
Nash CoT: Multi-Path Inference with Preference Equilibrium

Anonymous ACL submission

Abstract001

Chain-of-thought (CoT) prompting has002
emerged as a powerful technique for enhancing003
the reasoning capabilities of Large Language004
Models (LLMs) on complex problems. Among005
CoT-related studies, self-consistency (Multi-006
path inference with answer filtering through007
voting) involves generating multiple reasoning008
paths using the CoT framework and then009
selecting the most frequently produced outputs010
standing out as a concise yet competitive011
approach. While self-consistency has indeed012
led to the improvements in LLM inference,013
the use of multi-path inference also escalates014
deployment costs. Therefore, maintaining015
the performance benefits of self-consistency016
inherited from multi-path inference while017
reducing the inference costs holds significant018
value. In this research, we conceptualize019
language decoding as a preference consensus020
game, constructing a bi-player gaming system021
within each local path, and introduce Nash022
Chain-of-Thought (Nash CoT). Specifically,023
for a given question, we leverage LLM to024
autonomously select the contextually relevant025
template and generate outputs guided by this026
template, aiming to reach Nash Equilibrium027
alongside normal generation in each path. This028
approach allows us to achieve comparable029
or improved performance compared to030
self-consistency while using fewer inference031
paths on various inference tasks, including032
Arabic reasoning, Commonsense Question033
answering, and Symbolic inference.034

1 Introduction035

Large Language Models (LLMs) have revolution-036

ized Natural Language Processing (NLP) (Ouyang037

et al., 2022; etc., 2023; Jiang et al., 2023; Brown038

et al., 2020b; OpenAI, 2024). In particular,039

leveraging human-designed instructions as input,040

LLM demonstrates superior inference performance041

across various types of simple reasoning tasks (Rad-042

ford et al., 2019; Brown et al., 2020a). But, its043

performance remains variable in complex reason- 044

ing tasks (Rae et al., 2022). To enhance LLM’s 045

inference capabilities on complex issues, we can 046

employ a step-by-step inference approach, known 047

as Chain-of-Thought (CoT) prompting (Wei et al., 048

2023). For instance, starting with a template like 049

"Let’s think step by step", LLM first gener- 050

ates rationales and then arrives at a final prediction. 051

This approach significantly improves LLM’s infer- 052

ence performance across tasks like Arabic, Symbol 053

Inference, and CommonsenseQA. 054

Subsequently, the impressive performance of 055

CoT on complex inference tasks has spurred new 056

developments in this direction (Wang et al., 2023; 057

Wei et al., 2023; Jin and Lu, 2023; Zhang et al., 058

2022; Shi et al., 2022). Among these developments, 059

self-consistency (Wang et al., 2023) emerges as 060

a competitive CoT approach. It leverages uncer- 061

tainty from multiple inference paths from a sin- 062

gle LLM, and ranking generated answers by fre- 063

quency can significantly enhance LLM’s inference 064

performance. This approach significantly improves 065

the performance of GPT-3 utilizing zero-shot CoT 066

without any options for parameter tuning. Mean- 067

while, experimental results indicate that inference 068

performance improves with the number of gen- 069

erated samples (Wang et al., 2023), suggesting 070

that the potential of LLM’s inference capabili- 071

ties has not yet to be fully exploited. Although 072

self-consistency is straightforward to implement 073

and requires no additional turning, it has a signifi- 074

cant drawback: substantially higher inference costs 075

compared to directly utilizing CoT. 076

On the other hand, the performance improve- 077

ments resulting from self-consistency imply that 078

relying solely on single-path inference cannot fully 079

harness the inference capabilities of LLM, and 080

multi-path inference encompasses the potential cor- 081

rect answers. Therefore, it’s necessary to main- 082

tain this strategy. Meanwhile, numerous practical 083

applications indicate that when a LLM is given 084

1

All Answers

Answers reached Equilibrium

Confining the optimal player

Vote the highest frequent answer

Q : A coin is heads up (represented by 1, otherwise is
0). Angelina flips the coin. Layla flips the coin. Jenny
flips the coin. Zane does not flip the coin. Is the coin
still heads up? Note that "flip" here means "reverse"

LLM

A:0 A:0 A:0 A:1 ··· A:0 A:0 A:1 A:1

Final A

Zero shot CoT (template guided path)
Zero shot CoT (LLM path)

Concatentaion Operation

Q : A coin is heads up (represented by 1, otherwise is
0). Angelina flips the coin. Layla flips the coin. Jenny
flips the coin. Zane does not flip the coin. Is the coin
still heads up? Note that "flip" here means "reverse"

LLM

A:0 A:0 A:0 A:1 A:0 A:0 A:1 A:1

A:0 A:1 A:1

A:0 A:1

(b) Nash CoT

·······

·········

···

not in not inin in
A:0

Final AFinal A

template n
template n-1

template 2
template 3

template 1

·········
template *

Mini-batch Path

empty

no

yes

····
··

(a) Self-Consistency

Figure 1: Demonstrations of Self-Consistency and Nash Chain-of-Thought (Nash CoT). (a) Self-Consistency entails
inferring multiple paths and subsequently voting the most frequently prediction. (b) In Nash CoT, inference occurs
multiple times, with each path generating two responses, but only one reached Preference Equilibrium is sustained.
Ultimately, the answer sampled is the one that reaches preference equilibrium.

Arabic Reasoning Symbolic QA Commonsense QA
0

10

20

30

40

50

60

70

A
ve

ra
ge

 S
co

re
d

Performance Comparison
zero-shot
zero-shot-cot
self-consistency (20 paths)
nash cot (10 paths)

Figure 2: General Performance Comparison. We com-
pare the average performance of , zero-shot, and zero-
shot CoT self-consistency (20 Paths) with our Nash CoT
(10 Paths) on Mistral-Instruct and GLM4.

the appropriate templates, it can perform specific085

tasks more proficiently. Hence, an intuitive strat-086

egy to reduce the number of inference paths in087

self-consistency is to use templates to guide the088

LLM to correctly infer each path.089

To achieve this goal, we use the contextual in-090

formation required by the question as a template to091

guide the inference in each path. This approach in-092

creases the probability that the LLM can correctly093

solve the question in each path, thereby potentially094

reducing the number of inference paths needed for 095

multi-path inference. Meanwhile, to alleviate over- 096

confidence in template-guided generation, we de- 097

velop a bi-player gaming system that introduces the 098

Nash Equilibrium of preference of strategy (defined 099

as Preference Equilibrium) in multi-path inference. 100

This system samples generations that balance the 101

preferences of both template-guided and normal 102

generation, ensuring the output robustly matches 103

the context of the given question while sustaining 104

some moderate generation pattern. Subsequently, 105

we combine multi-path inference with Preference 106

Equilibrium to propose Nash CoT. We present the 107

comparison between Self-Consistency and Nash 108

CoT in Figure 1. 109

We conduct experiments with two local deployed 110

LLMs-Mistral-Instruct (Zeng et al., 2022; Du et al., 111

2022) and GLM4 (Zeng et al., 2022; Du et al., 112

2022) on various inference tasks, including Arabic 113

Reasoning (Koncel-Kedziorski et al., 2015; Hos- 114

seini et al., 2014) and Symbolic Reasoning (Wei 115

et al., 2023) and Commonsense Reasoning (Talmor 116

et al., 2019; Geva et al., 2021). As shown in Fig- 117

ure 2, Nash CoT has achieved similar or even better 118

performance against self-consistency with fewer in- 119

2

ference paths. Meanwhile, as shown in Figure 3,120

Nash CoT has significantly reduced the inference121

cost by up to 50% on local deployed LLMs.122

To our knowledge, we are the first to introduce123

Preference Equilibrium into multi-path inference124

with the aim of harmonizing text generation guided125

by the optimal template with that generated by the126

model’s default state. It can reduce the number of127

paths needed to achieve good results in multi-path128

inference. And we are also the first to integrate129

Preference Equilibrium into multi-path inference130

and propose Nash CoT. It can achieve similar or131

even superior performance on various reasoning132

tasks while requiring only half costs compared to133

self-consistency.1134

2 Related Work135

Chain-of-Thought (CoT). There are three ma-136

jority kinds of CoT approaches. Zero-shot CoT that137

Prompts LLM with simple yet instructions to guide138

LLM generate step by step (Kojima et al., 2023).139

Manual CoT that initialized by randomly sampled140

several cases from dataset or designed by human,141

and followed by utilizing these cases as demonstra-142

tion to guided LLM generate follow the manner143

of demonstration (Wei et al., 2023), however, such144

methods can be biased if the demonstration can145

represent real distribution. Automatic (or batch)146

CoT (Zhang et al., 2022) first sample cases which147

have the most representative sentence embedding148

in each clusters, followed by inference with the149

same manner as manual CoT. Self-Consistency150

(Wang et al., 2023) showcases strong performance151

in vast benchmarks. Apart from its impact on in-152

ference performance,self-consistency also boasts153

scalability as a key advantage. It seamlessly inte-154

grates with different approaches, such as tabular155

consistency of transformations (tab-CoT) (Jin and156

Lu, 2023), making it adaptable and versatile for157

various applications. Despite self-consistency has158

improved LLM’s performance on Arabic bench-159

marks. Correspondingly,self-consistency should160

have to inference multi-times, thus it burdens the161

deploy budgets.162

One way to address this limitation is by initially163

sampling multiple inference paths and then fine-164

tuning using the highest frequency path. Specifi-165

cally, Huang et al. (2022) suggest that gathering in-166

ferences from multiple paths and sampling the most167

frequent generation to fine-tune a smaller LLM168

1We will release our code at <Removed for Submission>.

can enhance the LLM’s inference performance. 169

However, this approach still requires updating the 170

LLM’s parameters, which is inefficient. Therefore, 171

it is necessary to further explore inference methods 172

to maintain the performance of self-consistency 173

while reducing the number of inference paths. 174

Preference Optimization. The training policy 175

with Reinforcement Learning (RL) to reflect pref- 176

erence, termed Reinforcement Learning with Hu- 177

man Feedback (RLFH), was initially introduced 178

by (Akrour et al., 2011) and has since undergone 179

consistent improvement and refinement by (Cheng 180

et al., 2011; Busa-Fekete et al., 2013; Wilson et al., 181

2012). This approach has been widely applied to 182

adjust Large Language Models’ (LLMs) parame- 183

ters to align with human preferences (Ouyang et al., 184

2022; Jiang et al., 2023; etc., 2023). Recently, a 185

new approach called Direct Optimizing from Pref- 186

erence (DPO) has been proposed by (Rafailov et al., 187

2023), aiming to directly adjust LLMs to reflect hu- 188

man preferences without requiring a reward model 189

and RL algorithm. Additionally, (Munos et al., 190

2023) proposed combining DPO with Nash equi- 191

librium to ensure convergence of the last iterated 192

policy. Our study also utilizes the concept of equi- 193

librium in preference model, but the main differ- 194

ence is that we utilize preference equilibrium as 195

a standard to pick up the most preferred answer 196

instead optimizing the LLM’s parameters. 197

3 Preference Equilibrium in mini-batch 198

inference 199

Self-consistency has shown that the inference of 200

LLMs under a single path may not represent their 201

full capabilities. By simply conducting multiple in- 202

ferences and filtering answers through voting, it is 203

possible to achieve more accurate results. However, 204

multi-path inference lacks a strong theoretical foun- 205

dation to determine the optimal number of infer- 206

ence paths, potentially leading to much more com- 207

putational resource consumption. To reduce the 208

number of paths required for multi-path inference, 209

we utilize the concept of Nash Equilibrium to lo- 210

cally construct a binary game system in multi-path 211

inference. Specifically, the preference of each valid 212

inference path of the LLM needs to achieve Nash 213

equilibrium with the preferences of the generation 214

guided by the template. This approach increases 215

the probability of each path correctly answering 216

the question while maintaining a certain level of ro- 217

bustness, thereby reducing the number of inference 218

3

paths required by self-consistency.219

Preference Model. Given text input x, and the220

sampled predictions (answers) y1, y2, we first de-221

fine y1 prefers y2 as Equation 1:222

P(y1 ≺ y2|x) := sign(rθ(y1|x))− sign(rθ(y2|x)), (1)223

where rθ denotes preference model that reflecting224

the preference when comes to the pairs. Then we225

imply the existence of Nash equilibrium in Pref-226

erence model, specifically, Equation 1 is strictly227

linear, i.e. P(y1 ≺ y2|x) = 1− P(y2 ≺ y1|x).228

Player Templates: Templates for our
preference model that are shown the
structure: id(player): description.

Mathematician: You are a mathematician,
you excel at analyzing problems from a
mathematical logical perspective and arrive
at conclusions that align with your values.
Literary scholar: You are a literary scholar
who has read a vast array of literary works.
Please consider the problem from the per-
spective of a literary scholar.
Philosophical: You are a philosopher, your
knowledge base includes a wealth of philo-
sophical knowledge. You enjoy approach-
ing problems from a philosophical perspec-
tive and arriving at conclusions that align
with your values.
Geographer: You are a geographer with a
deep understanding of geographical knowl-
edge. Please approach the given problem
from the perspective of a geographer.
· · · (other cases have been appended
to the Appendix.)

229

Additionally, drawing from the definition230

from Munos et al., we define one policy as more231

preferred over another as:232

P(π1 ≺ π2) := Ey1∼π1(·|x)
y2∼π2(·|x)

[P(y1 ≺ y2|x)] (2)233

Preference Equilibrium. We aim to select the234

best template (we provide several cases in above235

example 3 for the current problem, thus facilitating236

the large model in problem-solving, correspond-237

ingly reduces the required num of inference paths.238

However, this may lead to some issues: 1) If the239

template is incorrectly chosen, it may cause the240

agent to generate answers outside the range of cor-241

rect responses corresponding to the current prob-242

lem, resulting in erroneous replies. 2) The large243

model may excessively generate context-dependent 244

responses, affecting its robustness. To address 245

these issues, we build a local bi-player gaming 246

system that the preference of template guided LLM 247

(player 1) over normal status of LLM (player 2) 248

is the pay-off of template guided LLM, vice visa. 249

If player 1 and player 2 reaches Nash Equilib- 250

rium 2, then the strategy can match the preference 251

of both player 1 and player 2. 252

Subsequently, we define the status that player 253

1 and player 2 reach Nash Equilibrium as Prefer- 254

ence Equilibrium (Definition 1). Meanwhile, in 255

Theorem 3.1, we prove the existence of Nash Equi- 256

librium in this system. Specifically, the strategy of 257

player 1 equal to player 2 is one solution that 258

this system has reached Preference Equilibrium. 259

Theorem 3.1 (Existence of Preference Equilib- 260

rium). Given any two policy (player) π1 and π2 261

within the gaming system defined in Definition 1, 262

where π ∈ Π. π1 ≡ π2denotes a solution where 263

the gaming system reaches Nash Equilibrium. 264

Proof of Theorem 3.1 see Appendix E. 265

Meanings of the existence of Preference Equi- 266

librium. Theorem 3.1 proves the existence of 267

an Nash Equilibrium between the template guided 268

LLM and the normal status of LLM. When reach- 269

ing Preference Equilibrium, the preference of de- 270

cisions made by the template guided LLM are 271

aligned with those made by the LLM under nor- 272

mal status. Meanwhile, the preference of template 273

guided LLM generation is much more closed to the 274

requirement of quesitons’ context, while those of 275

the normal status LLM are predominantly based 276

on its parameters which is much more robust than 277

template guided LLM. Therefore, this equilibrium 278

can balance the requirement of contextual informa- 279

tion and robustness of the model generation during 280

problem-solving. Notabaly, π1 ≡ π2 means their 281

outputs are also likely to be equal. This insight 282

forms a fundamental basis for piratically imple- 283

menting Nash CoT. 284

3.1 Mini-batch inference with Preference 285

Equilibrium 286

Subsequently, based on the concept of Preference 287

Equilibrium, we conceptualize a Mini-batch infer- 288

2Preference Equilibrium leverages the concepts of Nash
Equilibrium. Nash equilibrium is proposed by John Nash. It is
a concept solution where, assuming each participant knows the
equilibrium strategies of the other participants, no participant
can benefit by changing their own strategy.

4

ence (shown in Figure 1) as a bi-player gaming sys-289

tem. This approach aims to achieve better inference290

compared to direct inference, while still preserv-291

ing some of the inherent randomness of standard292

inference methods. To begin with proposing this293

system, we first define xt as the template of zero-294

shot CoT, {xc0, xc1, · · · , xcn} (we provided several295

cases in Player Templates) as the candidates tem-296

plate for template guided generation. Meanwhile,297

in this system, the template can to be chosen by a298

reward model rθ.299

In terms of the process of mini-batch inference,300

we firstly inference LLM twice times (we have con-301

ducted ablations about ’twice’ in section ablation)302

i.e. [y0, y1]← [π(·|xt, x), π(·|xt, x)]. Meanwhile,303

due to the inherent uncertainty of LLM, the gen-304

eration of [y0, y1] can be considered a potential305

set of distinct predictions. Subsequently, the tem-306

plate guided generation can be sampled by query-307

ing LLM with xc and xt i.e. y∗ ← π(·|xc, xt, x).308

Furthermore, we can select an answer from y1 and309

y2 that is the same as y∗, thereby satisfying the310

Nash Equilibrium described in Theorem 3.1. Based311

on the mini-batch inference, we further introduce312

Nash CoT in the next chapter. (Notably, the pat-313

terns in this chapter may not always hold true. For314

instance, y∗ may not always in [y1, y2]. We will315

address this issue in the following chapters.)316

4 Nash Chain of Thought (Nash CoT)317

Algorithm 1 Nash CoT (Answer Gathering)
Require: Candidate question q sampled from Q =
{q0, q2, · · · , qn}; Outer iterations nouter; Num of mini-batch
inference nmini; Large language model π; CoT prompt xt,
candidiate player template {xc

0, x
c
1, · · · , xc

n}, Prompt({xc})
is used to point out the most preferred xc.
Generation:
1: Initialize answer list ans = [].
2: xc ← π(·|Prompt({xc}))
3: for t in range(nouter) do
4: Initialize prefer pairs pref = [].
5: for t in range(nmini) do
6: y ← π(·|xt, q);
7: ans.append(y);
8: end for
9: y∗ ← π(·|xc, xt, x)

10: τ.append([y∗, ans])
11: end for
12: Return τ

Nash CoT can be seen as an extension of Mini-318

batch inference with Preference Equilibrium, im-319

plementing multiple Mini-batch inferences to en-320

hance performance. This approach is influenced by321

experimental results from self-consistency, which322

suggest that increasing the number of paths can 323

improve inference accuracy. Meanwhile, the rea- 324

soning process for each question is divided into two 325

stages: Answer Gathering and Answer Filtering. 326

Answer Gathering. When generating candidate 327

answers, the process predominantly involves two 328

types of loops: Mini-batch Loops (nmini): In 329

Chapter 3.1, we discussed the implementation of 330

mini-batch inference with Preference Equilibrium. 331

As shown in Algorithm 1, this process involves 332

searching for template-guided generations within 333

two rounds of generation ([y1, y2]). We refer to 334

the times of these two predictions as the nmini. 335

Moreover, to mitigate the impact brought from low- 336

frequency predictions, we introduce iterating nmini 337

multiple times. This leads us to another type of 338

loop: Outer Loops (nouter): This loop resembles 339

the concept of multi-path in self-consistency. Af- 340

ter completing loop nouter, we filter the generated 341

answers and retain the answer that reaches equilib- 342

rium most frequently (shown in Algorithm 2), as 343

the preferred answer. 344

Answer Filtering. In terms of answer filtering, 345

as shown in Algorithm 2 we first count the most 346

frequent prediction satisfy Preference equilibrium. 347

Specifically, we count all y∗ satisfy y∗ ∈ [y1, y2] 348

and compute their frequency. Subsequently, we 349

return the most frequent case. Otherwise, if is no 350

cases satisfy y∗ ∈ [y1, y2], we adopt the strategy 351

of self-consistency by selecting the most frequent 352

prediction among all generated answers. 353

Algorithm 2 Nash CoT (Answer Filtering)
Require: Preference pair list τ

Filtering:
1: Initialize hash table: hash = {} : k → v.
2: Initialize new answer list nans = [].
3: for [y∗, ans]i in τ do
4: if y∗ ∈ ans then
5: hash[y∗]+=1
6: end if

nans.extend([y∗, ans[0], ans[1]])
7: end for
8: if hash ≡ {} then
9: return the most frequent y in nans

10: else
11: return y ← k = argmaxv hash
12: end if

Subsquently, we propose Nash CoT, which iter- 354

ates through Algorithm 1 and Algorithm 2 to per- 355

form inference on all sampled questions, where τ 356

represents the candidate answers from the Answer 357

Gathering stage. 358

5

Core LLM Methods SingleEQ AddSub MultiArith GSM8K AQuA SVAMP Avg.

Mistral-Instruct (7B)

zero-shot 15.3 ± 0.8 12.0 ± 2.8 3.3 ± 1.3 2.7 ± 2.0 20.8 ± 1.5 7.7 ± 2.0 10.3± 6.5
zero-shot CoT 76.0 ± 0.8 82.5 ± 2.0 75.4 ± 6.1 44.3 ± 4.0 27.9 ± 2.3 63.4 ± 6.9 61.6±19

self-consistency (20 Paths) 82.5 ± 0.8 86.3 ± 5.1 86.3 ± 2.8 58.5 ± 2.8 34.4 ± 6.1 76.5 ± 2.8 70.8± 19
Nash CoT (10 Paths) 81.4 ± 0.8 86.3 ± 6.0 86.3 ± 4.7 55.7 ± 5.8 39.9 ± 5.4 77.0 ± 3.5 71.1± 17

GLM4-chat (9B)

zero-shot 1.1 ± 1.5 1.1 ± 1.5 12.6 ± 3.9 12.0 ± 2.0 22.4 ± 4.1 4.4 ± 2.8 8.9±7.6
zero-shot CoT 90.7 ± 1.5 90.7 ± 1.5 98.4 ± 1.3 80.9 ± 2.8 20.8 ± 3.1 86.9 ± 3.5 78.1±26.1

self-consistency (20 Paths) 92.3 ± 2.0 90.2 ± 2.3 98.4 ± 2.3 89.3 ± 0.2 20.8 ± 3.1 91.5 ± 1.1 80.4±26.8
Nash CoT (10 Paths) 91.3 ± 0.8 90.2 ± 2.7 96.7 ±3.3 80.3± 1.3 20.8±3.1 88.0 ±2.0 77.9±26.1

Table 1: Experimental results on arithmetic reasoning benchmarks. We test Zero-Shot CoT and Nash CoT with the
core LLM includes Mistral-Instruct (7B) and GLM4-chat (9B) on mathematical benchmarks including AddSub,
MultiArith, SingleEQ, SVAMP, GSM8K, and AQuA. Nash CoT performs the best.

Preference Templates: Templates we uti-
lized to confine the prompt for preference
model.

Q: Current issue is {query}, and the
best player is who? Please give us
the number of that player from the op-
tions below: {description}. There are
total N({key(player)}) players including
{key(player)}. Please point out the most
appropriate player for the following task:
candidate questions
A: Let us think step by step. → z
// (obtain the rational z)
A: Let us think step by step. + z+ Therefore,
the most appropriate player in this game is
who? (please direct give us the number)
// (obtain the answer)

359

Practical Implementation of reward model rθ.360

In the process of practical implementation, we do361

not explicitly train a reward model rθ to confine362

the player template xc (we have provided cases363

in Player Templates) using Equation 1. Instead,364

we directly use the preference template (shown in365

Preference Template) to guide the LLM in de-366

termining the most suitable player template for a367

given question. For example, when presented with368

a coin flip question as shown in Figure 4, we fill369

the Preference Template with given question and370

player templates. This filled template is then input371

into the LLM to provide the id of the most suit-372

able player template from the available options. In373

particular, we believe it’s effective, this is because374

most of baselines we selected have been turned375

to reflect human preference, thus we believe the376

selected LLM can be directly utilized as the prefer-377

ence model to point out the most preferred option378

among candidate options.379

5 Experiments 380

The goal of our experiment is to 1) demonstrate the 381

performance advantage and effectiveness of Nash 382

CoT. 2) shocase whether Nash CoT help reduce the 383

overall inference time. In the following sections, 384

we first introduce our experimental setup and then 385

present the experimental results and analysis. 386

Datasets. Our majority benchmarks are com- 387

posed of three different kinds of inference 388

tasks. 1) arithmetic reasoning: SingleEq (Koncel- 389

Kedziorski et al., 2015), AddSub (Hosseini 390

et al., 2014), MultiArith (Roy and Roth, 2016), 391

GSM8K (Cobbe et al., 2021), AQUA (Ling et al., 392

2017), and SVAMP (Patel et al., 2021). 2) sym- 393

bolic reasoning: Last Letters, Coin Flip (Wei 394

et al., 2023), and Object Tracking, Bigbench 395

Date. 3) commonsense question answering: Com- 396

monsenseQA (Talmor et al., 2019) and Strate- 397

gyQA (Geva et al., 2021). For more details about 398

the dataset please refer to Appendix A. 399

LLMs. To validate that Nash CoT is a general 400

CoT method, we selected different large models as 401

test models, including Mistral-7B (Instruct) (Jiang 402

et al., 2023), GLM4-9B-Chat (Zeng et al., 2022; 403

Du et al., 2022). In particular, all of these selected 404

LLMs are turned via RL with human feedback 405

(RLHF), and the difference between LLM turned 406

with RLHF and the original foundation models 407

have been detailed by Ouyang et al. (2022). 408

Baselines. The preliminary baselines we utilized 409

include zero-shot, zero-shot CoT (Wei et al., 2023), 410

andself-consistency (Wang et al., 2023). We test 411

these approach with freezed LLMs. 412

Settings. Our evaluation on all selected tasks uti- 413

lizes the same experimental settings bellow: 414

• zero-shot and zero-shot CoT. We follow the 415

method proposed by Wei et al. (2023) and 416

6

Core LLM Methods Coin-Flipping Last Letters Object Tracking Bigbench Date Avg.

Mistral-Instruct (7B)

zero-shot 26.8 ± 5.1 0.0 ± 0.0 35.5 ± 4.1 31.1 ± 7.6 23.4± 14
zero-shot CoT 27.9 ± 4.0 0.0 ± 0.0 30.1 ± 2.8 36.6 ± 5.4 23.6± 14

self-consistency (20 Paths) 21.9± 4.7 0.0± 0.0 38.8± 0.8 47.0± 1.5 26.9± 18
Nash CoT (10 Paths) 29.0± 5.4 0.5 ± 0.8 44.8 ± 2.0 41.1 ± 1.2 28.9± 17

GLM4-chat (9B)

zero-shot 27.3 ± 6.3 0.0 ± 0.0 38.8 ± 0.8 16.4 ± 2.3 22.2±4.7
zero-shot CoT 87.4 ± 0.8 0.0 ± 0.0 37.7 ± 2.3 16.4 ± 4.8 41.1±22.9

self-consistency (20 Paths) 98.9±1.5 0.0±0.0 37.7±2.3 16.4±4.8 44.0±26.0
Nash CoT (10 Paths) 93.4±2.7 0.0 ± 0.0 37.7±2.3 16.4±4.8 42.4±24.4

Table 2: Experimental results on symbolic inference benchmarks. We test Zero-Shot CoT and Nash CoT with
Mistral-Instruct (7B) and GLM4-chat (9B) on Symbolic QA benchmarks includes Coin-Flipping, Last Letters and
Object Tracking. Among these baselines, Nash CoT performs the best.

Core LLM Methods StrategyQA CommonsensQA Avg.

Mistral-Instruct (7B)

zero-shot 49.2 ± 8.8 62.3 ± 4.8 55.8± 7
zero-shot CoT 57.4±2.3 70.5 ± 2.7 64.0±7

self-consistency (20 Paths) 59.6 ± 2.0 71.0 ± 3.4 65.3± 6
Nash CoT (10 Paths) 56.8 ± 2.0 69.4 ± 4.7 63.1± 6

GLM4-chat (9B)

zero-shot 56.8 ± 4.7 17.5± 2.0 22.2±4.7
zero-shot CoT 63.9±2.3 18.0±2.3 41.0± 22.9

self-consistency (20 Paths) 69.9 ±3.3 18.0±2.3 44.0±26.0
Nash CoT (10 Paths) 66.7 ± 0.8 18.0 ± 2.3 42.4±24.4

Table 3: Experimental results on Commonsense Reasoning. We test Zero-Shot CoT and Nash CoT with Mistral-
Instruct (7B) and GLM4-chat (9B) on Commonsense Reasoning datasets includes StrategyQA and CommonsenseQA
.

use the original template (e.g., "Let’s think417

step by step") for evaluation.418

• self-consistency. We follow Wang et al.419

(2023) to evaluate the performance ofself-420

consistency with selected LLMs, utilizing the421

zero-shot CoT template. Additionally, we set422

the number of inference paths to 20.423

• Nash CoT. We set up nouter as 3 and nmini424

as 2, resulting in a total of nouter × (nmini +425

1) + 1 = 10 paths. Additionally, we have426

provided the player templates xt in Table 1427

and the Appendix, meanwhile we utilizing the428

same CoT template xc as in zero-shot CoT.429

Additionally, all evaluations are conducted on the430

inference of 60 random sampled questions multi431

times. And we have provided the mean and stan-432

dard error in all tables.433

5.1 Experimental Results434

Evaluated Scores. The majority experimental re-435

sults are demonstrated in table 1, 2 and 3. Nash436

CoT can improve Mistral-Instruct (7B) on almost437

all selected inference tasks, while showcasing simi-438

lar performance to self-consistency with twice in-439

ference paths on GLM4-chat (9B). In particular,440

we have provided the total paths of Nash CoT that441

it only require the half of self-consistency, thus our442

0 20 40 60 80 100
Minute (min)

coinflip

multiarith

addsub

aqua

78 min

37 min

82 min

39 min

78 min

37 min

96 min

43 min

Time requirement of inference

Figure 3: We used GLM4-chat (9B) on the same type of
GPU (A-100) to evaluate Nash CoT and self-consistency
across selected tasks. Nash CoT, employing a total of 10
paths, requires nearly half the time of self-consistency,
which has 20 paths in total.

claim in section 3 can be validated. When focus- 443

ing on Mistral-Instruct (7B), Nash CoT has better 444

performance on arithmetic and symbol inference 445

tasks, showcasing its superiority performance on 446

logic/math inference tasks. However, Nash CoT 447

does not showcase improved performance in com- 448

monsense question answering tasks. We argue that 449

this is because commonsense question answering 450

tasks are more diverse, and the player template 451

can’t cover all topics. Therefore, the player tem- 452

plate limits Nash CoT on commonsense question 453

answering tasks. Importantly, we limit Nash CoT’s 454

7

1 2 3

Variation of Nmini

32

34

36

38

40

42
Pe

rf
or

m
an

ce
Aqua

Nouter = 3
Nouter = 4
Nouter = 5
self-consistency (20 paths)
total paths=13
total paths=17
total paths=21

1 2 3

Variation of Nmini

66

68

70

72

74

Pe
rf

or
m

an
ce

CommensenseQA

Nouter = 3
Nouter = 4
Nouter = 5
self-consistency (20 paths)
total paths=13
total paths=17
total paths=21

1 2 3

Variation of Nmini

34

36

38

40

42

44

46

Pe
rf

or
m

an
ce

Object Tracking

Nouter = 3
Nouter = 4
Nouter = 5
self-consistency (20 paths)
total paths=13
total paths=17
total paths=21

Figure 4: We use Mistral-Instruct (7B) to examine the impact of loop numbers on the inference performance of the
large language model. Specifically, we used solid lines of specific colors to represent the experimental performance
under certain Nouter as the Nmini changed. We marked self-consistency with 20 paths using dashed lines, and some
results of Nash CoT, with total paths close to 20, were marked with stars.

performance by utilizing only total 10 paths for455

inference in this section. However, additional ex-456

perimental results in the ablation section show that457

Nash CoT outperforms self-consistency via increas-458

ing the inference loops, thus Nash CoT can outper-459

form self-consistency.460

Inference Time. The path of Nash CoT are com-461

posed of three different kinds of types i.e. zero-462

shot CoT for problem inference (in loop Nmini),463

zero-shot CoT for player confining (in the outside464

loop of Nouter), and player template guided zero-465

shot CoT inference. Accordingly, different path466

requires different time. Therefore, we further count467

the total time requirement of self-consistency and468

Nash CoT in Figure 3, Nash CoT requires fewer469

inference time.470

6 Ablation Study471

In order to further validate the effectiveness of Nash472

CoT, we conducted extensive ablations to answer473

the following questions: 1) What will happen when474

the number of inference paths for Nash CoT is fur-475

ther increased? Will Nash CoT eventually surpass476

self-consistency, and what is the relationship be-477

tween the number of loops and performance? 2)478

Does the template really improve the accuracy of479

path predictions, and what impact does it have on480

experimental performance?481

As the number of inference paths increases,482

Nash CoT can obviously surpass self-consistency483

with fewer inference paths. To address question484

1), we selected Mistral-Instruct (7B) and conducted485

evaluation on three different reasoning tasks, ad-486

justing the Nmini and Nouter. As shown in Figure 4,487

as the number of loops increases, Nash CoT has488

a high probability of significantly outperforming489

self-consistency with fewer paths. However, differ-490

GSM8K AQua SVAMP

55.7→ 50.6 39.9→ 39.8 77.0→ 72.2

Table 4: Performance decreasing. We remove the math-
ematics from Player Templates and test Nash CoT on
selected Arabic reasoning tasks.

ent from self-consistency, the experimental results 491

of Nash CoT do not show a monotonic (linear) rela- 492

tionship with the total number of total paths. This 493

indicates that there is a significant difference be- 494

tween Nash CoT and self-consistency. Unlike Nash 495

CoT, the experimental results of self-consistency 496

show a clear improvement in performance as the 497

number of paths increases. 498

The performance is impacted by the player tem- 499

plate. To illustrate the impact of the template, 500

we removed the mathematical templates from the 501

Player Templates and then evaluated Nash CoT on 502

selected Arabic reasoning. Results are shown in Ta- 503

ble 6, showing an approximately 9.2% decrement 504

in GSM8K and 6.2% decrement in SVAMP. There- 505

fore, the performance of Nash CoT is impacted by 506

the Player Template. 507

7 Conclusion 508

In this study, we proved the existence of Nash 509

equilibrium in preference model, subsequently, we 510

proposed a new CoT approach Nash CoT, and 511

validated its performance on various inference 512

benchmarks. Experimental results show that Nash 513

CoT can perform equally or even better than self- 514

consistency while only require half inference costs. 515

In addition, we also conduct experiments to indi- 516

cate that Nash CoT can also work on other bench- 517

marks such as controllable text generation. 518

8

Limitations and Future Work519

Despite Nash CoT showcase competitive perfor-520

mance with only half of inference paths, it requires521

pre-defined template, thus it’s in-convenient to uti-522

lize Nash CoT in new emerging scenario, in the523

future we will develop a automatic approach to524

balance task feedback and template design.525

Ethical Claims526

Despite LLM has showcased superiority perfor-527

mance on vast benchmarks, but pre-train or fine-528

tune a LLM requires numerous computing re-529

sources. Therefore, it’s crucial to study how to530

inference a LLM to reach the ceiling of its capacity.531

CoT is a ideal approach which has been proved that532

can obviously evaluate the performance of LLMs’533

inference. Among that,self-consistency is one of534

the best CoT approach.535

Our method effectively reduce the inference536

times of multi-path inference, thereby reducing the537

deploy budgets of self-consistency. We believe our538

approach can further elevate the effectiveness of539

multi-path inference, thereby further improving the540

effectiveness of LLM.541

References542

Riad Akrour, Marc Schoenauer, and Michèle Se-543
bag. 2011. Preference-based policy learning. In544
ECML/PKDD.545

Tom Brown, Benjamin Mann, and etc. Ryder. 2020a.546
Language models are few-shot learners. In Ad-547
vances in Neural Information Processing Systems,548
volume 33, pages 1877–1901. Curran Associates,549
Inc.550

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie551
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind552
Neelakantan, Pranav Shyam, Girish Sastry, Amanda553
Askell, Sandhini Agarwal, Ariel Herbert-Voss,554
Gretchen Krueger, Tom Henighan, Rewon Child,555
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,556
Clemens Winter, Christopher Hesse, Mark Chen,557
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin558
Chess, Jack Clark, Christopher Berner, Sam Mc-559
Candlish, Alec Radford, Ilya Sutskever, and Dario560
Amodei. 2020b. Language models are few-shot learn-561
ers. Preprint, arXiv:2005.14165.562

Róbert Istvan Busa-Fekete, Balázs Szörényi, Paul563
Weng, Weiwei Cheng, and Eyke Hüllermeier. 2013.564
Preference-based evolutionary direct policy search.565

Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier,566
and Sang-Hyeun Park. 2011. Preference-based pol-567
icy iteration: Leveraging preference learning for re-568
inforcement learning. In ECML/PKDD.569

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 570
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 571
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 572
Nakano, Christopher Hesse, and John Schulman. 573
2021. Training verifiers to solve math word prob- 574
lems. Preprint, arXiv:2110.14168. 575

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 576
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm: 577
General language model pretraining with autoregres- 578
sive blank infilling. In Proceedings of the 60th An- 579
nual Meeting of the Association for Computational 580
Linguistics (Volume 1: Long Papers), pages 320–335. 581

Hugo Touvron etc. 2023. Llama 2: Open foundation and 582
fine-tuned chat models. Preprint, arXiv:2307.09288. 583

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 584
Dan Roth, and Jonathan Berant. 2021. Did aris- 585
totle use a laptop? a question answering bench- 586
mark with implicit reasoning strategies. Preprint, 587
arXiv:2101.02235. 588

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren 589
Etzioni, and Nate Kushman. 2014. Learning to solve 590
arithmetic word problems with verb categorization. 591
In Proceedings of the 2014 Conference on Empirical 592
Methods in Natural Language Processing (EMNLP), 593
pages 523–533, Doha, Qatar. Association for Com- 594
putational Linguistics. 595

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, 596
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022. 597
Large language models can self-improve. Preprint, 598
arXiv:2210.11610. 599

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 600
sch, Chris Bamford, Devendra Singh Chaplot, Diego 601
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 602
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 603
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 604
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 605
and William El Sayed. 2023. Mistral 7b. Preprint, 606
arXiv:2310.06825. 607

Ziqi Jin and Wei Lu. 2023. Tab-cot: Zero-shot tabular 608
chain of thought. Preprint, arXiv:2305.17812. 609

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 610
taka Matsuo, and Yusuke Iwasawa. 2023. Large 611
language models are zero-shot reasoners. Preprint, 612
arXiv:2205.11916. 613

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish 614
Sabharwal, Oren Etzioni, and Siena Dumas Ang. 615
2015. Parsing algebraic word problems into equa- 616
tions. Transactions of the Association for Computa- 617
tional Linguistics, 3:585–597. 618

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun- 619
som. 2017. Program induction by rationale genera- 620
tion : Learning to solve and explain algebraic word 621
problems. Preprint, arXiv:1705.04146. 622

9

https://api.semanticscholar.org/CorpusID:16505586
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:267824
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2305.17812
https://arxiv.org/abs/2305.17812
https://arxiv.org/abs/2305.17812
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146

Rémi Munos, Michal Valko, Daniele Calandriello, Mo-623
hammad Gheshlaghi Azar, Mark Rowland, Zhao-624
han Daniel Guo, Yunhao Tang, Matthieu Geist,625
Thomas Mesnard, Andrea Michi, Marco Selvi, Sertan626
Girgin, Nikola Momchev, Olivier Bachem, Daniel J.627
Mankowitz, Doina Precup, and Bilal Piot. 2023.628
Nash learning from human feedback. Preprint,629
arXiv:2312.00886.630

OpenAI. 2024. Gpt-4 technical report. Preprint,631
arXiv:2303.08774.632

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-633
roll L. Wainwright, Pamela Mishkin, Chong Zhang,634
Sandhini Agarwal, Katarina Slama, Alex Ray, John635
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,636
Maddie Simens, Amanda Askell, Peter Welinder,637
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.638
Training language models to follow instructions with639
human feedback. Preprint, arXiv:2203.02155.640

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.641
2021. Are NLP models really able to solve simple642
math word problems? In Proceedings of the 2021643
Conference of the North American Chapter of the644
Association for Computational Linguistics: Human645
Language Technologies, pages 2080–2094, Online.646
Association for Computational Linguistics.647

Alec Radford, Jeff Wu, Rewon Child, David Luan,648
Dario Amodei, and Ilya Sutskever. 2019. Language649
models are unsupervised multitask learners.650

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie651
Millican, Jordan Hoffmann, Francis Song, John652
Aslanides, Sarah Henderson, Roman Ring, Susan-653
nah Young, Eliza Rutherford, Tom Hennigan, Ja-654
cob Menick, Albin Cassirer, Richard Powell, George655
van den Driessche, Lisa Anne Hendricks, Mari-656
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-657
hannes Welbl, Sumanth Dathathri, Saffron Huang,658
Jonathan Uesato, John Mellor, Irina Higgins, Anto-659
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,660
Siddhant Jayakumar, Elena Buchatskaya, David Bud-661
den, Esme Sutherland, Karen Simonyan, Michela Pa-662
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine663
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena664
Gribovskaya, Domenic Donato, Angeliki Lazaridou,665
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-666
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-667
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,668
Daniel Toyama, Cyprien de Masson d’Autume, Yujia669
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,670
Aidan Clark, Diego de Las Casas, Aurelia Guy,671
Chris Jones, James Bradbury, Matthew Johnson,672
Blake Hechtman, Laura Weidinger, Iason Gabriel,673
William Isaac, Ed Lockhart, Simon Osindero, Laura674
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,675
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-676
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling677
language models: Methods, analysis insights from678
training gopher. Preprint, arXiv:2112.11446.679

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano680
Ermon, Christopher D. Manning, and Chelsea Finn.681

2023. Direct preference optimization: Your lan- 682
guage model is secretly a reward model. Preprint, 683
arXiv:2305.18290. 684

Subhro Roy and Dan Roth. 2016. Solving general arith- 685
metic word problems. Preprint, arXiv:1608.01413. 686

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, 687
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, 688
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan 689
Das, and Jason Wei. 2022. Language models are 690
multilingual chain-of-thought reasoners. Preprint, 691
arXiv:2210.03057. 692

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 693
Jonathan Berant. 2019. Commonsenseqa: A question 694
answering challenge targeting commonsense knowl- 695
edge. Preprint, arXiv:1811.00937. 696

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 697
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 698
Denny Zhou. 2023. Self-consistency improves chain 699
of thought reasoning in language models. Preprint, 700
arXiv:2203.11171. 701

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 702
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 703
Denny Zhou. 2023. Chain-of-thought prompting elic- 704
its reasoning in large language models. Preprint, 705
arXiv:2201.11903. 706

Aaron Wilson, Alan Fern, and Prasad Tadepalli. 2012. 707
A bayesian approach for policy learning from tra- 708
jectory preference queries. In Neural Information 709
Processing Systems. 710

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 711
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 712
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: 713
An open bilingual pre-trained model. arXiv preprint 714
arXiv:2210.02414. 715

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 716
Smola. 2022. Automatic chain of thought 717
prompting in large language models. Preprint, 718
arXiv:2210.03493. 719

10

https://arxiv.org/abs/2312.00886
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://api.semanticscholar.org/CorpusID:6019958
https://api.semanticscholar.org/CorpusID:6019958
https://api.semanticscholar.org/CorpusID:6019958
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493

A Dataset 720

Our majority dataset are composed of three different kinds of inference tasks. 1) arithmetic reasoning: 721

SingleEq (Koncel-Kedziorski et al., 2015), AddSub (Hosseini et al., 2014), MultiArith (Roy and Roth, 722

2016), GSM8K (Cobbe et al., 2021), AQUA (Ling et al., 2017), and SVAMP (Patel et al., 2021). 2) 723

symbolic reasoning: Last Letters, Coin Flip (Wei et al., 2023), and Object Tracking, Bigbench Date. 3) 724

commonsense question answering: CommonsenseQA (Talmor et al., 2019) and StrategyQA (Geva et al., 725

2021). For more details about the dataset please refer to (Wang et al., 2023). 726

B Uesage of LLM. 727

We utilize LLM to rectify grammar errors. 728

C Computing Resources 729

Our experiments were run on a computer cluster with 32GB RAM, 4-Core CPU, and NVIDIA-A100 730

(80G, 32G)/NVIDIA-V100 (32G) GPU, Linux platform. 731

D Source Code. 732

We have provided source code for reference. Additionally, our code are based on https:// 733

github.com/amazon-science/auto-cot and refer to the coding manner from https://github.com/ 734

eureka-research/Eureka. 735

E Proof of theorem 3.1. 736

Subsequently, we prove the existence of Nash equilibrium in this system. For any two given polices 737

π1 ∈ Π and π2 ∈ Π We first define the pay-off of π1 and π2 as R(π1;π2) and R(π2;π1): 738

R(π1;π2) = P(π1 ≺ π2)

R(π2;π1) = P(π1 ≻ π2),
(3) 739

we provide the proof of the existence of Nash equilibrium in this system. We define π̄ = [π1, π2], v(π̄) = 740

[R(π1;π2), R(π1;π2)]. According to the Nash equilibrium, it should have to satisfy this relationship: 741

v(π̄∗)(π̄∗ − π̄) ≤ 0 (4) 742

Subsequently, refer to , we can learn that if we want Equation 4 holds true, we just have to guarantee 743

Equation 5 holds true. 744

(v(π̄)− v(π̄′))T(π̄ − π̄′) ≤ 0, (5) 745

where π̄ and π̄′ are any two given policy set. Subsequently, we can further darrive at the following 746

11

https://github.com/amazon-science/auto-cot
https://github.com/amazon-science/auto-cot
https://github.com/amazon-science/auto-cot
https://github.com/eureka-research/Eureka
https://github.com/eureka-research/Eureka
https://github.com/eureka-research/Eureka

relationships:747

(v(π̄)− v(π̄′))T(π̄ − π̄′) =

(
R(π1;π2)−R(π′

1;π
′
2)

R(π2;π1)−R(π′
2;π

′
1)

)
·
(
π1 − π′

1, π2 − π′
2

)
=

(
R(π1;π2)−R(π′

1;π
′
2)

)
· (π1 − π′

1) +

(
R(π2;π1)−R(π′

2;π
′
1)

)
· (π2 − π′

2)

=

(
P(π1 ≺ π2)− P(π′

1 ≺ π′
2)

)
· (π1 − π′

1) +

{
2−

(
P(π1 ≺ π2) + P(π′

1 ≺ π′
2)

)}
· (π2 − π′

2)

=

(
P(π1 ≺ π2)− P(π′

1 ≺ π′
2)

)
· (π1 − π′

1 − π2 + π′
2) + 2 · (π2 − π′

2)

=

(
P(π1 ≺ π2)− P(π′

1 ≺ π′
2)− 2

)
· (π′

2 − π2)+(
P(π1 ≺ π2)− P(π′

1 ≺ π′
2)

)
· (π1 − π′

1).

(6)

748

In particular, we can find that if π̄ ≡ π̄′ then (v(π̄)− v(π̄′))T(π̄ − π̄′) ≡ 0, thus π̄ ≡ π̄′ is one solution749

that π1 and π2 has reached equilibrium.750

12

	Introduction
	Related Work
	Preference Equilibrium in mini-batch inference
	Mini-batch inference with Preference Equilibrium

	Nash Chain of Thought (Nash CoT)
	Experiments
	Experimental Results

	Ablation Study
	Conclusion
	Dataset
	Uesage of LLM.
	Computing Resources
	Source Code.
	Proof of theorem 3.1.

