
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT VISION-LANGUAGE MODELS BY SUMMA-
RIZING VISUAL TOKENS INTO COMPACT REGISTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in vision-language models have expanded their potential for
real-world applications, enabling these models to perform complex reasoning on
images. However, in the widely used fully autoregressive pipeline like LLaVA,
where projected visual tokens are prepended to textual tokens, the visual tokens
often number in the hundreds or thousands, making them much longer than the
input prompt. This large quantity of visual tokens introduces significant compu-
tational overhead, slowing down training and inference. In this paper, we propose
Visual Compact Token Registers (Victor), a method that reduces the number of
visual tokens by summarizing them into a smaller set of register tokens. Victor
adds a few learnable register tokens after the visual tokens and summarizes the
visual information into these registers using the first few layers in the language
tower. After these few layers, all visual tokens are discarded, significantly im-
proving computational efficiency for both training and inference. Notably, our
method is easy to implement and requires a small number of new trainable param-
eters with minimal impact on model performance. In our experiment, with merely
8 visual registers—about 1% of the original tokens—Victor shows less than
a 4% performance drop while reducing total training time by 43% and boosting
inference throughput by 3.36×.

1 INTRODUCTION

Vision-language models (VLMs) have attracted considerable attention for their capability to process
visual and textual information, enabling various real-world applications such as image captioning,
visual question answering, and multimodal reasoning (OpenAI, 2023; Liu et al., 2024c). For exam-
ple, GPT-4V (OpenAI, 2023) demonstrates the potential of these models in helping visually impaired
individuals to “see” the world through cell phone cameras.

Recent vision-language models, such as LLaVA (Liu et al., 2024c), employ a pre-trained vision
encoder as the model’s “eye” to extract visual features and use a pre-trained language model as
the “brain” to perform reasoning and text generation. This straightforward architecture is highly
effective and requires only a small instruction dataset for fine-tuning. However, since the entire
set of projected image features is fed as the input to the language model, it results in a significant
computational overhead due to the large number of visual tokens. For instance, LLaVA-NeXT (Liu
et al., 2024b) utilizes 2, 880 tokens to represent a single image, which can be overly redundant
in many scenarios. In contrast, the average text instruction length across all benchmarks used in
LLaVA-NeXT is fewer than 70 tokens, as shown in Appendix A.1.

Therefore, to improve the efficiency of vision-language models, it is clear that reducing the number
of visual tokens is essential. The state-of-the-art method, FastV (Chen et al., 2024), achieves this by
directly dropping unimportant visual tokens. This approach is highly effective when reducing the
number of tokens by up to half. However, the model’s performance drops significantly when more
than half of the tokens are removed. Meanwhile, FastV requires obtaining the attention scores from
the self-attention block. Efficient attention implementations, such as FlashAttention (Dao et al.,
2022; Dao, 2023), do not support this feature. Consequently, FastV relies on standard attention
implementations to retrieve the attention scores. This can limit its deployment on devices that do
not support such implementations. We also find that this constraint slows down the fine-tuning stage,
as presented in Section 5.3.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1.0 1.5 2.0 2.5 3.0
Throughput Increase

40

45

50

55

60

65

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

576 256 128 64 32 16 8

# of Visual Tokens

Better

Baseline
FastV
Ours

Figure 1: Efficiency-Performance Trade-Off Curve. We compare our proposed method, Victor,
with the state-of-the-art method FastV. The normalized average score across 12 benchmarks and the
corresponding throughput increase relative to the original baseline model are reported (details in
Section 4.2). The size of the circles indicates the number of visual tokens for each method, with
larger circles representing more tokens. Victor establishes a more favorable Pareto frontier than
FastV, demonstrating a significantly smaller performance drop as throughput increases.

On the other hand, another popular approach for token reduction is to use a transformer-based pro-
jection model for condensing visual tokens into a smaller set of queries. Notable examples include
the Perceiver Resampler (Jaegle et al., 2021; Alayrac et al., 2022; Bai et al., 2023) and Q-Former
(Li et al., 2023b). These methods outperform FastV when the reduced set of visual tokens is much
smaller than the original. However, they require much more trainable parameters.

In this paper, we introduce Visual Compact Token Registers (Victor), a simple yet effective early
visual token summarizing method that provides a superior efficiency-quality trade-off compared to
the state-of-the-art techniques. For visual tokens, we observe that they often contain redundant
information, with many tokens being highly similar, as discussed in Section 3.1. To address this,
our approach leverages the language model to summarize these visual tokens into compact registers.
Victor begins by appending a small subset of register tokens to the visual tokens and uses the
initial k layers of the language model to summarize visual information into these register tokens.
Notably, during training, no specific loss function or operation is applied to explicitly force the visual
information into the registers. Empirical results show that the language model naturally uses these
tokens to store visual information. Meanwhile, starting at layer k, all visual tokens are discarded,
leaving only the summarized registers and textual tokens for efficient inference in the subsequent
layers.

Our method does not rely on attention scores, making it compatible with the most efficient attention
implementations. Moreover, Victor introduces just 1.78M additional parameters, accounting for
only 0.03% of the total model size. In contrast to approaches like the Perceiver Resampler, which
incorporates a separate transformer with 252.86M parameters (3.61% of the total model), Victor
leverages the powerful language model itself to perform this task, achieving significantly better
performance.

As illustrated in Figure 1, Victor establishes a more favorable Pareto frontier than the state-of-the-
art method, particularly exhibiting a noticeably smaller performance drop as throughput increases.
For instance, when the number of visual registers is set to 8—approximately only 1% of the origi-
nal visual tokens—our model experiences a performance drop of less than 4% while reducing total
training time by 43% and achieving a 3.36× increase in inference throughput. Our extensive ex-
periments demonstrate the effectiveness of Victor in balancing both efficiency and performance,
making it a promising solution for visual token reduction in vision-language models.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

Modern vision-language models typically combine a pre-trained image encoder with a large lan-
guage model to handle multimodal data (Li et al., 2023b). One popular approach, often referred to
as the autoregressive or LLaVA-style model (Li et al., 2023b; Liu et al., 2024c), directly projects
visual features into the input embedding space of the language model, treating these features as
part of the input tokens. However, in this design, the number of visual tokens is large and of-
ten exceeds the number of textual tokens, leading to inefficiencies. Another common approach is
cross-attention-based fusion (Alayrac et al., 2022), where added cross-attention blocks inside of the
language transformer layers allow textual tokens to attend to visual tokens. More recently, early-
fusion models like Fuyu (Bavishi et al., 2023), MoMA (Lin et al., 2024), and Chameleon (Team,
2024) use a unified transformer that processes raw textual tokens and visual patches simultaneously.
Additionally, a key component of modern vision-language models recipe is instruction fine-tuning
(Dai et al., 2023; Zhu et al., 2023; Liu et al., 2024a;c; Singla et al., 2024), which enables the model
to function as a typical chatbot while also processing images, even with a small synthetic fine-tuning
dataset. In this paper, we focus on LLaVA-style models.

2.2 VISUAL TOKEN REDUCTION

To improve the efficiency of vision or vision-language models, pruning or distilling visual tokens
has been widely studied. Rao et al. (2021) introduce DynamicViT, which uses a small module to
predict the importance of each visual token, dropping less important ones to enhance efficiency.
Similarly, EViT (Liang et al., 2022) retains important tokens and fuses the less important ones
within the model, using attention scores from the class token to the visual tokens. Further, PuMer
(Cao et al., 2023) reduces the number of both textual and visual tokens by progressively pruning
and merging them throughout the cross-modal encoder. Another interesting approach by Saifullah
et al. (2023) involves discretizing visual features into textual tokens to reduce dimensionality. For
more recent vision-language models, Perceiver Resampler (Jaegle et al., 2021; Alayrac et al., 2022;
Bai et al., 2023) and Q-Former (Li et al., 2023b) are commonly used to pool visual tokens into
a smaller set of queries using a transformer-based model. Additionally, in the FastV paper (Chen
et al., 2024), the authors observe that in LLaVA-style models, the attention from textual tokens to
visual tokens significantly diminishes after the first few layers, with the attentiveness declining close
to zero after 10% of the transformer layers. Intuitively, their proposed state-of-the-art method drops
the unimportant visual tokens accordingly after the first few layers.

2.3 VISUAL REGISTERS

Burtsev et al. (2020) first introduce memory tokens, which function similarly to registers. These
tokens are used to store global information, enabling the model to effectively handle long-context
tasks. Darcet et al. (2023) apply the idea of registers to ViTs. In their work, the authors observe
that vision transformer models implicitly use low-information tokens to store global information for
internal computations. However, this leads to abnormally high norms for these tokens, making it
difficult to interpret the attention maps. Therefore, to address this, they introduce additional reg-
ister tokens at the end of the sequence to handle this task. This approach not only improves the
interpretability of attention maps but also boosts model performance. In our work, we show that
these register tokens also enhance the performance of vision-language models, as demonstrated in
Section 5.6. However, our primary focus in this paper is on using these registers for information dis-
tillation, enabling the model to condense visual information into the registers to improve efficiency.

3 METHOD

3.1 MOTIVATION

We begin with a key observation: many visual tokens exhibit significant redundancy. As illustrated
in Figure 3, the cosine similarities between baseline visual tokens cluster around 1, indicating a
high degree of token similarity. This suggests that compressing the visual tokens into a smaller set
would result in minimal information loss. To achieve this, we append a set of learnable register
tokens to the visual tokens and leverage the language model to summarize the visual information

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Step III

ViT Projector

Describe the image Tokenizer

Visual Registers

Language Tower

Layer k − 1Layer 0 Layer nLayer k

Step I: add register tokens 
to end of visual tokens 

Step I

Step II Step IV

Step II: summarize visual 
info into register tokens

Step III: drop visual 
tokens before layer k  

Step IV: continue inference 
with register and text tokens

The image features 
a picturesque scene 
of a large, green golf 
course with a body 

of water, likely a 
lake, running 

through the middle 
of it. The course is 

surrounded by trees, 
providing a serene 

and natural 
atmosphere. There 
are several houses 

situated near the golf 
course, adding to the 

charm of the area.

Figure 2: Method Overview. Victor is a simple yet effective method for enhancing the efficiency
of vision-language models. The process involves four key steps based on the LLaVA-style model:
(I) appending learned visual register tokens after the visual tokens, where the number of visual
registers is much smaller than the number of the visual tokens, (II) using the first k layers of the
language tower to summarize visual information into the visual registers, (III) discarding all visual
tokens before layer k, and (IV) starting from layer k, the model performs efficient inference using
only the visual registers and textual tokens with significantly reduced sequence length.

into these registers. Rather than using a separate model like the Perceiver Resampler, we utilize
the more powerful language model for this task, as it inherently understands which visual tokens
are important and how to organize the information. Consequently, as demonstrated in Figure 3,
our compact visual registers show reduced redundancy compared to the baseline visual tokens.

1.0 1.00.5 0.0 0.5

Cosine Similarity

0.0

1.0

0.5

1.5

2.0

D
e
n
s
it
y

Baseline

Ours

75th Quantile

75th Quantile

Figure 3: Token Similarities.

Furthermore, based on observations from FastV
(Chen et al., 2024), textual tokens in the lan-
guage model primarily attend to visual tokens
in the early transformer layers, with attention
scores to visual tokens dropping to nearly zero
after the initial layers. This suggests the lan-
guage model requires only a few layers to pro-
cess the visual information. Thus, instead of
using the entire model, we employ only the first
few transformer layers to summarize the visual
tokens into the register tokens. After summa-
rization, the visual tokens are discarded, im-
proving model efficiency. An overview of our
method is provided in Figure 21.

3.2 VICTOR

We now formally introduce our method: Victor (Visual Compact Token Registers). A LLaVA-
style vision-language model consists of three main components: (1) the image tower I, which is a
pre-trained vision model, such as the CLIP image encoder (Radford et al., 2021); (2) the language
tower T , a pre-trained LLM, such as LLaMA (Touvron et al., 2023); and (3) a projector P that
bridges the two, mapping image features into the input embedding space of the language model.
Given an image ximg, we first extract its features using the image tower I and produce a set of
projected visual tokens xV = {x0

V , x
1
V , . . . , x

N−1
V } from the projector P .

As described in Algorithm 1, for Victor, we additionally introduce a set of learnable visual reg-
isters xR = {x0

R, x
1
R, . . . , x

M−1
R }, where M is a hyperparameter controlling the number of visual

registers. A smaller M results in a more efficient model, and usually M ≪ N . We then concatenate
the projected visual tokens, visual registers, and textual tokens to form the input: x = [xV ;xR;xT ].

1Image credit: https://unsplash.com/photos/green-grass-field-near-lake-
under-blue-sky-during-daytime-d3Jf3avtXSg

4

https://unsplash.com/photos/green-grass-field-near-lake-under-blue-sky-during-daytime-d3Jf3avtXSg
https://unsplash.com/photos/green-grass-field-near-lake-under-blue-sky-during-daytime-d3Jf3avtXSg


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Victor - Visual Compact Token Registers

1: input Projected Visual Tokens: xV = {x0
V , x

1
V , . . . , x

N−1
V }, Textual Input Tokens: xT =

{x0
T , x

1
T , . . . , x

L−1
T }, Visual Registers: xR = {x0

R, x
1
R, . . . , x

M−1
R }, Language Tower: T ,

Number of Layers: n, Drop Layer Index: k
2: Form input x = [xV ;xR;xT ] ▷ Add visual registers to end of visual tokens
3: for each layer i = 0 to n do
4: if i == k then
5: x = x[N :] ▷ Drop visual tokens before layer k
6: x = Ti(x)
7: return x

This input is processed through the language tower for the first k layers. At the start of layer k,
all visual tokens are discarded, and the model continues with the truncated hidden states for the
remaining layers.

During training, we do not explicitly force the language model to summarize the visual informa-
tion into the visual registers, but we empirically observe that it does so implicitly. In Section 5.7,
we provide an empirical analysis showing that the visual registers effectively summarize important
information from the visual tokens. Moreover, because Victor leverages the language model it-
self for this summarization, rather than relying on an external model, and the language model is
both powerful and knowing at identifying the most useful image features, our method experiences
minimal performance drop compared to approaches like Perceiver Resampler while requiring much
fewer additional model parameters.

In practice, we typically set k to 3, which is just roughly 10% of the language tower. This means the
language tower processes the full-length hidden states for only the first 10% of its layers. For the
remaining 90% layers, it operates on significantly shorter hidden states, thereby improving model ef-
ficiency. FastV (Chen et al., 2024), a state-of-the-art method, follows a similar approach by dropping
unimportant tokens in the early layers and achieves a comparable theoretical reduction in FLOPs.
However, we find that because FastV relies on attention scores to determine which tokens to drop, it
cannot utilize efficient attention implementations like FlashAttention (Dao et al., 2022; Dao, 2023)
or PyTorch High-Performance Scaled Dot Product Attention (SDPA). Consequently, FastV delivers
less throughput improvement than Victor when applying the same token-drop ratio in practical
scenarios, and also empirically experiences a greater performance degradation in high token-drop
ratio regimes.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this paper, we primarily follow the setting of the open-sourced LLaVA-v1.5 (Liu et al., 2024a).
The training consists of two main stages: pre-training and instruction fine-tuning.

Pre-trained Models. For the image tower, we use the pre-trained OpenAI CLIP ViT-Large model
(Radford et al., 2021), and for the text tower, we use the Vicuna-7B-v1.5 model (Zheng et al.,
2024), an instruction fine-tuned version of LLaMA-2-7B (Touvron et al., 2023). We also show
the results using various language towers in Section 5.4, including Vicuna-13B-v1.5 (Zheng et al.,
2024), Meta-Llama-3-8B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
and Qwen2-7B-Instruct (Yang et al., 2024).

Datasets. For pre-training, we use the LLaVA CC3M pre-training dataset (Liu et al., 2024c)2, a
subset of 595K images from the CC3M dataset (Sharma et al., 2018). For instruction fine-tuning,
we use LLaVA-v1.5-mix665K3, a mixed dataset comprising COCO 2017 (Lin et al., 2014), GQA

2https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K
3https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/

main/llava_v1_5_mix665k.json

5

https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K
https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json
https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(Hudson & Manning, 2019), OCR-VQA (Mishra et al., 2019), TextVQA (Singh et al., 2019), and
VisualGenome (Krishna et al., 2017).

Implementation. We follow the hyperparameters used by Liu et al. (2024c). During pre-training,
we freeze both the image and text towers, training only the projector and registers. We use the
AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 0.0001 and no weight decay
for one epoch. In the fine-tuning stage, we unfreeze the text tower while keeping the image tower
frozen. Similar to pre-training, we use the AdamW optimizer with a learning rate of 0.00002 and no
weight decay for one epoch.

4.2 EVALUATION

For evaluation, we use 11 benchmarks from the LLaVA-v1.5 report (Liu et al., 2024a), supplemented
by MMMU (Yue et al., 2024), a widely-used benchmark for assessing modern vision-language
models. The benchmarks include: VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019),
ScienceQA (Lu et al., 2022), TextVQA (Singh et al., 2019), VizWiz-VQA (Gurari et al., 2018),
POPE (Li et al., 2023c), MME-P (Yin et al., 2023), MMBench (Liu et al., 2023), SEED-Bench (Li
et al., 2023a), LLaVA-Bench-in-the-Wild (Liu et al., 2024c), MM-Vet (Yu et al., 2023), and MMMU
(Yue et al., 2024). These benchmarks provide a comprehensive assessment of models’ multi-modal
reasoning capabilities, encompassing both academic-task-oriented and instruction-following tasks.
We employ the LMMs-Eval framework4 (Zhang et al., 2024) for evaluation. For simplicity, we
primarily report the average of the normalized benchmark scores. Specifically, for MME-P, the
score is divided by 2, 000, which represents the full score, as their metric is calculated by summing
the accuracies of individual subtasks.

We evaluate efficiency by measuring the increase in throughput with the KV-cache on (Pope et al.,
2023). After gathering statistics from all 12 benchmarks, presented in Appendix A.1, we evaluate
two settings: 1) 2-token generation and 2) 128-token generation. The 2-token generation simu-
lates scenarios where questions expect a single word, as in GQA (Hudson & Manning, 2019) and
TextVQA (Singh et al., 2019). In contrast, the 128-token generation represents open-ended question
scenarios, such as in LLaVA-Bench-in-the-Wild (Liu et al., 2024c) and MM-Vet (Yu et al., 2023). In
both settings, we use a text prompt length of 64 and a batch size of 16. We choose a batch size of 16
because it is the largest batch size that fits in memory. All training is conducted on 8 NVIDIA A100
GPUs, with efficiency profiling performed on a single NVIDIA A100. By default, we set k to 3 and
vary the number of final visual tokens to 256, 128, 64, 32, 16, and 8 for all methods to thoroughly
assess the trade-off between efficiency and performance, where the number of visual tokens for the
original LLaVA-v1.5 model is 576.

We also compare our methods against two baselines: FastV (Chen et al., 2024) and Perceiver Re-
sampler (Jaegle et al., 2021). FastV is the state-of-the-art token reduction method that filters out
less important vision tokens based on attention scores, while the Perceiver Resampler is a compact,
transformer-based model designed to condense input tokens into a smaller query set.

5 RESULTS

5.1 THROUGHPUT INCREASE

We present the efficiency and performance trade-offs for both generation settings in Figure 4, while
the performance on individual benchmarks is included in Appendix A.2. As shown, our method has
a better Pareto frontier than FastV and the Perceiver Resampler in both scenarios.

Both Victor and FastV maintain minimal performance degradation when the throughput increases
by approximately 1.5× to 2× and the number of tokens decreases from 576 to 256 or 128. However,
FastV’s performance declines rapidly beyond this point. In contrast, our method exhibits only a 4%
performance drop even when the number of visual tokens is reduced to 8, which is roughly 1%
of the original visual token count. Additionally, given the same number of final visual tokens, our
method has slightly higher theoretical FLOPs than FastV due to the inclusion of extra register tokens
in the initial layers. However, in practice, our method achieves a greater increase in throughput

4https://github.com/EvolvingLMMs-Lab/lmms-eval

6

https://github.com/EvolvingLMMs-Lab/lmms-eval


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Throughput Increase

40

45

50

55

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

Baseline
FastV
Perceiver
Ours

(a) 2-Token Generation

1.0 1.1 1.2 1.3 1.4 1.5
Throughput Increase

40

45

50

55

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(b) 128-Token Generation

Figure 4: Efficiency-Performance Trade-Off Curve. We measure the relative throughput increase
compared to the baseline model. The test covers two main scenarios: generating 2 tokens and
generating 128 tokens. In both cases, the batch size is set to 16, and the text prompt length is 64
tokens. For all methods, we use 256, 128, 64, 32, 16, and 8 visual tokens to generate the line plot.

compared to FastV. This is due to the fact that, in the layer where FastV performs filtering, the
model is constrained to using the original attention mechanism to compute attention scores, as it
cannot leverage more efficient attention implementations. In contrast, our method is compatible with
a wide range of efficient attention implementations including those that do not support returning
attention scores. As a result, Victor not only achieves better throughput and more effectively
retains the accuracy but is also more adaptable across different devices than FastV.

Table 1: Number of Extra Parameters
for Different Methods. The final num-
ber of visual tokens is 256.

Method # of Extra Parameters

FastV 0 (0.00%)
Perceiver 252.86M (3.61%)

Ours 1.78M (0.03%)

In contrast, the Perceiver Resampler experiences a sub-
stantial performance drop of approximately 10% com-
pared to the original model, performing significantly
worse than Victor. Interestingly, its performance re-
mains stable across different reduction ratios, consis-
tent with the findings of Laurençon et al. (2024). De-
spite this performance decline, the Perceiver Resampler
achieves a much higher throughput increase than FastV
and Victor. As shown in Table 1, however, the Per-
ceiver Resampler requires a substantially larger number
of additional parameters—252.86M, representing 3.61%
of the total model—while our method adds only 1.78M, approximately 0.03% of the entire model.

5.2 FLOPS REDUCTION

0% 20% 40% 60% 80%
FLOPs Reduction

40

45

50

55

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

Baseline
FastV
Perceiver
Ours

Figure 5: Performance vs. FLOPs Reduction.

We also report the theoretical FLOPs reduction
of the methods, calculated using the FLOPs for-
mula from Chen et al. (2024). As demonstrated
in Figure 5, while our method shows a slightly
smaller FLOPs reduction due to the presence
of additional register tokens at the start of the
language tower, the overall reduction is com-
parable under the significantly higher token re-
duction rate. Although the Perceiver Resam-
pler achieves a notable increase in throughput,
its FLOPs reduction is substantially lower than
that of FastV and Victor, primarily due to the
additional transformer layers it employs.

5.3 TRAINING-TIME REDUCTION

Victor not only reduces inference costs but also lowers training costs. As indicated in Figure 6,
both Perceiver Resampler and Victor significantly reduce training time in both pre-training and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

fine-tuning stages, with the reduction being especially notable during pre-training due to the shorter
text tokens. Victor achieves a greater overall time reduction. In contrast, training with FastV only
reduces pre-training time and does not improve fine-tuning efficiency. This is because fine-tuning
typically involves a large number of text tokens (often exceeding a thousand), and the use of a naive
attention implementation in this phase introduces significant overhead, reducing training efficiency.
Additionally, we observe that training with FastV does not match the performance of inference-time
FastV. However, it exhibits slower benchmark performance decay as the number of visual tokens
decreases and outperforms inference-time FastV when the number of visual tokens drops below 32.

0% 20% 40% 60%
Time Reduction

50.0

52.5

55.0

57.5

60.0

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

Baseline
Training with FastV
Perceiver
Ours

(a) Pre-Training

20% 10% 0% 10% 20% 30%
Time Reduction

50.0

52.5

55.0

57.5

60.0

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(b) Fine-Tuning

Figure 6: Performance vs. Training-Time Reduction. We show total training-time reduction in
Appendix A.3.

1 2 3 4 5
Throughput Increase

40

50

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

Baseline
FastV
Perceiver
Ours

(a) Vicuna-13B-v1.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Throughput Increase

40

50

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(b) Meta-Llama-3-8B-Instruct

1 2 3 4
Throughput Increase

40

45

50

55

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(c) Mistral-7B-Instruct-v0.2

1 2 3 4 5
Throughput Increase

40

45

50

55

60

65

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(d) LLaVA-NeXT with Qwen2-7B-Instruct

Figure 7: Efficiency-Performance Trade-Off Curve with Different Language Towers under
2-Token Generation. Due to the space limit, we show the 128-token generation scenario in Ap-
pendix A.4. For the first 3 models, we use 256, 128, 64, 32, 16, and 8 visual tokens to generate the
line plot, and for LLaVA-NeXT, we use 512, 256, 128, 64, 32, and 16 visual tokens.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 DIFFERENT LANGUAGE TOWERS

We extensively evaluate the effectiveness of our method with different language towers. As shown
in Figure 7, replacing the original Vicuna-7B-v1.5 language model with Vicuna-13B-v1.5 (Zheng
et al., 2024), Meta-Llama-3-8B-Instruct (Dubey et al., 2024), and Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023), Victor remains highly effective and significantly outperforms the two baseline meth-
ods. For both Meta-Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2, Victor demonstrates min-
imal performance drop and a slow decay in performance as the number of visual tokens decreases.
Notably, for these two models, when the number of visual tokens is reduced by half, the method
shows no performance degradation at all.

We further demonstrate the performance of our method on a different vision-language model design:
LLaVA-NeXT (LLaVA-v1.6) (Liu et al., 2024a). LLaVA-NeXT follows a similar architecture to
LLaVA-v1.5 but increases the number of visual tokens from 576 to 2,880 by incorporating different
aspect ratios, enhancing the model’s capabilities. Additionally, LLaVA-NeXT utilizes Qwen2-7B-
Instruct (Yang et al., 2024) as its language tower, benefiting from its extended context length. In
our experiments, we reduce the number of visual tokens to 512, 256, 128, 64, 32, and 16. As indi-
cated in Figure 7d, our method remains highly effective in the LLaVA-NeXT setting, consistently
outperforming both FastV and the Perceiver Resampler.

5.5 DIFFERENT LAYERS TO DROP VISUAL TOKENS

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Throughput Increase

52

54

56

58

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

Baseline
k=1
2
3
4
5

Figure 8: Ablation on Token Dropping Layers.

We show the results of the ablation study on
which layer to drop the visual tokens (hyper-
parameter k) in Figure 8. In terms of through-
put improvement, it is clear that the earlier we
drop the visual tokens, the more efficient the
model becomes. For lower-layer numbers, such
as k = 1 or k = 2, the model’s efficiency sig-
nificantly increases, with throughput reaching
nearly a 4× improvement. However, this comes
with a substantial performance drop, suggest-
ing that one or two layers are likely insuffi-
cient for the summarization process. In con-
trast, when k ≥ 3, the performance degradation
is minimal, staying within a 5% performance
score loss. Notably, when k = 5, with half of
the visual tokens dropped, the model experiences no performance loss.

5.6 EFFECT OF VISUAL REGISTERS ON REGULAR VLMS

0.0 0.1 0.2 0.3
Throughput Decrease

60.5

61.0

61.5

Av
er

ag
e 

S
co

re

Baseline
Ours

Figure 9: Results without Dropping
Visual Tokens. From left to right on
the line plot, we incrementally add 8,
16, 32, 64, 128, and 256 visual tokens
respectively.

In Figure 9, we present the results of not dropping the vi-
sual tokens and instead using visual registers as a means
for the model to store useful information, similar to those
proposed by Darcet et al. (2023). As reflected in Fig-
ure 9, there is a slight performance improvement over the
baseline model, but it is limited to around a 2% increase.
However, once the number of visual registers exceeds
64, a further increase does not result in additional per-
formance gains. On the other hand, adding more visual
tokens leads to a decrease in throughput. Interestingly,
adding just 8 visual tokens offers a minimal throughput
reduction while still providing a 1% performance boost,
making it a “free lunch” for visual-language models.

5.7 ANALYSIS

In Section 3.1, we empirically demonstrate that the visual registers are more compact than the orig-
inal visual tokens. In this subsection, we perform a simple analysis to examine whether and how
visual registers summarize visual information. The attention map from visual registers to visual

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Layer 1

Layer 2

Layer 0

Visual Tokens

Vi
su

al
 R

eg
is

te
rs

Figure 10: Attention Map from Visual Registers to Visual Tokens. We prompt the model with a
test image from the COCO dataset and the instruction, “Describe the image.”

tokens is shown in Figure 10. Although the model is not explicitly trained to summarize visual
information into the visual registers, they implicitly encode the visual tokens, as indicated by the
significant attention scores between visual registers and visual tokens. Interestingly, the visual reg-
isters exhibit low attention to visual tokens in the first two layers, and the summarization primarily
occurs in the third layer, just before the visual tokens are removed. This may be because the first
two layers focus on processing the visual tokens or aligning the visual tokens and registers into a
shared space to facilitate communication in later layers. This observation aligns with the ablation
results discussed in Section 5.5, where dropping visual tokens in the first or second layer causes a
significant performance drop. This suggests that it is more effective for the summarization process
to occur in the later layers.

As shown on the right side of Figure 10, when examining the attention mapped back to the original
image, the visual registers primarily focus on key elements like the rock in the water and the boat
mast, while also capturing broader regions of the image. Overall, even without supervision, Victor
implicitly learns to summarize the image information both effectively and efficiently.

6 LIMITATION AND FUTURE WORK

While Victor is simple and effective, we identified some limitations and directions for future
improvements. Currently, Victor is not a training-free method, and it must be incorporated at
the training stage of the vision-language modeling. Developing a version of Victor that could
be applied post-training would be a valuable advancement. However, this might be challenging,
as the language tower may need to be specifically trained to learn to effectively utilize the visual
registers. Another limitation is the inflexibility of the number of visual registers. As discussed
in Appendix A.5, the performance degrades if the number of visual tokens is changed on the fly
without retraining. In future work, we believe incorporating certain auxiliary loss functions could
help make Victor more adaptable and flexible. Additionally, while this paper focuses on applying
Victor to vision-language models, we believe this technique could also benefit language models,
particularly in long-context tasks. We leave these for future exploration.

7 CONCLUSION

In this paper, we introduce Victor, a novel visual token summarization method that significantly
enhances the efficiency-performance trade-off in vision-language models. Without explicit enforce-
ment, the language tower utilizes register tokens to summarize visual information within the first
10% of the layers. After summarization, Victor removes the need for visual tokens beyond these
layers. Our approach offers a superior balance in efficiency compared to state-of-the-art methods.
Moreover, with just up to 0.03% additional parameters, Victor is compatible with various atten-
tion mechanisms, providing a user-friendly and efficient solution across different hardware environ-
ments for future applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

As mentioned in Section 4.1, our experiments primarily follow the original LLaVA-v1.5 implemen-
tation. Additionally, our method is simple and straightforward to implement. We will release the
source code with the camera-ready version.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani,
and Sağnak Taşırlar. Introducing our multimodal models, 2023. URL https://www.adept.
ai/blog/fuyu-8b.

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory transformer.
arXiv preprint arXiv:2006.11527, 2020.

Qingqing Cao, Bhargavi Paranjape, and Hannaneh Hajishirzi. Pumer: Pruning and merging tokens
for efficient vision language models. arXiv preprint arXiv:2305.17530, 2023.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. arXiv preprint arXiv:2403.06764, 2024.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Albert Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. ArXiv, abs/2305.06500, 2023. URL https:
//api.semanticscholar.org/CorpusID:258615266.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. arXiv preprint arXiv:2309.16588, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

11

https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://api.semanticscholar.org/CorpusID:258615266
https://api.semanticscholar.org/CorpusID:258615266


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting lan-
guage and vision using crowdsourced dense image annotations. International journal of computer
vision, 123:32–73, 2017.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models? arXiv preprint arXiv:2405.02246, 2024.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal llms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023b.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023c.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. arXiv preprint
arXiv:2202.07800, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srinivasan Iyer, Mike Lewis, Gargi Gosh, Luke
Zettlemoyer, and Armen Aghajanyan. Moma: Efficient early-fusion pre-training with mixture of
modality-aware experts. arXiv preprint arXiv:2407.21770, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024c.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

12

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
question answering by reading text in images. In ICDAR, 2019.

OpenAI. Gpt-4v(ision) technical work and authors. https://openai.com/
contributions/gpt-4v/, 2023. Accessed: 2024-09-29.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937–13949, 2021.

Khalid Saifullah, Yuxin Wen, Jonas Geiping, Micah Goldblum, and Tom Goldstein. Seeing in words:
Learning to classify through language bottlenecks. arXiv preprint arXiv:2307.00028, 2023.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2556–2565, 2018.

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8317–8326, 2019.

Vasu Singla, Kaiyu Yue, Sukriti Paul, Reza Shirkavand, Mayuka Jayawardhana, Alireza Ganjdanesh,
Heng Huang, Abhinav Bhatele, Gowthami Somepalli, and Tom Goldstein. From pixels to prose:
A large dataset of dense image captions. arXiv preprint arXiv:2406.10328, 2024.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities, 2023.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
Yuanhan Zhang, Jingkang Yang, Chunyuan Li, et al. Lmms-eval: Reality check on the evaluation
of large multimodal models. arXiv preprint arXiv:2407.12772, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

13

https://openai.com/contributions/gpt-4v/
https://openai.com/contributions/gpt-4v/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LENGTH STATISTICS FOR INDIVIDUAL BENCHMARKS

We show the length statistics of benchmarks in Table 2. Based on the representative lengths of these
benchmarks, there are two main categories: 1) short-generation, represented by the 2-token gener-
ation scenario in our experiments, and 2) long-generation, represented by the 128-token generation
scenario.

Table 2: Prompt and Generation Length Stats of Individual Benchmarks.

Short-Generation Benchmarks
VQAv2 GQA ScienceQA TextVQA VizWiz POPE MME MMBench Seed MMMU Average

Prompt Len. 43.05 46.10 93.04 43.88 44.31 43.70 54.28 86.21 93.04 210.20 75.78
Generation Len. 1.56 1.09 2.00 8.88 3.19 1.00 1.00 1.00 2.00 1.21 2.29

Long-Generation Benchmarks

LLaVA-Bench-Wild MM-Vet Average

Prompt Len. 49.82 49.74 49.78
Generation Len. 146.60 96.11 121.36

A.2 PERFORMANCE ON INDIVIDUAL BENCHMARKS

We show the performance on individual benchmarks of Section 5.1 in Figure 11.

576 256 128 64 32 16 8
# of Visual Tokens

0.5

0.6

0.7

P
er

fo
rm

an
ce

 S
co

re

Baseline
FastV
Perceiver
Ours

VQAv2

576 256 128 64 32 16 8
# of Visual Tokens

0.45

0.50

0.55

0.60

P
er

fo
rm

an
ce

 S
co

re

GQA

576 256 128 64 32 16 8
# of Visual Tokens

0.67

0.68

0.69

0.70

P
er

fo
rm

an
ce

 S
co

re

ScienceQA

576 256 128 64 32 16 8
# of Visual Tokens

0.2

0.3

0.4

P
er

fo
rm

an
ce

 S
co

re

TextVQA

576 256 128 64 32 16 8
# of Visual Tokens

0.40

0.45

0.50

P
er

fo
rm

an
ce

 S
co

re

VizWiz-VQA

576 256 128 64 32 16 8
# of Visual Tokens

0.6

0.7

0.8

P
er

fo
rm

an
ce

 S
co

re

POPE

576 256 128 64 32 16 8
# of Visual Tokens

800

1000

1200

1400

P
er

fo
rm

an
ce

 S
co

re

MME-P

576 256 128 64 32 16 8
# of Visual Tokens

30

40

50

60

P
er

fo
rm

an
ce

 S
co

re

MMBench

576 256 128 64 32 16 8
# of Visual Tokens

0.4

0.5

0.6

P
er

fo
rm

an
ce

 S
co

re

SEED-Bench

576 256 128 64 32 16 8
# of Visual Tokens

30

40

50

60

P
er

fo
rm

an
ce

 S
co

re

LLaVA-Wild

576 256 128 64 32 16 8
# of Visual Tokens

15

20

25

30

P
er

fo
rm

an
ce

 S
co

re

MM-Vet

576 256 128 64 32 16 8
# of Visual Tokens

0.34

0.35

0.36

0.37

P
er

fo
rm

an
ce

 S
co

re

MMMU

Figure 11: Individual Benchmark Performance.

A.3 TOTAL TRAINING-TIME REDUCTION

The total training-time reduction is shown in Figure 12.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10% 0% 10% 20% 30% 40%
Time Reduction

50

52

54

56

58

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

Baseline
Training with FastV
Perceiver
Ours

Figure 12: Performance vs. Total Training-Time Reduction..

A.4 EXTRA RESULTS WITH DIFFERENT LANGUAGE TOWERS

The extra result of Section 5.4 with 128-token generation scenario is presented in Figure 13.

1.0 1.2 1.4 1.6 1.8
Throughput Increase

40

50

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

FastV
Perceiver
Ours

(a) Vicuna-13B-v1.5

1.0 1.1 1.2 1.3 1.4
Throughput Increase

35

40

45

50

55

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(b) Meta-Llama-3-8B-Instruct

1.0 1.1 1.2 1.3 1.4
Throughput Increase

40

45

50

55

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(c) Mistral-7B-Instruct-v0.2

1.0 1.5 2.0 2.5
Throughput Increase

40

45

50

55

60

65

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

(d) LLaVA-NeXT with Qwen2-7B-Instruct

Figure 13: Efficiency-Performance Trade-Off Curve with Different Language Towers under
128-Token Generation.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 ABLATION ON ADJUSTING THE NUMBER OF VISUAL REGISTERS AT INFERENCE

576 256 128 64 32 16 8
# of Visual Tokens

40

45

50

55

60

Av
er

ag
e 

S
co

re

Baseline
Individual Model
Head Registers
Tail Registers

Figure 14: Ablation on Adjusting the Number of Visual Registers at Inference.

In our main experiments, we retrain the model whenever a different number of visual registers is
required. In this subsection, we explore two strategies for adjusting the number of visual registers
dynamically at inference time. Given a Victor model with M visual registers, if we want to use
M ′ < M registers, we either select the first M ′ registers (referred to as “head”) or the last M ′

registers (referred to as “tail”). As shown in Figure 14, the performance of these adjustments is not
as effective as retraining the model from scratch. However, we believe that adding certain auxiliary
losses during training can make our method more flexible, and we leave this for future work.

A.6 IMPORTANCE OF VISUAL REGISTERS FOR SUMMARIZATION

1.0 1.5 2.0 2.5 3.0
Throughput Increase

52

54

56

58

60

Av
er

ag
e 

S
co

re
 o

f 1
2 

B
en

ch
m

ar
ks

Baseline
With Visual Registers
Keep Last M Visual Tokens

Figure 15: Importance of Visual Registers for Summarization.

In this subsection, we conduct an ablation study to demonstrate the necessity of using visual registers
for summarization. Specifically, we compare our approach to an alternative method where instead of
prepending additional tokens to the visual tokens, we retain the last M visual tokens at layer 3. This
requires the model to summarize all visual information into these last existing M visual tokens. As
shown in Figure 15, while the ablated method results in a slight improvement in throughput, overall
the performance drops significantly. This highlights the importance of incorporating visual registers
for effective summarization.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.7 DIFFERENT VISUAL REGISTERS

576 256 128 64 32 16 8
# of Visual Tokens

54

55

56

57

58

59

60

Av
er

ag
e 

S
co

re

Baseline
Learnbale
Image Feature
Zeros
"Image" Token

Figure 16: Ablation with Different Visual Registers.

We also experiment with various types of visual registers. In addition to using learnable tokens,
we test three alternative methods for visual registers: 1) Pooled Image Feature: utilizing average-
pooled visual tokens as the register tokens, 2) Zeros: initializing with all zeros, and 3) “Image”
Token: using the embedding of the word “Image.” The results are presented in Figure 16. The
“Image” Token method is effective for the visual registers, especially when the number of visual
tokens is reduced to 256 and 128, as there is no performance drop. However, all alternative methods
showed relatively worse performance compared to learnable queries in the low visual token regime.
Therefore, we adopt learnable queries for Victor as they offer better overall performance.

18


	Introduction
	Related Work
	Vision-Language Models
	Visual Token Reduction
	Visual Registers

	Method
	Motivation
	Victor

	Experiments
	Experimental Setup
	Evaluation

	Results
	Throughput Increase
	FLOPs Reduction
	Training-Time Reduction
	Different Language Towers
	Different Layers to Drop Visual Tokens
	Effect of Visual Registers on Regular VLMs
	Analysis

	Limitation and Future Work
	Conclusion
	Appendix
	Length Statistics for Individual Benchmarks
	Performance on Individual Benchmarks
	Total Training-Time Reduction
	Extra Results with Different Language Towers
	Ablation on Adjusting the Number of Visual Registers at Inference
	Importance of Visual Registers for Summarization
	Different Visual Registers


