TURBOQUANT: ONLINE VECTOR QUANTIZATION WITH NEAR-OPTIMAL DISTORTION RATE

Anonymous authors

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

033

034

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Vector quantization, a problem rooted in Shannon's source coding, aims to quantize high-dimensional Euclidean vectors while minimizing distortion in their geometric structure. We propose TURBOQUANT to address both mean-squared error (MSE) and inner product distortion, overcoming limitations of existing methods that fail to achieve optimal distortion rates. Our data-oblivious algorithms, suitable for online applications, achieve near-optimal distortion rates (within a small constant factor) across all bit-widths and dimensions. TURBOQUANT achieves this by randomly rotating input vectors, inducing a concentrated Beta distribution on coordinates, and leveraging the near-independence of distinct coordinates in high dimensions to simply apply optimal scalar quantizers per each coordinate. Recognizing that MSE-optimal quantizers introduce bias in inner product estimation, we propose a two-stage approach: applying an MSE quantizer followed by a 1-bit Quantized JL (QJL) transform on the residual, resulting in an unbiased inner product quantizer. We also provide a formal proof of the information-theoretic lower bounds on best achievable distortion rate by any vector quantizer, demonstrating that TURBOQUANT closely matches these bounds, differing only by a small constant (≈ 2.7) factor. Experimental results validate our theoretical findings, showing that for KV cache quantization, we achieve absolute quality neutrality with 3.5 bits per channel and marginal quality degradation with 2.5 bits per channel. Furthermore, in nearest neighbor search tasks, our method outperforms existing product quantization techniques in recall while reducing indexing time to virtually zero.

Vector quantization (VQ) in Euclidean space is crucial for efficiently handling high-dimensional vectors across a spectrum of computational domains, from training and deploying large-scale AI and deep learning models to powering vector databases for search/retrieval. The core objective is to compress high-dimensional vectors by quantizing them—converting floating-point coordinate values to low-bitwidth integers—while minimizing distortion, quantified by metrics such as mean-squared error (MSE) or inner product errors. By preserving these properties, inner product queries can be answered rapidly, with minimal latency, and using reduced computational and communication resources.

This problem traces back to Shannon's seminal work on source coding Shannon (1948); Shannon et al. (1959), which established that the minimum distortion achievable by block source codes—now known as vector quantizers—is characterized by the distortion—rate function, determined by the source statistics and the chosen distortion measure (e.g., MSE). Today, vector quantization plays a central role in modern computational domains, including AI, deep learning, and large-scale search systems.

A key application of VQ is in deployment of AI models, including LLMs Achiam et al. (2023); Dubey et al. (2024); Anthropic (2024); Team et al. (2024). As LLM capabilities depend heavily on their model size and context length Kaplan et al. (2020), serving them requires substantial memory demands and increased inference latency. This latency is primarily attributed to communication bottlenecks between HBM and SRAM on accelerators, or across distributed clusters. By compressing or quantizing model weights and activations, we can effectively mitigate these bottlenecks, resulting in significant reductions in inference costs. Inner product operations between activations and weights is at the core of deep learning models. Thus, model quantization schemes strive to compress weights and/or activation vectors while accurately preserving these inner products.

055

056

058

060

061

062 063

064

065

066

067

068

069

071

072

073

074

075 076

077

079

081

082

083

084

085

087

880

090

091

092

093 094

095

096

098

100

101

102

103 104 105

106

107

Decoder based transformer models Vaswani et al. (2017) present another compelling use case. These models must store key/value (KV) embeddings from previously generated tokens in the KV cache, the size of which scales with both model size (number of layers and attention heads) and context length. This scaling is a significant bottleneck in terms of memory usage and computational speed, especially for long context models. Therefore, reducing the KV cache size without compromising accuracy is essential. In this context, the preservation of the Euclidean structure of these embedding vectors-their inner products and distances-is crucial for maintaining model performance. VQ emerges as the most suitable framework for addressing this challenge, offering a robust approach to compressing high-dimensional embeddings while preserving their essential geometric properties.

Additionally, nearest neighbor (NN) search in high-dimensional spaces with inner product or cosine similarity ela (2025); Guo et al. (2020) is a cornerstone of vector databases pin (2025); gdr (2025); pgv (2025). These databases are fundamental for retrieval-augmented generation Gao et al. (2023); Edge et al. (2024) and information retrieval Khattab & Zaharia (2020); Santhanam et al. (2021). VQ, a.k.a. product quantization (PQ), plays a critical role by enabling efficient compression of database vectors, optimizes memory usage, and facilitates low-latency, accurate estimations of inner products with query vectors, thereby enabling fast and precise nearest neighbor searches.

Existing VQ algorithms present a trade-off: either they lack accelerator (vectorization) compatibility and exhibit slow computation, making them unsuitable for real-time AI applications like KV cache quantization, or they suffer from suboptimal distortion bounds relative to bit-width. Our objective is to introduce an algorithm that addresses these limitations. Specifically, we design TURBOQUANT: a lightweight, capable of online application (crucial for scenarios like KV cache quantization), and highly accelerator-friendly—a critical attribute for modern AI workloads.

The core of TURBOQUANT is a two-stage process. First, we develop a quantizer with optimal distortion rate in terms of mean-squared error (MSE). Subsequently, we apply a 1-bit quantizer to the residual, resulting in an unbiased and low-distortion inner product quantizer. We demonstrate that quantizers optimized for MSE do not produce unbiased estimators for inner products, and our twostage solution effectively bridges this gap. Our quantizer starts by randomly rotating d-dimensional input vectors. Observing the key fact that each coordinate in the rotated vectors follows a Beta distribution, we design optimal Lloyd-Max quantizer Lloyd (1982); Max (1960) for each coordinate by solving a continuous k-means problem. This method gives optimal MSE distortion bound and minimizes the L2 norm of the residual. To obtain an unbiased and low-distortion quantizer for inner products, we compose our quantizer with the recently developed Quantized Johnson-Lindenstrauss (QJL) transform Zandieh et al. (2024a), which quantizes each coordinate of the residual vector to a single bit. Our algorithm offers provably optimal distortion bounds for both MSE and inner products, achieving an exponential improvement over existing methods in terms of bit-width dependence.

0.1 Problem Definition

Formally, our goal is to design a quantization map, denoted as $Q: \mathbb{R}^d \to \{0,1\}^B$, that transforms d-dimensional vectors to B-bit binary strings. If we set $B = b \cdot d$ for some $b \ge 0$, this quantizer is said to have a bit-width of b, representing the average number of bits used to encode each coordinate of \mathbb{R}^d . Crucially, we require an inverse map, $Q^{-1}:\{0,1\}^B\to\mathbb{R}^d$ that performs dequantization, approximately reconstructing original vectors from their quantized representations. Of course, this transformation is inherently lossy, as Q is not a bijection. So, our primary objective is to minimize distortion, with a specific focus on mean-squared error (MSE) and inner product distortion.

We make no distributional assumptions on the input vectors, treating them in the worst-case setting. We let the quantizer $Q(\cdot)$ to be randomized, leading to stochastic outputs. Considering randomized quantizers, it is more appropriate to define the expected distortion over the randomness of the quantizer's output. Thus, we aim to design quantizers that for any desired bit-width b minimize the following expected distortion measures for any (worst-case) vectors $x, y \in \mathbb{R}^d$:

(MSE)
$$D_{\text{mse}} := \mathbb{E}_{Q} \left[\left\| \boldsymbol{x} - Q^{-1} \left(Q(\boldsymbol{x}) \right) \right\|_{2}^{2} \right]$$
 (1)

$$\begin{aligned} \textbf{(MSE)} \quad & D_{\text{mse}} := \mathop{\mathbb{E}}_{Q} \left[\left\| \boldsymbol{x} - Q^{-1} \left(Q(\boldsymbol{x}) \right) \right\|_{2}^{2} \right] \end{aligned} \end{aligned} \tag{1}$$

$$\begin{aligned} \textbf{(inner-prod error)} \quad & D_{\text{prod}} := \mathop{\mathbb{E}}_{Q} \left[\left| \left\langle \boldsymbol{y}, \boldsymbol{x} \right\rangle - \left\langle \boldsymbol{y}, Q^{-1} \left(Q(\boldsymbol{x}) \right) \right\rangle \right|^{2} \right]. \end{aligned} \tag{2}$$

The expectations above are taken with respect to the randomness of the quantizer $Q(\cdot)$. Furthermore, for inner-product quantizers, we require unbiasedness of the inner product estimator, a desirable property for numerous applications. More precisely, we require:

We aim to design computationally efficient quantizers $Q_{\tt mse}$ and $Q_{\tt prod}$, that achieve optimal bounds for the distortion measures defined above, for any given bit-width b. Additionally, we aim for $Q_{\tt prod}$ to provide unbiased inner product estimates. In particular, assume that we are given n real-valued vectors $x_1, x_2, \ldots x_n \in \mathbb{R}^d$. We design the following primitives:

- QUANT: efficiently quantizes the dataset and computes $Q(x_1), Q(x_2), \dots Q(x_n)$.
- DEQUANT: efficiently reconstructs original vectors by computing $Q^{-1}(Q(\boldsymbol{x}_i))$ for $i \in [n]$.

0.2 RELATED WORK

Online (data-oblivious) quantization methods apply instantly without needing data-specific tuning or calibrations Dettmers et al. (2022); Ashkboos et al. (2024); Liu et al. (2024b); Shah et al. (2024); Han et al. (2025a). In contrast, offline (data-dependent) methods require heavy preprocessing and learning to adapt the quantization map to the data, making them unsuitable for dynamic data scenarios Kim et al. (2023). For instance, methods such as those presented in Frantar et al. (2022); Lin et al. (2024); Xiao et al. (2023a); Chee et al. (2023) use second-order (Hessian) information to tune the quantization map which requires heavy preprocessing and even in some cases post processing as well.

Due to space constraints, we include a more detailed discussion of related work in Appendix A.

0.3 Overview of Techniques and Contributions

MSE Optimized TURBOQUANT. Our first VQ algorithm is designed to minimize MSE distortion defined in Eq. (1). To achieve this, we apply a random rotation to the input vectors, thereby inducing a Beta distribution on each coordinate, irrespective of the input vectors themselves. In high dimensions d, the distribution of each coordinate converges to a Normal distribution due to concentration of measure and the central limit theorem. Furthermore, any two distinct coordinates become nearly uncorrelated and, more importantly, almost independent (a deeper result that goes beyond just correlation). This near-independence is a crucial aspect that simplifies our quantization design. It allows us to quantize each coordinate using optimal scalar quantization, disregarding interactions or correlations between different coordinates, while still achieving near-optimal distortion.

We find optimal scalar quantizers for random variables with Beta distributions by solving a continuous 1-d k-means problem using the Max-Lloyd algorithm. We precompute and store these optimal codebooks for a range of practically useful bit-widths, to enable efficient subsequent invocations of our TurboQuant algorithm. In Theorem 1 we prove that the b-bit MSE optimized TurboQuant $Q_{\text{mse}}: \mathbb{R}^d \to \{0,1\}^{b\cdot d}$ achieves the following distortion for any worst-case vector $\boldsymbol{x} \in \mathbb{R}^d$ with $\|\boldsymbol{x}\| = 1$, without any assumption on the distribution of \boldsymbol{x} :

- $\bullet \ \ D_{\mathtt{mse}}(Q_{\mathtt{mse}}) := \mathbb{E}\left[\left\| \boldsymbol{x} Q_{\mathtt{mse}}^{-1}\left(Q_{\mathtt{mse}}(\boldsymbol{x})\right) \right\|_2^2 \right] \leq \frac{\sqrt{3}\pi}{2} \cdot \frac{1}{4^b} \text{ for any } b \geq 0.$
- For small bit-widths the above distortion upper bound can be further refined. Specifically, for b=1,2,3,4 we have $D_{\tt mse}(Q_{\tt mse})\approx {\bf 0.36},{\bf 0.117},{\bf 0.03},{\bf 0.009},$ respectively.

Note that the unit norm assumption, $||x||_2 = 1$, is standard and not restrictive and can compute and store the L2 norms in floating-point precision and rescale the dequantized points.

Inner Product TURBOQUANT. We show that the MSE optimized quantizers are biased for inner product estimation, and thus a different VQ scheme is needed to get an unbiased inner product quantizer. Our solution is a two-stage algorithm that first applies the above-mentioned $Q_{\rm mse}$ with a bit-width one less than our target budget and then applies a QJL Zandieh et al. (2024a) on the residual error. This is proven to be unbiased and also has a nearly optimal inner product error rate. In Theorem 2 we prove that the b-bit inner product optimized TURBOQUANT $Q_{\rm prod}: \mathbb{R}^d \to \{0,1\}^{b\cdot d}$ achieves the following distortion for any vectors $x, y \in \mathbb{R}^d$ with ||x|| = 1, without any assumption on the distribution of x, y:

• $\mathbb{E}\left[\left\langle \boldsymbol{y}, Q_{\mathtt{prod}}^{-1}\left(Q_{\mathtt{prod}}(\boldsymbol{x})\right)\right
angle\right] = \left\langle \boldsymbol{y}, \boldsymbol{x} \right\rangle$

$$\bullet \ \ D_{\mathrm{prod}}(Q_{\mathrm{prod}}) := \mathbb{E}\left[\left|\langle \boldsymbol{y}, \boldsymbol{x} \rangle - \langle \boldsymbol{y}, Q_{\mathrm{prod}}^{-1}\left(Q_{\mathrm{prod}}(\boldsymbol{x})\right) \rangle\right|^2\right] \leq \frac{\sqrt{3}\pi^2 \cdot \|\boldsymbol{y}\|_2^2}{d} \cdot \frac{1}{4^b} \text{ for any } b \geq 0.$$

• For small bit-widths the above distortion upper bound can be further refined. Specifically, for b=1,2,3,4 we have $D_{\text{prod}}(Q_{\text{prod}}) \approx \frac{\textbf{1.57}}{d}, \frac{\textbf{0.56}}{d}, \frac{\textbf{0.18}}{d}, \frac{\textbf{0.047}}{d}$, respectively.

Lower Bound. As shown in Theorem 3 in the appendix, we leverage Shannon's lower bound and Yao's minimax principle to prove that for any randomized quantization algorithm $Q: \mathbb{R}^d \to \{0,1\}^{b\cdot d}$ with bit-width b, there exist hard input instances $\boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^d$ with $\|\boldsymbol{x}\|=1$ such that the following lower bounds hold:

•
$$D_{\mathtt{mse}}(Q) := \mathbb{E}\left[\left\|oldsymbol{x} - Q^{-1}\left(Q(oldsymbol{x})
ight)
ight\|_2^2
ight] \geq rac{1}{4^b}$$

$$\bullet \ D_{\texttt{prod}}(Q) = \mathbb{E}\left[\left|\left\langle \boldsymbol{y}, \boldsymbol{x} \right\rangle - \left\langle \boldsymbol{y}, Q^{-1}\left(Q(\boldsymbol{x})\right)\right\rangle\right|^2\right] \geq \frac{\|\boldsymbol{y}\|_2^2}{d} \cdot \frac{1}{4^b}$$

As demonstrated by our lower bounds, TurboQuant's MSE distortion is provably within a factor of at most $\frac{\sqrt{3}\pi}{2}\approx 2.7$ of the information-theoretical lower bound. Notably, for smaller bit-widths, this factor significantly decreases. For instance, at a bit-width of b=1 TurboQuant achieves a distortion that is only a factor of approximately 1.45 away from the optimal which is also confirmed by our experimental results, indicating its efficiency in low-bit-width scenarios.

Experimental Results. In Section 2.1, we empirically validate our theoretical distortion bounds, demonstrating that TurboQuant's observed distortions closely align with our predictions across various real-world datasets, approaching the established lower bounds. Furthermore, in Section 2.2 and Section 2.3, we showcase TurboQuant's efficacy in online KV cache quantization. Specifically, we achieve perfect long-context retrieval in needle-in-a-haystack tasks as well as other long-context tasks, while compressing the KV cache by a factor exceeding 5×. Finally in Section 2.4 we apply TurboQuant to various high-dimensional near neighbor search tasks. TurboQuant consistently outperforms data-dependent product quantization, while reducing the indexing time to near zero.

Notations. We use boldface lowercase letters, such as x and y, to denote vectors, and boldface uppercase letters, like M, to denote matrices. To denote a slice of a vector x between the coordinate indices i and j inclusive of the endpoints, we use $x_{i:j}$. For a matrix M, we simply write M_i to denote its i-th row vector. We use the notation \mathbb{S}^{d-1} to denote the hypersphere in \mathbb{R}^d of radius 1.

1 TURBOQUANT: HIGH PERFORMANCE QUANTIZATION

We developed two VQ algorithms, each tailored to a specific objective. The first algorithm is designed to minimize the MSE between the original and reconstructed vectors after quantization. The second algorithm is optimized for unbiased inner product estimation, addressing the bias inherent in MSE-optimal quantizers. These algorithms are detailed in the following subsections.

Furthermore, in Appendix C.3, we establish information-theoretic lower bounds on the best achievable distortion rates for any vector quantizer. This analysis demonstrates that TURBOQUANT achieve near-optimality, differing from the lower bound by only a small constant factor across all bit-widths.

1.1 MSE OPTIMAL TURBOQUANT

Let $x \in \mathbb{S}^{d-1}$ be a (worst-case) vector on the unit sphere in dimension d. We aim to quantize x to b bits per coordinate while minimizing the reconstruction MSE defined in Eq. (1). We start by randomizing this vector by multiplying it with a random rotation matrix $\Pi \in \mathbb{R}^{d \times d}$. We can generate Π by applying QR decomposition on a random matrix with i.i.d Normal entries.

The resulting rotated vector, $\Pi \cdot x$, is uniformly distributed on the unit sphere \mathbb{S}^{d-1} . As shown in Lemma 1, each coordinate of $\Pi \cdot x$ follows a Beta distribution, which converges to a normal distribution in high dimensions. Furthermore, in high dimensions, distinct coordinates of $\Pi \cdot x$ become nearly independent Vershynin (2018), allowing us to apply optimal scalar quantizers to each

Algorithm 1 TURBOQUANT_{mse}: optimized for MSE

- 1: **input:** dimension d and bit-width b
- 2: Generate a random rotation matrix $\Pi \in \mathbb{R}^{d \times d}$
- 3: Construct codebook by finding centroids $c_1, c_2, \dots c_{2^b} \in [-1, 1]$ that minimize MSE cost in Eq. (3)
- 4: **Procedure** QUANT_{mse}(\boldsymbol{x})
- 5: $y \leftarrow \Pi \cdot x$

- 6: $idx_j \leftarrow \arg\min_{k \in [2^b]} |y_j c_k| \text{ for every } j \in [d]$ { idx_j 's are b-bit integers}
- 7: **output:** idx
 - 8: **Procedure** DEQUANT_{mse}(idx)
 - 9: $\tilde{\boldsymbol{y}}_j \leftarrow c_{\mathtt{idx}_j}$ for every $j \in [d]$
 - 10: $\tilde{\boldsymbol{x}} \leftarrow \boldsymbol{\Pi}^{\top} \cdot \tilde{\boldsymbol{y}}$
- 230 11: output: \tilde{x}

coordinate independently. Therefore, by Lemma 1, our task reduces to designing a scalar quantizer for random variables with the distribution $f_X(x) = \frac{\Gamma(d/2)}{\sqrt{\pi} \cdot \Gamma((d-1)/2)} \left(1 - x^2\right)^{(d-3)/2}$ for $x \in [-1, 1]$.

The optimal scalar quantization problem, given a known probability distribution, can be framed as a continuous k-means problem in dimension one. Specifically, we aim to partition the interval [-1,1] into 2^b clusters/buckets. The optimal solution adheres to a Voronoi tessellation Lloyd (1982), meaning interval boundaries are the midpoints between consecutive centroids, when arranged in sorted order. Therefore, with c_i 's denoting the centroids in ascending order, we can formulate the scalar quantization as the following k-means optimization problem:

$$C(f_X, b) := \min_{\substack{-1 \le c_1 \le c_2 \le \dots \le c_{2b} \le 1}} \sum_{i=1}^{2^b} \int_{\frac{c_i + c_{i+1}}{2}}^{\frac{c_i + c_{i+1}}{2}} |x - c_i|^2 \cdot f_X(x) \, dx. \tag{3}$$

Note that $\mathcal{C}(f_X,b)$ in Eq. (3) denotes the optimal MSE cost function for bit-width b, a quantity we will bound to prove the upper bound on the end-to-end MSE of TURBOQUANT. The problem in Eq. (3) can be solved using iterative numerical methods to achieve any desired precision. We solve Eq. (3) for a range of practically relevant bit-widths b once, and store the results for future uses by the quantizer. For example, in moderately high dimensions d, where the distribution $f_X(x)$ closely approximates a normal distribution, the optimal quantization centroids for bit-widths b=1,2 are $\left\{\pm\frac{\sqrt{2/\pi}}{\sqrt{d}}\right\}$ and $\left\{\pm\frac{0.453}{\sqrt{d}},\pm\frac{1.51}{\sqrt{d}}\right\}$, respectively.

Therefore the quantizer
$$Q_{\mathtt{mse}}: \mathbb{R}^d \to \{0,1\}^{b \cdot d}$$
 first computes $\mathbf{\Pi} \cdot \boldsymbol{x}$ and then computes and stores the indices of the nearest centroids to each coordinate of this vector. The dequantization map $Q_{\mathtt{mse}}^{-1}: \{0,1\}^{b \cdot d} \to \mathbb{R}^d$ reconstructs the vector by retrieving the centroids corresponding to the stored indices and then rotating the result back to the original basis through multiplication with $\mathbf{\Pi}^{\top}$.

A pseudocode for these procedures is given in Algorithm 1.

We are now ready to prove our main theorem for TURBOQUANT_{mse}, the proof is in Appendix C.

Theorem 1 (Performance Guarantee: TURBOQUANT_{mse}). For any bit-width $b \ge 1$ and any vector $x \in \mathbb{S}^{d-1}$, the procedure QUANT_{mse}(x) in Algorithm 1 outputs an index vector $\mathrm{id}x \in [2^b]^d$. When this index vector is passed to the primitive DEQUANT_{mse}($\mathrm{id}x$), it produces a reconstructed vector $\tilde{x} \in \mathbb{R}^d$ that satisfies the following distortion bounds:

- MSE defined as $D_{\mathtt{mse}} := \mathbb{E}_{\tilde{\boldsymbol{x}}}[\|\boldsymbol{x} \tilde{\boldsymbol{x}}\|_2^2]$ is bounded by $D_{\mathtt{mse}} \leq \frac{\sqrt{3}\pi}{2} \cdot \frac{1}{4^b}$ for any $b \geq 0$.
- For small bit-widths, specifically b=1,2,3,4 the MSE exhibits finer-grained distortion values: $D_{\text{mse}} \approx 0.36, 0.117, 0.03, 0.009$, respectively.

Algorithm 2 TurboQuant_prod: optimized for inner product 1: input: dimension d and bit-width b2: Instantiate a TurboQuant_mse with bit-width b-1 as per Algorithm 1 3: Generate a random projection matrix $S \in \mathbb{R}^{d \times d}$ with i.i.d. entries $S_{i,j} \sim \mathcal{N}(0,1)$ 4: Procedure Quant_prod(x) 5: idx \leftarrow Quant_mse(x) 6: $r \leftarrow x - \text{DEQUANT}_{mse}(idx)$ 7: qjl \leftarrow sign($S \cdot r$) 8: output: (idx, qjl, $||r||_2$)

```
9: Procedure DEQUANT<sub>prod</sub>(idx, qj1, \gamma)
```

10:
$$\tilde{x}_{\texttt{mse}} \leftarrow \text{DEQUANT}_{\texttt{mse}}(\texttt{idx})$$

$$\begin{array}{l} \text{11: } \tilde{x}_{\text{qj1}} \leftarrow \frac{\sqrt{\pi/2}}{d} \cdot \gamma \cdot \boldsymbol{S}^\top \cdot \text{qj1} \\ \text{12: output: } \tilde{x}_{\text{mse}} + \tilde{x}_{\text{qj1}} \end{array}$$

1.2 INNER-PRODUCT OPTIMAL TURBOQUANT

For important applications like nearest neighbor search, having an unbiased inner product estimator is essential. However, TurboQuant_mse presented in Section 1.1 does not provide unbiased inner product estimates with query vectors. To illustrate this, consider the case with a bitwidth of b=1. In this scenario, the optimal codebooks that solve the optimization problem in Eq. (3), for sufficiently large d, are $\left\{\pm\sqrt{2/\pi d}\right\}$. This implies that the quantization map for TurboQuant_mse is $Q_{\text{mse}}(x) = \text{sign}\left(\mathbf{\Pi} \cdot x\right)$ for any $x \in \mathbb{R}^d$, and the dequantization map is $Q_{\text{mse}}^{-1}(z) = \sqrt{2/\pi d} \cdot \mathbf{\Pi}^{\top} \cdot z$ for any $z \in \{-1, +1\}^d$. Therefore, for large enough d, according to Lemma 4, we have $\mathbb{E}\left[\left\langle y, Q_{\text{mse}}^{-1}\left(Q_{\text{mse}}(x)\right)\right\rangle\right] = \frac{2}{\pi} \cdot \left\langle y, x \right\rangle$, which has a multiplicative bias of $2/\pi$. This bias diminishes with increasing bit-widths b, as we empirically demonstrate in Section 2.1.

To address this bias, we propose a solution that combines TurboQuant_mse with an instance of QJL Zandieh et al. (2024a). Specifically, let Q_{mse} be the quantization map corresponding to TurboQuant_mse with a bit-width of b-1. For any $x \in \mathbb{S}^{d-1}$ the residual vector, defined as $r := x - Q_{\text{mse}}^{-1}(Q_{\text{mse}}(x))$, has a small L2 norm, i.e., on expectation $\mathbb{E}[\|r\|] = \sqrt{\mathcal{C}(f_X, b-1)}$ (per Eq. (3)). We can then apply the QJL quantization map Q_{qj1} on this residual vector, resulting in an overall bit-width of b and providing the following unbiased inner product estimator:

$$\left\langle \boldsymbol{y}, Q_{\mathtt{mse}}^{-1}\left(Q_{\mathtt{mse}}(\boldsymbol{x})\right)\right\rangle + \left\|\boldsymbol{r}\right\|_{2} \cdot \left\langle \boldsymbol{y}, Q_{\mathtt{qj1}}^{-1}\left(Q_{\mathtt{qj1}}(\boldsymbol{r})\right)\right\rangle.$$

More formally, the quantization map $Q_{\texttt{prod}}: \mathbb{S}^{d-1} \to [2^{b-1}]^d \times \{-1,1\}^d \times \mathbb{R}$ is defined as:

$$Q_{\texttt{prod}}(\boldsymbol{x}) = \left[Q_{\texttt{mse}}(\boldsymbol{x}), Q_{\texttt{qjl}}\left(\boldsymbol{x} - Q_{\texttt{mse}}^{-1}\left(Q_{\texttt{mse}}(\boldsymbol{x})\right)\right), \left\|\boldsymbol{x} - Q_{\texttt{mse}}^{-1}\left(Q_{\texttt{mse}}(\boldsymbol{x})\right)\right\|_2\right].$$

A pseudocode for this procedure is given in Algorithm 2.

We prove the main result for TURBOQUANT_{prod} in the following theorem and prove it in Appendix C.

Theorem 2 (Performance Guarantee: TurboQuant_{prod}). For any bit-width $b \ge 1$ and any vector $x \in \mathbb{S}^{d-1}$, the procedure Quant_{prod}(x) in Algorithm 2 outputs an index vector $\mathrm{id}x \in [2^{b-1}]^d$ along with a sign vector $\mathrm{qj1} \in \{-1,1\}^d$ and a positive number $\gamma \ge 0$. When these vectors and the scalar value are passed to the primitive DeQuant_{prod}($\mathrm{id}x,\mathrm{qj1},\gamma$), it produces a reconstructed vector $\tilde{x} \in \mathbb{R}^d$ that for any vector $y \in \mathbb{R}^d$ satisfies the following properties:

- Expected inner-product $\mathbb{E}_{\tilde{x}}\left[\langle y, \tilde{x} \rangle\right] = \langle y, x \rangle$
- Inner-product distortion defined as $D_{\text{prod}} := \mathbb{E}_{\tilde{x}} \left[\left| \langle \boldsymbol{y}, \boldsymbol{x} \rangle \langle \boldsymbol{y}, \tilde{\boldsymbol{x}} \rangle \right|^2 \right]$ is bounded by $D_{\text{prod}} \leq \frac{\sqrt{3}\pi^2 \cdot \|\boldsymbol{y}\|_2^2}{d} \cdot \frac{1}{4^b}$ for any $b \geq 0$.
- For small bit-widths, specifically b=1,2,3,4, D_{prod} exhibits finer-grained distortion values: $D_{prod} \approx \frac{1.57}{d}, \frac{0.56}{d}, \frac{0.18}{d}, \frac{0.047}{d}$, respectively.

2 EXPERIMENTS

All experiments are performed using a single NVIDIA A100 GPU. The first set of experiments empirically validates the theoretical results, and the second evaluates the performance of our methods on downstream tasks, specifically KV cache quantization and nearest neighbor vector search.

2.1 EMPIRICAL VALIDATION

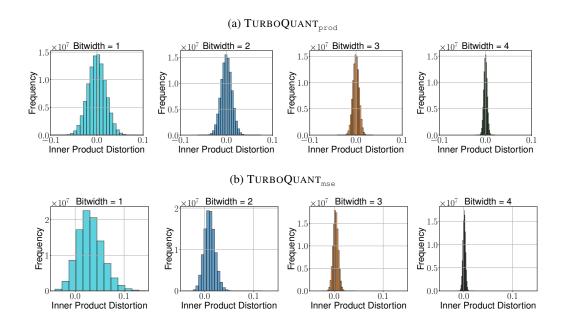


Figure 1: Distribution of Inner Product error for TURBOQUANT_{Drod} and TURBOQUANT_{mse}.

In this section, we validate the theoretical results using experiments on the DBpedia Entities dataset, which is embedded in a 1536-dimensional space via OpenAI3 embeddings. We randomly sample 100,000 points as the training set and extract 1,000 distinct entries as the query set.

We compare two quantization methods: TurboQuant_{prod}, optimized for unbiased inner product estimation, and TurboQuant_{mse}, which minimizes mean squared error (MSE) between quantized and original vectors. Both methods are applied to estimate inner products by quantizing the training set and analyzing distortion across varying bit widths. As shown in Fig. 1, increasing the bit widths reduces variance in both methods. However, TurboQuant_{mse} introduces bias in inner product estimation, which diminishes and converges to zero with higher bit widths. In contrast, TurboQuant_{prod} remains unbiased across all bit widths, confirming the theoretical guarantees.

In addition to histograms, we also plot in Fig. 2 the average inner product error and MSE between the original and quantized vectors for different bit-widths. These plots are drawn against the upper and lower bounds established in our theoretical analysis and confirm that the results align with the theoretical predictions. Specifically, for inner product estimation, the Turboquantprod approach performs better at lower bit ratios. However, as the bit count increases, Turboquantmse reduces bias and ultimately achieves superior performance in inner product estimation.

2.2 NEEDLE-IN-A-HAYSTACK

The "Needle-In-A-Haystack Test" Kamradt (2023) evaluates a model's ability to retrieve a unique sentence (the "needle") embedded within a long document (the "haystack"). Following Fu et al. (2024), we perform this test using the Llama-3.1-8B-Instruct model across varying document lengths from 4k to 104k tokens. Performance is measured using the recall score, which reflects the accuracy of retrieving the hidden sentence.

We compare our method to state-of-the-art memory-efficient approaches, including PolarQuant Han et al. (2025a), SnapKV Li et al. (2024), PyramidKV Cai et al. (2024), and KIVI Liu et al. (2024b),

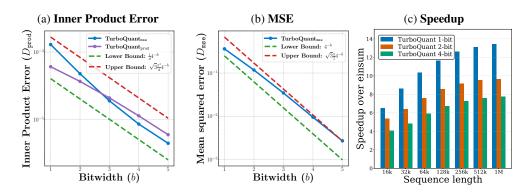


Figure 2: (a) Inner-product error, (b) mean squared error (MSE) versus theoretical bounds, and (c) speedup factors for QK^{\top} computation in the KV-cache at different bit-widths. Speedup is measured relative to the PyTorch einsum baseline.

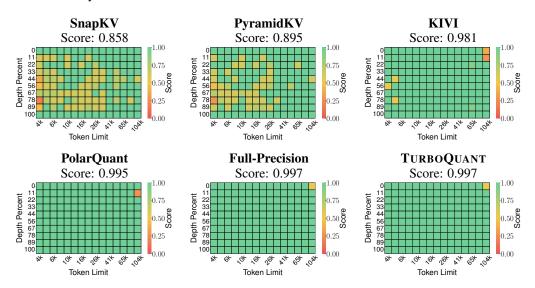


Figure 3: Evaluation of Llama-3.1-8B-Instruct on the "Needle-In-A-Haystack" test, where a model must retrieve a hidden sentence from long-context sequences. While some methods struggle with recall, TURBOQUANT, despite being more than $4\times$ quantized, achieves the same exact performance as the uncompressed baseline.

all evaluated under a memory compression ratio of 0.25 (i.e., using only 25% of the full KV cache). As shown in Fig. 3, quantization methods with theoretical guarantees—such as PolarQuant and TurboQuant —outperform token-level compression (SnapKV, PyramidKV) and scalar quantization methods without formal guarantees (KIVI). Remarkably, TurboQuant matches the performance of the full-precision model even at $4\times$ compression, highlighting its robustness for long-context tasks.

2.3 END-TO-END GENERATION ON LONGBENCH

We evaluated TurboQuant on the LongBench dataset Bai et al. (2023), using the more uniformly distributed **LongBench-E** subset to ensure a fair comparison across context lengths. Our method is compared to previous approaches in Section 2.2 using both Llama-3.1-8B-Instruct and Ministral-7B-Instruct. Unlike **KIVI** and **PolarQuant**, which skip quantization for generated tokens, TurboQuant applies quantization throughout the streaming process.

As shown in Table 1, TURBOQUANT consistently outperforms other methods, achieving strong results even under low-precision settings—specifically, **2.5-bit** and **3.5-bit** quantization. These non-integer precisions arise from a two-tier channel-wise quantization strategy: outlier channels are allocated more bits (e.g., 32 channels at 3 bits, 96 at 2 bits for 2.5-bit precision), inspired by prior

Method	KV Size	SingleQA	MultiQA	Summarization	Few shot	Synthetic	Code	Average
			Llama-3.1-	8B-Instruct				
Full Cache	16	45.29	45.16	26.55	68.38	59.54	46.28	50.06
KIVI	3	43.38	37.99	27.16	68.38	59.50	44.68	48.50
KIVI	5	45.04	45.70	26.47	68.57	59.55	46.41	50.16
PolarQuant	3.9	45.18	44.48	26.23	68.25	60.07	45.24	49.78
TURBOQUANT (ours)	2.5	44.88	44.01	26.75	68.39	59.07	46.03	49.74
TURBOQUANT (ours)	3.5	45.01	45.31	26.00	68.63	59.95	46.17	50.06
			Ministral	-7B-Instruct				
Full Cache	16	47.53	49.06	26.09	66.83	53.50	47.90	49.89
TURBOQUANT (ours)	2.5	48.38	49.22	24.91	66.69	53.17	46.83	49.62

Table 1: LongBench-V1 Bai et al. (2023) results of various KV cache compression methods on Llama-3.1-8B-Instruct.

work Zandieh et al. (2024a); Su et al. (2025). Despite operating at lower bitwidths, TURBOQUANT matches the performance of unquantized baselines while achieving over $4.5 \times$ compression.

2.4 NEAR NEIGHBOUR SEARCH EXPERIMENTS

In this section, we demonstrate the effectiveness of TURBOQUANT in near-neighbor search tasks. Experiments are conducted on the DBpedia Entities dataset Thakur et al. (2021), encoded using OpenAI3 embeddings in 1536- and 3072-dimensional spaces,... ^{1 2} as well as on a lower-dimensional dataset using standard GloVe embeddings Pennington et al. (2014).

We sample 100,000 points as the training set and 1,000 distinct entries as the query set, except for GloVe, which uses a pre-existing 10,000-query set. We compare TURBOQUANT against two baselines: Product Quantization Douze et al. (2024) and RabitQ Gao et al. (2024), based on recall@k, which measures how often the true top inner product is captured within the top-k approximated results.

Product Quantization (PQ) Douze et al. (2024) uses k-means to construct codebooks, incurring exponential growth in storage as bit-width increases. For efficient querying, we use AVX2-based implementations with LUT256 (256 codewords), grouping 4 coordinates for 2-bit and 2 coordinates for 4-bit quantization. Although PQ benefits from using the same data for training and evaluation, it still suffers from quality degradation at low-bit LUT16 configurations.

RabitQ Gao et al. (2024) lacks vectorized implementation and GPU support, leading to significantly slower CPU performance. Furthermore, its actual bit usage is higher than reported due to hidden computational overheads, which are not included in the bit ratio accounting.

Despite these advantages favoring the baselines, TURBOQUANT consistently achieves higher recall@k across all datasets and bit-widths, confirming its robustness and superiority in high-dimensional, quantization-based search tasks.

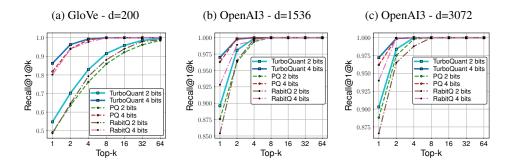


Figure 4: Recall comparison on different datasets with different embedding dimensions.

 $[\]frac{1}{2} \texttt{https://huggingface.co/datasets/Qdrant/dbpedia-entities-openai3-text-embedding-3-large-1536-1M}$

 $^{^2 \\ \}text{https://huggingface.co/datasets/Qdrant/dbpedia-entities-openai3-text-embedding-3-large-3072-1M} \\ \\ \text{https://huggingface.co/datasets/Qdrant/dbpedia-entities-openai3-text-embedding-3-large-3072-1M} \\ \\ \text{https://huggingface.co/datasets/Qdrant/dbpedia-entities-openai3-text-embedding-3-large-3072-1M} \\ \text{https://huggingface.co/datasets/Qdrant/dbpedia-entite/dbpedia-entite/dbpedia-entite/dbpedia-entite/dbpedia-entite/dbpedia-entite/dbpe$

486 REFERENCES

487

502

504

505

506 507

509

510

511

512

513

514 515

516

517

518

519

520 521

522

523

524

525

526

527 528

529

530

531

- Elastic search., 2025. https://www.elastic.co/enterprise-search/vector-search.
- Qdrant vectore search., 2025. https://qdrant.tech/.
- Pgvector search., 2025. https://github.com/pgvector/pgvector/.
- Pinecone vectore database., 2025. https://www.pinecone.io/.
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels. In *Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 141–160. SIAM, 2020.
 - Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 4895–4901, 2023.
 - Anthropic. Claude, 2024. https://www.anthropic.com/news/claude-3-family.
 - Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. *arXiv preprint arXiv:2404.00456*, 2024.
 - Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector compression. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 931–938, 2014.
 - Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, multitask benchmark for long context understanding. *arXiv preprint arXiv:2308.14508*, 2023.
 - Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. *arXiv preprint arXiv:2004.05150*, 2020.
 - Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information funneling. *arXiv preprint arXiv:2406.02069*, 2024.
 - Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of large language models with guarantees. *Advances in Neural Information Processing Systems*, 36:4396–4429, 2023.
 - Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.
 - Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.
- Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale. *Advances in Neural Information Processing Systems*, 35: 30318–30332, 2022.
- Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm kv cache. *arXiv preprint arXiv:2403.04643*, 2024.
 - Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

543

544

546 547

548

549

550

551

552

553

554

555

556

558

559

561

562

563

564

565 566

567

568

569

570

571 572

573

574 575

576

577

578

579 580

581

582

583

584

585 586

587

588

589

590

591

- 540 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. 542 arXiv preprint arXiv:2407.21783, 2024.
 - Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.
 - Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.
 - Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng. Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171, 2024. URL https://github.com/FranxYao/ Long-Context-Data-Engineering.
 - Jianyang Gao, Yutong Gou, Yuexuan Xu, Yongyi Yang, Cheng Long, and Raymond Chi-Wing Wong. Practical and asymptotically optimal quantization of high-dimensional vectors in euclidean space for approximate nearest neighbor search. arXiv preprint arXiv:2409.09913, 2024.
 - Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997, 2, 2023.
 - Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate nearest neighbor search. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2946–2953, 2013.
 - Allen Gersho. Asymptotically optimal block quantization. *IEEE Transactions on information the*ory, 25(4):373–380, 1979.
 - Allen Gersho. On the structure of vector quantizers. *IEEE Transactions on Information Theory*, 28 (2):157–166, 1982.
 - Han Guo, William Brandon, Radostin Cholakov, Jonathan Ragan-Kelley, Eric P Xing, and Yoon Kim. Fast matrix multiplications for lookup table-quantized llms. arXiv preprint arXiv:2407.10960, 2024.
 - Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International Conference on Machine Learning, pp. 3887–3896. PMLR, 2020.
 - Insu Han, Praneeth Kacham, Amin Karbasi, Vahab Mirrokni, and Amir Zandieh. Polarquant: Quantizing kv caches with polar transformation. arXiv preprint arXiv:2502.02617, 2025a.
 - Insu Han, Michael Kapralov, Ekaterina Kochetkova, Kshiteej Sheth, and Amir Zandieh. Balancekv: Kv cache compression through discrepancy theory. arXiv preprint arXiv:2502.07861, 2025b.
 - Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.
 - Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.
 - Greg Kamradt. Needle in a haystack pressure testing llms., 2023. https://github.com/ gkamradt/LLMTest NeedleInAHaystack.
 - Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao. Gear: An efficient ky cache compression recipefor near-lossless generative inference of llm. arXiv preprint arXiv:2403.05527, 2024.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

- Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized late interaction over bert. In *Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval*, pp. 39–48, 2020.
 - Junhyuck Kim, Jongho Park, Jaewoong Cho, and Dimitris Papailiopoulos. Lexico: Extreme kv cache compression via sparse coding over universal dictionaries. *arXiv preprint arXiv:2412.08890*, 2024.
 - Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. *arXiv preprint arXiv:2306.07629*, 2023.
 - Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation. *arXiv* preprint arXiv:2404.14469, 2024.
 - Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6: 87–100, 2024.
 - Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv cache compression at test time. *Advances in Neural Information Processing Systems*, 36, 2024a.
 - Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. *arXiv preprint arXiv:2402.02750*, 2024b.
 - Stuart Lloyd. Least squares quantization in pcm. *IEEE transactions on information theory*, 28(2): 129–137, 1982.
 - Joel Max. Quantizing for minimum distortion. *IRE Transactions on Information Theory*, 6(1):7–12, 1960.
 - PF Panter and Wu Dite. Quantization distortion in pulse-count modulation with nonuniform spacing of levels. *Proceedings of the IRE*, 39(1):44–48, 1951.
 - Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10. 3115/v1/D14-1162. URL https://aclanthology.org/D14-1162/.
 - Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Colbertv2: Effective and efficient retrieval via lightweight late interaction. *arXiv preprint arXiv:2112.01488*, 2021.
 - Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-3: Fast and accurate attention with asynchrony and low-precision. *arXiv* preprint *arXiv*:2407.08608, 2024.
- Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*, 27(3):379–423, 1948.
- Claude E Shannon et al. Coding theorems for a discrete source with a fidelity criterion. *IRE Nat. Conv. Rec*, 4(142-163):1, 1959.
 - Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint* arXiv:1911.02150, 2019.

- Zunhai Su, Zhe Chen, Wang Shen, Hanyu Wei, Linge Li, Huangqi Yu, and Kehong Yuan. Rotatekv: Accurate and robust 2-bit kv cache quantization for llms via outlier-aware adaptive rotations, 2025. URL https://arxiv.org/abs/2501.16383.
 - Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
 - Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL https://openreview.net/forum?id=wCu6T5xFjeJ.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *NeurIPS*, 2017.
 - Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
 - Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on learning to hash. *IEEE transactions on pattern analysis and machine intelligence*, 40(4):769–790, 2017.
 - Xiang Wu, Ruiqi Guo, David Simcha, Dave Dopson, and Sanjiv Kumar. Efficient inner product approximation in hybrid spaces. *arXiv preprint arXiv:1903.08690*, 2019.
 - Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In *International Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023a.
 - Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023b.
 - June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via importance-aware mixed precision quantization. *arXiv preprint arXiv:2402.18096*, 2024.
 - Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant: Quantizing weight and key/value cache for large language models gains more. *arXiv preprint arXiv:2402.12065*, 2024.
 - Paul Laszlo Zador. Development and evaluation of procedures for quantizing multivariate distributions. Stanford University, 1964.
 - Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quantization with zero overhead, 2024a. URL https://arxiv.org/abs/2406.03482.
 - Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublinear time and memory. *arXiv preprint arXiv:2402.06082*, 2024b.
 - Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel: Efficient large language model inference with coupled quantization. *arXiv* preprint *arXiv*:2405.03917, 2024a.
 - Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models. *Advances in Neural Information Processing Systems*, 36, 2024b.

A EXTENDED RELATED WORK

Beginnings of VQ. The vector quantization theory started by Shannon's seminal work Shannon (1948); Shannon et al. (1959) on achievable distortion-rate functions. In 1963, Zador Zador (1964) made significant advances by employing high-resolution methods to derive the limiting operational distortion-rate function for fixed-rate quantization at high rates that closely matches Shannon's distortion-rate function. However, Zador did not specifically consider implementable algorithms. Gersho's influential paper Gersho (1979), further advanced the vector quantization by popularizing high-resolution theory, simplifying Zador's results, introducing lattice vector quantization, and proposing a key conjecture that shaped the field. Despite these theoretical advancements, the practical applicability of vector quantization remained unclear in early years. The most straightforward encoding method, brute-force nearest neighbor search, was computationally expensive, hindering the adoption of VQ in practice.

Online KV Cache Compression. Several approaches have been proposed to compress the KV cache. These include architectural modifications Shazeer (2019); Ainslie et al. (2023); Dai et al. (2024) which restructure the transformer to minimize the number of stored key-value pairs. Additionally, pruning or evicting redundant or less critical tokens has emerged as another approach Beltagy et al. (2020); Zhang et al. (2024b); Liu et al. (2024a); Xiao et al. (2023b); Zandieh et al. (2024b); Li et al. (2024); Han et al. (2025b).

A simple yet effective approach to reducing KV cache size is quantizing the KV cache. Several quantization techniques have been developed specifically for this purpose Yue et al. (2024); Yang et al. (2024); Dong et al. (2024); Kang et al. (2024); Zhang et al. (2024a); Liu et al. (2024b); Hooper et al. (2024); Kim et al. (2024); Han et al. (2025a). Recently, a new quantization called QJL Zandieh et al. (2024a) introduced an efficient, data-oblivious 1-bit quantization approach based on sketching techniques, which provides unbiased estimates for inner product queries. This method does not require tuning or adaptation to the input data and we make use of this technology in our quantizer optimized for inner product distortion.

Product Quantization (PQ). In Near Neighbor (NN) search problem with Euclidean datasets, the index size poses a significant memory bottleneck, often mitigated by quantization techniques, commonly referred to as Product Quantization (PQ) in the NN literature. Many of these algorithms rely on constructing a quantization codebook using variations of k-means during the indexing phase Jegou et al. (2010); Babenko & Lempitsky (2014); Ge et al. (2013); Wang et al. (2017); Guo et al. (2020). Therefore, these methods are ill-suited for online settings due to their requirement for extensive preprocessing.

Recently, a grid-based PQ method was introduced in Gao et al. (2024), eliminating the need for preprocessing. This approach operates by projecting a uniform grid onto the unit sphere and conducting a search to identify the nearest projection to the data points. While the paper's theoretical guarantees are suboptimal, likely due to loose analysis—as practical performance surpasses theoretical bounds—the grid projection and binary search algorithm is also computationally slow and particularly inefficient on accelerators like GPU because of their algorithm's inherent lack of vectorization, which prevents parallel processing.

B MATHEMATICAL PRELIMINARIES

For a random variable x we denote its differential entropy as h(x). For random variables x and y, the mutual information between them is denoted as I(x;y) = h(x) - h(x|y).

Given that TURBOQUANT employs random rotation to mitigate worst-case input scenarios, understanding the statistical properties of random points on a hypersphere is essential. The following lemma outlines one such property that we will need for analysis and design purposes:

Lemma 1 (coordinate distribution of random point on hypersphere). For any positive integer d if $x \in \mathbb{S}^{d-1}$ is a random variable uniformly distributed over the unit hypersphere, then for any $j \in [d]$ the coordinate x_j follows the following (scaled/shifted) Beta distribution:

$$x_j \sim f_X(x) := \frac{\Gamma(d/2)}{\sqrt{\pi} \cdot \Gamma((d-1)/2)} (1 - x^2)^{(d-3)/2}.$$

In high dimensions this beta distribtion converges to the normal distribution $f_X(\cdot) \to \mathcal{N}(0, 1/d)$.

Proof. $f_X(x)$ equals the ratio of the area of a sphere with radius $\sqrt{1-x^2}$ in dimension d-1 to the volume of a unit sphere in dimension d scaled down by $1/\sqrt{1-x^2}$ (by Pythagorean theorem). Therefore.

$$f_X(x) = \frac{\frac{2\pi^{(d-1)/2}}{\Gamma((d-1)/2)} \cdot (1-x^2)^{(d-2)/2}}{\frac{2\pi^{d/2}}{\Gamma(d/2)}} \cdot 1/\sqrt{1-x^2} = \frac{\Gamma(d/2)}{\sqrt{\pi} \cdot \Gamma((d-1)/2)} \left(1-x^2\right)^{(d-3)/2}.$$

B.1 SHANNON LOWER BOUND ON DISTORTION

The Shannon Lower Bound (SLB) is a powerful tool, derived from Shannon's lossy source coding theorem Shannon et al. (1959), that provides a universal lower bound on the optimal achievable distortion rate for any lossy compression scheme. Specifically, we use a version of SLB tailored for the mean-squared error (MSE) distortion measure applied to general d-dimensional sources.

Lemma 2 (SLB). Let $x \in \mathbb{R}^d$ be a random vector with an arbitrary probability distribution p_X and finite differential entropy h(x). Define the MSE distortion-rate function D(B) for total bit complexity $B \ge 0$ as:

$$D(p_X,B) := \inf \left\{ \mathbb{E} \left[\|\boldsymbol{x} - \boldsymbol{y}\|_2^2 \right] : I(\boldsymbol{x};\boldsymbol{y}) \leq B \right\},$$

where the infimum is taken over all joint distributions of x and a reconstruction random vector $y \in \mathbb{R}^d$ such that the mutual information I(x;y) is at most B and $\mathbb{E}\left[\|x-y\|_2^2\right]$ is the expected MSE distortion, calculated with respect to the joint distribution of x and y. Then, for any bit complexity $B \geq 0$, the following Shannon Lower Bound holds:

$$D(p_X, B) \ge \frac{d}{2\pi e} \cdot 2^{(2/d)(h(\boldsymbol{x}) - B)}.$$

This is a classic result proved using backward Gaussian test channel (for a proof see Cover (1999)). Our lower bound result uses a corollary of SLB that corresponds to the uniformly distributed random points on the unit hypersphere. We present this in the following lemma:

Lemma 3 (SLB for random point on hypersphere). Let $x \in \mathbb{S}^{d-1}$ be a random variable uniformly distributed over the unit hypersphere and define the MSE distortion-rate function D(B) for total bit complexity B as per Lemma 2. Then, for any bit complexity $B \geq 0$, the following distortion lower bound holds:

$$D(B) \ge 2^{-2B/d}.$$

Proof. If we let A_d denote the area of the hypersphere \mathbb{S}^{d-1} , the entropy of uniform distribution over hypersphere is $h(\boldsymbol{x}) = \log_2 A_d$. Plugging this into the SLB from Lemma 2 we get $D(B) \geq \frac{d}{2\pi e} \cdot A_d^{2/d} \cdot 2^{-2B/d}$. Using Stirling's approximation formula for Gamma function we have $A_d = \frac{2\pi^{d/2}}{\Gamma(d/2)} \geq \left(\frac{2\pi e}{d}\right)^{d/2} \cdot \sqrt{\frac{2d}{\pi}} \cdot (1 - O(1/d))$. By substituting this into the inequality obtained from Lemma 2 we get the desired lower bound.

B.2 OJL: 1-BIT INNER PRODUCT QUANTIZATION

As previously stated, we design two VQ algorithms: one optimized for minimizing MSE and the other for minimizing inner product error. We show that MSE-optimal quantizers do not necessarily provide unbiased inner product estimates, particularly exhibiting significant bias at lower bit-widths. Our solution for inner product quantization is a two-stage algorithm. First, we apply the MSE-optimal quantizer using one less bit than the desired bit-width budget, thus minimizing the L2 norm of the residuals. Next we apply an unbiased and optimal single-bit quantizer to the residual. For the single-bit inner product quantizer, we utilize the recently proposed Quantized Johnson-Lindenstrauss (QJL) algorithm Zandieh et al. (2024a), which is an optimal inner product quantizer with a bit-width of one. Here, we present the QJL algorithm and its essential theoretical guarantees.

Definition 1 (QJL). For any positive integer d the QJL map $Q_{qj1}: \mathbb{R}^d \to \{-1, +1\}^d$ is defined as:

$$Q_{ t qjl}(oldsymbol{x}) := t sign\left(oldsymbol{S} \cdot oldsymbol{x}
ight) \quad ext{ for any } oldsymbol{x} \in \mathbb{R}^d,$$

where $\mathbf{S} \in \mathbb{R}^{d \times d}$ is a random matrix with i.i.d. entries sampled from the normal distribution $\mathcal{N}(0,1)$ and the sign function is applied entry-wise to its vector input. The inverse/dequantization map $Q_{\mathtt{q} \, \mathtt{l}}^{-1}: \{-1,+1\}^d \to \mathbb{R}^d$ is defined as:

$$Q_{\mathtt{qj1}}^{-1}(oldsymbol{z}) := rac{\sqrt{\pi/2}}{d} \cdot oldsymbol{S}^ op \cdot oldsymbol{z} \quad ext{ for any } oldsymbol{z} \in \{-1, +1\}^d.$$

In the next lemma we restate the results from Zandieh et al. (2024a) that show the QJL is unbiased and also has small inner product distortion:

Lemma 4 (performance guarantee: QJL). Let Q_{qj1} and Q_{qj1}^{-1} be defined as per Definition 1. For any vector $\mathbf{x} \in \mathbb{S}^{d-1}$ and any $\mathbf{y} \in \mathbb{R}^d$ we have the following:

- Unbiased: $\mathbb{E}\left[\left\langle \boldsymbol{y}, Q_{\mathtt{qjl}}^{-1}\left(Q_{\mathtt{qjl}}(\boldsymbol{x})\right)\right\rangle\right] = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$.
- Variance Bound: $\operatorname{Var}\left(\left\langle oldsymbol{y}, Q_{ t q j 1}^{-1}\left(Q_{ t q j 1}(oldsymbol{x})\right)
 ight
 angle
 ight) \leq rac{\pi}{2d} \cdot \left\|oldsymbol{y}
 ight\|_2^2$

Proof. The unbiasedness immediately follows from Lemma 3.2 of Zandieh et al. (2024a). To show the variance bound let $s_1, s_2, \ldots s_m$ denote the rows of the random matrix S in Definition 1. We have:

$$\left\langle \boldsymbol{y}, Q_{\mathtt{qj1}}^{-1} \left(Q_{\mathtt{qj1}}(\boldsymbol{x}) \right) \right\rangle = \frac{1}{d} \sum_{i \in [d]} \sqrt{\pi/2} \cdot \boldsymbol{s}_i^\top \boldsymbol{y} \cdot \mathtt{sign}(\boldsymbol{s}_i^\top \boldsymbol{x}).$$

Since s_i 's are i.i.d. the above is indeed the average of d i.i.d. random samples defined as $z_i := \sqrt{\pi/2} \cdot s_i^\top y \cdot \text{sign}(s_i^\top x)$ for $i \in [d]$. Let us now upper bound the variance of a single z_i using Fact 3.4 from Zandieh et al. (2024a):

$$\operatorname{Var}\left(z_{i}\right) = \pi/2 \cdot \operatorname{Var}\left(\boldsymbol{s}_{i}^{\top}\boldsymbol{y} \cdot \operatorname{sign}(\boldsymbol{s}_{i}^{\top}\boldsymbol{x})\right) \leq \pi/2 \cdot \mathbb{E}\left[\left(\boldsymbol{s}_{i}^{\top}\boldsymbol{y}\right)^{2}\right] = \pi/2 \cdot \left\|\boldsymbol{y}\right\|_{2}^{2},\tag{4}$$

where the last equality above follows because $s_i^{\top} y$ is a Gaussian random variable with mean zero and variance $||y||_2^2$. Now the variance of the average of d i.i.d. random samples $z_1, z_2, \dots z_d$ is:

$$extsf{Var}\left(\left\langle oldsymbol{y}, Q_{ extsf{qj1}}^{-1}\left(Q_{ extsf{qj1}}(oldsymbol{x})
ight)
ight)
ight) = rac{1}{d^2} \sum_{i \in [d]} extsf{Var}(z_i) \leq rac{\pi}{2d} \cdot \left\|oldsymbol{y}
ight\|_2^2.$$

C Proofs and Technical Remarks

In this section, we provide detailed proofs for each of the main theoretical results presented in the paper, including those for TURBOQUANT_{mse}, TURBOQUANT_{prod}, and the information-theoretic lower bound.

C.1 TURBOQUANT_{mse}

Remark 1 (Entropy-Encoding Codebook Pointers). Turbourd as $p_{\ell} := \int_{\frac{c_{\ell}-1+c_{\ell}}{2}}^{\frac{c_{\ell}+1}{2}} f_X(x) \, dx$. Optimally coding the indices, reduces the average bit-width to nearly the entropy of the distribution $\{p_i\}_{i\in[2^b]}$. This lossless compression does not affect the distortion and provides a bit-width reduction at no cost. The most significant reduction occurs for b=4, where the entropy of $\{p_i\}_{i\in[2^b]}$ is approximately 3.8. Detailed calculations for optimal prefix codes reveal that the average bit-width can be reduced by 5%. However, given the limited gain, we have chosen not to incorporate this technique into Turbourd to the closest codebook elements.

Theorem 1 (Performance Guarantee: TurboQuant_{mse}). For any bit-width $b \ge 1$ and any vector $x \in \mathbb{S}^{d-1}$, the procedure Quant_{mse}(x) in Algorithm 1 outputs an index vector $\mathrm{id}x \in [2^b]^d$. When this index vector is passed to the primitive DeQuant_{mse}($\mathrm{id}x$), it produces a reconstructed vector $\tilde{x} \in \mathbb{R}^d$ that satisfies the following distortion bounds:

- MSE defined as $D_{\mathtt{mse}} := \mathbb{E}_{\tilde{oldsymbol{x}}}[\|oldsymbol{x} \tilde{oldsymbol{x}}\|_2^2]$ is bounded by $D_{\mathtt{mse}} \leq \frac{\sqrt{3}\pi}{2} \cdot \frac{1}{4^b}$ for any $b \geq 0$.
- For small bit-widths, specifically b=1,2,3,4 the MSE exhibits finer-grained distortion values: $D_{\text{mse}} \approx 0.36, 0.117, 0.03, 0.009$, respectively.

Proof. We start the proof by showing that $D_{\mathtt{mse}} = d \cdot \mathcal{C}(f_X, b)$, where $\mathcal{C}(f_X, b)$ is the optimal MSE cost for scalar quantizer defined in Eq. (3). Let $\tilde{\boldsymbol{y}}$ be defined as per line 9 of Algorithm 1. Since $\boldsymbol{\Pi}$ is a rotation matrix we can write: $\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|_2 = \|\boldsymbol{\Pi} \cdot \boldsymbol{x} - \tilde{\boldsymbol{y}}\|_2$. Using the notation $\boldsymbol{y} = \boldsymbol{\Pi} \cdot \boldsymbol{x}$ as per line 5 of Algorithm 1 and plugging this into the definition of $D_{\mathtt{mse}}$ we can write:

$$\begin{split} D_{\text{mse}} &= \mathbb{E}[\|\boldsymbol{y} - \tilde{\boldsymbol{y}}\|_2^2] \\ &= \sum_{j \in [d]} \mathbb{E}\left[|\boldsymbol{y}_j - \tilde{\boldsymbol{y}}_j|^2\right] \\ &= \sum_{j \in [d]} \mathbb{E}\left[|\boldsymbol{y}_j - c_{\text{idx}_j}|^2\right] \\ &= d \cdot \mathbb{E}\left[|\boldsymbol{y}_1 - c_{\text{idx}_1}|^2\right] \\ &= d \cdot \min_{-1 \leq c_1 \leq c_2 \leq \dots \leq c_{2^b} \leq 1} \sum_{i=1}^{2^b} \int_{\frac{c_i + c_{i+1}}{2}}^{\frac{c_i + c_{i+1}}{2}} |x - c_i|^2 \cdot f_X(x) \ dx \\ &= d \cdot \mathcal{C}(f_X, b). \end{split}$$

The third equality above follows from the definition of \tilde{y} in line 9 of Algorithm 1 and the fourth line above follows because all y_j 's have identical distribution of $y_j \sim f_X(\cdot)$ as shown in Lemma 1. The last two lines above follows because $c_{\mathtt{idx}_j}$ is chosen to be the nearest centroid to each coordinate y_j in line 6.

Now we must bound the optimal k-means cost $\mathcal{C}(f_X,b)$. For moderate values of $d, f_X \to \mathcal{N}(0,1/d)$. By numerically solving the optimization problem in Eq. (3) for values b=1,2,3,4 we get that $\mathcal{C}(f_X,b)\approx \frac{0.36}{d},\frac{0.117}{d},\frac{0.03}{d},\frac{0.009}{d}$, respectively. For larger bit-widths b>4, we can apply the Panter-Dite Panter & Dite (1951) high-resolution formula for the distortion of a fixed-rate scalar quantizer, yielding the following bound:

$$C(f_X, b) \le \frac{1}{12} \cdot \left(\int f_X(x)^{1/3} dx \right)^3 \cdot \frac{1}{4^b} = \frac{\sqrt{3}\pi}{2d} \cdot \frac{1}{4^b}.$$

This completes the proof.

C.2 TURBOQUANT_{prod}

Theorem 2 (Performance Guarantee: TurboQuant_{prod}). For any bit-width $b \ge 1$ and any vector $x \in \mathbb{S}^{d-1}$, the procedure Quant_{prod}(x) in Algorithm 2 outputs an index vector $\mathrm{id}x \in [2^{b-1}]^d$ along with a sign vector $\mathrm{qj1} \in \{-1,1\}^d$ and a positive number $\gamma \ge 0$. When these vectors and the scalar value are passed to the primitive DeQuant_{prod}($\mathrm{id}x,\mathrm{qj1},\gamma$), it produces a reconstructed vector $\tilde{x} \in \mathbb{R}^d$ that for any vector $y \in \mathbb{R}^d$ satisfies the following properties:

- Expected inner-product $\mathbb{E}_{\tilde{x}}\left[\langle y, \tilde{x} \rangle\right] = \langle y, x \rangle$
- Inner-product distortion defined as $D_{\text{prod}} := \mathbb{E}_{\tilde{x}} \left[\left| \langle \boldsymbol{y}, \boldsymbol{x} \rangle \langle \boldsymbol{y}, \tilde{\boldsymbol{x}} \rangle \right|^2 \right]$ is bounded by $D_{\text{prod}} \leq \frac{\sqrt{3}\pi^2 \cdot \|\boldsymbol{y}\|_2^2}{d} \cdot \frac{1}{4^b}$ for any $b \geq 0$.
- For small bit-widths, specifically b=1,2,3,4, D_{prod} exhibits finer-grained distortion values: $D_{prod} \approx \frac{1.57}{d}, \frac{0.56}{d}, \frac{0.18}{d}, \frac{0.047}{d}$, respectively.

 Proof. First we compute the conditional expectation of the inner product estimate $\langle y, \tilde{x} \rangle$ conditioned on \tilde{x}_{mse} as follows:

$$\begin{split} \mathbb{E}\left[\langle \boldsymbol{y}, \tilde{\boldsymbol{x}} \rangle | \tilde{\boldsymbol{x}}_{\text{mse}} \right] &= \underset{\tilde{\boldsymbol{x}}_{\text{qj1}}}{\mathbb{E}}\left[\langle \boldsymbol{y}, \tilde{\boldsymbol{x}}_{\text{mse}} + \tilde{\boldsymbol{x}}_{\text{qj1}} \rangle | \tilde{\boldsymbol{x}}_{\text{mse}} \right] \\ &= \langle \boldsymbol{y}, \tilde{\boldsymbol{x}}_{\text{mse}} \rangle + \underset{\tilde{\boldsymbol{x}}_{\text{qj1}}}{\mathbb{E}}\left[\langle \boldsymbol{y}, \tilde{\boldsymbol{x}}_{\text{qj1}} \rangle | \tilde{\boldsymbol{x}}_{\text{mse}} \right] \\ &= \langle \boldsymbol{y}, \tilde{\boldsymbol{x}}_{\text{mse}} \rangle + \langle \boldsymbol{y}, \boldsymbol{r} \rangle \\ &= \langle \boldsymbol{y}, \boldsymbol{x} \rangle, \end{split}$$

where the first equality follows from the definition of \tilde{x} in line 12 of the algorithm. The third equality above follows from Lemma 4 and last line follows from definition of the residual vector $r = x - \tilde{x}_{\text{mse}}$ in line 6. Now we can computed the unconditional expectation using the law of total expectation: $\mathbb{E}_{\tilde{x}}\left[\langle y, \tilde{x} \rangle | = \mathbb{E}_{\tilde{x}_{\text{mse}}}\left[\mathbb{E}\left[\langle y, \tilde{x} \rangle | \tilde{x}_{\text{mse}} | \right] = \mathbb{E}[\langle y, x \rangle] = \langle y, x \rangle$, which proves the first claim of the theorem.

We apply the same conditioning on \tilde{x}_{mse} , when computing the distortion, and then compute the resulting conditional distortion:

$$\begin{split} \mathbb{E}\left[\left|\langle \boldsymbol{y}, \boldsymbol{x} \rangle - \langle \boldsymbol{y}, \tilde{\boldsymbol{x}} \rangle\right|^2 \middle| \, \tilde{\boldsymbol{x}}_{\text{mse}} \right] &= \underset{\tilde{\boldsymbol{x}}_{\text{qj1}}}{\mathbb{E}} \left[\left|\langle \boldsymbol{y}, \boldsymbol{x} \rangle - \langle \boldsymbol{y}, \tilde{\boldsymbol{x}}_{\text{mse}} + \tilde{\boldsymbol{x}}_{\text{qj1}} \rangle\right|^2 \middle| \, \tilde{\boldsymbol{x}}_{\text{mse}} \right] \\ &= \underset{\tilde{\boldsymbol{x}}_{\text{qj1}}}{\mathbb{E}} \left[\left|\langle \boldsymbol{y}, \boldsymbol{r} \rangle - \langle \boldsymbol{y}, \tilde{\boldsymbol{x}}_{\text{qj1}} \rangle\right|^2 \middle| \, \tilde{\boldsymbol{x}}_{\text{mse}} \right] \\ &= \mathbb{Var} \left(\left\langle \boldsymbol{y}, \tilde{\boldsymbol{x}}_{\text{qj1}} \rangle \middle| \, \tilde{\boldsymbol{x}}_{\text{mse}} \right) \\ &\leq \frac{\pi}{2d} \cdot \left\| \boldsymbol{r} \right\|_2^2 \left\| \boldsymbol{y} \right\|_2^2, \end{split}$$

where the second equality above follows from the definitions of r and \tilde{x}_{mse} in lines 6 and 10 of Algorithm 2. The third line above follows because $\mathbb{E}[\langle y, \tilde{x}_{qj1} \rangle] = \langle y, r \rangle$, by Lemma 4. The last line follows from the variance bound of QJL estimator shown in Lemma 4 and using the fact that \tilde{x}_{qj1} in line 11 is re-scaled by $\gamma = ||r||$.

Now by law of total expectation along with the fact that $r=x-\tilde{x}_{\text{mse}}$ we can bound the inner product distortion as follows:

$$\begin{split} D_{\text{prod}} &= \mathop{\mathbb{E}}_{\tilde{\boldsymbol{x}}_{\text{mse}}} \left[\mathbb{E} \left[\left| \langle \boldsymbol{y}, \boldsymbol{x} \rangle - \langle \boldsymbol{y}, \tilde{\boldsymbol{x}} \rangle \right|^2 \middle| \tilde{\boldsymbol{x}}_{\text{mse}} \right] \right] \\ &\leq \frac{\pi}{2d} \cdot \left\| \boldsymbol{y} \right\|_2^2 \cdot \mathbb{E}[\left\| \boldsymbol{x} - \tilde{\boldsymbol{x}}_{\text{mse}} \right\|_2^2] \\ &= \frac{\pi}{2d} \cdot \left\| \boldsymbol{y} \right\|_2^2 \cdot D_{\text{mse}}. \end{split}$$

The theorem follows by invoking the MSE bounds from Theorem 1 with bit-width b-1.

C.3 LOWER BOUNDS

We show that TURBOQUANT achieves an optimal distortion rate, up to a small constant factor, for any bit-width by proving lower bounds on the best achievable distortion for any compression algorithm. Our lower bound proof leverages Yao's minimax principle. This principle allows us to relate the lower bound for randomized algorithms with worst-case deterministic input vectors to the lower bound for deterministic algorithms with randomized input vectors. Subsequently, we derive a lower bound on the achievable distortion rate for the latter using Shannon's lower bound (SLB) presented in Appendix B.1. Formally, we prove the following theorem.

Theorem 3 (Lower Bound on Best Achievable Compression Distortion). For any randomized quantization algorithm $Q: \mathbb{S}^{d-1} \to \{0,1\}^{b\cdot d}$ with bit-width b and any reconstruction map $Q^{-1}: \{0,1\}^{b\cdot d} \to \mathbb{R}^d$, there exist a hard input instance $x \in \mathbb{S}^{d-1}$ such that:

$$D_{\mathtt{mse}}(Q) := \mathbb{E}\left[\left\|\boldsymbol{x} - Q^{-1}\left(Q(\boldsymbol{x})\right)\right\|_2^2\right] \geq \frac{1}{4b}.$$

Furthermore, there exists a $y \in \mathbb{S}^{d-1}$ such that:

$$D_{\texttt{prod}}(Q) = \mathbb{E}\left[\left|\left\langle \boldsymbol{y}, \boldsymbol{x} \right\rangle - \left\langle \boldsymbol{y}, Q^{-1}\left(Q(\boldsymbol{x})\right) \right\rangle\right|^2\right] \geq \frac{1}{d} \cdot \frac{1}{4^b}$$

We note that a comparable lower bound for the *worst-case* distortion in vector quantization can be derived using "sphere packing" arguments (indeed, with larger constants as this is a harder problem) Gersho (1982). However, Theorem 3 offers a more robust and relevant lower bound for our analysis. This is because it establishes a lower bound on the *expected distortion*, rather than the worst-case error, and aligns seamlessly with our upper bounds presented in Theorem 1 and Theorem 2.

Proof. By Yao's minimax principle the expected MSE of the optimal randomized compression algorithm for worst-case inputs (D_{mse}) is equal to the expected MSE of the optimal deterministic compression algorithm when applied to inputs drawn from a maximally difficult randomized distribution. By definition, the MSE of the latter scenario is lower-bounded by the best achievable MSE for inputs uniformly distributed on the unit hypersphere.

The best achievable MSE for a compression algorithm with bit-width b, operating on uniformly distributed inputs from the sphere \mathbb{S}^{d-1} , is lower bounded in Lemma 3. Therefore, by invoking Lemma 3 we conclude that $D_{\text{mse}} \geq \frac{1}{4b}$.

Furthermore, from $D_{mse} \geq \frac{1}{4^b}$ and using the definition of D_{mse} we conclude that:

$$\begin{split} D_{\texttt{mse}} &= \sum_{j=1}^{d} \mathbb{E}\left[\left| \boldsymbol{x}_{j} - \left[Q^{-1}\left(Q(\boldsymbol{x}) \right) \right]_{j} \right|^{2} \right] \\ &= \sum_{j=1}^{d} \mathbb{E}\left[\left| \left\langle \boldsymbol{e}_{j}, \boldsymbol{x} \right\rangle - \left\langle \boldsymbol{e}_{j}, Q^{-1}\left(Q(\boldsymbol{x}) \right) \right\rangle \right|^{2} \right] \\ &\geq \frac{1}{4b}. \end{split}$$

By pigeonhole principle there exist an index $j \in [d]$ such that $\mathbb{E}\left[\left|\langle \boldsymbol{e}_{j}, \boldsymbol{x} \rangle - \langle \boldsymbol{e}_{j}, Q^{-1}\left(Q(\boldsymbol{x})\right) \rangle\right|^{2}\right] \geq \frac{1}{d} \cdot \frac{1}{4^{b}}$, which completes the proof.

D ADDITIONAL EXPERIMENT

As observed in Fig. 5, when quantizing to 2 bits, the variance remains constant regardless of the inner product of the original vector in the TURBOQUANTprod approach. However, the same plot indicates that the bias in the TURBOQUANTmse approach is dependent on the average inner product. As the average inner product increases, the bias also increases.

To compare the efficiency of quantization time, we measure the time required to quantize the training set (100,000 vectors) using each method, with results shown in Table 2. TurboQuant is significantly faster—by several orders of magnitude—than both Product Quantization Douze et al. (2024) and RabitQ Gao et al. (2024). This efficiency stems from TurboQuant's fully vectorizable design, which allows seamless GPU acceleration. In contrast, RabitQ lacks a GPU implementation and cannot be vectorized, resulting in substantially slower runtimes. Product Quantization also incurs high latency due to its reliance on iterative k-means training, which is inherently slow and sequential.

Approach	d=200	d=1536	d=3072
Product Quantization	37.04	239.75	494.42
RabitQ	597.25	2267.59	3957.19
TURBOQUANT	0.0007	0.0013	0.0021

Table 2: Quantization time (in seconds) for different approaches across various dimensions using 4-bit quantization.

E IMPLEMENTATION

The TurboQuant algorithm, as detailed in Algorithm 1 (for MSE-optimal quantization) and Algorithm 2 (for inner product quantization), incorporates random rotation matrices applied to the

1031

1039

1041

1046

1047

1052

1053

1054

1055

1056

1057 1058

1059

1061

1062 1063 1064

1066

1067

1068

1069

1070 1071

1074

1075

1077 1078

1079

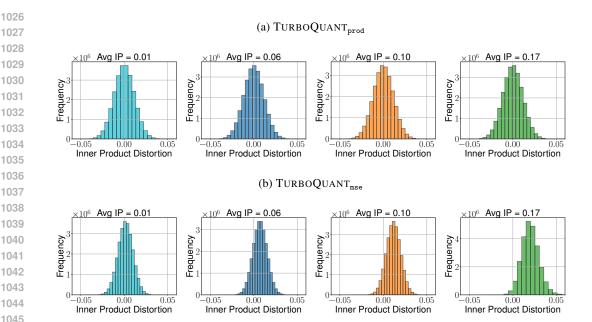


Figure 5: The variance of Inner-product error remains constant for TURBOQUANT_{prod}, while in TURBOQUANT_{mse} increases with the average inner product. Bit-width is b = 2.

input embedding vectors during both quantization and dequantization stages. This transformation is crucial for the algorithm's performance. In practice, the rotation matrices are implemented as structured matrices, specifically randomized Hadamard transforms Ahle et al. (2020). This involves randomly flipping the signs of the embedding vector coordinates, followed by the fast Hadamard transform (FHT), enabling matrix-vector multiplication in $O(d \log d)$ time, a significant improvement over the naive $O(d^2)$ complexity. This efficient transformation is beneficial for both CPU and GPU architectures.

The overall quantization process Q_{prod} with bit-width b can be conceptualized in two stages. First, TURBOQUANT_{mse} (Q_{mse}) with bit-width b-1 is applied to the input vector x. Second, the residual error of this stage, r, is then quantized using a 1-bit Quantized Johnson-Lindenstrauss (QJL) transform, denoted as qj1(r). The final quantized representation \tilde{x} stores the necessary information from both $Q_{\text{mse}}(\boldsymbol{x})$ and $qjl(\boldsymbol{r})$.

Vector Search. For efficient search over a vector dataset $x_1, \dots x_n \in \mathbb{R}^d$, vectors are quantized using TurboQuant_{prod} to yield $\tilde{x}_1, \ldots \tilde{x}_n$. Given a query $q \in \mathbb{R}^d$, we want to estimate the inner products $\langle q, x_i \rangle$ through computing $\langle q, Q_{\text{prod}}^{-1}(\tilde{x}_i) \rangle$. By dequant primitives in Algorithm 1 and Algorithm 2 we have $\langle q, Q_{\text{prod}}^{-1}(\tilde{x}_i) \rangle = \|\text{qjl}(r_i)\| \cdot \langle Sq, \text{qjl}(r_i) \rangle + \langle \Pi q, c_{Q_{\text{mse}}(x_i)} \rangle$, where c_j 's are the centroids that minimize the objective in Eq. (3) and $\mathbf{S}\mathbf{q}$ and $\mathbf{\Pi}\mathbf{q}$ are randomized Hadamard transforms applied on q which can be computed very quickly.

Computing the first inner product reduces to accumulating the coordinates of Sq with signs given in the quantized vector $q \mid 1(r_i)$. The second inner product, $\langle \Pi q, Q_{\text{mse}}(x_i) \rangle$, can also be computed with high efficiency. This computation involves summing contributions from quantized components of x_i . To accelerate this, for each query q, we precompute d small lookup tables (LUTs). For the k-th component, its LUT, $L^{(k)}$, would store values $L_i^{(k)} = (\Pi q)_k \cdot c_j$, where $(\Pi q)_k$ is the k-th coordinate of the transformed query. This can be implemented efficiently using the "LUT16" AVX2 in-register lookup technique described by Wu et al. (2019); Ge et al. (2013) for any bit-width b at most $b \le 5$. This results in (at most) 16-entry tables for each component, and the PSHUFB instruction can then perform multiple such lookups in parallel. This involves quantizing the LUT entries themselves (e.g., to 8-bit values) to fully leverage the SIMD capabilities.

KV Cache. In LLMs the Key and Value caches $K, V \in \mathbb{R}^{n \times d}$ (where n is the sequence length, and d is the embedding dimension) can be compressed by quantizing their row vectors using Turborout yielding \tilde{K} and \tilde{V} . During autoregressive decoding, to compute the attention output for a query vector $q \in \mathbb{R}^d$, we first need to calculate attention scores, typically involving $q \cdot Q_{\text{prod}}^{-1}(\tilde{K})^{\top}$. These scores, forming a vector $a \in \mathbb{R}^n$ (after softmax), are then used to retrieve values via $a \cdot Q_{\text{prod}}^{-1}(\tilde{V})$.

Instead of explicit dequantization of \tilde{K} and \tilde{V} back to full precision in HBM, a more efficient approach is to use a fused GPU kernel. This kernel performs on-the-fly dequantization and mixed-precision matrix multiplication concurrently. It loads the quantized key or value data from HBM into on-chip shared memory and registers. The dequantization is then performed based on Algorithm 2 (the codebook is stored as a LUT), and the resulting values are immediately used in the matrix multiplication (e.g., GEMM operations with M=1), thereby minimizing costly data transactions with HBM.

Indeed, fast and efficient mixed-precision fused kernels for this type of non-uniform LUT-based quantizers were recently developed in the FLUTE paper Guo et al. (2024), initially for the static weights of LLMs. FLUTE's implementation uses optimized workload distribution (e.g., Stream-K) techniques to maximize efficiency. Our implementation of TurboQuant mixed-precision matrix multiplication for KV cache compression builds upon their publicly available code, with modifications to the dequantization module. Our findings indicate that this mixed-precision fused kernel implementation for KV cache operations is $2\text{-}4\times$ faster than conventional floating-point GEMM kernels.