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ABSTRACT

Vector quantization, a problem rooted in Shannon’s source coding, aims to quan-
tize high-dimensional Euclidean vectors while minimizing distortion in their geo-
metric structure. We propose TURBOQUANT to address both mean-squared error
(MSE) and inner product distortion, overcoming limitations of existing methods
that fail to achieve optimal distortion rates. Our data-oblivious algorithms, suit-
able for online applications, achieve near-optimal distortion rates (within a small
constant factor) across all bit-widths and dimensions. TURBOQUANT achieves
this by randomly rotating input vectors, inducing a concentrated Beta distribution
on coordinates, and leveraging the near-independence of distinct coordinates in
high dimensions to simply apply optimal scalar quantizers per each coordinate.
Recognizing that MSE-optimal quantizers introduce bias in inner product estima-
tion, we propose a two-stage approach: applying an MSE quantizer followed by a
1-bit Quantized JL (QJL) transform on the residual, resulting in an unbiased inner
product quantizer. We also provide a formal proof of the information-theoretic
lower bounds on best achievable distortion rate by any vector quantizer, demon-
strating that TURBOQUANT closely matches these bounds, differing only by a
small constant (≈ 2.7) factor. Experimental results validate our theoretical find-
ings, showing that for KV cache quantization, we achieve absolute quality neu-
trality with 3.5 bits per channel and marginal quality degradation with 2.5 bits per
channel. Furthermore, in nearest neighbor search tasks, our method outperforms
existing product quantization techniques in recall while reducing indexing time to
virtually zero.

Vector quantization (VQ) in Euclidean space is crucial for efficiently handling high-dimensional
vectors across a spectrum of computational domains, from training and deploying large-scale AI
and deep learning models to powering vector databases for search/retrieval. The core objective is to
compress high-dimensional vectors by quantizing them–converting floating-point coordinate values
to low-bitwidth integers–while minimizing distortion, quantified by metrics such as mean-squared
error (MSE) or inner product errors. By preserving these properties, inner product queries can
be answered rapidly, with minimal latency, and using reduced computational and communication
resources.

This problem traces back to Shannon’s seminal work on source coding Shannon (1948); Shannon
et al. (1959), which established that the minimum distortion achievable by block source codes—now
known as vector quantizers—is characterized by the distortion–rate function, determined by the
source statistics and the chosen distortion measure (e.g., MSE). Today, vector quantization plays a
central role in modern computational domains, including AI, deep learning, and large-scale search
systems.

A key application of VQ is in deployment of AI models, including LLMs Achiam et al. (2023);
Dubey et al. (2024); Anthropic (2024); Team et al. (2024). As LLM capabilities depend heavily on
their model size and context length Kaplan et al. (2020), serving them requires substantial memory
demands and increased inference latency. This latency is primarily attributed to communication bot-
tlenecks between HBM and SRAM on accelerators, or across distributed clusters. By compressing or
quantizing model weights and activations, we can effectively mitigate these bottlenecks, resulting in
significant reductions in inference costs. Inner product operations between activations and weights
is at the core of deep learning models. Thus, model quantization schemes strive to compress weights
and/or activation vectors while accurately preserving these inner products.
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Decoder based transformer models Vaswani et al. (2017) present another compelling use case. These
models must store key/value (KV) embeddings from previously generated tokens in the KV cache,
the size of which scales with both model size (number of layers and attention heads) and context
length. This scaling is a significant bottleneck in terms of memory usage and computational speed,
especially for long context models. Therefore, reducing the KV cache size without compromising
accuracy is essential. In this context, the preservation of the Euclidean structure of these embed-
ding vectors–their inner products and distances–is crucial for maintaining model performance. VQ
emerges as the most suitable framework for addressing this challenge, offering a robust approach to
compressing high-dimensional embeddings while preserving their essential geometric properties.

Additionally, nearest neighbor (NN) search in high-dimensional spaces with inner product or cosine
similarity ela (2025); Guo et al. (2020) is a cornerstone of vector databases pin (2025); gdr (2025);
pgv (2025). These databases are fundamental for retrieval-augmented generation Gao et al. (2023);
Edge et al. (2024) and information retrieval Khattab & Zaharia (2020); Santhanam et al. (2021). VQ,
a.k.a. product quantization (PQ), plays a critical role by enabling efficient compression of database
vectors, optimizes memory usage, and facilitates low-latency, accurate estimations of inner products
with query vectors, thereby enabling fast and precise nearest neighbor searches.

Existing VQ algorithms present a trade-off: either they lack accelerator (vectorization) compatibility
and exhibit slow computation, making them unsuitable for real-time AI applications like KV cache
quantization, or they suffer from suboptimal distortion bounds relative to bit-width. Our objective is
to introduce an algorithm that addresses these limitations. Specifically, we design TURBOQUANT:
a lightweight, capable of online application (crucial for scenarios like KV cache quantization), and
highly accelerator-friendly—a critical attribute for modern AI workloads.

The core of TURBOQUANT is a two-stage process. First, we develop a quantizer with optimal
distortion rate in terms of mean-squared error (MSE). Subsequently, we apply a 1-bit quantizer to the
residual, resulting in an unbiased and low-distortion inner product quantizer. We demonstrate that
quantizers optimized for MSE do not produce unbiased estimators for inner products, and our two-
stage solution effectively bridges this gap. Our quantizer starts by randomly rotating d-dimensional
input vectors. Observing the key fact that each coordinate in the rotated vectors follows a Beta
distribution, we design optimal Lloyd-Max quantizer Lloyd (1982); Max (1960) for each coordinate
by solving a continuous k-means problem. This method gives optimal MSE distortion bound and
minimizes the L2 norm of the residual. To obtain an unbiased and low-distortion quantizer for inner
products, we compose our quantizer with the recently developed Quantized Johnson-Lindenstrauss
(QJL) transform Zandieh et al. (2024a), which quantizes each coordinate of the residual vector to a
single bit. Our algorithm offers provably optimal distortion bounds for both MSE and inner products,
achieving an exponential improvement over existing methods in terms of bit-width dependence.

0.1 PROBLEM DEFINITION

Formally, our goal is to design a quantization map, denoted as Q : Rd → {0, 1}B , that transforms
d-dimensional vectors to B-bit binary strings. If we set B = b · d for some b ≥ 0, this quantizer is
said to have a bit-width of b, representing the average number of bits used to encode each coordinate
of Rd. Crucially, we require an inverse map, Q−1 : {0, 1}B → Rd that performs dequantization,
approximately reconstructing original vectors from their quantized representations. Of course, this
transformation is inherently lossy, as Q is not a bijection. So, our primary objective is to minimize
distortion, with a specific focus on mean-squared error (MSE) and inner product distortion.

We make no distributional assumptions on the input vectors, treating them in the worst-case setting.
We let the quantizer Q(·) to be randomized, leading to stochastic outputs. Considering random-
ized quantizers, it is more appropriate to define the expected distortion over the randomness of the
quantizer’s output. Thus, we aim to design quantizers that for any desired bit-width b minimize the
following expected distortion measures for any (worst-case) vectors x,y ∈ Rd:

(MSE) Dmse := E
Q

[∥∥x−Q−1 (Q(x))
∥∥2
2

]
(1)

(inner-prod error) Dprod := E
Q

[∣∣⟨y,x⟩ − ⟨y, Q−1 (Q(x))⟩
∣∣2] . (2)

The expectations above are taken with respect to the randomness of the quantizer Q(·). Furthermore,
for inner-product quantizers, we require unbiasedness of the inner product estimator, a desirable
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property for numerous applications. More precisely, we require:

(unbiased inner-prod) E
Q

[
⟨y, Q−1 (Q(x))⟩

]
= ⟨y,x⟩.

We aim to design computationally efficient quantizers Qmse and Qprod, that achieve optimal bounds
for the distortion measures defined above, for any given bit-width b. Additionally, we aim for Qprod

to provide unbiased inner product estimates. In particular, assume that we are given n real-valued
vectors x1,x2, . . .xn ∈ Rd. We design the following primitives:

• QUANT: efficiently quantizes the dataset and computes Q(x1), Q(x2), . . . Q(xn).
• DEQUANT: efficiently reconstructs original vectors by computing Q−1 (Q(xi)) for i ∈
[n].

0.2 RELATED WORK

Online (data-oblivious) quantization methods apply instantly without needing data-specific tuning
or calibrations Dettmers et al. (2022); Ashkboos et al. (2024); Liu et al. (2024b); Shah et al. (2024);
Han et al. (2025a). In contrast, offline (data-dependent) methods require heavy preprocessing and
learning to adapt the quantization map to the data, making them unsuitable for dynamic data sce-
narios Kim et al. (2023). For instance, methods such as those presented in Frantar et al. (2022); Lin
et al. (2024); Xiao et al. (2023a); Chee et al. (2023) use second-order (Hessian) information to tune
the quantization map which requires heavy preprocessing and even in some cases post processing as
well.
Due to space constraints, we include a more detailed discussion of related work in Appendix A.

0.3 OVERVIEW OF TECHNIQUES AND CONTRIBUTIONS

MSE Optimized TURBOQUANT. Our first VQ algorithm is designed to minimize MSE distor-
tion defined in Eq. (1). To achieve this, we apply a random rotation to the input vectors, thereby
inducing a Beta distribution on each coordinate, irrespective of the input vectors themselves. In high
dimensions d, the distribution of each coordinate converges to a Normal distribution due to concen-
tration of measure and the central limit theorem. Furthermore, any two distinct coordinates become
nearly uncorrelated and, more importantly, almost independent (a deeper result that goes beyond
just correlation). This near-independence is a crucial aspect that simplifies our quantization design.
It allows us to quantize each coordinate using optimal scalar quantization, disregarding interactions
or correlations between different coordinates, while still achieving near-optimal distortion.

We find optimal scalar quantizers for random variables with Beta distributions by solving a contin-
uous 1-d k-means problem using the Max-Lloyd algorithm. We precompute and store these optimal
codebooks for a range of practically useful bit-widths, to enable efficient subsequent invocations
of our TURBOQUANT algorithm. In Theorem 1 we prove that the b-bit MSE optimized TURBO-
QUANT Qmse : Rd → {0, 1}b·d achieves the following distortion for any worst-case vector x ∈ Rd

with ∥x∥ = 1, without any assumption on the distribution of x:

• Dmse(Qmse) := E
[∥∥x−Q−1

mse (Qmse(x))
∥∥2
2

]
≤

√
3π
2 · 1

4b
for any b ≥ 0.

• For small bit-widths the above distortion upper bound can be further refined. Specifically,
for b = 1, 2, 3, 4 we have Dmse(Qmse) ≈ 0.36,0.117,0.03,0.009, respectively.

Note that the unit norm assumption, ∥x∥2 = 1, is standard and not restrictive and can compute and
store the L2 norms in floating-point precision and rescale the dequantized points.

Inner Product TURBOQUANT. We show that the MSE optimized quantizers are biased for inner
product estimation, and thus a different VQ scheme is needed to get an unbiased inner product
quantizer. Our solution is a two-stage algorithm that first applies the above-mentioned Qmse with
a bit-width one less than our target budget and then applies a QJL Zandieh et al. (2024a) on the
residual error. This is proven to be unbiased and also has a nearly optimal inner product error rate. In
Theorem 2 we prove that the b-bit inner product optimized TURBOQUANT Qprod : Rd → {0, 1}b·d
achieves the following distortion for any vectors x,y ∈ Rd with ∥x∥ = 1, without any assumption
on the distribution of x,y:
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• E
[〈
y, Q−1

prod

(
Qprod(x)

)〉]
= ⟨y,x⟩

• Dprod(Qprod) := E
[∣∣⟨y,x⟩ − ⟨y, Q−1

prod

(
Qprod(x)

)
⟩
∣∣2] ≤ √

3π2·∥y∥2
2

d · 1
4b

for any b ≥ 0.

• For small bit-widths the above distortion upper bound can be further refined. Specifically,
for b = 1, 2, 3, 4 we have Dprod(Qprod) ≈ 1.57

d , 0.56
d , 0.18

d , 0.047
d , respectively.

Lower Bound. As shown in Theorem 3 in the appendix, we leverage Shannon’s lower bound
and Yao’s minimax principle to prove that for any randomized quantization algorithm Q : Rd →
{0, 1}b·d with bit-width b, there exist hard input instances x,y ∈ Rd with ∥x∥ = 1 such that the
following lower bounds hold:

• Dmse(Q) := E
[∥∥x−Q−1 (Q(x))

∥∥2
2

]
≥ 1

4b

• Dprod(Q) = E
[∣∣⟨y,x⟩ − ⟨y, Q−1 (Q(x))⟩

∣∣2] ≥ ∥y∥2
2

d · 1
4b

As demonstrated by our lower bounds, TURBOQUANT’s MSE distortion is provably within a factor
of at most

√
3π
2 ≈ 2.7 of the information-theoretical lower bound. Notably, for smaller bit-widths,

this factor significantly decreases. For instance, at a bit-width of b = 1 TURBOQUANT achieves a
distortion that is only a factor of approximately 1.45 away from the optimal which is also confirmed
by our experimental results, indicating its efficiency in low-bit-width scenarios.

Experimental Results. In Section 2.1, we empirically validate our theoretical distortion bounds,
demonstrating that TURBOQUANT’s observed distortions closely align with our predictions across
various real-world datasets, approaching the established lower bounds. Furthermore, in Section 2.2
and Section 2.3, we showcase TURBOQUANT’s efficacy in online KV cache quantization. Specifi-
cally, we achieve perfect long-context retrieval in needle-in-a-haystack tasks as well as other long-
context tasks, while compressing the KV cache by a factor exceeding 5×. Finally in Section 2.4
we apply TURBOQUANT to various high-dimensional near neighbor search tasks. TURBOQUANT
consistently outperforms data-dependent product quantization, while reducing the indexing time to
near zero.

Notations. We use boldface lowercase letters, such as x and y, to denote vectors, and boldface
uppercase letters, like M , to denote matrices. To denote a slice of a vector x between the coordinate
indices i and j inclusive of the endpoints, we use xi:j . For a matrix M , we simply write Mi to
denote its i-th row vector. We use the notation Sd−1 to denote the hypersphere in Rd of radius 1.

1 TURBOQUANT: HIGH PERFORMANCE QUANTIZATION

We developed two VQ algorithms, each tailored to a specific objective. The first algorithm is de-
signed to minimize the MSE between the original and reconstructed vectors after quantization. The
second algorithm is optimized for unbiased inner product estimation, addressing the bias inherent in
MSE-optimal quantizers. These algorithms are detailed in the following subsections.

Furthermore, in Appendix C.3, we establish information-theoretic lower bounds on the best achiev-
able distortion rates for any vector quantizer. This analysis demonstrates that TURBOQUANT
achieve near-optimality, differing from the lower bound by only a small constant factor across all
bit-widths.

1.1 MSE OPTIMAL TURBOQUANT

Let x ∈ Sd−1 be a (worst-case) vector on the unit sphere in dimension d. We aim to quantize
x to b bits per coordinate while minimizing the reconstruction MSE defined in Eq. (1). We start
by randomizing this vector by multiplying it with a random rotation matrix Π ∈ Rd×d. We can
generate Π by applying QR decomposition on a random matrix with i.i.d Normal entries.

The resulting rotated vector, Π · x, is uniformly distributed on the unit sphere Sd−1. As shown
in Lemma 1, each coordinate of Π · x follows a Beta distribution, which converges to a normal
distribution in high dimensions. Furthermore, in high dimensions, distinct coordinates of Π · x
become nearly independent Vershynin (2018), allowing us to apply optimal scalar quantizers to each

4
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Algorithm 1 TURBOQUANTmse: optimized for MSE

1: input: dimension d and bit-width b
2: Generate a random rotation matrixΠ ∈ Rd×d

3: Construct codebook by finding centroids c1, c2, . . . c2b ∈ [−1, 1] that minimize MSE cost in
Eq. (3)

4: Procedure QUANTmse(x)
5: y ← Π · x
6: idxj ← argmink∈[2b] |yj − ck| for every j ∈ [d] {idxj’s are b-bit integers}
7: output: idx

8: Procedure DEQUANTmse(idx)
9: ỹj ← cidxj for every j ∈ [d]

10: x̃← Π⊤ · ỹ
11: output: x̃

coordinate independently. Therefore, by Lemma 1, our task reduces to designing a scalar quantizer
for random variables with the distribution fX(x) = Γ(d/2)√

π·Γ((d−1)/2)

(
1− x2

)(d−3)/2
for x ∈ [−1, 1].

The optimal scalar quantization problem, given a known probability distribution, can be framed
as a continuous k-means problem in dimension one. Specifically, we aim to partition the interval
[−1, 1] into 2b clusters/buckets. The optimal solution adheres to a Voronoi tessellation Lloyd (1982),
meaning interval boundaries are the midpoints between consecutive centroids, when arranged in
sorted order. Therefore, with ci’s denoting the centroids in ascending order, we can formulate the
scalar quantization as the following k-means optimization problem:

C(fX , b) := min
−1≤c1≤c2≤...≤c

2b
≤1

2b∑
i=1

∫ ci+ci+1
2

ci−1+ci
2

|x− ci|2 · fX(x) dx. (3)

Note that C(fX , b) in Eq. (3) denotes the optimal MSE cost function for bit-width b, a quantity we
will bound to prove the upper bound on the end-to-end MSE of TURBOQUANT. The problem in
Eq. (3) can be solved using iterative numerical methods to achieve any desired precision. We solve
Eq. (3) for a range of practically relevant bit-widths b once, and store the results for future uses by
the quantizer. For example, in moderately high dimensions d, where the distribution fX(x) closely
approximates a normal distribution, the optimal quantization centroids for bit-widths b = 1, 2 are{
±
√

2/π√
d

}
and

{
± 0.453√

d
,± 1.51√

d

}
, respectively.

Therefore the quantizer Qmse : Rd → {0, 1}b·d first computes Π · x and then computes and stores
the indices of the nearest centroids to each coordinate of this vector. The dequantization map
Q−1

mse : {0, 1}b·d → Rd reconstructs the vector by retrieving the centroids corresponding to the
stored indices and then rotating the result back to the original basis through multiplication with Π⊤.
A pseudocode for these procedures is given in Algorithm 1.

We are now ready to prove our main theorem for TURBOQUANTmse, the proof is in Appendix C.

Theorem 1 (Performance Guarantee: TURBOQUANTmse). For any bit-width b ≥ 1 and any vector
x ∈ Sd−1, the procedure QUANTmse(x) in Algorithm 1 outputs an index vector idx ∈ [2b]d. When
this index vector is passed to the primitive DEQUANTmse(idx), it produces a reconstructed vector
x̃ ∈ Rd that satisfies the following distortion bounds:

• MSE defined as Dmse := Ex̃[∥x− x̃∥22] is bounded by Dmse ≤
√
3π
2 · 1

4b
for any b ≥ 0.

• For small bit-widths, specifically b = 1, 2, 3, 4 the MSE exhibits finer-grained distortion
values: Dmse ≈ 0.36,0.117,0.03,0.009, respectively.
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Algorithm 2 TURBOQUANTprod: optimized for inner product

1: input: dimension d and bit-width b
2: Instantiate a TURBOQUANTmse with bit-width b− 1 as per Algorithm 1
3: Generate a random projection matrix S ∈ Rd×d with i.i.d. entries Si,j ∼ N (0, 1)

4: Procedure QUANTprod(x)
5: idx← QUANTmse(x)
6: r ← x− DEQUANTmse(idx) {residual vector}
7: qjl← sign (S · r) {QJL on residual vector}
8: output: (idx, qjl, ∥r∥2)

9: Procedure DEQUANTprod(idx, qjl, γ)
10: x̃mse ← DEQUANTmse(idx)

11: x̃qjl ←
√

π/2

d · γ · S⊤ · qjl
12: output: x̃mse + x̃qjl

1.2 INNER-PRODUCT OPTIMAL TURBOQUANT

For important applications like nearest neighbor search, having an unbiased inner product esti-
mator is essential. However, TURBOQUANTmse presented in Section 1.1 does not provide unbi-
ased inner product estimates with query vectors. To illustrate this, consider the case with a bit-
width of b = 1. In this scenario, the optimal codebooks that solve the optimization problem
in Eq. (3), for sufficiently large d, are

{
±
√
2/πd

}
. This implies that the quantization map for

TURBOQUANTmse is Qmse(x) = sign (Π · x) for any x ∈ Rd, and the dequantization map is
Q−1

mse(z) =
√

2/πd ·Π⊤ · z for any z ∈ {−1,+1}d. Therefore, for large enough d, according to
Lemma 4, we have E

[〈
y, Q−1

mse (Qmse(x))
〉]

= 2
π · ⟨y,x⟩, which has a multiplicative bias of 2/π.

This bias diminishes with increasing bit-widths b, as we empirically demonstrate in Section 2.1.

To address this bias, we propose a solution that combines TURBOQUANTmse with an instance
of QJL Zandieh et al. (2024a). Specifically, let Qmse be the quantization map corresponding to
TURBOQUANTmse with a bit-width of b − 1. For any x ∈ Sd−1 the residual vector, defined as
r := x−Q−1

mse (Qmse(x)), has a small L2 norm, i.e., on expectation E[∥r∥] =
√
C(fX , b− 1) (per

Eq. (3)). We can then apply the QJL quantization map Qqjl on this residual vector, resulting in an
overall bit-width of b and providing the following unbiased inner product estimator:〈

y, Q−1
mse (Qmse(x))

〉
+ ∥r∥2 ·

〈
y, Q−1

qjl

(
Qqjl(r)

)〉
.

More formally, the quantization map Qprod : Sd−1 → [2b−1]d × {−1, 1}d × R is defined as:

Qprod(x) =
[
Qmse(x), Qqjl

(
x−Q−1

mse (Qmse(x))
)
,
∥∥x−Q−1

mse (Qmse(x))
∥∥
2

]
.

A pseudocode for this procedure is given in Algorithm 2.

We prove the main result for TURBOQUANTprod in the following theorem and prove it in Ap-
pendix C.
Theorem 2 (Performance Guarantee: TURBOQUANTprod). For any bit-width b ≥ 1 and any vector
x ∈ Sd−1, the procedure QUANTprod(x) in Algorithm 2 outputs an index vector idx ∈ [2b−1]d

along with a sign vector qjl ∈ {−1, 1}d and a positive number γ ≥ 0. When these vectors and the
scalar value are passed to the primitive DEQUANTprod(idx, qjl, γ), it produces a reconstructed
vector x̃ ∈ Rd that for any vector y ∈ Rd satisfies the following properties:

• Expected inner-product Ex̃ [⟨y, x̃⟩] = ⟨y,x⟩

• Inner-product distortion defined as Dprod := Ex̃

[
|⟨y,x⟩ − ⟨y, x̃⟩|2

]
is bounded by

Dprod ≤
√
3π2·∥y∥2

2

d · 1
4b

for any b ≥ 0.

• For small bit-widths, specifically b = 1, 2, 3, 4, Dprod exhibits finer-grained distortion val-
ues: Dprod ≈ 1.57

d , 0.56
d , 0.18

d , 0.047
d , respectively.
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2 EXPERIMENTS

All experiments are performed using a single NVIDIA A100 GPU. The first set of experiments em-
pirically validates the theoretical results, and the second evaluates the performance of our methods
on downstream tasks, specifically KV cache quantization and nearest neighbor vector search.

2.1 EMPIRICAL VALIDATION

(a) TURBOQUANTprod
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Figure 1: Distribution of Inner Product error for TURBOQUANTprod and TURBOQUANTmse.

In this section, we validate the theoretical results using experiments on the DBpedia Entities dataset,
which is embedded in a 1536-dimensional space via OpenAI3 embeddings. We randomly sample
100,000 points as the training set and extract 1,000 distinct entries as the query set.

We compare two quantization methods: TURBOQUANTprod, optimized for unbiased inner product
estimation, and TURBOQUANTmse, which minimizes mean squared error (MSE) between quantized
and original vectors. Both methods are applied to estimate inner products by quantizing the train-
ing set and analyzing distortion across varying bit widths. As shown in Fig. 1, increasing the bit
widths reduces variance in both methods. However, TURBOQUANTmse introduces bias in inner
product estimation, which diminishes and converges to zero with higher bit widths. In contrast,
TURBOQUANTprod remains unbiased across all bit widths, confirming the theoretical guarantees.

In addition to histograms, we also plot in Fig. 2 the average inner product error and MSE between
the original and quantized vectors for different bit-widths. These plots are drawn against the up-
per and lower bounds established in our theoretical analysis and confirm that the results align with
the theoretical predictions. Specifically, for inner product estimation, the TURBOQUANTprod ap-
proach performs better at lower bit ratios. However, as the bit count increases, TURBOQUANTmse
reduces bias and ultimately achieves superior performance in inner product estimation.
2.2 NEEDLE-IN-A-HAYSTACK

The “Needle-In-A-Haystack Test” Kamradt (2023) evaluates a model’s ability to retrieve a unique
sentence (the ”needle”) embedded within a long document (the ”haystack”). Following Fu et al.
(2024), we perform this test using the Llama-3.1-8B-Instruct model across varying document
lengths from 4k to 104k tokens. Performance is measured using the recall score, which reflects the
accuracy of retrieving the hidden sentence.

We compare our method to state-of-the-art memory-efficient approaches, including PolarQuant Han
et al. (2025a), SnapKV Li et al. (2024), PyramidKV Cai et al. (2024), and KIVI Liu et al. (2024b),
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Figure 2: (a) Inner-product error, (b) mean squared error (MSE) versus theoretical bounds, and (c)
speedup factors for QK⊤ computation in the KV-cache at different bit-widths. Speedup is measured
relative to the PyTorch einsum baseline.
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Figure 3: Evaluation of Llama-3.1-8B-Instruct on the “Needle-In-A-Haystack” test, where
a model must retrieve a hidden sentence from long-context sequences. While some methods struggle
with recall, TURBOQUANT, despite being more than 4× quantized, achieves the same exact perfor-
mance as the uncompressed baseline.

all evaluated under a memory compression ratio of 0.25 (i.e., using only 25% of the full KV cache).
As shown in Fig. 3, quantization methods with theoretical guarantees—such as PolarQuant and
TURBOQUANT —outperform token-level compression (SnapKV, PyramidKV) and scalar quantiza-
tion methods without formal guarantees (KIVI). Remarkably, TURBOQUANT matches the perfor-
mance of the full-precision model even at 4× compression, highlighting its robustness for long-
context tasks.

2.3 END-TO-END GENERATION ON LONGBENCH

We evaluated TURBOQUANT on the LongBench dataset Bai et al. (2023), using the more uni-
formly distributed LongBench-E subset to ensure a fair comparison across context lengths. Our
method is compared to previous approaches in Section 2.2 using both Llama-3.1-8B-Instruct and
Ministral-7B-Instruct. Unlike KIVI and PolarQuant, which skip quantization for generated
tokens, TURBOQUANT applies quantization throughout the streaming process.

As shown in Table 1, TURBOQUANT consistently outperforms other methods, achieving strong
results even under low-precision settings—specifically, 2.5-bit and 3.5-bit quantization. These non-
integer precisions arise from a two-tier channel-wise quantization strategy: outlier channels are
allocated more bits (e.g., 32 channels at 3 bits, 96 at 2 bits for 2.5-bit precision), inspired by prior

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method KV Size SingleQA MultiQA Summarization Few shot Synthetic Code Average
Llama-3.1-8B-Instruct

Full Cache 16 45.29 45.16 26.55 68.38 59.54 46.28 50.06

KIVI 3 43.38 37.99 27.16 68.38 59.50 44.68 48.50

KIVI 5 45.04 45.70 26.47 68.57 59.55 46.41 50.16

PolarQuant 3.9 45.18 44.48 26.23 68.25 60.07 45.24 49.78

TURBOQUANT (ours) 2.5 44.88 44.01 26.75 68.39 59.07 46.03 49.74

TURBOQUANT (ours) 3.5 45.01 45.31 26.00 68.63 59.95 46.17 50.06

Ministral-7B-Instruct

Full Cache 16 47.53 49.06 26.09 66.83 53.50 47.90 49.89

TURBOQUANT (ours) 2.5 48.38 49.22 24.91 66.69 53.17 46.83 49.62

Table 1: LongBench-V1 Bai et al. (2023) results of various KV cache compression methods on
Llama-3.1-8B-Instruct.
work Zandieh et al. (2024a); Su et al. (2025). Despite operating at lower bitwidths, TURBOQUANT
matches the performance of unquantized baselines while achieving over 4.5× compression.

2.4 NEAR NEIGHBOUR SEARCH EXPERIMENTS

In this section, we demonstrate the effectiveness of TURBOQUANT in near-neighbor search tasks.
Experiments are conducted on the DBpedia Entities dataset Thakur et al. (2021), encoded using Ope-
nAI3 embeddings in 1536- and 3072-dimensional spaces,... 1 2 as well as on a lower-dimensional
dataset using standard GloVe embeddings Pennington et al. (2014).

We sample 100,000 points as the training set and 1,000 distinct entries as the query set, except for
GloVe, which uses a pre-existing 10,000-query set. We compare TURBOQUANT against two base-
lines: Product Quantization Douze et al. (2024) and RabitQ Gao et al. (2024), based on recall@k,
which measures how often the true top inner product is captured within the top-k approximated re-
sults.
Product Quantization (PQ) Douze et al. (2024) uses k-means to construct codebooks, incurring
exponential growth in storage as bit-width increases. For efficient querying, we use AVX2-based
implementations with LUT256 (256 codewords), grouping 4 coordinates for 2-bit and 2 coordinates
for 4-bit quantization. Although PQ benefits from using the same data for training and evaluation, it
still suffers from quality degradation at low-bit LUT16 configurations.
RabitQ Gao et al. (2024) lacks vectorized implementation and GPU support, leading to significantly
slower CPU performance. Furthermore, its actual bit usage is higher than reported due to hidden
computational overheads, which are not included in the bit ratio accounting.

Despite these advantages favoring the baselines, TURBOQUANT consistently achieves higher re-
call@k across all datasets and bit-widths, confirming its robustness and superiority in high-
dimensional, quantization-based search tasks.
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Figure 4: Recall comparison on different datasets with different embedding dimensions.

1
https://huggingface.co/datasets/Qdrant/dbpedia-entities-openai3-text-embedding-3-large-1536-1M

2
https://huggingface.co/datasets/Qdrant/dbpedia-entities-openai3-text-embedding-3-large-3072-1M
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A EXTENDED RELATED WORK

Beginnings of VQ. The vector quantization theory started by Shannon’s seminal work Shannon
(1948); Shannon et al. (1959) on achievable distortion-rate functions. In 1963, Zador Zador (1964)
made significant advances by employing high-resolution methods to derive the limiting operational
distortion-rate function for fixed-rate quantization at high rates that closely matches Shannon’s
distortion-rate function. However, Zador did not specifically consider implementable algorithms.
Gersho’s influential paper Gersho (1979), further advanced the vector quantization by populariz-
ing high-resolution theory, simplifying Zador’s results, introducing lattice vector quantization, and
proposing a key conjecture that shaped the field. Despite these theoretical advancements, the prac-
tical applicability of vector quantization remained unclear in early years. The most straightforward
encoding method, brute-force nearest neighbor search, was computationally expensive, hindering
the adoption of VQ in practice.

Online KV Cache Compression. Several approaches have been proposed to compress the KV
cache. These include architectural modifications Shazeer (2019); Ainslie et al. (2023); Dai et al.
(2024) which restructure the transformer to minimize the number of stored key-value pairs. Addi-
tionally, pruning or evicting redundant or less critical tokens has emerged as another approach Belt-
agy et al. (2020); Zhang et al. (2024b); Liu et al. (2024a); Xiao et al. (2023b); Zandieh et al. (2024b);
Li et al. (2024); Han et al. (2025b).

A simple yet effective approach to reducing KV cache size is quantizing the KV cache. Several
quantization techniques have been developed specifically for this purpose Yue et al. (2024); Yang
et al. (2024); Dong et al. (2024); Kang et al. (2024); Zhang et al. (2024a); Liu et al. (2024b); Hooper
et al. (2024); Kim et al. (2024); Han et al. (2025a). Recently, a new quantization called QJL Zandieh
et al. (2024a) introduced an efficient, data-oblivious 1-bit quantization approach based on sketching
techniques, which provides unbiased estimates for inner product queries. This method does not
require tuning or adaptation to the input data and we make use of this technology in our quantizer
optimized for inner product distortion.

Product Quantization (PQ). In Near Neighbor (NN) search problem with Euclidean datasets, the
index size poses a significant memory bottleneck, often mitigated by quantization techniques, com-
monly referred to as Product Quantization (PQ) in the NN literature. Many of these algorithms rely
on constructing a quantization codebook using variations of k-means during the indexing phase Je-
gou et al. (2010); Babenko & Lempitsky (2014); Ge et al. (2013); Wang et al. (2017); Guo et al.
(2020). Therefore, these methods are ill-suited for online settings due to their requirement for ex-
tensive preprocessing.

Recently, a grid-based PQ method was introduced in Gao et al. (2024), eliminating the need for pre-
processing. This approach operates by projecting a uniform grid onto the unit sphere and conducting
a search to identify the nearest projection to the data points. While the paper’s theoretical guaran-
tees are suboptimal, likely due to loose analysis—as practical performance surpasses theoretical
bounds—the grid projection and binary search algorithm is also computationally slow and particu-
larly inefficient on accelerators like GPU because of their algorithm’s inherent lack of vectorization,
which prevents parallel processing.

B MATHEMATICAL PRELIMINARIES

For a random variable x we denote its differential entropy as h(x). For random variables x and y,
the mutual information between them is denoted as I(x; y) = h(x)− h(x|y).
Given that TURBOQUANT employs random rotation to mitigate worst-case input scenarios, under-
standing the statistical properties of random points on a hypersphere is essential. The following
lemma outlines one such property that we will need for analysis and design purposes:
Lemma 1 (coordinate distribution of random point on hypersphere). For any positive integer d if
x ∈ Sd−1 is a random variable uniformly distributed over the unit hypersphere, then for any j ∈ [d]
the coordinate xj follows the following (scaled/shifted) Beta distribution:

xj ∼ fX(x) :=
Γ(d/2)√

π · Γ((d− 1)/2)

(
1− x2

)(d−3)/2
.
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In high dimensions this beta distribtion converges to the normal distribution fX(·)→ N (0, 1/d).

Proof. fX(x) equals the ratio of the area of a sphere with radius
√
1− x2 in dimension d − 1 to

the volume of a unit sphere in dimension d scaled down by 1/
√
1− x2 (by Pythagorean theorem).

Therefore,

fX(x) =

2π(d−1)/2

Γ((d−1)/2) · (1− x2)(d−2)/2

2πd/2

Γ(d/2)

· 1/
√

1− x2 =
Γ(d/2)√

π · Γ((d− 1)/2)

(
1− x2

)(d−3)/2
.

B.1 SHANNON LOWER BOUND ON DISTORTION

The Shannon Lower Bound (SLB) is a powerful tool, derived from Shannon’s lossy source coding
theorem Shannon et al. (1959), that provides a universal lower bound on the optimal achievable
distortion rate for any lossy compression scheme. Specifically, we use a version of SLB tailored for
the mean-squared error (MSE) distortion measure applied to general d-dimensional sources.
Lemma 2 (SLB). Let x ∈ Rd be a random vector with an arbitrary probability distribution pX
and finite differential entropy h(x). Define the MSE distortion-rate function D(B) for total bit
complexity B ≥ 0 as:

D(pX , B) := inf
{
E
[
∥x− y∥22

]
: I(x;y) ≤ B

}
,

where the infimum is taken over all joint distributions of x and a reconstruction random vector
y ∈ Rd such that the mutual information I(x;y) is at most B and E

[
∥x− y∥22

]
is the expected

MSE distortion, calculated with respect to the joint distribution of x and y. Then, for any bit
complexity B ≥ 0, the following Shannon Lower Bound holds:

D(pX , B) ≥ d

2πe
· 2(2/d)(h(x)−B).

This is a classic result proved using backward Gaussian test channel (for a proof see Cover (1999)).
Our lower bound result uses a corollary of SLB that corresponds to the uniformly distributed random
points on the unit hyeprsphere. We present this in the following lemma:
Lemma 3 (SLB for random point on hypersphere). Let x ∈ Sd−1 be a random variable uniformly
distributed over the unit hypersphere and define the MSE distortion-rate function D(B) for total bit
complexity B as per Lemma 2. Then, for any bit complexity B ≥ 0, the following distortion lower
bound holds:

D(B) ≥ 2−2B/d.

Proof. If we let Ad denote the area of the hypersphere Sd−1, the entropy of uniform distribution
over hypersphere is h(x) = log2 Ad. Plugging this into the SLB from Lemma 2 we get D(B) ≥
d

2πe · Ad
2/d · 2−2B/d. Using Stirling’s approximation formula for Gamma function we have Ad =

2πd/2

Γ(d/2) ≥
(
2πe
d

)d/2 ·√ 2d
π · (1 − O(1/d)). By substituting this into the inequality obtained from

Lemma 2 we get the desired lower bound.

B.2 QJL: 1-BIT INNER PRODUCT QUANTIZATION

As previously stated, we design two VQ algorithms: one optimized for minimizing MSE and the
other for minimizing inner product error. We show that MSE-optimal quantizers do not neces-
sarily provide unbiased inner product estimates, particularly exhibiting significant bias at lower
bit-widths. Our solution for inner product quantization is a two-stage algorithm. First, we apply
the MSE-optimal quantizer using one less bit than the desired bit-width budget, thus minimizing
the L2 norm of the residuals. Next we apply an unbiased and optimal single-bit quantizer to the
residual. For the single-bit inner product quantizer, we utilize the recently proposed Quantized
Johnson-Lindenstrauss (QJL) algorithm Zandieh et al. (2024a), which is an optimal inner product
quantizer with a bit-width of one. Here, we present the QJL algorithm and its essential theoretical
guarantees.
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Definition 1 (QJL). For any positive integer d the QJL map Qqjl : Rd → {−1,+1}d is defined as:

Qqjl(x) := sign (S · x) for any x ∈ Rd,

where S ∈ Rd×d is a random matrix with i.i.d. entries sampled from the normal distribution
N (0, 1) and the sign function is applied entry-wise to its vector input. The inverse/dequantization
map Q−1

qjl : {−1,+1}d → Rd is defined as:

Q−1
qjl(z) :=

√
π/2

d
· S⊤ · z for any z ∈ {−1,+1}d.

In the next lemma we restate the results from Zandieh et al. (2024a) that show the QJL is unbiased
and also has small inner product distortion:
Lemma 4 (performance guarantee: QJL). Let Qqjl and Q−1

qjl be defined as per Definition 1. For
any vector x ∈ Sd−1 and any y ∈ Rd we have the following:

• Unbiased: E
[〈
y, Q−1

qjl

(
Qqjl(x)

)〉]
= ⟨y,x⟩.

• Variance Bound: Var
(〈
y, Q−1

qjl

(
Qqjl(x)

)〉)
≤ π

2d · ∥y∥
2
2

Proof. The unbiasedness immediately follows from Lemma 3.2 of Zandieh et al. (2024a). To show
the variance bound let s1, s2, . . . sm denote the rows of the random matrix S in Definition 1. We
have: 〈

y, Q−1
qjl

(
Qqjl(x)

)〉
=

1

d

∑
i∈[d]

√
π/2 · s⊤i y · sign(s⊤i x).

Since si’s are i.i.d. the above is indeed the average of d i.i.d. random samples defined as zi :=√
π/2 · s⊤i y · sign(s⊤i x) for i ∈ [d]. Let us now upper bound the variance of a single zi using

Fact 3.4 from Zandieh et al. (2024a):

Var (zi) = π/2 · Var
(
s⊤i y · sign(s⊤i x)

)
≤ π/2 · E

[
(s⊤i y)

2
]
= π/2 · ∥y∥22 , (4)

where the last equality above follows because s⊤i y is a Gaussian random variable with mean zero
and variance ∥y∥22. Now the variance of the average of d i.i.d. random samples z1, z2, . . . zd is:

Var
(〈
y, Q−1

qjl

(
Qqjl(x)

)〉)
=

1

d2

∑
i∈[d]

Var(zi) ≤
π

2d
· ∥y∥22 .

C PROOFS AND TECHNICAL REMARKS

In this section, we provide detailed proofs for each of the main theoretical results presented in
the paper, including those for TURBOQUANTmse, TURBOQUANTprod, and the information-theoretic
lower bound.

C.1 TURBOQUANTmse

Remark 1 (Entropy-Encoding Codebook Pointers). TURBOQUANT’s efficiency can be further in-
creased by applying entropy encoding to the indices that point to the closest codebook elements.
Specifically, the probability of each codeword index appearing in the quantized vectors can be com-

puted as pℓ :=
∫ cℓ+cℓ+1

2
cℓ−1+cℓ

2

fX(x) dx. Optimally coding the indices, reduces the average bit-width

to nearly the entropy of the distribution {pi}i∈[2b]. This lossless compression does not affect the
distortion and provides a bit-width reduction at no cost. The most significant reduction occurs for
b = 4, where the entropy of {pi}i∈[2b] is approximately 3.8. Detailed calculations for optimal prefix
codes reveal that the average bit-width can be reduced by 5%. However, given the limited gain, we
have chosen not to incorporate this technique into TURBOQUANT to maintain simplicity and speed.
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Theorem 1 (Performance Guarantee: TURBOQUANTmse). For any bit-width b ≥ 1 and any vector
x ∈ Sd−1, the procedure QUANTmse(x) in Algorithm 1 outputs an index vector idx ∈ [2b]d. When
this index vector is passed to the primitive DEQUANTmse(idx), it produces a reconstructed vector
x̃ ∈ Rd that satisfies the following distortion bounds:

• MSE defined as Dmse := Ex̃[∥x− x̃∥22] is bounded by Dmse ≤
√
3π
2 · 1

4b
for any b ≥ 0.

• For small bit-widths, specifically b = 1, 2, 3, 4 the MSE exhibits finer-grained distortion
values: Dmse ≈ 0.36,0.117,0.03,0.009, respectively.

Proof. We start the proof by showing that Dmse = d · C(fX , b), where C(fX , b) is the optimal MSE
cost for scalar quantizer defined in Eq. (3). Let ỹ be defined as per line 9 of Algorithm 1. Since Π
is a rotation matrix we can write: ∥x− x̃∥2 = ∥Π · x− ỹ∥2. Using the notation y = Π · x as per
line 5 of Algorithm 1 and plugging this into the definition of Dmse we can write:

Dmse = E[∥y − ỹ∥22]
=

∑
j∈[d]

E
[
|yj − ỹj |2

]
=

∑
j∈[d]

E
[
|yj − cidxj |2

]
= d · E

[
|y1 − cidx1 |2

]
= d · min

−1≤c1≤c2≤...≤c
2b

≤1

2b∑
i=1

∫ ci+ci+1
2

ci−1+ci
2

|x− ci|2 · fX(x) dx

= d · C(fX , b).

The third equality above follows from the definition of ỹ in line 9 of Algorithm 1 and the fourth line
above follows because all yj’s have identical distribution of yj ∼ fX(·) as shown in Lemma 1. The
last two lines above follows because cidxj is chosen to be the nearest centroid to each coordinate yj

in line 6.

Now we must bound the optimal k-means cost C(fX , b). For moderate values of d, fX →
N (0, 1/d). By numerically solving the optimization problem in Eq. (3) for values b = 1, 2, 3, 4
we get that C(fX , b) ≈ 0.36

d , 0.117
d , 0.03

d , 0.009
d , respectively. For larger bit-widths b > 4, we can

apply the Panter-Dite Panter & Dite (1951) high-resolution formula for the distortion of a fixed-rate
scalar quantizer, yielding the following bound:

C(fX , b) ≤ 1

12
·
(∫

fX(x)1/3 dx

)3

· 1
4b

=

√
3π

2d
· 1
4b

.

This completes the proof.

C.2 TURBOQUANTprod

Theorem 2 (Performance Guarantee: TURBOQUANTprod). For any bit-width b ≥ 1 and any vector
x ∈ Sd−1, the procedure QUANTprod(x) in Algorithm 2 outputs an index vector idx ∈ [2b−1]d

along with a sign vector qjl ∈ {−1, 1}d and a positive number γ ≥ 0. When these vectors and the
scalar value are passed to the primitive DEQUANTprod(idx, qjl, γ), it produces a reconstructed
vector x̃ ∈ Rd that for any vector y ∈ Rd satisfies the following properties:

• Expected inner-product Ex̃ [⟨y, x̃⟩] = ⟨y,x⟩

• Inner-product distortion defined as Dprod := Ex̃

[
|⟨y,x⟩ − ⟨y, x̃⟩|2

]
is bounded by

Dprod ≤
√
3π2·∥y∥2

2

d · 1
4b

for any b ≥ 0.

• For small bit-widths, specifically b = 1, 2, 3, 4, Dprod exhibits finer-grained distortion val-
ues: Dprod ≈ 1.57

d , 0.56
d , 0.18

d , 0.047
d , respectively.
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Proof. First we compute the conditional expectation of the inner product estimate ⟨y, x̃⟩ condi-
tioned on x̃mse as follows:

E [⟨y, x̃⟩|x̃mse] = Ẽ
xqjl

[
⟨y, x̃mse + x̃qjl⟩|x̃mse

]
= ⟨y, x̃mse⟩+ Ẽ

xqjl

[
⟨y, x̃qjl⟩|x̃mse

]
= ⟨y, x̃mse⟩+ ⟨y, r⟩
= ⟨y,x⟩,

where the first equality follows from the definition of x̃ in line 12 of the algorithm. The third
equality above follows from Lemma 4 and last line follows from definition of the residual vector
r = x − x̃mse in line 6. Now we can computed the unconditional expectation using the law of
total expectation: Ex̃ [⟨y, x̃⟩] = Ex̃mse

[E [⟨y, x̃⟩|x̃mse]] = E[⟨y,x⟩] = ⟨y,x⟩, which proves the first
claim of the theorem.

We apply the same conditioning on x̃mse, when computing the distortion, and then compute the
resulting conditional distortion:

E
[
|⟨y,x⟩ − ⟨y, x̃⟩|2

∣∣∣ x̃mse

]
= Ẽ

xqjl

[∣∣⟨y,x⟩ − ⟨y, x̃mse + x̃qjl⟩
∣∣2∣∣∣ x̃mse

]
= Ẽ

xqjl

[∣∣⟨y, r⟩ − ⟨y, x̃qjl⟩
∣∣2∣∣∣ x̃mse

]
= Var

(
⟨y, x̃qjl⟩

∣∣ x̃mse

)
≤ π

2d
· ∥r∥22 ∥y∥

2
2 ,

where the second equality above follows from the definitions of r and x̃mse in lines 6 and 10 of
Algorithm 2. The third line above follows because E[⟨y, x̃qjl⟩] = ⟨y, r⟩, by Lemma 4. The last
line follows from the variance bound of QJL estimator shown in Lemma 4 and using the fact that
x̃qjl in line 11 is re-scaled by γ = ∥r∥.
Now by law of total expectation along with the fact that r = x − x̃mse we can bound the inner
product distortion as follows:

Dprod = Ẽ
xmse

[
E
[
|⟨y,x⟩ − ⟨y, x̃⟩|2

∣∣∣ x̃mse

]]
≤ π

2d
· ∥y∥22 · E[∥x− x̃mse∥22]

=
π

2d
· ∥y∥22 ·Dmse.

The theorem follows by invoking the MSE bounds from Theorem 1 with bit-width b− 1.

C.3 LOWER BOUNDS

We show that TURBOQUANT achieves an optimal distortion rate, up to a small constant factor,
for any bit-width by proving lower bounds on the best achievable distortion for any compression
algorithm. Our lower bound proof leverages Yao’s minimax principle. This principle allows us to
relate the lower bound for randomized algorithms with worst-case deterministic input vectors to the
lower bound for deterministic algorithms with randomized input vectors. Subsequently, we derive
a lower bound on the achievable distortion rate for the latter using Shannon’s lower bound (SLB)
presented in Appendix B.1. Formally, we prove the following theorem.
Theorem 3 (Lower Bound on Best Achievable Compression Distortion). For any randomized
quantization algorithm Q : Sd−1 → {0, 1}b·d with bit-width b and any reconstruction map
Q−1 : {0, 1}b·d → Rd, there exist a hard input instance x ∈ Sd−1 such that:

Dmse(Q) := E
[∥∥x−Q−1 (Q(x))

∥∥2
2

]
≥ 1

4b
.

Furthermore, there exists a y ∈ Sd−1 such that:

Dprod(Q) = E
[∣∣⟨y,x⟩ − ⟨y, Q−1 (Q(x))⟩

∣∣2] ≥ 1

d
· 1
4b
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We note that a comparable lower bound for the worst-case distortion in vector quantization can be
derived using “sphere packing” arguments (indeed, with larger constants as this is a harder prob-
lem) Gersho (1982). However, Theorem 3 offers a more robust and relevant lower bound for our
analysis. This is because it establishes a lower bound on the expected distortion, rather than the
worst-case error, and aligns seamlessly with our upper bounds presented in Theorem 1 and Theo-
rem 2.

Proof. By Yao’s minimax principle the expected MSE of the optimal randomized compression al-
gorithm for worst-case inputs (Dmse) is equal to the expected MSE of the optimal deterministic
compression algorithm when applied to inputs drawn from a maximally difficult randomized distri-
bution. By definition, the MSE of the latter scenario is lower-bounded by the best achievable MSE
for inputs uniformly distributed on the unit hypersphere.

The best achievable MSE for a compression algorithm with bit-width b, operating on uniformly
distributed inputs from the sphere Sd−1, is lower bounded in Lemma 3. Therefore, by invoking
Lemma 3 we conclude that Dmse ≥ 1

4b
.

Furthermore, from Dmse ≥ 1
4b

and using the definition of Dmse we conclude that:

Dmse =

d∑
j=1

E
[∣∣∣xj −

[
Q−1 (Q(x))

]
j

∣∣∣2]

=

d∑
j=1

E
[∣∣⟨ej ,x⟩ − ⟨ej , Q−1 (Q(x))⟩

∣∣2]
≥ 1

4b
.

By pigeonhole principle there exist an index j ∈ [d] such that E
[∣∣⟨ej ,x⟩ − ⟨ej , Q−1 (Q(x))⟩

∣∣2] ≥
1
d · 1

4b
, which completes the proof.

D ADDITIONAL EXPERIMENT

As observed in Fig. 5, when quantizing to 2 bits, the variance remains constant regardless of the
inner product of the original vector in the TURBOQUANTprod approach. However, the same plot
indicates that the bias in the TURBOQUANTmse approach is dependent on the average inner product.
As the average inner product increases, the bias also increases.

To compare the efficiency of quantization time, we measure the time required to quantize the training
set (100,000 vectors) using each method, with results shown in Table 2. TURBOQUANT is signifi-
cantly faster—by several orders of magnitude—than both Product Quantization Douze et al. (2024)
and RabitQ Gao et al. (2024). This efficiency stems from TURBOQUANT’s fully vectorizable design,
which allows seamless GPU acceleration. In contrast, RabitQ lacks a GPU implementation and can-
not be vectorized, resulting in substantially slower runtimes. Product Quantization also incurs high
latency due to its reliance on iterative k-means training, which is inherently slow and sequential.

Approach d=200 d=1536 d=3072
Product Quantization 37.04 239.75 494.42
RabitQ 597.25 2267.59 3957.19
TURBOQUANT 0.0007 0.0013 0.0021

Table 2: Quantization time (in seconds) for different approaches across various dimensions using
4-bit quantization.

E IMPLEMENTATION

The TURBOQUANT algorithm, as detailed in Algorithm 1 (for MSE-optimal quantization) and Al-
gorithm 2 (for inner product quantization), incorporates random rotation matrices applied to the
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(a) TURBOQUANTprod
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Figure 5: The variance of Inner-product error remains constant for TURBOQUANTprod, while in
TURBOQUANTmse increases with the average inner product. Bit-width is b = 2.

input embedding vectors during both quantization and dequantization stages. This transformation
is crucial for the algorithm’s performance. In practice, the rotation matrices are implemented as
structured matrices, specifically randomized Hadamard transforms Ahle et al. (2020). This involves
randomly flipping the signs of the embedding vector coordinates, followed by the fast Hadamard
transform (FHT), enabling matrix-vector multiplication in O(d log d) time, a significant improve-
ment over the naive O(d2) complexity. This efficient transformation is beneficial for both CPU and
GPU architectures.

The overall quantization process Qprod with bit-width b can be conceptualized in two stages. First,
TURBOQUANTmse (Qmse) with bit-width b − 1 is applied to the input vector x. Second, the resid-
ual error of this stage, r, is then quantized using a 1-bit Quantized Johnson-Lindenstrauss (QJL)
transform, denoted as qjl(r). The final quantized representation x̃ stores the necessary information
from both Qmse(x) and qjl(r).

Vector Search. For efficient search over a vector dataset x1, . . .xn ∈ Rd, vectors are quantized
using TURBOQUANTprod to yield x̃1, . . . x̃n. Given a query q ∈ Rd, we want to estimate the
inner products ⟨q,xi⟩ through computing ⟨q, Q−1

prod(x̃i)⟩. By dequant primitives in Algorithm 1
and Algorithm 2 we have ⟨q, Q−1

prod(x̃i)⟩ = ∥qjl(ri)∥· ⟨Sq, qjl(ri)⟩+⟨Πq, cQmse(xi)⟩, where cj’s
are the centroids that minimize the objective in Eq. (3) and Sq and Πq are randomized Hadamard
transforms applied on q which can be computed very quickly.

Computing the first inner product reduces to accumulating the coordinates of Sq with signs given
in the quantized vector qjl(ri). The second inner product, ⟨Πq, Qmse(xi)⟩, can also be computed
with high efficiency. This computation involves summing contributions from quantized components
of xi. To accelerate this, for each query q, we precompute d small lookup tables (LUTs). For
the k-th component, its LUT, L(k), would store values L

(k)
j = (Πq)k · cj , where (Πq)k is the

k-th coordinate of the transformed query. This can be implemented efficiently using the ”LUT16”
AVX2 in-register lookup technique described by Wu et al. (2019); Ge et al. (2013) for any bit-width
b at most b ≤ 5. This results in (at most) 16-entry tables for each component, and the PSHUFB
instruction can then perform multiple such lookups in parallel. This involves quantizing the LUT
entries themselves (e.g., to 8-bit values) to fully leverage the SIMD capabilities.
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KV Cache. In LLMs the Key and Value caches K,V ∈ Rn×d (where n is the sequence length,
and d is the embedding dimension) can be compressed by quantizing their row vectors using
TURBOQUANTprod yielding K̃ and Ṽ . During autoregressive decoding, to compute the attention
output for a query vector q ∈ Rd, we first need to calculate attention scores, typically involving
q · Q−1

prod(K̃)⊤ . These scores, forming a vector a ∈ Rn (after softmax), are then used to retrieve
values via a ·Q−1

prod(Ṽ ).

Instead of explicit dequantization of K̃ and Ṽ back to full precision in HBM, a more efficient
approach is to use a fused GPU kernel. This kernel performs on-the-fly dequantization and mixed-
precision matrix multiplication concurrently. It loads the quantized key or value data from HBM into
on-chip shared memory and registers. The dequantization is then performed based on Algorithm 2
(the codebook is stored as a LUT), and the resulting values are immediately used in the matrix
multiplication (e.g., GEMM operations with M=1), thereby minimizing costly data transactions with
HBM.

Indeed, fast and efficient mixed-precision fused kernels for this type of non-uniform LUT-based
quantizers were recently developed in the FLUTE paper Guo et al. (2024), initially for the static
weights of LLMs. FLUTE’s implementation uses optimized workload distribution (e.g., Stream-
K) techniques to maximize efficiency. Our implementation of TurboQuant mixed-precision matrix
multiplication for KV cache compression builds upon their publicly available code, with modifi-
cations to the dequantization module. Our findings indicate that this mixed-precision fused kernel
implementation for KV cache operations is 2-4× faster than conventional floating-point GEMM
kernels.
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