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ABSTRACT

Recent advancements in vision-language models have expanded their potential for
real-world applications, enabling these models to perform complex reasoning on
images. However, in the widely used fully autoregressive pipeline like LLaVA,
where projected visual tokens are prepended to textual tokens, the visual tokens
often number in the hundreds or thousands, making them much longer than the
input prompt. This large quantity of visual tokens introduces significant compu-
tational overhead, slowing down training and inference. In this paper, we propose
Visual Compact Token Registers (Victor), a method that reduces the number of
visual tokens by summarizing them into a smaller set of register tokens. Victor
adds a few learnable register tokens after the visual tokens and summarizes the
visual information into these registers using the first few layers in the language
tower. After these few layers, all visual tokens are discarded, significantly im-
proving computational efficiency for both training and inference. Notably, our
method is easy to implement and requires a small number of new trainable param-
eters with minimal impact on model performance. In our experiment, with merely
8 visual registers—about 1% of the original tokens—Victor shows less than
a 4% performance drop while reducing total training time by 43% and boosting
inference throughput by 3.36×.

1 INTRODUCTION

Vision-language models (VLMs) have attracted considerable attention for their capability to process
visual and textual information, enabling various real-world applications such as image captioning,
visual question answering, and multimodal reasoning (OpenAI, 2023; Liu et al., 2024c). For exam-
ple, GPT-4V (OpenAI, 2023) demonstrates the potential of these models in helping visually impaired
individuals to “see” the world through cell phone cameras.

Recent vision-language models, such as LLaVA (Liu et al., 2024c), employ a pre-trained vision
encoder as the model’s “eye” to extract visual features and use a pre-trained language model as
the “brain” to perform reasoning and text generation. This straightforward architecture is highly
effective and requires only a small instruction dataset for fine-tuning. However, since the entire
set of projected image features is fed as the input to the language model, it results in a significant
computational overhead due to the large number of visual tokens. For instance, LLaVA-NeXT (Liu
et al., 2024b) utilizes 2, 880 tokens to represent a single image, which can be overly redundant
in many scenarios. In contrast, the average text instruction length across all benchmarks used in
LLaVA-NeXT is fewer than 70 tokens, as shown in Appendix A.1.

Therefore, to improve the efficiency of vision-language models, it is clear that reducing the number
of visual tokens is essential. The state-of-the-art method, FastV (Chen et al., 2024), achieves this by
directly dropping unimportant visual tokens. This approach is highly effective when reducing the
number of tokens by up to half. However, the model’s performance drops significantly when more
than half of the tokens are removed. Meanwhile, FastV requires obtaining the attention scores from
the self-attention block. Efficient attention implementations, such as FlashAttention (Dao et al.,
2022; Dao, 2023), do not support this feature. Consequently, FastV relies on standard attention
implementations to retrieve the attention scores. This can limit its deployment on devices that do
not support such implementations. We also find that this constraint slows down the fine-tuning stage,
as presented in Section 5.3.
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Figure 1: Efficiency-Performance Trade-Off Curve. We compare our proposed method, Victor,
with the state-of-the-art method FastV. The normalized average score across 12 benchmarks and the
corresponding throughput increase relative to the original baseline model are reported (details in
Section 4.2). The size of the circles indicates the number of visual tokens for each method, with
larger circles representing more tokens. Victor establishes a more favorable Pareto frontier than
FastV, demonstrating a significantly smaller performance drop as throughput increases.

On the other hand, another popular approach for token reduction is to use a transformer-based pro-
jection model for condensing visual tokens into a smaller set of queries. Notable examples include
the Perceiver Resampler (Jaegle et al., 2021; Alayrac et al., 2022; Bai et al., 2023) and Q-Former
(Li et al., 2023b). These methods outperform FastV when the reduced set of visual tokens is much
smaller than the original. However, they require much more trainable parameters.

In this paper, we introduce Visual Compact Token Registers (Victor), a simple yet effective early
visual token summarizing method that provides a superior efficiency-quality trade-off compared to
the state-of-the-art techniques. For visual tokens, we observe that they often contain redundant
information, with many tokens being highly similar, as discussed in Section 3.1. To address this,
our approach leverages the language model to summarize these visual tokens into compact registers.
Victor begins by appending a small subset of register tokens to the visual tokens and uses the
initial k layers of the language model to summarize visual information into these register tokens.
Notably, during training, no specific loss function or operation is applied to explicitly force the visual
information into the registers. Empirical results show that the language model naturally uses these
tokens to store visual information. Meanwhile, starting at layer k, all visual tokens are discarded,
leaving only the summarized registers and textual tokens for efficient inference in the subsequent
layers.

Our method does not rely on attention scores, making it compatible with the most efficient attention
implementations. Moreover, Victor introduces just 1.78M additional parameters, accounting for
only 0.03% of the total model size. In contrast to approaches like the Perceiver Resampler, which
incorporates a separate transformer with 252.86M parameters (3.61% of the total model), Victor
leverages the powerful language model itself to perform this task, achieving significantly better
performance.

As illustrated in Figure 1, Victor establishes a more favorable Pareto frontier than the state-of-the-
art method, particularly exhibiting a noticeably smaller performance drop as throughput increases.
For instance, when the number of visual registers is set to 8—approximately only 1% of the origi-
nal visual tokens—our model experiences a performance drop of less than 4% while reducing total
training time by 43% and achieving a 3.36× increase in inference throughput. Our extensive ex-
periments demonstrate the effectiveness of Victor in balancing both efficiency and performance,
making it a promising solution for visual token reduction in vision-language models.
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2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

Modern vision-language models typically combine a pre-trained image encoder with a large lan-
guage model to handle multimodal data (Li et al., 2023b). One popular approach, often referred to
as the autoregressive or LLaVA-style model (Li et al., 2023b; Liu et al., 2024c), directly projects
visual features into the input embedding space of the language model, treating these features as
part of the input tokens. However, in this design, the number of visual tokens is large and of-
ten exceeds the number of textual tokens, leading to inefficiencies. Another common approach is
cross-attention-based fusion (Alayrac et al., 2022), where added cross-attention blocks inside of the
language transformer layers allow textual tokens to attend to visual tokens. More recently, early-
fusion models like Fuyu (Bavishi et al., 2023), MoMA (Lin et al., 2024), and Chameleon (Team,
2024) use a unified transformer that processes raw textual tokens and visual patches simultaneously.
Additionally, a key component of modern vision-language models recipe is instruction fine-tuning
(Dai et al., 2023; Zhu et al., 2023; Liu et al., 2024a;c; Singla et al., 2024), which enables the model
to function as a typical chatbot while also processing images, even with a small synthetic fine-tuning
dataset. In this paper, we focus on LLaVA-style models.

2.2 VISUAL TOKEN REDUCTION

To improve the efficiency of vision or vision-language models, pruning or distilling visual tokens
has been widely studied. Rao et al. (2021) introduce DynamicViT, which uses a small module to
predict the importance of each visual token, dropping less important ones to enhance efficiency.
Similarly, EViT (Liang et al., 2022) retains important tokens and fuses the less important ones
within the model, using attention scores from the class token to the visual tokens. Further, PuMer
(Cao et al., 2023) reduces the number of both textual and visual tokens by progressively pruning
and merging them throughout the cross-modal encoder. Another interesting approach by Saifullah
et al. (2023) involves discretizing visual features into textual tokens to reduce dimensionality. For
more recent vision-language models, Perceiver Resampler (Jaegle et al., 2021; Alayrac et al., 2022;
Bai et al., 2023) and Q-Former (Li et al., 2023b) are commonly used to pool visual tokens into
a smaller set of queries using a transformer-based model. Additionally, in the FastV paper (Chen
et al., 2024), the authors observe that in LLaVA-style models, the attention from textual tokens to
visual tokens significantly diminishes after the first few layers, with the attentiveness declining close
to zero after 10% of the transformer layers. Intuitively, their proposed state-of-the-art method drops
the unimportant visual tokens accordingly after the first few layers.

2.3 VISUAL REGISTERS

Burtsev et al. (2020) first introduce memory tokens, which function similarly to registers. These
tokens are used to store global information, enabling the model to effectively handle long-context
tasks. Darcet et al. (2023) apply the idea of registers to ViTs. In their work, the authors observe
that vision transformer models implicitly use low-information tokens to store global information for
internal computations. However, this leads to abnormally high norms for these tokens, making it
difficult to interpret the attention maps. Therefore, to address this, they introduce additional reg-
ister tokens at the end of the sequence to handle this task. This approach not only improves the
interpretability of attention maps but also boosts model performance. In our work, we show that
these register tokens also enhance the performance of vision-language models, as demonstrated in
Section 5.6. However, our primary focus in this paper is on using these registers for information dis-
tillation, enabling the model to condense visual information into the registers to improve efficiency.

3 METHOD

3.1 MOTIVATION

We begin with a key observation: many visual tokens exhibit significant redundancy. As illustrated
in Figure 3, the cosine similarities between baseline visual tokens cluster around 1, indicating a
high degree of token similarity. This suggests that compressing the visual tokens into a smaller set
would result in minimal information loss. To achieve this, we append a set of learnable register
tokens to the visual tokens and leverage the language model to summarize the visual information
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Figure 2: Method Overview. Victor is a simple yet effective method for enhancing the efficiency
of vision-language models. The process involves four key steps based on the LLaVA-style model:
(I) appending learned visual register tokens after the visual tokens, where the number of visual
registers is much smaller than the number of the visual tokens, (II) using the first k layers of the
language tower to summarize visual information into the visual registers, (III) discarding all visual
tokens before layer k, and (IV) starting from layer k, the model performs efficient inference using
only the visual registers and textual tokens with significantly reduced sequence length.

into these registers. Rather than using a separate model like the Perceiver Resampler, we utilize
the more powerful language model for this task, as it inherently understands which visual tokens
are important and how to organize the information. Consequently, as demonstrated in Figure 3,
our compact visual registers show reduced redundancy compared to the baseline visual tokens.
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Figure 3: Token Similarities.

Furthermore, based on observations from FastV
(Chen et al., 2024), textual tokens in the lan-
guage model primarily attend to visual tokens
in the early transformer layers, with attention
scores to visual tokens dropping to nearly zero
after the initial layers. This suggests the lan-
guage model requires only a few layers to pro-
cess the visual information. Thus, instead of
using the entire model, we employ only the first
few transformer layers to summarize the visual
tokens into the register tokens. After summa-
rization, the visual tokens are discarded, im-
proving model efficiency. An overview of our
method is provided in Figure 21.

3.2 VICTOR

We now formally introduce our method: Victor (Visual Compact Token Registers). A LLaVA-
style vision-language model consists of three main components: (1) the image tower I, which is a
pre-trained vision model, such as the CLIP image encoder (Radford et al., 2021); (2) the language
tower T , a pre-trained LLM, such as LLaMA (Touvron et al., 2023); and (3) a projector P that
bridges the two, mapping image features into the input embedding space of the language model.
Given an image ximg, we first extract its features using the image tower I and produce a set of
projected visual tokens xV = {x0

V , x
1
V , . . . , x

N−1
V } from the projector P .

As described in Algorithm 1, for Victor, we additionally introduce a set of learnable visual reg-
isters xR = {x0

R, x
1
R, . . . , x

M−1
R }, where M is a hyperparameter controlling the number of visual

registers. A smaller M results in a more efficient model, and usually M ≪ N . We then concatenate
the projected visual tokens, visual registers, and textual tokens to form the input: x = [xV ;xR;xT ].

1Image credit: https://unsplash.com/photos/green-grass-field-near-lake-
under-blue-sky-during-daytime-d3Jf3avtXSg
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Algorithm 1 Victor - Visual Compact Token Registers

1: input Projected Visual Tokens: xV = {x0
V , x

1
V , . . . , x

N−1
V }, Textual Input Tokens: xT =

{x0
T , x

1
T , . . . , x

L−1
T }, Visual Registers: xR = {x0

R, x
1
R, . . . , x

M−1
R }, Language Tower: T ,

Number of Layers: n, Drop Layer Index: k
2: Form input x = [xV ;xR;xT ] ▷ Add visual registers to end of visual tokens
3: for each layer i = 0 to n do
4: if i == k then
5: x = x[N :] ▷ Drop visual tokens before layer k
6: x = Ti(x)
7: return x

This input is processed through the language tower for the first k layers. At the start of layer k,
all visual tokens are discarded, and the model continues with the truncated hidden states for the
remaining layers.

During training, we do not explicitly force the language model to summarize the visual informa-
tion into the visual registers, but we empirically observe that it does so implicitly. In Section 5.7,
we provide an empirical analysis showing that the visual registers effectively summarize important
information from the visual tokens. Moreover, because Victor leverages the language model it-
self for this summarization, rather than relying on an external model, and the language model is
both powerful and knowing at identifying the most useful image features, our method experiences
minimal performance drop compared to approaches like Perceiver Resampler while requiring much
fewer additional model parameters.

In practice, we typically set k to 3, which is just roughly 10% of the language tower. This means the
language tower processes the full-length hidden states for only the first 10% of its layers. For the
remaining 90% layers, it operates on significantly shorter hidden states, thereby improving model ef-
ficiency. FastV (Chen et al., 2024), a state-of-the-art method, follows a similar approach by dropping
unimportant tokens in the early layers and achieves a comparable theoretical reduction in FLOPs.
However, we find that because FastV relies on attention scores to determine which tokens to drop, it
cannot utilize efficient attention implementations like FlashAttention (Dao et al., 2022; Dao, 2023)
or PyTorch High-Performance Scaled Dot Product Attention (SDPA). Consequently, FastV delivers
less throughput improvement than Victor when applying the same token-drop ratio in practical
scenarios, and also empirically experiences a greater performance degradation in high token-drop
ratio regimes.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this paper, we primarily follow the setting of the open-sourced LLaVA-v1.5 (Liu et al., 2024a).
The training consists of two main stages: pre-training and instruction fine-tuning.

Pre-trained Models. For the image tower, we use the pre-trained OpenAI CLIP ViT-Large model
(Radford et al., 2021), and for the text tower, we use the Vicuna-7B-v1.5 model (Zheng et al.,
2024), an instruction fine-tuned version of LLaMA-2-7B (Touvron et al., 2023). We also show
the results using various language towers in Section 5.4, including Vicuna-13B-v1.5 (Zheng et al.,
2024), Meta-Llama-3-8B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
and Qwen2-7B-Instruct (Yang et al., 2024).

Datasets. For pre-training, we use the LLaVA CC3M pre-training dataset (Liu et al., 2024c)2, a
subset of 595K images from the CC3M dataset (Sharma et al., 2018). For instruction fine-tuning,
we use LLaVA-v1.5-mix665K3, a mixed dataset comprising COCO 2017 (Lin et al., 2014), GQA

2https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K
3https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/

main/llava_v1_5_mix665k.json
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(Hudson & Manning, 2019), OCR-VQA (Mishra et al., 2019), TextVQA (Singh et al., 2019), and
VisualGenome (Krishna et al., 2017).

Implementation. We follow the hyperparameters used by Liu et al. (2024c). During pre-training,
we freeze both the image and text towers, training only the projector and registers. We use the
AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 0.0001 and no weight decay
for one epoch. In the fine-tuning stage, we unfreeze the text tower while keeping the image tower
frozen. Similar to pre-training, we use the AdamW optimizer with a learning rate of 0.00002 and no
weight decay for one epoch.

4.2 EVALUATION

For evaluation, we use 11 benchmarks from the LLaVA-v1.5 report (Liu et al., 2024a), supplemented
by MMMU (Yue et al., 2024), a widely-used benchmark for assessing modern vision-language
models. The benchmarks include: VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019),
ScienceQA (Lu et al., 2022), TextVQA (Singh et al., 2019), VizWiz-VQA (Gurari et al., 2018),
POPE (Li et al., 2023c), MME-P (Yin et al., 2023), MMBench (Liu et al., 2023), SEED-Bench (Li
et al., 2023a), LLaVA-Bench-in-the-Wild (Liu et al., 2024c), MM-Vet (Yu et al., 2023), and MMMU
(Yue et al., 2024). These benchmarks provide a comprehensive assessment of models’ multi-modal
reasoning capabilities, encompassing both academic-task-oriented and instruction-following tasks.
We employ the LMMs-Eval framework4 (Zhang et al., 2024) for evaluation. For simplicity, we
primarily report the average of the normalized benchmark scores. Specifically, for MME-P, the
score is divided by 2, 000, which represents the full score, as their metric is calculated by summing
the accuracies of individual subtasks.

We evaluate efficiency by measuring the increase in throughput with the KV-cache on (Pope et al.,
2023). After gathering statistics from all 12 benchmarks, presented in Appendix A.1, we evaluate
two settings: 1) 2-token generation and 2) 128-token generation. The 2-token generation simu-
lates scenarios where questions expect a single word, as in GQA (Hudson & Manning, 2019) and
TextVQA (Singh et al., 2019). In contrast, the 128-token generation represents open-ended question
scenarios, such as in LLaVA-Bench-in-the-Wild (Liu et al., 2024c) and MM-Vet (Yu et al., 2023). In
both settings, we use a text prompt length of 64 and a batch size of 16. We choose a batch size of 16
because it is the largest batch size that fits in memory. All training is conducted on 8 NVIDIA A100
GPUs, with efficiency profiling performed on a single NVIDIA A100. By default, we set k to 3 and
vary the number of final visual tokens to 256, 128, 64, 32, 16, and 8 for all methods to thoroughly
assess the trade-off between efficiency and performance, where the number of visual tokens for the
original LLaVA-v1.5 model is 576.

We also compare our methods against two baselines: FastV (Chen et al., 2024) and Perceiver Re-
sampler (Jaegle et al., 2021). FastV is the state-of-the-art token reduction method that filters out
less important vision tokens based on attention scores, while the Perceiver Resampler is a compact,
transformer-based model designed to condense input tokens into a smaller query set.

5 RESULTS

5.1 THROUGHPUT INCREASE

We present the efficiency and performance trade-offs for both generation settings in Figure 4, while
the performance on individual benchmarks is included in Appendix A.2. As shown, our method has
a better Pareto frontier than FastV and the Perceiver Resampler in both scenarios.

Both Victor and FastV maintain minimal performance degradation when the throughput increases
by approximately 1.5× to 2× and the number of tokens decreases from 576 to 256 or 128. However,
FastV’s performance declines rapidly beyond this point. In contrast, our method exhibits only a 4%
performance drop even when the number of visual tokens is reduced to 8, which is roughly 1%
of the original visual token count. Additionally, given the same number of final visual tokens, our
method has slightly higher theoretical FLOPs than FastV due to the inclusion of extra register tokens
in the initial layers. However, in practice, our method achieves a greater increase in throughput

4https://github.com/EvolvingLMMs-Lab/lmms-eval
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(a) 2-Token Generation
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(b) 128-Token Generation

Figure 4: Efficiency-Performance Trade-Off Curve. We measure the relative throughput increase
compared to the baseline model. The test covers two main scenarios: generating 2 tokens and
generating 128 tokens. In both cases, the batch size is set to 16, and the text prompt length is 64
tokens. For all methods, we use 256, 128, 64, 32, 16, and 8 visual tokens to generate the line plot.

compared to FastV. This is due to the fact that, in the layer where FastV performs filtering, the
model is constrained to using the original attention mechanism to compute attention scores, as it
cannot leverage more efficient attention implementations. In contrast, our method is compatible with
a wide range of efficient attention implementations including those that do not support returning
attention scores. As a result, Victor not only achieves better throughput and more effectively
retains the accuracy but is also more adaptable across different devices than FastV.

Table 1: Number of Extra Parameters
for Different Methods. The final num-
ber of visual tokens is 256.

Method # of Extra Parameters

FastV 0 (0.00%)
Perceiver 252.86M (3.61%)

Ours 1.78M (0.03%)

In contrast, the Perceiver Resampler experiences a sub-
stantial performance drop of approximately 10% com-
pared to the original model, performing significantly
worse than Victor. Interestingly, its performance re-
mains stable across different reduction ratios, consis-
tent with the findings of Laurençon et al. (2024). De-
spite this performance decline, the Perceiver Resampler
achieves a much higher throughput increase than FastV
and Victor. As shown in Table 1, however, the Per-
ceiver Resampler requires a substantially larger number
of additional parameters—252.86M, representing 3.61%
of the total model—while our method adds only 1.78M, approximately 0.03% of the entire model.

5.2 FLOPS REDUCTION
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Figure 5: Performance vs. FLOPs Reduction.

We also report the theoretical FLOPs reduction
of the methods, calculated using the FLOPs for-
mula from Chen et al. (2024). As demonstrated
in Figure 5, while our method shows a slightly
smaller FLOPs reduction due to the presence
of additional register tokens at the start of the
language tower, the overall reduction is com-
parable under the significantly higher token re-
duction rate. Although the Perceiver Resam-
pler achieves a notable increase in throughput,
its FLOPs reduction is substantially lower than
that of FastV and Victor, primarily due to the
additional transformer layers it employs.

5.3 TRAINING-TIME REDUCTION

Victor not only reduces inference costs but also lowers training costs. As indicated in Figure 6,
both Perceiver Resampler and Victor significantly reduce training time in both pre-training and
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fine-tuning stages, with the reduction being especially notable during pre-training due to the shorter
text tokens. Victor achieves a greater overall time reduction. In contrast, training with FastV only
reduces pre-training time and does not improve fine-tuning efficiency. This is because fine-tuning
typically involves a large number of text tokens (often exceeding a thousand), and the use of a naive
attention implementation in this phase introduces significant overhead, reducing training efficiency.
Additionally, we observe that training with FastV does not match the performance of inference-time
FastV. However, it exhibits slower benchmark performance decay as the number of visual tokens
decreases and outperforms inference-time FastV when the number of visual tokens drops below 32.
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(b) Fine-Tuning

Figure 6: Performance vs. Training-Time Reduction. We show total training-time reduction in
Appendix A.3.
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(a) Vicuna-13B-v1.5
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(b) Meta-Llama-3-8B-Instruct
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(c) Mistral-7B-Instruct-v0.2
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(d) LLaVA-NeXT with Qwen2-7B-Instruct

Figure 7: Efficiency-Performance Trade-Off Curve with Different Language Towers under
2-Token Generation. Due to the space limit, we show the 128-token generation scenario in Ap-
pendix A.4. For the first 3 models, we use 256, 128, 64, 32, 16, and 8 visual tokens to generate the
line plot, and for LLaVA-NeXT, we use 512, 256, 128, 64, 32, and 16 visual tokens.
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5.4 DIFFERENT LANGUAGE TOWERS

We extensively evaluate the effectiveness of our method with different language towers. As shown
in Figure 7, replacing the original Vicuna-7B-v1.5 language model with Vicuna-13B-v1.5 (Zheng
et al., 2024), Meta-Llama-3-8B-Instruct (Dubey et al., 2024), and Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023), Victor remains highly effective and significantly outperforms the two baseline meth-
ods. For both Meta-Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2, Victor demonstrates min-
imal performance drop and a slow decay in performance as the number of visual tokens decreases.
Notably, for these two models, when the number of visual tokens is reduced by half, the method
shows no performance degradation at all.

We further demonstrate the performance of our method on a different vision-language model design:
LLaVA-NeXT (LLaVA-v1.6) (Liu et al., 2024a). LLaVA-NeXT follows a similar architecture to
LLaVA-v1.5 but increases the number of visual tokens from 576 to 2,880 by incorporating different
aspect ratios, enhancing the model’s capabilities. Additionally, LLaVA-NeXT utilizes Qwen2-7B-
Instruct (Yang et al., 2024) as its language tower, benefiting from its extended context length. In
our experiments, we reduce the number of visual tokens to 512, 256, 128, 64, 32, and 16. As indi-
cated in Figure 7d, our method remains highly effective in the LLaVA-NeXT setting, consistently
outperforming both FastV and the Perceiver Resampler.

5.5 DIFFERENT LAYERS TO DROP VISUAL TOKENS
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Figure 8: Ablation on Token Dropping Layers.

We show the results of the ablation study on
which layer to drop the visual tokens (hyper-
parameter k) in Figure 8. In terms of through-
put improvement, it is clear that the earlier we
drop the visual tokens, the more efficient the
model becomes. For lower-layer numbers, such
as k = 1 or k = 2, the model’s efficiency sig-
nificantly increases, with throughput reaching
nearly a 4× improvement. However, this comes
with a substantial performance drop, suggest-
ing that one or two layers are likely insuffi-
cient for the summarization process. In con-
trast, when k ≥ 3, the performance degradation
is minimal, staying within a 5% performance
score loss. Notably, when k = 5, with half of
the visual tokens dropped, the model experiences no performance loss.

5.6 EFFECT OF VISUAL REGISTERS ON REGULAR VLMS
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Figure 9: Results without Dropping
Visual Tokens. From left to right on
the line plot, we incrementally add 8,
16, 32, 64, 128, and 256 visual tokens
respectively.

In Figure 9, we present the results of not dropping the vi-
sual tokens and instead using visual registers as a means
for the model to store useful information, similar to those
proposed by Darcet et al. (2023). As reflected in Fig-
ure 9, there is a slight performance improvement over the
baseline model, but it is limited to around a 2% increase.
However, once the number of visual registers exceeds
64, a further increase does not result in additional per-
formance gains. On the other hand, adding more visual
tokens leads to a decrease in throughput. Interestingly,
adding just 8 visual tokens offers a minimal throughput
reduction while still providing a 1% performance boost,
making it a “free lunch” for visual-language models.

5.7 ANALYSIS

In Section 3.1, we empirically demonstrate that the visual registers are more compact than the orig-
inal visual tokens. In this subsection, we perform a simple analysis to examine whether and how
visual registers summarize visual information. The attention map from visual registers to visual
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Layer 1
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Figure 10: Attention Map from Visual Registers to Visual Tokens. We prompt the model with a
test image from the COCO dataset and the instruction, “Describe the image.”

tokens is shown in Figure 10. Although the model is not explicitly trained to summarize visual
information into the visual registers, they implicitly encode the visual tokens, as indicated by the
significant attention scores between visual registers and visual tokens. Interestingly, the visual reg-
isters exhibit low attention to visual tokens in the first two layers, and the summarization primarily
occurs in the third layer, just before the visual tokens are removed. This may be because the first
two layers focus on processing the visual tokens or aligning the visual tokens and registers into a
shared space to facilitate communication in later layers. This observation aligns with the ablation
results discussed in Section 5.5, where dropping visual tokens in the first or second layer causes a
significant performance drop. This suggests that it is more effective for the summarization process
to occur in the later layers.

As shown on the right side of Figure 10, when examining the attention mapped back to the original
image, the visual registers primarily focus on key elements like the rock in the water and the boat
mast, while also capturing broader regions of the image. Overall, even without supervision, Victor
implicitly learns to summarize the image information both effectively and efficiently.

6 LIMITATION AND FUTURE WORK

While Victor is simple and effective, we identified some limitations and directions for future
improvements. Currently, Victor is not a training-free method, and it must be incorporated at
the training stage of the vision-language modeling. Developing a version of Victor that could
be applied post-training would be a valuable advancement. However, this might be challenging,
as the language tower may need to be specifically trained to learn to effectively utilize the visual
registers. Another limitation is the inflexibility of the number of visual registers. As discussed
in Appendix A.5, the performance degrades if the number of visual tokens is changed on the fly
without retraining. In future work, we believe incorporating certain auxiliary loss functions could
help make Victor more adaptable and flexible. Additionally, while this paper focuses on applying
Victor to vision-language models, we believe this technique could also benefit language models,
particularly in long-context tasks. We leave these for future exploration.

7 CONCLUSION

In this paper, we introduce Victor, a novel visual token summarization method that significantly
enhances the efficiency-performance trade-off in vision-language models. Without explicit enforce-
ment, the language tower utilizes register tokens to summarize visual information within the first
10% of the layers. After summarization, Victor removes the need for visual tokens beyond these
layers. Our approach offers a superior balance in efficiency compared to state-of-the-art methods.
Moreover, with just up to 0.03% additional parameters, Victor is compatible with various atten-
tion mechanisms, providing a user-friendly and efficient solution across different hardware environ-
ments for future applications.
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REPRODUCIBILITY STATEMENT

As mentioned in Section 4.1, our experiments primarily follow the original LLaVA-v1.5 implemen-
tation. Additionally, our method is simple and straightforward to implement. We will release the
source code with the camera-ready version.
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A APPENDIX

A.1 LENGTH STATISTICS FOR INDIVIDUAL BENCHMARKS

We show the length statistics of benchmarks in Table 2. Based on the representative lengths of these
benchmarks, there are two main categories: 1) short-generation, represented by the 2-token gener-
ation scenario in our experiments, and 2) long-generation, represented by the 128-token generation
scenario.

Table 2: Prompt and Generation Length Stats of Individual Benchmarks.

Short-Generation Benchmarks
VQAv2 GQA ScienceQA TextVQA VizWiz POPE MME MMBench Seed MMMU Average

Prompt Len. 43.05 46.10 93.04 43.88 44.31 43.70 54.28 86.21 93.04 210.20 75.78
Generation Len. 1.56 1.09 2.00 8.88 3.19 1.00 1.00 1.00 2.00 1.21 2.29

Long-Generation Benchmarks

LLaVA-Bench-Wild MM-Vet Average

Prompt Len. 49.82 49.74 49.78
Generation Len. 146.60 96.11 121.36

A.2 PERFORMANCE ON INDIVIDUAL BENCHMARKS

We show the performance on individual benchmarks of Section 5.1 in Figure 11.
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Figure 11: Individual Benchmark Performance.

A.3 TOTAL TRAINING-TIME REDUCTION

The total training-time reduction is shown in Figure 12.
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Figure 12: Performance vs. Total Training-Time Reduction..

A.4 EXTRA RESULTS WITH DIFFERENT LANGUAGE TOWERS

The extra result of Section 5.4 with 128-token generation scenario is presented in Figure 13.
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Figure 13: Efficiency-Performance Trade-Off Curve with Different Language Towers under
128-Token Generation.
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A.5 ABLATION ON ADJUSTING THE NUMBER OF VISUAL REGISTERS AT INFERENCE
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Figure 14: Ablation on Adjusting the Number of Visual Registers at Inference.

In our main experiments, we retrain the model whenever a different number of visual registers is
required. In this subsection, we explore two strategies for adjusting the number of visual registers
dynamically at inference time. Given a Victor model with M visual registers, if we want to use
M ′ < M registers, we either select the first M ′ registers (referred to as “head”) or the last M ′

registers (referred to as “tail”). As shown in Figure 14, the performance of these adjustments is not
as effective as retraining the model from scratch. However, we believe that adding certain auxiliary
losses during training can make our method more flexible, and we leave this for future work.

A.6 IMPORTANCE OF VISUAL REGISTERS FOR SUMMARIZATION
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Figure 15: Importance of Visual Registers for Summarization.

In this subsection, we conduct an ablation study to demonstrate the necessity of using visual registers
for summarization. Specifically, we compare our approach to an alternative method where instead of
prepending additional tokens to the visual tokens, we retain the last M visual tokens at layer 3. This
requires the model to summarize all visual information into these last existing M visual tokens. As
shown in Figure 15, while the ablated method results in a slight improvement in throughput, overall
the performance drops significantly. This highlights the importance of incorporating visual registers
for effective summarization.
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A.7 DIFFERENT VISUAL REGISTERS
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Figure 16: Ablation with Different Visual Registers.

We also experiment with various types of visual registers. In addition to using learnable tokens,
we test three alternative methods for visual registers: 1) Pooled Image Feature: utilizing average-
pooled visual tokens as the register tokens, 2) Zeros: initializing with all zeros, and 3) “Image”
Token: using the embedding of the word “Image.” The results are presented in Figure 16. The
“Image” Token method is effective for the visual registers, especially when the number of visual
tokens is reduced to 256 and 128, as there is no performance drop. However, all alternative methods
showed relatively worse performance compared to learnable queries in the low visual token regime.
Therefore, we adopt learnable queries for Victor as they offer better overall performance.
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