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ABSTRACT

While Test-Time Adaptation (TTA) has shown promise in addressing distribu-
tion shifts between training and testing data, its effectiveness diminishes with het-
erogenous data streams due to uniform target estimation. As previous attempts
merely stabilize model fine-tuning over time to handle continually changing envi-
ronments, they fundamentally assume a homogeneous target domain at any mo-
ment, leaving the intrinsic real-world data heterogeneity unresolved. This pa-
per delves into TTA under heterogeneous data streams, moving beyond current
model-centric limitations. By revisiting TTA from a data-centric perspective, we
discover that decomposing samples into Fourier space facilitates an accurate data
separation across different frequency levels. Drawing from this insight, we pro-
pose a novel Frequency-based Decentralized Adaptation framework, which tran-
sitions data from globally heterogeneous to locally homogeneous in Fourier space
and employs decentralized adaptation to manage diverse distribution shifts. Partic-
ularly, multiple local models are allowed to independently adjust to their specific
data segments while periodically exchanging knowledge to form a cohesive global
model. As such, not only can data diversity be captured, but also the overall model
generalization can be enhanced across multiple distribution shifts. Importantly,
we devise a novel Fourier-based augmentation strategy to assist in decentraliz-
ing adaptation, which selectively augments samples for each type of distribution
shift and further enhances model robustness in complex real-world environments.
Extensive experiments across various settings (corrupted, natural, and medical)
demonstrate the superiority of our proposed framework over the state-of-the-arts.

1 INTRODUCTION

Deep learning models often suffer significant performance degradation when deployed in environ-
ments where the data distribution differs from that of the training set – a challenge known as domain
shift (Long et al., 2013; Ganin & Lempitsky, 2015). Recently, Test-Time Adaptation (TTA) (Wang
et al., 2021; Chen et al., 2022; Wang et al., 2022; Niu et al., 2022; 2023; Su et al., 2024; Press et al.,
2024; Lee et al., 2024) has emerged as a promising solution by refining model parameters to better
align with the encountered data at inference time. It leverages the incoming data stream for real-time
adjustments without the need for retraining on a labeled dataset, enabling swift model adaptation to
unpredictable data characteristics during deployment.

Despite their success, the effectiveness of current TTA models is generally constrained within ideal
testing conditions – often involving homogeneous test samples with similar types of distribution
shifts. While attempts have been made to address dynamic target distributions in continually chang-
ing environments (Wang et al., 2022), they fundamentally presume a uniform target domain at any
time point. Their focus remains on enhancing model robustness against regular changes by stabi-
lizing the fine-tuning process either by periodically resetting model weights (Niu et al., 2023; Press
et al., 2024) or by down-weighting samples that deviate from the estimated distribution (Niu et al.,
2022; Lee et al., 2024). Although these model-centric approaches may offer temporary relief, they
do not fully recognize the intrinsic heterogeneity of real-world data. In practice, distribution shifts
do not necessarily occur gradually over time but can be multifaceted at a single moment, involving
heterogeneous and even conflicting shifts that current TTA models fail to adequately capture.
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To address this, it is crucial to understand how these heterogeneous distribution shifts impact model
adaptation. When a model attempts to adjust simultaneously to multiple diverse and potentially con-
flicting shifts, it may encounter adaptation conflicts. Specifically, adjustments made to accommodate
one type of shift can interfere with adaptations for another, as different shifts may require conflict-
ing changes to the model parameters. For instance, adapting to variations in image brightness might
necessitate parameter updates that conflict with those needed for texture changes. Such conflicts
prevent models from generalizing effectively across all encountered shifts, leading to irreversible
degradation in predictive capabilities.

Recognizing these issues, we argue for shifting from a model-centric to a data-centric approach
that proactively addresses distribution diversity in Fourier space. The rationale is that the frequency
domain, unlike the common spatial domain, enables a clearer separation of data variations across
different frequency levels. For example, high-frequency components are typically associated with
fine-grained features like edges and textures, whereas low-frequency components generally relate
to overall structural patterns such as shapes and illumination. By decomposing data into these fre-
quency components, we can effectively isolate and manage different types of distribution shifts.
Moreover, since the Fourier transform operates directly on the raw input images at the pixel level,
it does not depend on pretrained model outputs, avoiding potential uncertainties due to significant
distribution shifts. Importantly, this proactive separation allows us to manage distribution diversity
prior to adaptation, offering a robust foundation for subsequent model enhancement.

Building on this insight, we introduce a framework termed Frequency-based Decentralized Adapta-
tion (FreDA). Specifically, we first dynamically partition incoming data in the Fourier domain using
high-frequency information. This initial segmentation facilitates the transition from globally hetero-
geneous to locally homogeneous data subsets before any model adaptation occurs. On this basis, we
propose a decentralized learning strategy that allows multiple local models to independently adjust
to their specific data segments while periodically exchanging knowledge to form a cohesive global
model. This dual approach not only captures the diversity of distribution shifts to reduce potential
conflicting adaptations but also leverages periodic communication among local models to enhance
the global model’s generalization across multiple shifts. Furthermore, we introduce a Fourier-based
augmentation mechanism paired with an entropy-based sampling strategy, which significantly in-
creases both the quantity and quality of samples for each type of shift. This enhancement further
improves the model’s robustness and predictive capabilities in dynamic environments. To summa-
rize, the main contributions of this work are three-fold:

• We identify that many existing TTA methods are restricted in a model-centric paradigm that over-
looks the data heterogeneity inherent in real-world scenarios. This oversight results in ineffective
adaptation when facing diverse distribution shifts simultaneously.

• We revisit TTA from a data-centric perspective and introduce the FreDA framework. It reinter-
prets principles from both Fourier space and decentralized learning, leveraging specialized local
adaptations to manage heterogeneous distribution shifts at test time.

• We conduct extensive evaluations of our method across a diverse range of datasets – including
corrupted, natural, and medical scenarios – demonstrating its consistent superiority.

2 PRELIMINARIES

Test-Time Adaptation under Mixed Distributions. Test-time adaptation (TTA) aims to adjust a
model qθ(y|x), initially trained on a source dataset Ds = {(x, y) ∼ ps(x, y)}, to a target domain
Dt = {(x, y) ∼ pt(x, y)} without access to source data or target labels. Traditionally, TTA handles
covariate shift by assuming ps(y|x) = pt(y|x) while ps(x) ̸= pt(x). The challenge intensifies when
Dt includes multiple non-i.i.d sub-distributions pt,i(x), complicating the adaptation process:

pt(x) = {pt,1(x), pt,2(x), . . . , pt,N (x)}

This scenario requires the model qθ(y|x) to effectively handle the heterogeneous and evolving target
distribution to maintain robust performance. TTA strategies must therefore refine the model to
optimize its predictive accuracy across these diverse sub-domains, ensuring consistent and reliable
performance amidst significant distributional variability.
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Fourier Transformation. Analyzing the frequency components of images is essential for under-
standing their underlying structures, and Fourier transformation plays a central role in this pro-
cess. For a single-channel image x, its Fourier transformation F (x) is given by: F (x)(u, v) =∑H−1

h=0

∑W−1
w=0 x(h,w)e−j2π( h

H u+ w
W v) where H and W denote the height and width of the image,

respectively, and u and v are the frequency coordinates. The inverse Fourier transformation F−1(x)
allows for reconstructing the original image from its frequency spectrum, efficiently computed using
the Fast Fourier Transform (FFT). In the frequency domain, images are characterized by amplitude
A(x) and phase P (x) components, derived from the real R(x) and imaginary I(x) parts of F (x):

A(x)(u, v) =
√

R2(x)(u, v) + I2(x)(u, v), P (x)(u, v) = arctan
(
I(x)(u, v)

R(x)(u, v)

)
, (1)

where A(x) reveals the intensity of the frequency content, e.g., high-frequency amplitudes highlight
edges and fine details while low-frequency amplitudes emphasize the overall structure and gradual
changes in the image, and P (x) encodes the position of these features within the spatial domain.

3 CONNECTIONS TO PREVIOUS STUDIES

3.1 NON-I.I.D. IN TEST-TIME ADAPTATION

The non-i.i.d. problem in Test-Time Adaptation (TTA) challenges the conventional assumption that
target batches are independent and identically distributed (i.i.d.), pushing the boundaries of TTA’s
applicability in real-world scenarios. This issue can be decomposed into two distinct challenges:

Dependent Sampling. This problem arises when the sampling within the target stream is dependent
at the class level. Existing methods (Yuan et al., 2023; Gong et al., 2022; Zhao et al., 2023; Tomar
et al., 2024; Marsden et al., 2024) have addressed this by aiming for class-balanced datasets during
model updates, mitigating risks associated with class imbalance over time. They typically adjust
sample proportions based on pseudo labels or extend data collection periods to reduce dependent
sampling. However, unlike these methods that concentrate on mitigating class-level imbalances,
our work focuses on enhancing TTA models in the presence of diverse sample styles or mixed
distributions. We address data heterogeneity at the sample level, aiming to improve model adaptation
capabilities in face of varying distribution shifts that are not captured by class balancing techniques.
Notably, although our method is not tailored for class-dependent issues, our experimental results
demonstrate that when class-dependent and mixed distributions coexist, our approach still achieves
the best performance – showcasing the broad applicability of our model design.

Mixed Distributions. While attempts have been made to address dynamic target distributions in
continually changing environments (Wang et al., 2022; Yuan et al., 2023; Niu et al., 2022; Press
et al., 2024), they fundamentally assume a uniform target domain at each time point. Their approach
focuses on strengthening model adaptation to constant changes by stabilizing the fine-tuning pro-
cess, using periodic weight resets or down-weighting of unexpected samples. These model-centric
approaches rely on uniform target estimation that fail to capture the actual data heterogeneity en-
countered in practice, causing model degradation in real-world deployment. In contrast, our work
re-examines TTA from a data-centric perspective. We manage heterogeneous data streams by de-
composing samples into the frequency domain, which facilitates an accurate data separation and
allows us to address distribution diversity before adaptation occurs. Although a recent work (Niu
et al., 2023) also consider mixed distribution scenarios, their study targets a broader “Dynamic Wild
World” topic without delving deeply into this data heterogeneity problem. Conversely, our study
focuses on managing heterogeneous data streams in TTA by leveraging the frequency domain and
decentralized adaptation strategies to specifically address mixed data distributions at test time.

3.2 MULTI-TARGET DOMAIN ADAPTATION

Test-time Adaptation under mixed distribution resembles the multi-target unsupervised domain
adaptation (MT-UDA) setting (Gholami et al., 2020; Isobe et al., 2021; Liu et al., 2020; Feng et al.,
2024), where multiple domains exist within the target domain. However, TTA introduces com-
plexities that far exceed those in conventional MT-UDA settings, primarily due to: 1) Inaccessible
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Labeled Source Data – In TTA, the labeled source distribution is not available, making it challenging
to leverage source-target dissimilarities directly. 2) Dynamic and Unpredictable Target Streams –
TTA operates on a continuous influx of data, potentially incorporating new, unforeseen distributions,
rather than a static, fully observable target dataset. This continuous nature of data flow prevents the
establishment of a comprehensive understanding of the target distribution. These constraints com-
plicates the formulation of adaptation strategies that depend on discerning the differences between
the source and various subdomains within the target distribution.

3.3 DECENTRALIZED LEARNING, DISTRIBUTED LEARNING AND FEDERATED LEARNING

This work also intersects with decentralized, federated, and distributed learning due to our approach
of splitting data batches into disjoint subsets and applying decentralized model adaptation: 1) De-
centralized learning typically focuses on learning from decentralized, non-i.i.d. data (Hsieh et al.,
2020). In this work, however, the data is not originally decentralized; all target samples arrive to-
gether, while we proactively split them into disjoint subsets, revealing latent non-i.i.d. characteristics
and enabling the effective use of decentralized learning techniques. 2) Federated learning considers
data privacy and multi-institutional collaborations within decentralized learning (McMahan et al.,
2017). In our case, as target samples are mixed in a batch, data privacy is not a constraint. However,
like federated learning, our approach also involves model collaboration where multiple local models
periodically share insights to form a cohesive global model. 3) Distributed learning aims to improve
training efficiency on large-scale datasets by partitioning data for synchronized training (McDonald
et al., 2010). In contrast, our method operates in a real-time fine-tuning context with limited data at
one time, hence scalability is less of a concern.

3.4 FREQUENCY DOMAIN LEARNING

Frequency analysis has long been a cornerstone of conventional digital image processing. We focus
on two key areas of Frequency Domain Learning that are particularly relevant to our topic:

Frequency Information as a Tool for Analyzing DNN Behavior. Research in deep learning has
increasingly employed frequency analysis to uncover insights into Deep Neural Network (DNN)
behavior, as highlighted in multiple studies (Wang et al., 2020; Xu, 2018; Xu et al., 2019; Yin et al.,
2019). DNNs typically prioritize low-frequency features early in training, which represent the main
structures of input data, aiding in stable and efficient learning. Conversely, high-frequency features,
which detail finer, subtle variances, are crucial for improving a model’s robustness to new or unseen
domains. This understanding suggests that modulating the focus on different frequency bands during
training can refine a model’s performance across various conditions. By strategically enhancing
the learning of high-frequency details, developers can better equip DNNs to handle diverse and
challenging scenarios, balancing accuracy with domain adaptability.

Frequency Information Enhances Model Adaptation and Generalization. The utilization of
frequency-based techniques, such as Fourier transforms, has become increasingly popular in trans-
fer learning strategies. Within the Fourier spectrum, it’s the phase component that mainly retains
the high-level semantic content of signals, whereas the amplitude component generally encodes
low-level statistical features. To capitalize on the ability of the Fourier phase to preserve semantic
integrity, some methodologies (Yang & Soatto, 2020; Yang et al., 2022; Xu et al., 2021; 2023) incor-
porate a data augmentation process that involves linear interpolation between the amplitude spectra
of different images. This approach effectively reduces the domain discrepancy in domain adaptation
tasks and mitigates the risk of overfitting to the low-level statistical details present in the amplitude
information, thus enhancing domain adaptation.

4 TTA UNDER MIXED DISTRIBUTION SHIFTS: A FOURIER PERSPECTIVE

4.1 MOTIVATIONS

Test-Time Adaptation (TTA) methods have been instrumental in managing domain shifts under a
single type of target distribution. However, their effectiveness significantly diminishes under sce-
narios involving multiple distribution shifts. This is evident as models exhibit a marked decrease
in sample class discriminability on the same dataset when exposed to mixed target distributions, as
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(a) Features produced by
adapting models on sin-
gle type of distribution
shift where two classes are
mostly separated.
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(b) Features produced by
adapting models on mul-
tiple types of distribution
shift where two classes are
largely overlapped.
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Figure 1: t-SNE visualizations of the Camelyon17 dataset Bandi et al. (2018), including pathology
slide images from five centers (domains), where the model is pretained on C1 and tested on C2-C5.
(a-b) Features from C4 are presented as an example to illustrate the distinction in model adaptation
when addressing single (a) vs multiple distribution shifts (b). (c-d) Comparison of features extracted
by pretrained models and high-frequency information from images across four different domains.

demonstrated by comparing Figure 1(a) and (b). A direct approach to addressing this issue involves
segregating samples belonging to different target distributions. However, in real-time applications,
the specific target subdomains from which incoming samples originate, or whether they conform
to the same distribution shifts, are generally agnostic. Attempting to cluster samples based on fea-
tures extracted by the model can be misleading, as samples from different distributions may exhibit
similarities due to belonging to the same category, resulting in poor separability of different target
subdomains as shown in Figure 1(c). Interestingly, when clustering is based directly on the high-
frequency information of the samples – without relying on model-derived feature extractors – a
significant distinction can be made between samples from different target distributions, as shown in
Figure 1(d). This observation is not unexpected, considering high-frequency information typically
captures variations in image textures and styles, focusing more on the underlying differences in data
distributions. Building on the experimental observations and analysis outlined above, the following
section proposes leveraging the frequency domain for enhancing the adaptability of TTA methods
in more realistic settings involving mixed distribution shifts.

4.2 FREQUENCY-BASED DECENTRALIZED ADAPTATION

The previous discussions highlight how heterogeneity within target distribution can hinder model
adaptation. This raises a natural question: How can we manage this distributional heterogeneity to
achieve better adaptation? As established in our earlier section, effectively distinguishing samples
associated with different distribution shifts is vital for successful domain adaptation. Moreover, the
similarity in high-frequency information of samples provides a strong indication of whether they
belong to the same or different target distributions.

Building upon these findings, we tackle the TTA problem by capitalizing on the high-frequency
data components and propose a novel Frequency-based Decentralized Adaptation (FreDA) frame-
work (see Figure 2). It employs a data-centric approach to partition target samples into multiple
homogeneous subdomains in Fourier space, enabling an accurate model adaptation. This strategy is
complemented by a novel frequency-based augmentation technique that enriches each target subdo-
main with synthetic samples, thereby further bolstering model adaptation. The overall pipeline of
our proposed FreDA framework is detailed in Aglorithm 1.

4.2.1 FREQUENCY-BASED DECENTRALIZED LEARNING

Insight: Fourier transform offers an effective method to extract different frequency components
from images, with high-frequency information particularly useful for capturing fine-grained details
such as texture and noise. These details often highlight subtle variations among different distribution
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shifts. By harnessing high-frequency components from images, we can distinguish samples that lead
to different distribution shifts within a TTA setting through a simple clustering technique.

θt

θt+1
θt+2

θt+3

Dec. Boundary

Local Model 1

Global Model
Local Model 2

Pos. Class Neg. Class Target Domain 2Target Domain 1

Figure 2: Decentralized adaptation simplifies
class decision boundaries on heterogeneous
data streams by enabling multiple local mod-
els to adapt towards the global optimum.

Solution: Based on this intuitive insight, we pro-
pose a new module called Frequency-based Decen-
tralized Learning. This module leverages frequency
information directly extracted from the pixel space
to systematically partition data into multiple ho-
mogeneous subsets, enabling multiple local mod-
els to specialize in capturing each distribution shift
individually. Concurrently, our method enhances
collaborative learning by allowing periodic weight
sharing among these local models, thereby boost-
ing the overall model adaptability to diverse distri-
bution shifts.

Frequency Feature Extraction. We start by ex-
tracting frequency domain features from the input
images to identify distinct distribution shifts. Let
X ∈ Rn×c×h×w denote a batch of input images,
where n is the batch size, c is the number of chan-
nels, h and w are the height and width of the images.
We first apply a Fourier transform F to each image
Xi to obtain its frequency domain representation
F(Xi) ∈ Ch×w×c. Particularly, we focus on the amplitude spectrum A(x)(u, v) in Eq. 1, filtering
out low-frequency elements using mask M(u, v) = 1

((
u < h

4 ∨ u > 3h
4

)
∨
(
v < w

4 ∨ v > 3w
4

))
to emphasize the high-frequency components G(x)(u, v) that are more likely to indicate shifts in
distribution:

G(x)(u, v) = A(x)(u, v) ·M(u, v). (2)

Frequency-Based Clustering. We then employ a clustering algorithm (e.g., K-means) to partition
the frequency features into K clusters, each corresponding to a different type of distribution shift.
The clustering process is formalized as:

min
C,Z

n∑
i=1

∥Ahf,i −CZi∥
2
2 , (3)

where Ahf,i = vec(G(x)) represents the one-dimensional high-frequency component of the ampli-
tude spectrum , C ∈ CK×hwc represents the centroids of the clusters, and Z ∈ {1, . . . ,K}n denotes
the cluster assignments for each image.

Decentralized Fine-tuning. Test-time fine-tuning is then decentralized across these clusters, al-
lowing for specialized adaptation within each subgroup: For each cluster k, we adapt a specialized
model qθk(y|x) that is fine-tuned using only the data within that cluster:

θ∗k = argmin
θk

Ex∼pt,k
[L(qθk(x))] , (4)

where pt,k represents the data distribution within cluster k, and L is the loss function.

Weight Aggregation. To integrate knowledge from all subnetworks and prevent degradation on
specific subdomains, we perform an aggregation of their parameters:

Wglobal =

K∑
k=1

(
|Dk|∑K
j=1 |Dj |

Wk

)
, (5)

where |Dk| denotes the number of samples in cluster k. This aggregation step combines the pa-
rameter updates from each subnetwork proportionally to its cluster size. The updated global model
parameters Wglobal are then distributed back to each subnetwork, updating its parameters as follows:

Wk ←Wglobal. (6)

6
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Algorithm 1 Framework of Frequency-based Decentralized Learning and Augmentation

Require: Step t, Input X ∈ Rn×h×w×c, Pretrained source model qθ, Initialize Feature Repository
R ← ∅, CLUSTER NUM K, KMEANS SIZE N , COMM INTERVAL f ;
Step 1: Extract Frequency Features

1: for i = 1 to n do
2: Ahf,i ← high freq(F(Xi)) ▷ Extract high-frequency components (Eq. 1, 2 )
3: end for

Step 2: Dynamic Clustering
4: R ← R∪ {Ahf,i}ni=1 ▷ Frequency Information Repository
5: R ← R[(|R| −N + 1) :] ▷ Keep the last N entries for kmeans clustering
6: (Ct,Z)← K-means(R,K,Ct−1) ▷ Obtain Cluster Labels Z = {Zi}ni=1 (Eq. 3)

Step 3: Local Model Training
7: for cluster k ∈ {1, . . . ,K} do
8: Sk ← Sk ∪ {Xi | Zi = k} ▷ Gather samples for cluster k
9: Sk ← Sk[(|Sk| − n+ 1) :] ▷ Keep the last batch size = n entries

10: S ′k ← select samples(Sk) ▷ Select samples (Eq. 7)
11: for each Xi ∈ S ′k do
12: X̃i ← augment(Xi) ▷ Augment data (Eq. 9)
13: Train(qθk ,Xi, X̃i) ▷ Train local model (Eq. 4)
14: end for
15: end for

Step 4: Compile Predictions
16: Y ← collect sort({qθk(X)}) ▷ Collect and sort predictions

Step 5: Global Model Communication
17: If t % f == 0 : ▷ Model Communication with interval f (Eq.5, 6)
18: Wglobal ←

∑K
k=1 wkθk

19: Wk ←Wglobal

4.2.2 FREQUENCY-BASED AUGMENTATION

Insight: Although decentralized learning effectively handles data heterogeneity within the current
batch and prevents the confusion of different distribution shifts, it may still suffer from inadequate
characterization of each distribution shift due to limited batch data. Typically, TTA methods attempt
to enhance the overall quality of observed target samples via data augmentation. However, tradi-
tional augmentation techniques in TTA, borrowed from standard computer vision practices such as
rotation, clipping, and mixup, albeit beneficial in scenarios with single distribution shifts, struggle
to guarantee targeted fine-tuning under more complex, mixed distribution shift scenarios.

Solution: To overcome these limitations, we propose a frequency-based augmentation strategy tai-
lored for TTA under mixed distribution shifts. Unlike conventional techniques that apply general
visual transformations, our method specifically perturbs the amplitue components of each sample
in Fourier space. This targeted approach allows us to augment the target samples effectively within
their respective distribution shifts, enhancing the quality of data available for each individual shifting
case. By focusing on the frequency aspect, our strategy ensures that the model can generalize better
by simulating and learning from an expanded range of each potential distribution shift, boosting the
model’s ability to adapt and perform robustly across varied scenarios.

Sample Selection Mechanism. Our sample selection mechanism leverages a criterion derived from
the weighted entropy framework used in ETA (Niu et al., 2022) based on two primary conditions:

Selection Criterion = 1 [(H(yt) < H0) ∧ (|cos(yt, ȳt−1)| < ϵ)] . (7)
The entropy H(yt) measures the uncertainty in the current predictions. The cosine similarity
cos(yt, ȳt−1) denotes the deviation between the current sample’s class probabilities yt and the
aggregated class probabilities ȳt−1. ϵ is the threshold for cosine similarity, and H0 is the fixed
entropy threshold. This ensures that selected samples exhibit significant deviations from previous
predictions in class distribution and lower prediction uncertainty.

Frequency-Based Augmentation. The augmentation process involves perturbing the amplitude
spectrum. Let A(Fi) represent the amplitude spectrum of a selected sample Xi. To generate a

7
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perturbed amplitude spectrum Ã(Fi), we apply a random Gaussian perturbation:

Ã(Fi) = (1 + α ·∆) ·A(Fi), (8)

where ∆ ∼ N (0, σ2) is a perturbation matrix sampled from a Gaussian distribution, and α is a
scaling factor. Then, the synthetic sample X̃i is reconstructed via the inverse Fourier transform to
the perturbed amplitude spectrum, combined with the original phase spectrum P (Fi):

X̃i = F−1
(
Ã(Fi), P (Fi)

)
. (9)

Loss Function. The training objective in FreDA combines the entropy loss of the selected samples
with a synthetic loss derived from the augmented samples. The total loss for a batch is defined as:

Ltotal =
1

n

n∑
i=1

H(yi) + λ · 1
n

n∑
i=1

Lsyn (ŷi, ỹi) , (10)

where the entropy loss H(yi) for the original samples is given by H(yi) = −
∑C

j=1 yi,j logyi,j

with yi being the predicted probability over the C classes for the sample Xi, and the synthetic loss
Lsyn (ỹi, ŷi) is defined as the cross-entropy between the prediction ỹi of the synthetic sample X̃i

and the pseudo-label ŷi from the original sample: Lsyn (ŷi, ỹi) = −
∑C

j=1 ŷi,j log ỹi,j .

5 EXPERIMENTS

Datasets and Experimental Settings. To provide a comprehensive evaluation of TTA deployment,
we test models over multiple datasets under three different scenarios:

• Common Image Corruptions: We evaluate models on CIFAR-10-C, CIFAR-100-C, and ImageNet-
C (Hendrycks & Dietterich, 2018) with 10, 100 and 1000 classes, respectively. These benchmarks
are designed to assess the robustness of classification networks against various corruptions. Each
dataset consists of images subjected to 15 distinct corruptions across five severity levels, resulting
in 150,000 data at each severity for CIFAR-10-C and CIFAR-100-C, and 750,000 for ImageNet-C.

• Natural Domain Shifts: We extend our evaluation to DomainNet126 (Saito et al., 2019), which
presents natural shifts across four domains (Real, Clipart, Painting, Sketch) encompassing 126
classes, representing a subset of the larger DomainNet dataset.

• Medical Application: Models are further evaluated on Camelyon17 (Bandi et al., 2018), compris-
ing over 450,000 histopathological patches from lymph node sections for binary classification of
normal and tumor tissue, with data originating from five distinct healthcare centers.

For corruption datasets, the model is pretrained on the clean dataset and the 15 corruptions are
randomly mixed as the target distribution. In DomainNet126 and Camelyon17, one subdomain is
selected as the source, and the others serve as mixed target distributions. More implementation
details are provided in Appendix A.

Adaptation Scenarios. To evaluate models in adapting to heterogeneous data streams, we focus on
two primary distribution shift scenarios including:

• Mixed Domains: The model adapts to a long test sequence where consecutive test samples may
come from different domains.

• Mixed Domains & Dependent Sampling: This scenario extends the mixed distribution framework
by introducing sequential, time-correlated data from the same class across ordered domains, fea-
turing both covariate and label shifts.

While our primary focus is on mixed domains, we have also included the commonly used continual
setting for evaluation. Due to space limit, detailed experimental results are provided in Appendix C.

Baselines. We compare our FreDA with 10 models: TBN Nado et al. (2020), TENT (Wang et al.,
2021), CoTTA (Wang et al., 2022), ETA (Niu et al., 2022), SAR (Niu et al., 2023), AdaCon-
trast (Chen et al., 2022), RoTTA (Yuan et al., 2023), RDumb (Press et al., 2024), DeYO (Lee et al.,
2024), and UnMix-TNS (Tomar et al., 2024). See more information in Appendix B.
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Table 1: Classification error rate (↓) on CIFAR-10-C, CIFAR-100-C, and ImageNet-C (IN-C) re-
spectively using WRN-28, ResNeXt-29, ResNet-50-BN and VitBase-LN backbones under Mixed
Distribution. The corruption severity is 5 and the result is averaged over three runs.

Baseline & Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brig. Contr. Elast. Pixel JPEG Avg.
CIFAR-10-C (WRN-28) 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.4 30.3 43.5
TBN 45.5 42.8 59.7 34.2 44.3 29.8 32.0 19.8 21.1 21.5 9.3 27.9 33.1 55.5 30.8 33.8
TENT (ICLR 21’) 73.5 70.1 81.4 31.6 60.3 29.6 28.5 30.8 35.3 25.7 13.6 44.2 32.6 70.2 34.9 44.1
ETA (ICML 22’) 36.2 33.3 52.3 22.9 38.9 22.4 20.5 19.5 19.7 20.4 11.3 35.4 26.6 38.8 25.1 28.2
AdaContrast (CVPR 22’) 36.7 34.3 48.8 18.2 39.1 21.1 17.7 18.6 18.3 16.8 9.0 17.4 27.7 44.8 24.9 26.2
CoTTA (CVPR 22’) 38.7 36.0 56.1 36.0 36.8 32.3 31.0 19.9 17.6 27.2 11.7 52.6 30.5 35.8 25.7 32.5
SAR (ICLR 23’) 45.5 42.7 59.6 34.1 44.3 29.7 31.9 19.8 21.1 21.5 9.3 27.8 33.0 55.4 30.8 33.8
RoTTA (CVPR 23’) 60.0 55.5 70.0 23.8 44.1 20.7 21.3 20.2 22.7 16.0 9.4 22.7 27.0 58.6 29.2 33.4
RDumb (NeurIPS 23’) 34.9 32.3 49.4 23.3 38.2 23.3 20.7 19.9 19.3 20.7 11.2 29.3 26.7 41.5 25.2 27.7
DeYO (ICLR 24’) 45.8 42.3 65.7 21.3 41.8 25.1 19.5 21.1 19.6 19.2 12.3 21.8 28.5 39.3 28.0 30.1
UnMix-TNS (ICLR 24’) 50.0 44.4 44.3 34.4 48.2 32.7 30.0 35.5 35.9 47.5 28.1 38.7 43.9 40.0 43.3 39.8
FreDA (ours) 23.1 22.2 32.2 18.7 41.6 18.8 16.8 17.9 19.9 16.9 9.8 13.2 29.1 35.4 28.6 22.9
CIFAR-100-C (ResNeXt-29) 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
TBN 62.7 60.7 43.1 35.5 50.3 35.7 34.4 39.9 51.5 27.5 45.5 42.3 72.8 46.4 45.8 45.8
TENT (ICLR 21’) 95.6 95.2 89.2 72.8 82.9 74.4 72.3 78.0 79.7 84.7 71.0 88.5 77.8 96.8 78.7 82.5
ETA (ICML 22’) 42.6 40.3 34.1 30.3 42.4 32.0 29.4 35.6 35.8 44.1 30.2 41.8 36.9 38.9 40.9 37.0
AdaContrast (CVPR 22’) 54.5 51.5 37.6 30.7 45.4 32.1 30.3 36.9 36.5 45.3 28.0 42.7 38.2 75.4 41.7 41.8
CoTTA (CVPR 22’) 54.4 52.7 49.8 36.0 45.8 36.7 33.9 38.9 35.8 52.0 30.4 60.9 40.2 38.0 41.1 43.1
SAR (ICLR 23’) 75.8 72.7 41.1 29.2 45.2 31.1 28.9 36.7 37.7 43.9 29.3 41.8 37.1 89.2 42.4 45.5
RoTTA (CVPR 23’) 65.0 62.3 39.3 33.4 50.0 34.2 32.6 36.6 36.5 45.0 26.4 41.6 40.6 89.5 48.5 45.4
RDumb (NeurIPS 23’) 42.3 40.0 34.1 30.5 42.4 31.9 29.5 35.7 35.9 43.6 30.4 41.9 36.9 38.1 40.5 36.9
DeYO (ICLR 24’) 57.2 53.4 38.8 34.7 47.3 37.3 34.1 40.8 40.5 50.6 33.3 45.8 41.5 94.5 45.7 46.4
UnMix-TNS (ICLR 24’) 65.8 64.1 46.4 37.5 51.7 36.0 36.4 38.5 39.4 51.1 29.3 42.8 43.2 67.8 49.4 46.6
FreDA (ours) 34.8 34.7 36.6 29.4 41.2 29.9 28.4 33.8 33.7 41.1 29.8 34.9 36.9 37.1 38.7 34.7
IN-C (ResNet-50-BN) 97.8 97.1 98.2 81.7 89.8 85.2 77.9 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
TBN 92.8 91.1 92.5 87.8 90.2 87.2 82.2 82.2 82.0 79.8 48.0 92.5 83.5 75.6 70.4 82.5
TENT (ICLR 21’) 99.2 98.7 99.0 90.5 95.1 90.5 84.6 86.6 84.0 86.5 46.7 98.1 86.1 77.7 72.9 86.4
ETA (ICML 22’) 90.7 89.2 90.5 77.0 80.6 74.0 68.9 72.4 70.3 64.6 43.9 93.4 69.2 52.3 55.9 72.9
AdaContrast (CVPR 22’) 96.2 95.5 96.2 93.2 96.4 96.3 90.5 92.7 91.9 92.4 50.8 97.0 96.6 89.7 87.1 90.8
CoTTA (CVPR 22’) 89.1 86.6 88.5 80.9 87.2 81.1 75.8 73.3 75.2 70.5 41.6 85.0 78.1 65.6 61.6 76.0
SAR (ICLR 23’) 98.4 97.3 98.0 84.0 87.3 82.6 77.2 77.5 76.1 72.5 43.1 96.0 78.3 61.8 60.4 79.4
RoTTA (CVPR 23’) 89.4 88.6 89.3 83.4 89.1 86.2 80.0 78.9 76.9 74.2 37.4 89.6 79.5 69.0 59.6 78.1
RDumb (NeurIPS 23’) 89.0 87.6 88.6 78.1 82.3 75.2 70.1 73.0 71.0 65.1 43.9 92.6 70.7 53.7 56.3 73.1
DeYO (ICLR 24’) 99.5 99.2 99.5 89.5 95.0 83.9 78.8 75.0 87.8 79.2 47.3 99.2 92.4 59.0 60.4 83.0
UnMix-TNS (ICLR 24’) 91.7 92.8 91.7 92.3 93.4 91.5 84.8 86.3 84.1 85.0 62.0 96.5 88.6 81.7 77.3 86.7
FreDA (ours) 72.4 74.0 71.4 76.5 82.3 72.1 64.1 64.4 64.8 59.1 43.7 79.7 71.0 54.2 58.6 67.2
IN-C (VitBase-LN) 65.8 67.3 65.3 68.8 74.4 64.3 66.6 56.8 45.2 48.6 29.2 81.8 57.1 60.8 50.2 60.2
TENT (ICLR 21’) 60.6 60.4 59.6 63.6 67.8 57.1 61.2 55.0 48.8 47.4 28.6 66.7 53.9 50.4 44.4 55.0
ETA (ICML 22’) 59.3 57.8 57.9 58.8 62.8 52.5 58.2 51.0 46.4 44.2 28.8 58.3 51.1 46.9 41.9 51.7
AdaContrast (CVPR 22’) 64.8 63.4 63.3 72.8 76.6 73.7 74.6 67.7 48.0 89.6 30.2 93.2 60.8 57.3 46.3 65.5
CoTTA (CVPR 22’) 89.4 92.0 88.9 93.6 92.6 90.6 86.5 94.9 88.2 86.6 75.8 96.5 85.7 93.5 84.6 89.3
SAR (ICLR 23’) 58.9 57.6 57.6 59.4 63.6 53.0 58.5 52.3 47.1 45.4 28.3 61.6 51.4 47.4 42.0 52.3
RoTTA (CVPR 23’) 64.4 65.6 63.7 67.6 71.3 59.8 64.1 52.7 43.5 48.6 27.9 78.5 54.3 60.4 50.1 58.2
RDumb (NeurIPS 23’) 59.7 58.5 58.5 60.0 64.1 54.0 59.0 52.0 46.7 44.5 28.6 61.2 51.9 48.3 42.6 52.6
DeYO (ICLR 24’) 60.0 58.6 58.8 58.8 62.4 61.9 50.9 46.7 51.9 45.2 29.7 55.7 51.6 45.8 42.8 52.1
FreDA (ours) 55.9 53.7 55.0 58.0 57.9 50.9 57.4 45.5 42.9 43.9 29.5 51.7 47.8 41.6 40.7 48.8

Table 2: Classification error rate (↓) on
CIFAR-10-C (C10), CIFAR-100-C (C100),
and ImageNet-C (IN) using ResNet-50-BN
and VitBase-LN backbones under Mixed Dis-
tribution & Dependent Sampling, averaged
over 15 corruptions at severity level 5.

Methods C10 C100 IN(BN) IN(LN)

Source 43.5 46.5 82.0 60.2
TBN 79.2 92.3 94.2 -
TENT (ICLR 21’) 86.6 98.4 99.5 77.9
ETA (ICML 22’) 86.1 96.2 99.7 73.9
AdaContrast (CVPR 22’) 69.8 73.2 98.5 94.9
CoTTA (CVPR 22’) 82.7 92.8 98.0 92.6
SAR (ICLR 23’) 78.8 95.8 98.2 54.0
RoTTA (CVPR 23’) 64.6 65.3 89.3 74.2
RDumb (NeurIPS 23’) 86.2 98.4 98.1 56.5
DeYO (ICLR 24’) 87.0 98.1 99.1 52.0
UnMix-TNS (ICLR 24’) 41.9 50.1 84.3 -
FreDA (ours) 23.0 34.7 67.2 48.7

FreDA consistently improves across different
distribution shifts. Our method consistently at-
tains the lowest classification error rates across all
evaluated datasets (see Table 1 and 3). Notably, on
the Camelyon17 dataset, FreDA reduced the error
rate to 27.9%, outperforming the next best method
by 5.9%. This significant improvement is particu-
larly notable where other approaches falter – espe-
cially compared to models like TBN without train-
ing, which struggle to adapt to the complex medical
imaging data. By effectively handling high variabil-
ity and intricate patterns in the data, FreDA main-
tains superior accuracy and adaptability. These re-
sults demonstrate our method’s practical utility in
applications where effective adaptation to new and
unseen conditions is essential, underscoring its ro-
bustness and reliability for real-world deployment.

FreDA effectively mitigates both covariate and label shifts. In environments characterized by
simultaneous covariate and label shifts, our approach keep showing exceptional adaptability (see
Table 2). We attribute this success to FreDA’s ability to separate covariate shifts from label shifts via
decentralized learning. FreDA achieves this by first isolating target different distribution shifts and
then focus on learning label shifts for each specific distribution. This sequential approach prevents
models from being overwhelmed by simultaneous shifts, allowing it to address each type of shift
independently and effectively.
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Table 3: Classification error rate (↓) on DomainNet126 and Camelyon17 under Mixed Distribution.

DomainNet126

Methods Real Painting Clipart Sketch Avg.

Source 45.2 41.6 49.5 45.3 45.4
TBN 45.5 39.9 45.9 37.5 42.2
TENT (ICLR 21’) 42.2 37.8 44.7 37.5 40.6
ETA (ICML 22’) 41.1 37.3 43.4 36.4 39.5
SAR (ICLR 23’) 43.2 38.5 44.8 37.0 40.9
DeYO (ICLR 24’) 40.9 36.4 43.6 36.9 39.4
FreDA (ours) 40.2 36.1 40.0 33.6 37.5

Camelyon17

A B C D E Avg.

21.6 43.6 52.5 47.4 47.6 42.5
26.5 38.5 31.7 39.4 32.8 33.8
44.7 50.5 49.9 49.1 48.6 48.6
47.4 52.5 47.9 49.9 39.2 47.4
26.5 38.5 31.7 39.4 32.8 33.8
50.4 50.3 48.8 51.7 50.5 50.4
18.6 24.7 24.8 40.5 30.8 27.9

Table 4: Classification error rate (↓) on CIFAR-10-C , CIFAR-100-C , and ImageNet-C using WRN-
28, ResNeXt-29 and ResNet-50-BN backbones with Various Batch Size (BS) under Mixed Do-
mains, averaged over 15 corruptions at severity level 5.

CIFAR-10-C CIFAR-100-C ImageNet

Methods BS=200 BS=64 BS=16 BS=4 BS=1 Avg. BS=200 BS=64 BS=16 BS=4 BS=1 Avg. BS=64 BS=16 BS=4 BS=1 Avg.

Source 43.5 43.5 43.5 43.5 43.5 43.5 46.4 46.4 46.4 46.4 46.4 46.4 82.0 82.0 82.0 82.0 82.0
TBN 33.8 34.1 35.5 40.7 89.8 46.8 45.8 46.5 49.5 60.4 98.9 60.2 82.5 83.7 89.0 99.9 88.8
TENT (ICLR 21’) 44.1 57.1 80.3 88.4 90.0 72.0 82.5 92.2 97.1 98.6 99.0 93.9 86.4 99.6 99.8 99.9 96.4
ETA (ICML 22’) 28.2 34.8 55.1 69.6 89.8 55.5 37.0 40.8 53.5 93.2 98.9 64.7 72.9 99.5 99.3 99.9 92.9
SAR (ICLR 23’) 33.8 33.7 35.4 41.1 89.8 46.8 45.5 57.2 67.4 69.0 98.9 67.6 79.4 89.0 87.8 99.9 89.0
DeYO (ICLR 24’) 27.7 34.4 44.8 78.9 89.8 55.1 46.4 66.4 95.0 98.3 98.9 81.0 83.0 97.0 87.8 99.9 91.9
FreDA (ours) 22.9 22.9 22.4 22.6 22.9 22.7 34.7 34.5 35.0 34.6 36.4 35.0 67.2 67.9 69.3 70.7 68.8

FreDA remains stable under various batch size. To simulate real-world deployment with con-
strained batch sizes, we evaluate models under both varying batch sizes and mixed distribution shifts.
In Table 4, we present classification error rates on CIFAR-10-C, CIFAR-100-C, and ImageNet-C
datasets using batch sizes ranging from 200 (64) down to 1. Unlike other methods that significantly
degrade as batch size decreases – for example the error rate of DeYO increases from 27.7% to 89.8%
when batch size drops from 200 to 1 on CIFAR-10-C – FreDA consistently maintains strong perfor-
mance. This stability under limited batch sizes demonstrates FreDA’s robustness, making it highly
suitable for real-world applications where processing large batches is not always feasible.

Table 5: Ablation study of FreDA.

DT SS SA C10 C100 IN(BN) IN(LN)

44.1 82.5 86.4 55.0
✓ 24.8 54.2 81.2 95.2

✓ 29.6 37.5 71.0 51.1
✓ 39.4 71.7 92.9 59.5

✓ ✓ 24.3 36.3 69.4 49.6
✓ ✓ 27.7 36.2 65.9 50.1

✓ ✓ 24.4 50.2 77.7 95.3
✓ ✓ ✓ 22.9 34.7 67.2 48.8

FreDA enhances adaptation via synergistic designs.
This section validates our designs by ablating its three
key modules – Decentralized Training (DT), Sample Se-
lection (SS), and Sample Augmentation (SA). The base-
line here leverages only the entropy loss. From Table 5,
we have the following observations: 1) Implementing
decentralized training alone results in substantial im-
provements, reducing error rates dramatically across all
datasets. 2) The impact of sample selection varies across
datasets. While significantly improving performance on
CIFAR100-C, it increase error rate on Camelyon. This
variation suggests that sample selection helps the model focus on more representative or challeng-
ing samples but may not be effective across all datasets, highlighting its dataset-specific nature. 3)
Sample augmentation alone tends to increase error rates, suggesting that although this approach
introduces useful variability, it may introduce unexpected noise under the absence of proper selec-
tion or decentralized training. 4) The combined approach delivers the best performance across all
datasets, showing the synergistic effect of our different designs.

6 CONCLUSION

This paper advances Test-Time Adaptation (TTA) by addressing the real-world complexities of het-
erogeneous data streams. Our decentralized approach, leveraging Fourier information, enables a
precise management of diverse data shifts, enhancing model adaptability and robustness across dif-
ferent settings. The integration of Fourier-based augmentation broadens the effective range of con-
fident samples tailored for each distinct distribution shifts, leading to notable performance gains
on multiple dataset across various domains. The demonstrated improvements confirm the potential
of our proposed FreDA to significantly impact the field, suggesting promising avenues for future
research in adapting to dynamic and diverse distributional changes in deep learning applications.
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A IMPLEMENTATION DETAILS

Pretrained Models. We utilize models from RobustBench (Croce et al., 2021), including
WildResNet-28 (Zagoruyko & Komodakis, 2016) for CIFAR-10-C and ResNeXt-29 (Xie et al.,
2017) for CIFAR-100-C, both pretrained by Hendrycks et al. (2020). For ImageNet-C, the pretrained
ResNet-50 (He et al., 2016) and VitBase-LN Dosovitskiy (2020) are obtained from torchvision.
For DomainNet126, pretrained ResNet-50 are sourced from AdaContrast (Chen et al., 2022), while
for Camelyon17, we train a DenseNet-121 (Huang et al., 2017) from scratch to 100 epochs with
other training specifications outlined in the Wilds benchmark (Koh et al., 2021).

Hyperparameter Configuration. The batch size is set to 200, 64, 128 and 32 for CIFAR-10/100-C,
ImageNet-C, DomainNet126 and Camelyon17 following the previous methods. The SGD optimizer
is used with learning rates adjusted to 0.01, 0.0001, 0.001 and 0.00005, respectively. The learning
rate is proportionally decreased in the experiment studying the effect of batch size. The Kmeans
Size is 512, Clutser Number is 4, Communication Interval is 10 across all the tasks. The perutrbation
magnitude α is fixed to 0.1 and the coefficient λ in loss function is fixed to 0.5. The δ parameter
controlling the dependent sampling (Dirichlet distribution) is set to 0.1 for CIFAR10-C and adjusted
to 0.01 for CIFAR100-C, ImageNet-C following UnMix-TNS (Tomar et al., 2024). Two threshold in
Eq. 7 is set to the same value for corruption datasets and DomainNet126 following ETA (Niu et al.,
2022). While for Camelyon17, the class diversity related threshold is adjusted to 0.9 empirically.

B COMPARED METHODS

TBN Nado et al. (2020) re-estimates batch normalization statistics from test data. TENT (Wang
et al., 2021) minimizes prediction entropy to optimize batch normalization. CoTTA (Wang et al.,
2022) addresses long-term test-time adaptation in changing environments. ETA (Niu et al., 2022)
and SAR (Niu et al., 2023) exclude unreliable and redundant samples during optimization. Ada-
Contrast (Chen et al., 2022) utilizes contrastive learning to refine pseudo-labels and improve feature
learning. RoTTA (Yuan et al., 2023) presents a robust batch normalization scheme with a mem-
ory bank for category-balanced estimation. RDumb (Press et al., 2024) leverages weighted entropy
and periodically resets the model to its pretrained state to prevent collapse. DeYO (Lee et al.,
2024) quantifies the impact of object-destructive transformations for sample selection and weight-
ing. UnMix-TNS (Tomar et al., 2024) introduces a test-time normalization layer for non-i.i.d. en-
vironments by decomposing BN statistics. For fair comparisons, we conduct experiments using the
open source online TTA repository (Döbler et al., 2023)1, which provides codes and configurations
of state-of-the-art TTA methods.

C CONTINUAL SETTING EVALUATION

Table 6: Classification error rate (↓)
on CIFAR-10-C (C10), CIFAR-100-
C (C100), and ImageNet-C (IN) us-
ing ResNet-50-BN & VitBase-LN back-
bones under Continual Setting, aver-
aged over 15 corruptions.

Methods C10 C100 IN(BN) IN(LN)

Source 43.5 46.5 82.0 60.2
TBN 20.4 35.4 68.6 -
TENT (ICLR 21’) 20.0 62.2 62.6 54.5
ETA (ICML 22’) 17.9 32.2 60.2 49.8
AdaContrast (CVPR 22’) 18.5 33.5 65.5 57.0
CoTTA (CVPR 22’) 16.5 32.8 63.1 77.0
SAR (ICLR 23’) 20.4 32.0 61.9 51.7
RoTTA (CVPR 23’) 19.3 34.8 67.3 58.3
RDumb (NeurIPS 23’) 17.8 34.1 90.6 50.2
DeYO (ICLR 24’) 87.0 98.1 90.6 94.3
UnMix-TNS (ICLR 24’) 24.9 32.7 75.4 -
FreDA (ours) 19.5 32.5 60.2 47.9

Although our method is specifically designed for mixed
domain scenarios, we also evaluated its performance un-
der the conventional continual test-time adaptation set-
ting to assess its robustness in different contexts. In
this setting, the model adapts online to a sequence
of test domains without explicit knowledge of domain
shifts, with only one distribution shift occurring at a
time and not reappearing. Without adjusting any pa-
rameters, our method demonstrated competitive perfor-
mance compared to current state-of-the-art approaches.
Notably, while UnMix-TNS effectively addresses non-
i.i.d. issues (dependent sampling at the class level) but
underperforms under i.i.d. conditions, our results suggest
that the proposed FreDA not only excels in its intended
mixed domain scenarios but also generalizes effectively
to standard continual adaptation tasks, providing a robust
solution across various distributional challenges.

1https://github.com/mariodoebler/test-time-adaptation
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D PARAMETER STUDY

Table 7: Sensitivity analysis on different
datasets.

CLUSTER NUM 2 4 8 16
CIFAR10-C 23.0 22.9 23.2 24.7
CIFAR100-C 34.8 34.7 34.7 35.6
IN-C (BN) 68.6 67.2 67.1 70.5
IN-C (LN) 50.3 48.8 49.9 50.0

KMEANS SIZE 256 512 1024 2048
CIFAR10-C 23.0 22.9 23.0 22.9
CIFAR100-C 34.6 34.7 34.8 34.8
IN-C (BN) 69.0 67.2 67.6 67.0
IN-C (LN) 49.0 48.8 48.7 48.8

COMM INTERVAL 1 10 100 1000
CIFAR10-C 22.6 22.9 22.6 22.0
CIFAR100-C 34.7 34.7 34.9 43.2
IN-C (BN) 67.1 67.2 67.2 67.4
IN-C (LN) 48.4 48.8 48.8 48.7

In this section, we study the parameter choice of CLUS-
TER NUM, KMEANS SIZE and COMM INTERVAL
(refer to Algorithm 1 for detailed definitions). Results
are reported in Table 7.

As we adjust the KMEANS SIZE parameter from 256
to 2048, there is a remarkably consistent performance on
different datasets, indicating that our method’s capability
to generalize across various sizes.

The variation in CLUSTER NUM across our datasets un-
derscores the nuanced balance required in selecting the
optimal branch number for domain adaptation. Utiliz-
ing just two clusters already yields relatively good re-
sults, suggesting that a minimal decentralization can be
effective. However, as the number of clusters increases
from 2 to 16, we observe a decline in performance on
CIFAR100-C and a more pronounced deterioration on
ImageNet-C, with the optimal performance achieved at
a CLUSTER NUM of 4. This trend underscores the delicate trade-off between model complexity
and the risk of overfitting: employing too large a cluster size can lead to a model overly tailored to
the training data, impairing its generalization capabilities.

For the sensitivity analysis of COMM INTERVAL, we observe that our method is generally robust
to changes in the communication interval across all datasets. However, the impact of communi-
cation frequency varies significantly among different datasets. For simpler datasets like CIFAR10,
minimal communication, exemplified by an interval of f = 1000, yields the best results. This could
be attributed to the model’s high accuracy, enabling positive feedback loops even within isolated
branches. Conversely, for more complex datasets, more frequent communication, with intervals
as low as f = 1, appears beneficial. This frequent updating may help prevent model degradation
over time, especially in scenarios where the data complexity could lead to significant divergences in
learning pathways among distributed model components.

E DATASET VISUALIZATION

To further illustrate the characteristics of the datasets used in our evaluation, we present visualiza-
tions of the data distribution across different corruption types (Fig. 3), natural domain shifts (Fig. 4),
and medical centers (Fig. 5). These figures highlight the diverse challenges that our models face in
each evaluation scenario, providing insight into the complexity of the test conditions.

F LIMITATION AND FUTURE WORK

While FreDA addresses a critical challenge in handling heterogeneous data streams, providing a
solid pipeline for this issue, there are still avenues for further enhancement.

On the theoretical front, although our framework has demonstrated its effectiveness empirically,
developing a more formal understanding of its convergence and optimality could further solidify its
foundations and provide additional clarity on its broader applicability.

In terms of practical optimization, our current aggregation approach, which averages models based
on cluster counts, has been effective in solving the problem at hand. However, exploring alternative
strategies—such as weighting models by the divergence between clusters—might lead to incremen-
tal improvements. Additionally, refining the sample selection process from a original sample-level
focus to a more granular patch-level could extend FreDA’s applicability to tasks such as segmenta-
tion, thereby further enhancing its versatility in real-world scenarios.
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Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur
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Figure 3: Examples from ImageNet-C under common image corruptions. The images showcase a
range of corruption types (e.g., noise, blur, and weather distortions) at varying severity levels.
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Figure 4: Samples from DomainNet126 across four subdomains (Real, Sketch, Painting, Clipart).
These visualizations reflect the stylistic and perceptual variations inherent in each domain.
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Figure 5: Example patches from the Camelyon17 dataset, containing histopathological images used
for tumor detection.
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