, 32, 64, 128} nodes. Results can be found in Figure 6(a) and Figure 9. Another noteworthy
hyperparameter is the choice delimiter, which refers to the type of token used to separate choices.
In our preliminary experiments, we found that different choice delimiters such as space (‘ ’), line
break tokens (‘\n’), multiple lines (‘\n\n\n’), or special tags (‘<c>’) have varying impact on per-
formance. As there were no consistent results, however, we chose to use the basic space delimiter
in all our experiments, e.g. ‘What is 1 + 1? (A) 2 (B) 3 (C) 4’. Although we do not discuss this in
depth as it is beyond the scope of our work, we believe that analyzing the effect of different choice
delimiters in multiple choice question answering would introduce an interesting viewpoint.

A.3 BASELINES

In this section, we provide further details on how the debiasing baselines in Table 2 are designed.

Chain-of-Thought (CoT) first generates the model response that includes explanations by
prompting with “Let’s think step by step” as follows.

System Prompt: You are an AI assistant that answers multiple choice questions. Please think
step by step and respond with capitalized alphabet(s) that correspond to the correct answer.

User: { question }.

Assistant: Let’s think step by step.

Using the explanation that is generated with the prompt, we query the LLM once more with

System Prompt: You are an AI assistant that answers multiple choice questions. Please think
step by step and respond with capitalized alphabet(s) that correspond to the correct answer.
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User: { question }.

Assistant: Let’s think step by step. { explanation }. So the correct answer is

and identically use the first token output probability distribution to retrieve the predictions. Note
that the actual prompt format depends on the model and the template above is a generic form.

In-Context Learning (ICL) takes one question out-of-bag sample and retrieve N ! choice-
permuted questions, where N is the number of choices. Then, three of the choice-permuted ques-
tions among the N ! pool are randomly chosen to be used for the ICL demonstrative examples.
Concretely, we design the prompt as follows.

System Prompt: You are an AI assistant that answers multiple choice questions. Please re-
spond with capitalized alphabet(s) that correspond to the correct answer.

# Example 1

User: What leads to experimental errors? (A) Bias (B) Peer Review (C) Repeated Trials
Assistant : (A)

# Example 2

User: What leads to experimental errors? (A) Repeated Trials (B) Peer Review (C) Bias
Assistant : (C)

# Example 3

User: What leads to experimental errors? (A) Peer Review (B) Bias (C) Repeated Trials
Assistant : (B)

User: { question }.

Assistant:

Again, the prompt template is generic, and the actual input format depends on the model type.

Decoding by Contrasting Layers (DoLa) is a language model decoding method proposed by
Chuang et al. (2023). Following their implementation, we measure the Jensen-Shannon Divergence
between the final (or mature) output probability distribution and intermediate (or premature) outputs
to select the layer with the highest divergence. Then, we use the selected layer output to divide
the final output. Since this is similar to calibration, we expected DoLa to have debiasing effects.
However, the results in Table 2 show that DoLa alone does not reduce the level of selection bias.

A.4 METRICS

In this section, we provide a full list of selection bias metrics, including RStd, RSD, our CKLD, and
other existing metrics that were not discussed in the main paper. We taxonomize the metrics into
three groups: brute-force evaluation, performance-based evaluation, and distribution-based evalua-
tion.

A.4.1 BRUTE-FORCE EVALUATION

Brute-force evaluation metrics utilize all possible choice permutations to retrieve the metric value.
Since we need to infer the output for each of the choice-permuted questions, the computation in-
creases by a factor of N !, where N is the number of choices in the question. Here, we list two
brute-force evaluation metrics, Proportion of Plurality Agreement (PPA) and Permutation Sensitiv-
ity (PS), and one semi-brute-force metric that additionally computes only the reverse-order permu-
tation, Fluctuation Rate (FR).
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Definition 1. (Proportion of Plurality Agreement) is the proportion of the plurality choice among
all possible choice orderings of a multiple-choice question:

PPA =
1

|X |
∑
X

max
n

(
N !∑
j=1

yj = on

)
N !

, (10)

where X is the set of test samples, N is the number of choices in each question, n is the index of the
choices, yj is the choice content of the j-th choice-permuted sample prediction, and on is the n-th
choice content. (Robinson et al., 2023)

Definition 2. (Permutation Sensitivity) is the expected divergence in output probability distributions
of the choice-permuted questions:

PS = Eσi,j

[
d(P (· | q,Aσi);P (· | q,Aσj )

]
, (11)

where σi is an arbitrary permutation of choices, Aσi
is the answer choice with the choice permuta-

tion, q is the input question, d(· ; ·) is the divergence function (e.g., KL-divergence), and P (· | ·) is
the output probability distribution function. (Liusie et al., 2024)

Definition 3. (Fluctuation Rate) is the rate of inconsistent model responses to the original input
question and the question with choices presented in reversed order:

FR =
1

M

M∑
i=1

1(
→
yi ̸=

←
yi), (12)

where M is the number of test questions, 1 is the indicator function,
→
y is the model prediction to

the original question, and
←
y is the prediction to the question with reversed choice order. (Wei et al.,

2024)

A.4.2 PERFORMANCE-BASED EVALUATION

Performance-based evaluation tries to capture the consistency of model performance when measur-
ing selection bias. The two metrics discussed in the paper, RStd and RSD, fall under this category.

Definition 4. (Standard Deviation of Recalls) is the standard deviation of the class-wise recall:

RStd =

√√√√1

k

k∑
i=1

(ri − r̄)2, (13)

where k is the number of choices, ri is the recall of the i-th class, and r̄ is the arithmetic mean of ri
values. (Zheng et al., 2024)

Definition 5. (Relative Standard Deviation) is the class-wise accuracy standard deviation normal-
ized by the overall accuracy:

RSD =

√
1
k

∑k
i=1(si − s̄)2

s̄
, (14)

where k is the number of choices, si is the accuracy of the i-th class, and s̄ is the mean accuracy
averaged across classes. (Croce et al., 2021; Reif & Schwartz, 2024)

A.4.3 DISTRIBUTION-BASED EVALUATION

Existing performance-based evaluation metrics are insensitive to imbalance of chocie labels, and
manually adjusting the label distribution does not guarantee fair evaluation and may severely influ-
ence performance. Thus, we propose a new distribution-based evaluation metric, Choice Kullback-
Leibler Divergence (CKLD), to complement evaluation of the selection bias.

Definition 6. (Choice Kullback-Leibler Divergence) is the KL divergence between the ratio of each
predicted choice and the ratio of each ground truth choice label:

CKLD =

k∑
i=1

pi log
pi
qi
, (15)
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where k is the number of choices, pi is the ratio of ground truth label choices, and qi is the ratio of
each predicted choice label.

B COMPLEXITY OF BIAS NODE PRUNING

Bias Node Pruning is a two-step process that includes the (1) average bias vector computation,
and (2) node pruning. The first phase utilizes M out-of-bag samples with N choices. This step
requires computing the outputs of N ! choice-permuted questions, translating to a complexity of
O(N ! · M ). Once we retrieve the average bias vector, we use it to compute the top-k nodes that
activate selection bias (equation 4). This is also a one-time process whose node-pruned parameters
are applied throughout all test-time inference tasks. The complexity of inference itself is identical to
the original model without Bias Node Pruning, which is proportional to the number of test samples
evaluated.

C PROOF OF CKLD’S LABEL RATIO SENSITIVITY

We want to prove that CKLD is minimized when the prediction has no bias towards a certain choice,
and matches the ratio of ground-truth labels. From the CKLD definition (equation 15) of

CKLD =

k∑
i=1

pi log
pi
qi
, (16)

let qi = piri, where ri is the selection bias multiplier applied to the ground-truth choice ratio for
each i = 1, . . . , k. As we want to find out when CKLD is minimized, we formulate the objective as
follows:

minimize
k∑

i=1

pi log
pi
qi

s.t. qi = piri and
k∑

i=1

piri = 1.

(17)

By rewriting this as a Lagrangian function L,

L(r1, . . . , rk, λ) =
k∑

i=1

pi log
pi
piri

+ λ(

k∑
i=1

piri − 1)

= −
k∑

i=1

pi log ri + λ(

k∑
i=1

piri − 1),

(18)

where λ is the Lagrangian multiplier, we take the partial derivative of each variable as:
∂L
∂ri

= −pi
ri

+ λpi = 0 (19)

∂L
∂λ

=

k∑
i=1

piri − 1 = 0. (20)

Then, from equation 19,

ri =
1

λ
, (21)

and by substituting this to equation 20, we get

0 =

k∑
i=1

pi
λ

− 1

=
1

λ
− 1.

(22)

Therefore, the objective is minimized when λ = 1, which translates to ri = 1 (∵ equation 21). This
is equivalent to saying that CKLD is minimized when qi = piri = pi, i.e., when the prediction ratio
matches the actual label ratio and there is no selection bias towards a certain choice. □
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Table 6: Further experiments are done on the HellaSwag dataset.

Acc F1 RSD CKLD
ARC-Challenge

Llama-3 53.2 (1.3) 55.4 (1.3) 0.640 (0.142) 0.485 (0.049)
Llama-3 + BNP 57.4 (1.0) 58.0 (1.1) 0.533 (0.145) 0.304 (0.029)
Llama-3 + AOI 62.7 (1.0) 63.0 (1.1) 0.417 (0.133) 0.201 (0.023)
Llama-3 + BNP + AOI 66.8 (1.0) 66.6 (0.9) 0.340 (0.140) 0.121 (0.010)

MMLU-Redux

Llama-3 39.8 (1.6) 44.4 (1.8) 0.982 (0.097) 0.673 (0.063)
Llama-3 + BNP 40.8 (1.7) 44.8 (1.8) 0.936 (0.100) 0.595 (0.065)
Llama-3 + AOI 44.5 (1.8) 47.0 (2.0) 0.657 (0.097) 0.384 (0.042)
Llama-3 + BNP + AOI 45.4 (1.6) 47.5 (1.8) 0.564 (0.018) 0.346 (0.041)

CommonsenseQA

Llama-3 63.3 (1.1) 64.2 (0.9) 0.282 (0.026) 0.106 (0.018)
Llama-3 + BNP 64.9 (1.1) 65.2 (1.1) 0.222 (0.012) 0.073 (0.007)
Llama-3 + AOI 65.9 (0.9) 66.3 (0.8) 0.220 (0.020) 0.069 (0.010)
Llama-3 + BNP + AOI 67.2 (0.6) 67.2 (0.6) 0.175 (0.011) 0.052 (0.004)

C.1 WHY DOES AN LLM NEED TO MATCH THE GROUND TRUTH RATIO?

Consider a scenario in which an LLM exhibits a bias toward selecting option ‘A’. In cases where
the LLM is uncertain about the correct answer and resorts to random selection, it is more likely to
choose ‘A’, resulting in a skewed overall choice distribution that diverges from the ground truth dis-
tribution. In contrast, an unbiased LLM would select options uniformly under uncertainty, producing
a choice distribution that more closely aligns with the original ground truth distribution. Therefore,
the extent to which an LLM’s predictions match the ground truth distribution can serve as a proxy
for measuring Selection Bias.

D MORE EXPERIMENTS AND ANALYSES

Here, we provide further experiments and analysis results that were not included in the main
manuscript. In § D.2, we demonstrate an extended experiment result on another dataset. In § D.3,
an extended list of figures of Figure 6 (a) is provided.

D.1 SIGNIFICANCE TEST

In Table 6, we present the results of a significance test conducted on Llama-3 by performing 8
experiments, each with randomly permuted choices. The mean values for each dataset are reported,
with standard deviations shown in parentheses. All values are statistically significant compared to
the Llama-3 baseline, with t-test p-values below 0.001.

D.2 FURTHER EXPERIMENTS ON HELLASWAG DATASET

Beyond the three datasets tested in our main paper in Table 1, we disclose results on another widely
used benchmark dataset, HellaSwag (Zellers et al., 2019). HellaSwag is a commonsense natural
language inference (NLI) dataset that contains 4-way MCQ samples that asks the model to select
the option that best ends the given sentence. The experimental results are in Table 7. Bloomz is not
included in the table because the model failed to reasonably respond to most of the questions.

D.3 EXTENDED LIST OF FIGURES

Here, we provide a comprehensive table of figures on the sensitivity test on the number of nodes
pruned (§ 6.1, Figure 6(a)). In Figure 9, the effect of the number of pruned nodes is shown across
the three models and datasets, as its value is varied from 16 to 128. We also provide the heatmap
of the average bias vector magnitude in Figure 8. Similar to what has been shown in Figure 3 (b),
selection bias seems prominent in the latter part of the decoder layers.
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Figure 8: More figures on different models other than Llama-3. Left is the bias vector magnitude
heatmap from Mistral-7B-Instruct, and right is from Bloomz-7b1.

Table 7: Further experiments are done on the HellaSwag dataset.

HellaSwag
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Llama-3 35.9 42.3 0.988 1.416
Llama-3 + BNP 38.6 43.6 0.861 0.998
Llama-3 + AOI 47.6 51.2 0.599 0.611
Llama-3 + BNP + AOI 50.8 52.9 0.487 0.363
Mistral 46.7 48.7 0.558 0.341
Mistral + BNP 46.5 48.6 0.563 0.345
Mistral + AOI 51.7 53.0 0.414 0.206
Mistral + BNP + AOI 51.6 52.9 0.415 0.207

E DIFFERENT AOI SETUP

In this section, in addition to all three dataset ablation studies on the content of auxiliary options in
§ 6.2, we provide further ablation study results on the number and location of the auxiliary options.

More auxiliary options have mixed effects on performance. We find that controlling the number
of auxiliary options has a notable impact on performance. That is, we tried adding multiple auxiliary
options, all with the same “I don’t know” content. In most cases in Table 8, adding more auxiliary
options did not help improve performance (see n-Choices AOI). Interestingly, however, both the
question-answering and debiasing performance of Llama-3 significantly improved when using more
options. This seems to be a peculiar property of Llama-3 that we can enhance its performance by
simply adding multiple auxiliary options.

Figure 9: Full list of plots on the number of nodes pruned.
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Table 8: Different AOI setups. The content, location, and number of auxiliary options are varied
to see its effect with ARC-Challenge (top table), MMLU-Redux (middle table), and CSQA (bottom
table).

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Model 52.3 54.1 0.562 0.494 43.9 44.2 0.461 0.283 67.4 67.6 0.156 0.040
Model + Ours 65.3 65.1 0.262 0.124 48.8 48.9 0.208 0.088 69.5 69.5 0.108 0.019

Arbitrary AOI 63.4 61.2 0.572 0.179 50.1 50.2 0.548 0.077 11.4 3.9 1.008 2.075

2-Choices AOI 70.2 69.9 0.175 0.067 46.3 47.6 0.381 0.198 69.0 69.0 0.131 0.031
3-Choices AOI 71.9 71.7 0.130 0.039 45.1 46.6 0.418 0.243 68.3 68.3 0.140 0.038
4-Choices AOI 72.4 72.3 0.130 0.036 43.9 45.6 0.438 0.266 68.4 68.4 0.138 0.036

First Choice AOI 67.9 67.6 0.222 0.106 44.2 45.3 0.455 0.232 68.1 68.1 0.109 0.025

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Base Model 41.8 46.7 1.021 0.589 28.0 32.8 1.003 0.661 46.4 47.6 0.366 0.186
Base Model + Ours 48.3 50.5 0.531 0.288 32.0 33.3 0.672 0.205 48.6 49.3 0.309 0.140

Arbitrary AOI 45.6 46.5 0.790 0.366 28.0 26.1 0.618 0.314 9.7 3.9 0.762 1.888

2-Choices AOI 49.4 50.9 0.442 0.201 30.5 32.7 0.774 0.332 47.7 48.4 0.327 0.157
3-Choices AOI 50.6 51.8 0.387 0.151 30.4 33.4 0.838 0.435 47.5 48.0 0.317 0.159
4-Choices AOI 51.7 52.8 0.352 0.117 30.0 33.4 0.633 0.479 47.1 47.7 0.328 0.169

First Choice AOI 46.1 47.6 0.515 0.295 31.8 35.4 0.647 0.338 44.7 45.0 0.291 0.160

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓
Base Model 65.4 66.2 0.261 0.095 58.5 57.2 0.215 0.136 63.6 63.9 0.184 0.042
Base Model + Ours 68.1 68.2 0.174 0.049 64.9 64.9 0.159 0.052 66.8 66.8 0.099 0.016

Arbitrary AOI 67.9 68.0 0.486 0.049 67.6 67.5 0.144 0.043 5.1 0.9 0.851 2.854

2-Choices AOI 68.1 68.2 0.149 0.031 59.5 59.8 0.261 0.129 65.6 65.6 0.134 0.034
3-Choices AOI 70.0 70.3 0.150 0.028 59.4 59.9 0.273 0.132 65.3 65.2 0.123 0.033
4-Choices AOI 70.4 70.5 0.137 0.023 58.7 59.4 0.282 0.130 64.8 64.7 0.137 0.038

First Choice AOI 69.5 69.4 0.142 0.037 48.5 52.7 0.602 0.713 66.2 66.3 0.118 0.018

Location of the auxiliary option does not decide performance. The location of the auxiliary
option is another factor to consider. In our main experiments, we have appended the “I don’t know”
option to the end of the choice list. In comparison, we try placing it in the first choice option (i.e.,
with choice symbol ‘A’), corresponding to ‘First Choice AOI’ in Table 4. Overall, there were mixed
results, indicating that the location of the auxiliary option is not a decisive factor in determining
performance.

F QUALITATIVE EXAMPLES

Here, we provide more qualitative examples to show how model response changes when our meth-
ods are applied. The examples are retrieved using the Llama-3-8B-Instruct model on the ARC-
Challenge dataset. As observed in Figure 3(a), the original Llama-3 response is skewed towards
‘D’. The provided examples align with the result, and such ungrounded preference is debiased via
our BNP+AOI.

Original Question: An astronomer observes that a planet rotates faster after a meteorite im-
pact. Which is the most likely effect of this increase in rotation? (A) Planetary density will
decrease. (B) Planetary years will become longer. (C) Planetary gravity will become stronger.
(D) Planetary days will become shorter.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: An astronomer observes that a planet rotates faster after a meteorite
impact. Which is the most likely effect of this increase in rotation? (A) Planetary density will
decrease. (B) Planetary years will become longer. (C) Planetary days will become shorter. (D)
Planetary gravity will become stronger.
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⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Petrified palm trees are found in sedimentary rock near glaciers. The
presence of the petrified palm trees most likely provides evidence for which statement? (A)
There was once more water in the area. (B) The area was once grassland. (C) There are active
faults in the area. (D) The climate in the area was once tropical.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: Petrified palm trees are found in sedimentary rock near glaciers. The
presence of the petrified palm trees most likely provides evidence for which statement? (A)
There was once more water in the area. (B) The area was once grassland. (C) The climate in
the area was once tropical. (D) There are active faults in the area.

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: According to cell classification, prokaryotic cells are separated from eu-
karyotic cells. Which feature is often used to distinguish prokaryotic cells from eukaryotic
cells? (A) plasma membranes (B) size differences (C) life processes (D) energy molecules

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: According to cell classification, prokaryotic cells are separated from
eukaryotic cells. Which feature is often used to distinguish prokaryotic cells from eukaryotic
cells? (A) life processes (B) size differences (C) plasma membranes (D) energy molecules

⇒ Base Model Response: (D) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: The morning temperature in a city is 41°F. If a sunny, mild day is forecast,
which temperature is most likely for 2:00 p.m.? (A) 32° F (B) 78° F (C) 98° F (D) 41° F

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: The morning temperature in a city is 41°F. If a sunny, mild day is fore-
cast, which temperature is most likely for 2:00 p.m.? (A) 32° F (B) 41° F (C) 78° F (D) 98°
F

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: All natural resources on Earth are either renewable or nonrenewable.
Whether a resource is renewable or nonrenewable depends on how fast or slow the resource
is replaced. If the resource is used faster than it is replaced, then the resource will, in time,
disappear. Which activity shows the use of a nonrenewable natural resource? (A) A group of
people swims in a river. (B) A person bakes a cake with electricity produced by a hydroelectric
power plant. (C) A farmer grows vegetables to sell at a local market. (D) A construction crew
builds an iron bridge.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: All natural resources on Earth are either renewable or nonrenewable.
Whether a resource is renewable or nonrenewable depends on how fast or slow the resource
is replaced. If the resource is used faster than it is replaced, then the resource will, in time,
disappear. Which activity shows the use of a nonrenewable natural resource? (A) A group of
people swims in a river. (B) A construction crew builds an iron bridge. (C) A farmer grows
vegetables to sell at a local market. (D) A person bakes a cake with electricity produced by a
hydroelectric power plant.

⇒ Base Model Response: (D) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: At which temperature does water freeze? (A) 32 degrees Celsius (B) 0
degrees Celsius (C) 100 degrees Celsius (D) 212 degrees Celsius
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⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: At which temperature does water freeze? (A) 0 degrees Celsius (B) 32
degrees Celsius (C) 100 degrees Celsius (D) 212 degrees Celsius

⇒ Base Model Response: (B) / BNP+AOI Response: (A) Ground-truth: (A)

Original Question: Fossil bones and teeth of dinosaurs have been researched for the last
century. Recent discoveries of fossilized dinosaurs have also revealed details of soft tissues,
such as skin. Which is best for a scientist to do when reporting research on dinosaurs now? (A)
exclude research on teeth or bones (B) delete earlier reports that were missing the new findings
(C) predict what the next discovery will be (D) analyze new data as it becomes available

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: Fossil bones and teeth of dinosaurs have been researched for the last
century. Recent discoveries of fossilized dinosaurs have also revealed details of soft tissues,
such as skin. Which is best for a scientist to do when reporting research on dinosaurs now?
(A) exclude research on teeth or bones (B) predict what the next discovery will be (C) analyze
new data as it becomes available (D) delete earlier reports that were missing the new findings

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: What is the main function of photosynthetic cells within a plant? (A) to
change oxygen into carbon dioxide (B) to allow the passage of carbon dioxide into the plant (C)
to convert energy from sunlight into food energy (D) to break down sugar into usable chemicals

⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question: What is the main function of photosynthetic cells within a plant? (A)
to change oxygen into carbon dioxide (B) to break down sugar into usable chemicals (C) to
convert energy from sunlight into food energy (D) to allow the passage of carbon dioxide into
the plant

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: What is the mass of a carbon atom that has 6 protons, 7 neutrons, and 6
electrons? (A) 7 (B) 19 (C) 6 (D) 13

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: What is the mass of a carbon atom that has 6 protons, 7 neutrons, and 6
electrons? (A) 6 (B) 7 (C) 13 (D) 19

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Air has no color and cannot be seen, yet it takes up space. What could
be done to show that air takes up space? (A) observe clouds forming (B) blow up a beach ball
or balloon (C) measure the air temperature (D) weigh a glass before and after it is filled with
water

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: Air has no color and cannot be seen, yet it takes up space. What could
be done to show that air takes up space? (A) observe clouds forming (B) measure the air
temperature (C) blow up a beach ball or balloon (D) weigh a glass before and after it is filled
with water

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Which geologic process most likely caused the formation of the Mount
St. Helens Volcano? (A) diverging boundaries (B) converging boundaries (C) transform faults
(D) rift zone
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⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: Which geologic process most likely caused the formation of the Mount
St. Helens Volcano? (A) converging boundaries (B) diverging boundaries (C) transform faults
(D) rift zones

⇒ Base Model Response: (D) / BNP+AOI Response: (A) Ground-truth: (A)

We also provide results with Bloomz-7b1 on ARC-Challenge. Similar to the trend shown in Figure 3
(a), the original response is biased towards ‘A’, which is corrected through our debiasing approach.

Original Question: Devil facial tumor disease (DFTD) is a disease that is decimating the
population of Tasmanian devils. The disease passes from one animal to another through bites
and is caused by parasites. The parasites cause cancerous tumors that spread throughout an
infected animal’s body and kill it. What is the best description of DFTD? (A) a non-infectious,
cell-cycle disease (B) a non-infectious, chronic disease (C) an infectious, cell-cycle disease (D)
an infectious, chronic disease

⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question: Devil facial tumor disease (DFTD) is a disease that is decimating the
population of Tasmanian devils. The disease passes from one animal to another through bites
and is caused by parasites. The parasites cause cancerous tumors that spread throughout an
infected animal’s body and kill it. What is the best description of DFTD? (A) a non-infectious,
cell-cycle disease (B) an infectious, cell-cycle disease (C) a non-infectious, chronic disease (D)
an infectious, chronic disease

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which of these gases is the most abundant greenhouse gas in the lower
atmosphere of Earth? (A) carbon dioxide (B) methane (C) water vapor (D) ozone

⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question: Which of these gases is the most abundant greenhouse gas in the lower
atmosphere of Earth? (A) ozone (B) methane (C) water vapor (D) carbon dioxide

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: It was once thought that living organisms could come from non-living
matter. For example, people believed that flies would develop from rotting meat. This idea was
later disproved primarily because of (A) the discovery of the atom. (B) continued experimen-
tation. (C) better surgical techniques. (D) the invention of the microscope.

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: It was once thought that living organisms could come from non-living
matter. For example, people believed that flies would develop from rotting meat. This idea
was later disproved primarily because of (A) the discovery of the atom. (B) better surgical
techniques. (C) continued experimentation. (D) the invention of the microscope

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: In the spring and early summer, bears often scratch their backs against
trees to remove winter fur. This is an example of an animal (A) responding to its environment
(B) beginning hibernation (C) completing its life cycle (D) preparing for migration

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question: In the spring and early summer, bears often scratch their backs against
trees to remove winter fur. This is an example of an animal (A) completing its life cycle (B)
beginning hibernation (C) responding to its environment (D) preparing for migration
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⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Which tool would be best to use to determine how long it takes a cup of
water to boil? (A) balance (B) hot plate (C) thermometer (D) stopwatch

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: Which tool would be best to use to determine how long it takes a cup of
water to boil? (A) balance (B) hot plate (C) stopwatch (D) thermometer

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: The salt in ocean water comes from all of the following except (A) melting
glacial ice. (B) volcanic emissions. (C) eroding land. (D) reactions on the sea floor.

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question: The salt in ocean water comes from all of the following except (A)
eroding land. (B) melting glacial ice. (C) volcanic emissions. (D) reactions on the sea floor.

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which is most useful to a student who is separating aluminum screws
from steel screws? (A) a screen filter (B) a large funnel (C) a magnifying glass (D) a horseshoe
magnet

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: Which is most useful to a student who is separating aluminum screws
from steel screws? (A) a large funnel (B) a screen filter (C) a horseshoe magnet (D) a magni-
fying glass

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Over a long period of time, running water in a river erodes the riverbed.
This erosion causes the river to (A) move faster and cleaner. (B) become deeper and wider. (C)
stop flowing. (D) create waves

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: Over a long period of time, running water in a river erodes the riverbed.
This erosion causes the river to (A) stop flowing. (B) create waves. (C) move faster and cleaner.
(D) become deeper and wider.

⇒ Base Model Response: (A) / BNP+AOI Response: (D) Ground-truth: (D)

Original Question: A student examined diagrams of two different cells. One cell was prokary-
otic, and the other cell was eukaryotic. What should the student do to identify a major differ-
ence between the diagrams? (A) check to see which diagram shows a nucleus (B) check to
see which diagram shows cytoplasm (C) compare the shapes of the two cells (D) compare the
number of vacuoles in the two cells

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question: A student examined diagrams of two different cells. One cell was
prokaryotic, and the other cell was eukaryotic. What should the student do to identify a major
difference between the diagrams? (A) compare the shapes of the two cells (B) check to see
which diagram shows a nucleus (C) check to see which diagram shows cytoplasm (D) compare
the number of vacuoles in the two cells

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)
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Original Question: Which structures are common to both plant and animal cells? (A) cell
membrane, nucleus, mitochondrion (B) vacuole, chloroplast, nucleus (C) nucleus, cell wall,
cell membrane (D) mitochondrion, vacuole, cell wall

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question: Which structures are common to both plant and animal cells? (A) vac-
uole, chloroplast, nucleus (B) cell membrane, nucleus, mitochondrion (C) nucleus, cell wall,
cell membrane (D) mitochondrion, vacuole, cell wall

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Students use tweezers and magnifying glasses to examine a piece of mold
on bread. Which should they also use for safety in this investigation? (A) bright light (B)
breathing masks (C) dark glasses (D) hot plates

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question: Students use tweezers and magnifying glasses to examine a piece of
mold on bread. Which should they also use for safety in this investigation? (A) bright light (B)
dark glasses (C) breathing masks (D) hot plates

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: In 1903 Mary Anderson invented the first windshield wiper. How did this
invention most likely help people? (A) It made cars easier for people to buy. (B) It kept people
from driving too fast. (C) It helped people use less gas. (D) It made cars safer to drive in bad
weather.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question: In 1903 Mary Anderson invented the first windshield wiper. How did
this invention most likely help people? (A) It helped people use less gas. (B) It kept people
from driving too fast. (C) It made cars easier for people to buy. (D) It made cars safer to drive
in bad weather.

⇒ Base Model Response: (A) / BNP+AOI Response: (D) Ground-truth: (D)

G LIMITATIONS AND BROADER IMPACT

Limitations. The limitation of this work (and also most works on mitigating selection bias) is that
we still do not know the root cause of the selection bias. While there have been various hypotheses
on the reason behind this phenomenon, most focused on the superficial effect of it without con-
sidering what in the first place triggered such ungrounded preferences. Future research will need
to unravel the core of selection bias by answering questions like, What data points cause selection
bias? or What makes the difference in choice preferences between heterogenous model families?
These questions will be critical in understanding LLMs in general, as it is closely related to how the
models choose the next tokens to output.

Broader Impact. This work reveals and mitigates a type of bias present in recent large language
models (LLMs). Considering that LLMs have become an integral part of various applications from
customer service to science, the presence of any type of bias can negatively impact the reliability of
systems and degrade precision in model- or data-driven decision-making. By addressing the bias,
our research not only improves the accuracy and fairness of these models but also has the potential
to enhance the trustworthiness of LLMs in general. Moreover, this work serves as a foundation for
ongoing efforts to scrutinize and enhance LLM-automated systems, introducing a new perspective
on analyzing performance.

Future Application. One closely related application of selection bias debiasing is data annotation.
Many works discussed ways to leverage LLMs for automated annotation (He et al., 2024; Eckman
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et al., 2024), or devised human-machine collaborative frameworks (Li et al., 2023a). We expect our
work to benefit such annotation systems by reducing the selection bias in answering MCQs.
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