Nash CoT: Multi-Path Inference with Preference Equilibrium

Anonymous ACL submission

Abstract

Chain-of-thought (CoT) prompting has
emerged as a powerful technique for enhancing
the reasoning capabilities of Large Language
Models (LLMs) on complex problems. Among
CoT-related studies, self-consistency (Multi-
path inference with answer filtering through
voting) involves generating multiple reasoning
paths using the CoT framework and then
selecting the most frequently produced outputs
standing out as a concise yet competitive
approach. While self-consistency has indeed
led to the improvements in LLM inference,
the use of multi-path inference also escalates
deployment costs. Therefore, maintaining
the performance benefits of self-consistency
inherited from multi-path inference while
reducing the inference costs holds significant
value. In this research, we conceptualize
language decoding as a preference consensus
game, constructing a bi-player gaming system
within each local path, and introduce Nash
Chain-of-Thought (Nash CoT). Specifically,
for a given question, we leverage LLM to
autonomously select the contextually relevant
template and generate outputs guided by this
template, aiming to reach Nash Equilibrium
alongside normal generation in each path. This
approach allows us to achieve comparable
or improved performance compared to
self-consistency while using fewer inference
paths on various inference tasks, including
Arabic reasoning, Commonsense Question
answering, and Symbolic inference.

1 Introduction

Large Language Models (LLMs) have revolution-
ized Natural Language Processing (NLP) (Ouyang
et al., 2022; etc., 2023; Jiang et al., 2023; Brown
et al., 2020b; OpenAl, 2024). In particular,
leveraging human-designed instructions as input,
LLM demonstrates superior inference performance
across various types of simple reasoning tasks (Rad-
ford et al., 2019; Brown et al., 2020a). But, its

performance remains variable in complex reason-
ing tasks (Rae et al., 2022). To enhance LLM’s
inference capabilities on complex issues, we can
employ a step-by-step inference approach, known
as Chain-of-Thought (CoT) prompting (Wei et al.,
2023). For instance, starting with a template like
"Let’s think step by step"”, LLM first gener-
ates rationales and then arrives at a final prediction.
This approach significantly improves LLM’s infer-
ence performance across tasks like Arabic, Symbol
Inference, and CommonsenseQA.

Subsequently, the impressive performance of
CoT on complex inference tasks has spurred new
developments in this direction (Wang et al., 2023;
Wei et al., 2023; Jin and Lu, 2023; Zhang et al.,
2022; Shi et al., 2022). Among these developments,
self-consistency (Wang et al., 2023) emerges as
a competitive CoT approach. It leverages uncer-
tainty from multiple inference paths from a sin-
gle LLM, and ranking generated answers by fre-
quency can significantly enhance LLM’s inference
performance. This approach significantly improves
the performance of GPT-3 utilizing zero-shot CoT
without any options for parameter tuning. Mean-
while, experimental results indicate that inference
performance improves with the number of gen-
erated samples (Wang et al., 2023), suggesting
that the potential of LLM’s inference capabili-
ties has not yet to be fully exploited. Although
self-consistency is straightforward to implement
and requires no additional turning, it has a signifi-
cant drawback: substantially higher inference costs
compared to directly utilizing CoT.

On the other hand, the performance improve-
ments resulting from self-consistency imply that
relying solely on single-path inference cannot fully
harness the inference capabilities of LLM, and
multi-path inference encompasses the potential cor-
rect answers. Therefore, it’s necessary to main-
tain this strategy. Meanwhile, numerous practical
applications indicate that when a LLM is given



Q: Acoin is heads up (represented by 1, otherwise is
0). Angelina flips the coin. Layla flips the coin. Jenny
flips the coin. Zane does not flip the coin. Is the coin
still heads up? Note that "flip" here means "reverse"

l

!

Final A

(a) Self-Consistency

Zero shot CoT (template guided path) <
Zero shot CoT (LLM path) <——
Vote the highest frequent answer €———

Confining the optimal player

Answers reached Equilibrium

All Answers
Concatentaion Operation

Q: Acoin is heads up (represented by 1, otherwise is

template 1 0). Angelina flips the coin. Layla flips the coin. Jenny
template 2 flips the coin. Zane does not flip the coin. Is the coin
still heads up? Note that "flip" here means "reverse"
......... 1
template n-1 Y -
template n < -1 template

empty

e

Final A Final A

(b) Nash CoT

Figure 1: Demonstrations of Self-Consistency and Nash Chain-of-Thought (Nash CoT). (a) Self-Consistency entails
inferring multiple paths and subsequently voting the most frequently prediction. (b) In Nash CoT, inference occurs
multiple times, with each path generating two responses, but only one reached Preference Equilibrium is sustained.
Ultimately, the answer sampled is the one that reaches preference equilibrium.

Performance Comparison

Average Scored

Arabic Reasoning Symbolic QA Commonsense QA

Figure 2: General Performance Comparison. We com-
pare the average performance of , zero-shot, and zero-
shot CoT self-consistency (20 Paths) with our Nash CoT
(10 Paths) on Mistral-Instruct and GLM4.

the appropriate templates, it can perform specific
tasks more proficiently. Hence, an intuitive strat-
egy to reduce the number of inference paths in
self-consistency is to use templates to guide the
LLM to correctly infer each path.

To achieve this goal, we use the contextual in-
formation required by the question as a template to
guide the inference in each path. This approach in-
creases the probability that the LLM can correctly
solve the question in each path, thereby potentially

reducing the number of inference paths needed for
multi-path inference. Meanwhile, to alleviate over-
confidence in template-guided generation, we de-
velop a bi-player gaming system that introduces the
Nash Equilibrium of preference of strategy (defined
as Preference Equilibrium) in multi-path inference.
This system samples generations that balance the
preferences of both template-guided and normal
generation, ensuring the output robustly matches
the context of the given question while sustaining
some moderate generation pattern. Subsequently,
we combine multi-path inference with Preference
Equilibrium to propose Nash CoT. We present the
comparison between Self-Consistency and Nash
CoT in Figure 1.

We conduct experiments with two local deployed
LLMs-Mistral-Instruct (Zeng et al., 2022; Du et al.,
2022) and GLM4 (Zeng et al., 2022; Du et al.,
2022) on various inference tasks, including Arabic
Reasoning (Koncel-Kedziorski et al., 2015; Hos-
seini et al., 2014) and Symbolic Reasoning (Wei
et al., 2023) and Commonsense Reasoning (Talmor
et al., 2019; Geva et al., 2021). As shown in Fig-
ure 2, Nash CoT has achieved similar or even better
performance against self-consistency with fewer in-



ference paths. Meanwhile, as shown in Figure 3,
Nash CoT has significantly reduced the inference
cost by up to 50% on local deployed LLMs.

To our knowledge, we are the first to introduce
Preference Equilibrium into multi-path inference
with the aim of harmonizing text generation guided
by the optimal template with that generated by the
model’s default state. It can reduce the number of
paths needed to achieve good results in multi-path
inference. And we are also the first to integrate
Preference Equilibrium into multi-path inference
and propose Nash CoT. It can achieve similar or
even superior performance on various reasoning
tasks while requiring only half costs compared to
self-consistency.'

2 Related Work

Chain-of-Thought (CoT). There are three ma-
jority kinds of CoT approaches. Zero-shot CoT that
Prompts LLM with simple yet instructions to guide
LLM generate step by step (Kojima et al., 2023).
Manual CoT that initialized by randomly sampled
several cases from dataset or designed by human,
and followed by utilizing these cases as demonstra-
tion to guided LLLM generate follow the manner
of demonstration (Wei et al., 2023), however, such
methods can be biased if the demonstration can
represent real distribution. Automatic (or batch)
CoT (Zhang et al., 2022) first sample cases which
have the most representative sentence embedding
in each clusters, followed by inference with the
same manner as manual CoT. Self-Consistency
(Wang et al., 2023) showcases strong performance
in vast benchmarks. Apart from its impact on in-
ference performance,self-consistency also boasts
scalability as a key advantage. It seamlessly inte-
grates with different approaches, such as tabular
consistency of transformations (tab-CoT) (Jin and
Lu, 2023), making it adaptable and versatile for
various applications. Despite self-consistency has
improved LLM’s performance on Arabic bench-
marks. Correspondingly,self-consistency should
have to inference multi-times, thus it burdens the
deploy budgets.

One way to address this limitation is by initially
sampling multiple inference paths and then fine-
tuning using the highest frequency path. Specifi-
cally, Huang et al. (2022) suggest that gathering in-
ferences from multiple paths and sampling the most
frequent generation to fine-tune a smaller LLM

'"We will release our code at <Removed for Submission>.

can enhance the LLM’s inference performance.
However, this approach still requires updating the
LLM’s parameters, which is inefficient. Therefore,
it is necessary to further explore inference methods
to maintain the performance of self-consistency
while reducing the number of inference paths.

Preference Optimization. The training policy
with Reinforcement Learning (RL) to reflect pref-
erence, termed Reinforcement Learning with Hu-
man Feedback (RLFH), was initially introduced
by (Akrour et al., 2011) and has since undergone
consistent improvement and refinement by (Cheng
et al., 2011; Busa-Fekete et al., 2013; Wilson et al.,
2012). This approach has been widely applied to
adjust Large Language Models’ (LLMs) parame-
ters to align with human preferences (Ouyang et al.,
2022; Jiang et al., 2023; etc., 2023). Recently, a
new approach called Direct Optimizing from Pref-
erence (DPO) has been proposed by (Rafailov et al.,
2023), aiming to directly adjust LLMs to reflect hu-
man preferences without requiring a reward model
and RL algorithm. Additionally, (Munos et al.,
2023) proposed combining DPO with Nash equi-
librium to ensure convergence of the last iterated
policy. Our study also utilizes the concept of equi-
librium in preference model, but the main differ-
ence is that we utilize preference equilibrium as
a standard to pick up the most preferred answer
instead optimizing the LLM’s parameters.

3 Preference Equilibrium in mini-batch
inference

Self-consistency has shown that the inference of
LLMs under a single path may not represent their
full capabilities. By simply conducting multiple in-
ferences and filtering answers through voting, it is
possible to achieve more accurate results. However,
multi-path inference lacks a strong theoretical foun-
dation to determine the optimal number of infer-
ence paths, potentially leading to much more com-
putational resource consumption. To reduce the
number of paths required for multi-path inference,
we utilize the concept of Nash Equilibrium to lo-
cally construct a binary game system in multi-path
inference. Specifically, the preference of each valid
inference path of the LLM needs to achieve Nash
equilibrium with the preferences of the generation
guided by the template. This approach increases
the probability of each path correctly answering
the question while maintaining a certain level of ro-
bustness, thereby reducing the number of inference



paths required by self-consistency.

Preference Model. Given text input z, and the
sampled predictions (answers) y1, y2, we first de-
fine y; prefers ys as Equation 1:

P(y1 < ye|z) := sign(re(y1]z)) — sign(re(y2|z)), (1)

where 7y denotes preference model that reflecting
the preference when comes to the pairs. Then we
imply the existence of Nash equilibrium in Pref-
erence model, specifically, Equation 1 is strictly
linear, i.e. P(y1 < y2|x) =1 —P(y2 < y1lz).

Player Templates: Templates for our

preference model that are shown the
structure: id(player): description.

Mathematician: You are a mathematician,
you excel at analyzing problems from a
mathematical logical perspective and arrive
at conclusions that align with your values.
Literary scholar: You are a literary scholar
who has read a vast array of literary works.
Please consider the problem from the per-
spective of a literary scholar.
Philosophical: You are a philosopher, your
knowledge base includes a wealth of philo-
sophical knowledge. You enjoy approach-
ing problems from a philosophical perspec-
tive and arriving at conclusions that align
with your values.

Geographer: You are a geographer with a
deep understanding of geographical knowl-
edge. Please approach the given problem
from the perspective of a geographer.

--- (other cases have been appended
to the Appendix.)

Additionally, drawing from the definition
from Munos et al., we define one policy as more
preferred over another as:

P(m1 < m2) = Eyynmy 1) [P(y1 < 92[7)]  (2)

yar~vm (@)
Preference Equilibrium. We aim to select the
best template (we provide several cases in above
example 3 for the current problem, thus facilitating
the large model in problem-solving, correspond-
ingly reduces the required num of inference paths.
However, this may lead to some issues: 1) If the
template is incorrectly chosen, it may cause the
agent to generate answers outside the range of cor-
rect responses corresponding to the current prob-
lem, resulting in erroneous replies. 2) The large

model may excessively generate context-dependent
responses, affecting its robustness. To address
these issues, we build a local bi-player gaming
system that the preference of template guided LLM
(player 1) over normal status of LLM (player 2)
is the pay-off of template guided LLM, vice visa.
If player 1 and player 2 reaches Nash Equilib-
rium 2, then the strategy can match the preference
of both player 1 and player 2.

Subsequently, we define the status that player
1 and player 2 reach Nash Equilibrium as Prefer-
ence Equilibrium (Definition 1). Meanwhile, in
Theorem 3.1, we prove the existence of Nash Equi-
librium in this system. Specifically, the strategy of
player 1 equal to player 2 is one solution that
this system has reached Preference Equilibrium.

Theorem 3.1 (Existence of Preference Equilib-
rium). Given any two policy (player) m and m2
within the gaming system defined in Definition 1,
where w € II. m; = maodenotes a solution where
the gaming system reaches Nash Equilibrium.

Proof of Theorem 3.1 see Appendix E.

Meanings of the existence of Preference Equi-
librium. Theorem 3.1 proves the existence of
an Nash Equilibrium between the template guided
LLM and the normal status of LLM. When reach-
ing Preference Equilibrium, the preference of de-
cisions made by the template guided LLM are
aligned with those made by the LLM under nor-
mal status. Meanwhile, the preference of template
guided LLM generation is much more closed to the
requirement of quesitons’ context, while those of
the normal status LLM are predominantly based
on its parameters which is much more robust than
template guided LLM. Therefore, this equilibrium
can balance the requirement of contextual informa-
tion and robustness of the model generation during
problem-solving. Notabaly, m; = 7 means their
outputs are also likely to be equal. This insight
forms a fundamental basis for piratically imple-
menting Nash CoT.

3.1 Mini-batch inference with Preference
Equilibrium

Subsequently, based on the concept of Preference
Equilibrium, we conceptualize a Mini-batch infer-

*Preference Equilibrium leverages the concepts of Nash
Equilibrium. Nash equilibrium is proposed by John Nash. It is
a concept solution where, assuming each participant knows the
equilibrium strategies of the other participants, no participant
can benefit by changing their own strategy.



ence (shown in Figure 1) as a bi-player gaming sys-
tem. This approach aims to achieve better inference
compared to direct inference, while still preserv-
ing some of the inherent randomness of standard
inference methods. To begin with proposing this
system, we first define z¢ as the template of zero-
shot CoT, {z§, x{,--- ,z{} (we provided several
cases in ) as the candidates tem-
plate for template guided generation. Meanwhile,
in this system, the template can to be chosen by a
reward model ry.

In terms of the process of mini-batch inference,
we firstly inference LLM twice times (we have con-
ducted ablations about twice’ in section ablation)
i.e. [yo,y1] < [7(-|zt, z), 7(-|z, z)]. Meanwhile,
due to the inherent uncertainty of LLM, the gen-
eration of [y, y1] can be considered a potential
set of distinct predictions. Subsequently, the tem-
plate guided generation can be sampled by query-
ing LLM with z¢ and 2! i.e. y* <+ w(-|2¢, 2%, x).
Furthermore, we can select an answer from g; and
yo that is the same as y*, thereby satisfying the
Nash Equilibrium described in Theorem 3.1. Based
on the mini-batch inference, we further introduce
Nash CoT in the next chapter. (Notably, the pat-
terns in this chapter may not always hold true. For
instance, y* may not always in [y1, y2]. We will
address this issue in the following chapters.)

4 Nash Chain of Thought (Nash CoT)

Algorithm 1 Nash CoT (Answer Gathering)

Require: Candidate question q sampled from O =
{q0, 42, ,qn}; Outer iterations Nouter; Num of mini-batch
inference Npmini; Large language model 7; CoT prompt f,
candidiate player template {z§, 2§, - - - , x5, }, Prompt({z°})
is used to point out the most preferred z°.

Generation:

1: Initialize answer list ans = ].
2: xc + 7(|Prompt({z°}))

3: for t in range(Noyter) Ao

4:  Initialize prefer pairs pref = [].
5:  for tin range(Nmini) do

6: y < m(l2’,q);

7: ans.append(y);

8:  end for

9:

Yy m(fat, 2t x)
10:  7.append([y*, ans])
11: end for
12: Return 7

Nash CoT can be seen as an extension of Mini-
batch inference with Preference Equilibrium, im-
plementing multiple Mini-batch inferences to en-
hance performance. This approach is influenced by
experimental results from self-consistency, which

suggest that increasing the number of paths can
improve inference accuracy. Meanwhile, the rea-
soning process for each question is divided into two
stages: Answer Gathering and Answer Filtering.

Answer Gathering. When generating candidate
answers, the process predominantly involves two
types of loops: Mini-batch Loops (npini): In
Chapter 3.1, we discussed the implementation of
mini-batch inference with Preference Equilibrium.
As shown in Algorithm 1, this process involves
searching for template-guided generations within
two rounds of generation ([y1, y2]). We refer to
the times of these two predictions as the npiy;.
Moreover, to mitigate the impact brought from low-
frequency predictions, we introduce iterating nin;
multiple times. This leads us to another type of
loop: Outer Loops (ngyter): This loop resembles
the concept of multi-path in self-consistency. Af-
ter completing loop ngyter, We filter the generated
answers and retain the answer that reaches equilib-
rium most frequently (shown in Algorithm 2), as
the preferred answer.

Answer Filtering. In terms of answer filtering,
as shown in Algorithm 2 we first count the most
frequent prediction satisfy Preference equilibrium.
Specifically, we count all y* satisfy y* € [y1, ya]
and compute their frequency. Subsequently, we
return the most frequent case. Otherwise, if is no
cases satisfy y* € [y1, y2], we adopt the strategy
of self-consistency by selecting the most frequent
prediction among all generated answers.

Algorithm 2 Nash CoT (Answer Filtering)

Require: Preference pair list 7
Filtering:
: Initialize hash table: hash = {} : k — v.
: Initialize new answer list nans = [].
: for [y*, ans]; in 7 do
if y* € ans then
hash[y*]+=1
end if
nans.extend([y*, ans[0], ans[1]])
: end for
: if hash = {} then
return the most frequent y in nans
: else
return y < k = arg max, hash
: end if

SARA S

—_— =

Subsquently, we propose Nash CoT, which iter-
ates through Algorithm 1 and Algorithm 2 to per-
form inference on all sampled questions, where 7
represents the candidate answers from the Answer
Gathering stage.



Core LLM Methods SingleEQ  AddSub  MultiArith GSMSK AQuA SVAMP Avg.

zero-shot 153+08 12.0+£28 33£1.3 27+20 208+15 77+£20 103£6.5

Mistral-Instruct (7B) zerp—shot CoT 76.0 £ 08 825+20 754+6.1 443+40 279+£23 634+69 61.6+19
self-consistency (20 Paths) 82.5+0.8 863 +5.1 863+28 585+28 344+61 765+28 70.8+19

Nash CoT (10 Paths) 814+08 863+60 863+47 557+58 399+54 77.0+35 7T1.1+17

zero-shot I.1+15 11+£15 126+39 120+£20 224+41 44428 8.9+7.6

GLM4-chat (9B) zerp—shot CoT 90.7+15 90715 984+13 809+28 208=+31 869+35 781+£26.1
self-consistency (20 Paths) 923 +2.0 90.2+23 984+23 893+02 208+31 91.5+1.1 804+26.8
Nash CoT (10 Paths) 91.3+£08 902+27 967433 803+13 20.843.1 88.0+2.0 77.9+26.1

Table 1: Experimental results on arithmetic reasoning benchmarks. We test Zero-Shot CoT and Nash CoT with the
core LLM includes Mistral-Instruct (7B) and GLM4-chat (9B) on mathematical benchmarks including AddSub,
MultiArith, SingleEQ, SVAMP, GSM8K, and AQuA. Nash CoT performs the best.

Preference Templates: Templates we uti-

lized to confine the prompt for preference
model.

Q: Current issue is {query}, and the
best player is who? Please give us
the number of that player from the op-
tions below: {description}. There are
total N({key(player)}) players including
{key(player)}. Please point out the most
appropriate player for the following task:
candidate questions

A: Let us think step by step. — z
// (obtain the rational z)

A: Let us think step by step. + z+ Therefore,
the most appropriate player in this game is
who? (please direct give us the number)
// (obtain the answer)

Practical Implementation of reward model 7.
In the process of practical implementation, we do
not explicitly train a reward model ry to confine
the player template ¢ (we have provided cases
in ) using Equation 1. Instead,
we directly use the preference template (shown in

) to guide the LLM in de-
termining the most suitable player template for a
given question. For example, when presented with
a coin flip question as shown in Figure 4, we fill
the Preference Template with given question and
player templates. This filled template is then input
into the LLM to provide the id of the most suit-
able player template from the available options. In
particular, we believe it’s effective, this is because
most of baselines we selected have been turned
to reflect human preference, thus we believe the
selected LLM can be directly utilized as the prefer-
ence model to point out the most preferred option
among candidate options.

S Experiments

The goal of our experiment is to 1) demonstrate the
performance advantage and effectiveness of Nash
CoT. 2) shocase whether Nash CoT help reduce the
overall inference time. In the following sections,
we first introduce our experimental setup and then
present the experimental results and analysis.

Datasets. Our majority benchmarks are com-
posed of three different kinds of inference
tasks. 1) arithmetic reasoning: SingleEq (Koncel-
Kedziorski et al., 2015), AddSub (Hosseini
et al., 2014), MultiArith (Roy and Roth, 2016),
GSMSK (Cobbe et al., 2021), AQUA (Ling et al.,
2017), and SVAMP (Patel et al., 2021). 2) sym-
bolic reasoning: Last Letters, Coin Flip (Wei
et al.,, 2023), and Object Tracking, Bigbench
Date. 3) commonsense question answering: Com-
monsenseQA (Talmor et al., 2019) and Strate-
gyQA (Geva et al., 2021). For more details about
the dataset please refer to Appendix A.

LLMs. To validate that Nash CoT is a general
CoT method, we selected different large models as
test models, including Mistral-7B (Instruct) (Jiang
et al., 2023), GLM4-9B-Chat (Zeng et al., 2022;
Du et al., 2022). In particular, all of these selected
LLMs are turned via RL with human feedback
(RLHF), and the difference between LLM turned
with RLHF and the original foundation models
have been detailed by Ouyang et al. (2022).

Baselines. The preliminary baselines we utilized
include zero-shot, zero-shot CoT (Wei et al., 2023),
andself-consistency (Wang et al., 2023). We test
these approach with freezed LLMs.

Settings. Our evaluation on all selected tasks uti-
lizes the same experimental settings bellow:

* zero-shot and zero-shot CoT. We follow the
method proposed by Wei et al. (2023) and



Core LLM Methods Coin-Flipping Last Letters Object Tracking Bigbench Date Avg.
zero-shot 26.8 £5.1 0.0+ 0.0 355+4.1 31.1+7.6 234+ 14
Mistral-Instruct (7B) zer_o—shot CoT 279 £4.0 0.0 £0.0 30.1 £2.8 36.6 £5.4 23.6+ 14
self-consistency (20 Paths) 219+ 4.7 0.0+ 0.0 38.8+ 0.8 47.0+ 1.5 269+ 18
Nash CoT (10 Paths) 29.0+ 54 0.5+0.8 448 £2.0 41.1£12 28.9+ 17
zero-shot 273 +£6.3 0.0 £ 0.0 38.8£0.8 164 +£2.3 222447
GLM4-chat (9B) zer'o—shot CoT 874+0.8 0.0 £ 0.0 37.7+£23 16.4 +4.8 41.1£229
self-consistency (20 Paths) 98.9+1.5 0.0£0.0 37.7£23 16.4+4.8 44.0+26.0
Nash CoT (10 Paths) 93.4+2.7 0.0 £0.0 37.7+2.3 16.4+4.8 4244244

Table 2: Experimental results on symbolic inference benchmarks. We test Zero-Shot CoT and Nash CoT with
Mistral-Instruct (7B) and GLM4-chat (9B) on Symbolic QA benchmarks includes Coin-Flipping, Last Letters and
Object Tracking. Among these baselines, Nash CoT performs the best.

Core LLM Methods StrategyQA  CommonsensQA Avg.

zero-shot 49.2 £ 8.8 62.3+4.8 558+ 7

Mistral-Instruct (7B) zero-shot CoT 57.44+2.3 70.5 £2.7 64.0+7

self-consistency (20 Paths) 59.6 £2.0 71.0+ 34 653+ 6

Nash CoT (10 Paths) 56.8 +2.0 69.4 +4.7 63.1£ 6

zero-shot 56.8 4.7 17.5£2.0 222447
zero-shot CoT 63.942.3 18.04+2.3 41.0+22.9
GLMé4-chat OB) (i onsistency (20 Paths) 699 +3.3 18.042.3 44.0426.0
Nash CoT (10 Paths) 66.7 +£0.8 18.0+2.3 4244244

Table 3: Experimental results on Commonsense Reasoning. We test Zero-Shot CoT and Nash CoT with Mistral-
Instruct (7B) and GLM4-chat (9B) on Commonsense Reasoning datasets includes StrategyQA and CommonsenseQA

use the original template (e.g., "Let’s think
step by step"”) for evaluation.

* self-consistency. We follow Wang et al.
(2023) to evaluate the performance ofself-
consistency with selected LLMs, utilizing the
zero-shot CoT template. Additionally, we set
the number of inference paths to 20.

* Nash CoT. We set up nouter as 3 and npini
as 2, resulting in a total of noyter X (Nmini +
1) + 1 = 10 paths. Additionally, we have
provided the player templates z¢ in Table 1
and the Appendix, meanwhile we utilizing the
same CoT template z° as in zero-shot CoT.

Additionally, all evaluations are conducted on the
inference of 60 random sampled questions multi
times. And we have provided the mean and stan-
dard error in all tables.

5.1 Experimental Results

Evaluated Scores. The majority experimental re-
sults are demonstrated in table 1, 2 and 3. Nash
CoT can improve Mistral-Instruct (7B) on almost
all selected inference tasks, while showcasing simi-
lar performance to self-consistency with twice in-
ference paths on GLM4-chat (9B). In particular,
we have provided the total paths of Nash CoT that
it only require the half of self-consistency, thus our

Time requirement of inference

43 min
aqua
96 mhin

addsub

39 min

multiarith

coinflip

Minute (min)

Figure 3: We used GLM4-chat (9B) on the same type of
GPU (A-100) to evaluate Nash CoT and self-consistency
across selected tasks. Nash CoT, employing a total of 10
paths, requires nearly half the time of self-consistency,
which has 20 paths in total.

claim in section 3 can be validated. When focus-
ing on Mistral-Instruct (7B), Nash CoT has better
performance on arithmetic and symbol inference
tasks, showcasing its superiority performance on
logic/math inference tasks. However, Nash CoT
does not showcase improved performance in com-
monsense question answering tasks. We argue that
this is because commonsense question answering
tasks are more diverse, and the player template
can’t cover all topics. Therefore, the player tem-
plate limits Nash CoT on commonsense question
answering tasks. Importantly, we limit Nash CoT’s



Aqua

Performance
Performance

Variation of Nmini

CommensenseQA

Variation of Nmini

Object Tracking

Performance

Variation of Nmini

Figure 4: We use Mistral-Instruct (7B) to examine the impact of loop numbers on the inference performance of the
large language model. Specifically, we used solid lines of specific colors to represent the experimental performance
under certain Nyyter as the Nyin; changed. We marked self-consistency with 20 paths using dashed lines, and some
results of Nash CoT, with total paths close to 20, were marked with stars.

performance by utilizing only total 10 paths for
inference in this section. However, additional ex-
perimental results in the ablation section show that
Nash CoT outperforms self-consistency via increas-
ing the inference loops, thus Nash CoT can outper-
form self-consistency.

Inference Time. The path of Nash CoT are com-
posed of three different kinds of types i.e. zero-
shot CoT for problem inference (in loop Nini),
zero-shot CoT for player confining (in the outside
loop of Nouter), and player template guided zero-
shot CoT inference. Accordingly, different path
requires different time. Therefore, we further count
the total time requirement of self-consistency and
Nash CoT in Figure 3, Nash CoT requires fewer
inference time.

6 Ablation Study

In order to further validate the effectiveness of Nash
CoT, we conducted extensive ablations to answer
the following questions: 1) What will happen when
the number of inference paths for Nash CoT is fur-
ther increased? Will Nash CoT eventually surpass
self-consistency, and what is the relationship be-
tween the number of loops and performance? 2)
Does the template really improve the accuracy of
path predictions, and what impact does it have on
experimental performance?

As the number of inference paths increases,
Nash CoT can obviously surpass self-consistency
with fewer inference paths. To address question
1), we selected Mistral-Instruct (7B) and conducted
evaluation on three different reasoning tasks, ad-
justing the Npini and Noyter. As shown in Figure 4,
as the number of loops increases, Nash CoT has
a high probability of significantly outperforming
self-consistency with fewer paths. However, differ-

GSMSK AQua SVAMP
55.7—50.6 399 — 398 77.0— 722

Table 4: Performance decreasing. We remove the math-
ematics from and test Nash CoT on
selected Arabic reasoning tasks.

ent from self-consistency, the experimental results
of Nash CoT do not show a monotonic (linear) rela-
tionship with the total number of total paths. This
indicates that there is a significant difference be-
tween Nash CoT and self-consistency. Unlike Nash
CoT, the experimental results of self-consistency
show a clear improvement in performance as the
number of paths increases.

The performance is impacted by the player tem-
plate. To illustrate the impact of the template,
we removed the mathematical templates from the

and then evaluated Nash CoT on
selected Arabic reasoning. Results are shown in Ta-
ble 6, showing an approximately 9.2% decrement
in GSM8K and 6.2% decrement in SVAMP. There-
fore, the performance of Nash CoT is impacted by
the

7 Conclusion

In this study, we proved the existence of Nash
equilibrium in preference model, subsequently, we
proposed a new CoT approach Nash CoT, and
validated its performance on various inference
benchmarks. Experimental results show that Nash
CoT can perform equally or even better than self-
consistency while only require half inference costs.
In addition, we also conduct experiments to indi-
cate that Nash CoT can also work on other bench-
marks such as controllable text generation.



Limitations and Future Work

Despite Nash CoT showcase competitive perfor-
mance with only half of inference paths, it requires
pre-defined template, thus it’s in-convenient to uti-
lize Nash CoT in new emerging scenario, in the
future we will develop a automatic approach to
balance task feedback and template design.

Ethical Claims

Despite LLM has showcased superiority perfor-
mance on vast benchmarks, but pre-train or fine-
tune a LLM requires numerous computing re-
sources. Therefore, it’s crucial to study how to
inference a LLM to reach the ceiling of its capacity.
CoT is a ideal approach which has been proved that
can obviously evaluate the performance of LLMs’
inference. Among that,self-consistency is one of
the best CoT approach.

Our method effectively reduce the inference
times of multi-path inference, thereby reducing the
deploy budgets of self-consistency. We believe our
approach can further elevate the effectiveness of
multi-path inference, thereby further improving the
effectiveness of LLM.

References

Riad Akrour, Marc Schoenauer, and Michele Se-
bag. 2011. Preference-based policy learning. In
ECML/PKDD.

Tom Brown, Benjamin Mann, and etc. Ryder. 2020a.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020b. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Roébert Istvan Busa-Fekete, Balazs Szorényi, Paul
Weng, Weiwei Cheng, and Eyke Hiillermeier. 2013.
Preference-based evolutionary direct policy search.

Weiwei Cheng, Johannes Fiirnkranz, Eyke Hiillermeier,
and Sang-Hyeun Park. 2011. Preference-based pol-
icy iteration: Leveraging preference learning for re-
inforcement learning. In ECML/PKDD.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-335.

Hugo Touvron etc. 2023. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aris-
totle use a laptop? a question answering bench-

mark with implicit reasoning strategies. Preprint,
arXiv:2101.02235.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533, Doha, Qatar. Association for Com-
putational Linguistics.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. Preprint,
arXiv:2210.11610.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Ziqi Jin and Wei Lu. 2023. Tab-cot: Zero-shot tabular
chain of thought. Preprint, arXiv:2305.17812.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large
language models are zero-shot reasoners. Preprint,
arXiv:2205.11916.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion : Learning to solve and explain algebraic word
problems. Preprint, arXiv:1705.04146.


https://api.semanticscholar.org/CorpusID:16505586
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:267824
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://api.semanticscholar.org/CorpusID:17361173
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2305.17812
https://arxiv.org/abs/2305.17812
https://arxiv.org/abs/2305.17812
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146

Rémi Munos, Michal Valko, Daniele Calandriello, Mo-
hammad Gheshlaghi Azar, Mark Rowland, Zhao-
han Daniel Guo, Yunhao Tang, Matthieu Geist,
Thomas Mesnard, Andrea Michi, Marco Selvi, Sertan
Girgin, Nikola Momchev, Olivier Bachem, Daniel J.
Mankowitz, Doina Precup, and Bilal Piot. 2023.
Nash learning from human feedback. Preprint,
arXiv:2312.00886.

OpenAl. 2024. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,
Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’ Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling
language models: Methods, analysis insights from
training gopher. Preprint, arXiv:2112.11446.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.

10

2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Subhro Roy and Dan Roth. 2016. Solving general arith-
metic word problems. Preprint, arXiv:1608.01413.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan
Das, and Jason Wei. 2022. Language models are
multilingual chain-of-thought reasoners. Preprint,
arXiv:2210.03057.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. Preprint, arXiv:1811.00937.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. 2012.
A bayesian approach for policy learning from tra-
jectory preference queries. In Neural Information
Processing Systems.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. GIm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought

prompting in large language models. Preprint,
arXiv:2210.03493.


https://arxiv.org/abs/2312.00886
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://api.semanticscholar.org/CorpusID:6019958
https://api.semanticscholar.org/CorpusID:6019958
https://api.semanticscholar.org/CorpusID:6019958
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493

A Dataset

Our majority dataset are composed of three different kinds of inference tasks. 1) arithmetic reasoning:
SingleEq (Koncel-Kedziorski et al., 2015), AddSub (Hosseini et al., 2014), MultiArith (Roy and Roth,
2016), GSM8K (Cobbe et al., 2021), AQUA (Ling et al., 2017), and SVAMP (Patel et al., 2021). 2)
symbolic reasoning: Last Letters, Coin Flip (Wei et al., 2023), and Object Tracking, Bigbench Date. 3)
commonsense question answering: CommonsenseQA (Talmor et al., 2019) and StrategyQA (Geva et al.,
2021). For more details about the dataset please refer to (Wang et al., 2023).

B Uesage of LLM.

We utilize LLM to rectify grammar errors.

C Computing Resources

Our experiments were run on a computer cluster with 32GB RAM, 4-Core CPU, and NVIDIA-A100
(80G, 32G)/NVIDIA-V100 (32G) GPU, Linux platform.

D Source Code.

We have provided source code for reference. Additionally, our code are based on https://
github.com/amazon-science/auto-cot and refer to the coding manner from https://github.com/
eureka-research/Eureka.

E Proof of theorem 3.1.

Subsequently, we prove the existence of Nash equilibrium in this system. For any two given polices
71 € II and 7o € II We first define the pay-off of 71 and o as R(m; m2) and R(me; m1):

R(my;m2) = P(m < m2)

3
R(7T2;7T1):'P(7T1>-7T2>, ( )

we provide the proof of the existence of Nash equilibrium in this system. We define @ = [m1, m2], v(7) =
[R(71;m2), R(my; m2)]. According to the Nash equilibrium, it should have to satisfy this relationship:

(7)) (7 —7) <0 4)

Subsequently, refer to , we can learn that if we want Equation 4 holds true, we just have to guarantee
Equation 5 holds true.

(v(7) = v(@) (7 —7) <0, )

where 7 and 7’ are any two given policy set. Subsequently, we can further darrive at the following

11


https://github.com/amazon-science/auto-cot
https://github.com/amazon-science/auto-cot
https://github.com/amazon-science/auto-cot
https://github.com/eureka-research/Eureka
https://github.com/eureka-research/Eureka
https://github.com/eureka-research/Eureka

relationships:

In particular, we can find that if 7 = 7’ then (v(7) — v(7))
that 7m; and 7 has reached equilibrium.

12

(

(6)

7 —7') =0, thus 7 = 7’ is one solution



	Introduction
	Related Work
	Preference Equilibrium in mini-batch inference
	Mini-batch inference with Preference Equilibrium

	Nash Chain of Thought (Nash CoT)
	Experiments
	Experimental Results

	Ablation Study
	Conclusion
	Dataset
	Uesage of LLM.
	Computing Resources
	Source Code.
	Proof of theorem 3.1.

