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ABSTRACT

Heterogeneity in sensors and actuators across environments poses a significant
challenge to building large-scale pre-trained world models on top of this low-
dimensional sensor information. In this work, we explore pre-training world
models for heterogeneous environments by addressing key transfer barriers in
both data diversity and model flexibility. We introduce UniTraj, a unified dataset
comprising over one million trajectories from 80 environments, designed to scale
data while preserving critical diversity. Additionally, we propose TrajWorld, a novel
architecture capable of flexibly handling varying sensor and actuator information
and capturing environment dynamics in-context. Pre-training TrajWorld on UniTraj
demonstrates significant improvements in transition prediction and achieves a
new state-of-the-art for off-policy evaluation. To the best of our knowledge, this
work, for the first time, demonstrates the transfer benefits of world models across
heterogeneous and complex control environments. The dataset and pre-trained
model will be released to support future research.

1 INTRODUCTION

World models (Ha & Schmidhuber, [2018}; LeCun,[2022) have made remarkable progress in addressing
sequential decision-making problems (Hafner et al., 2020; Schrittwieser et al., 2020; [Hansen et al.}
2024). Trained on trajectory data, these models can simulate environments and are leveraged to
either evaluate complex actions (Chua et al.| 2018} [Ebert et al., 2018} Tian et al.||2023)) or optimize
policies (Janner et al.,[2019; [Kurutach et al., 2018)). However, existing methods often learn world
models tabula rasa, relying on data from a single, specific environment. This limits their ability to
generalize to out-of-distribution transitions, demanding a substantial number of costly interactions
with the environment.

In recent years, machine learning has been revolutionized by foundation models pre-trained on
large-scale, diverse data (Achiam et al., 2023;|Oquab et al.} |2024; Kirillov et al.l[2023)). General world
models have also been realized through pre-training, enabled by the homogeneity present within
massive and diverse datasets of specific modalities, such as text (Wang et al.,[2024b; |Gu et al.| [2024),
images (Zhou et al.l 2024), and videos (Seo et al., 2022 Wu et al., 2024ab; |Agarwal et al. 2025).
However, a unique challenge of world models from Internet Al is commonly overlooked or circum-
vented: the heterogeneity inherent in sensor and actuator information, which means proprioceptive
data, such as joint positions and velocities, as well as optional target positions, vary significantly
across environments. Failing to properly address this heterogeneity can result in no transfer, or even
negative transfer.

We argue that no modality in world models should be left behind, including essential sensor informa-
tion represented as low-dimensional vectors. In this work, we take a first step to bridge this gap by
exploring the potential of pre-training a world model to extract shared knowledge from trajectories
across heterogeneous environments (illustrated in Figure[Ta)). To this end, it is essential to overcome
the transfer barriers from both data and model architecture perspectives.

*Equal contribution.
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(a) Pre-training from heterogeneous environments. (b) Transition prediction error.

Figure 1: Overview of TrajWorld. (a) [llustration of pre-training a world model from heterogeneous
environments, with each environment labeled by its state and action dimensions. A Trajectory
World Model, designed for flexibility in handling divergent state and action definitions, demonstrates
effective positive transfer across distinct, heterogeneous and complex control environments. (b)
Aggregated transition prediction error (MAE) across 75 train-test dataset pairs, comparing MLP
Ensemble (Chua et al., [2018), TDM (Schubert et al., [2023), and proposed TrajWorld, with and
without pre-training on UniTraj dataset. Y-axis at log scale.

Scaling data. To achieve strong generalization through pre-training, access to vast and diverse
data is essential (Team et al.}2021)). While scaling data is straightforward, the real challenge lies in
scaling data while preserving diversity. Diversity in our work has two key aspects. First, it refers
to the data sources, i.e., the environments from which the data is collected. Second, it concerns the
data properties, specifically the distribution of the data itself. Even within the same environment,
different policies at various levels can produce significantly different data distributions. To tackle
these challenges, we curate the UniTraj dataset, including over one million trajectories collected from
various distributions from 80 heterogeneous environments. By scaling data while maintaining these
diversities, we ensure that the model focuses on the core knowledge shared across environments,
thereby enabling successful transferability.

Flexible architecture. Previous approaches often address size variations in state and action spaces
by applying zero-padding to match a maximum length (Yu et al., 2020a; [Hansen et al., 2024) or
employing separate input and output heads for each environment (Wang et al., 2024a; (D’ Eramo et al.|
2020). However, zero-padding imposes a dimension limit and adds training overheads, while the
separate head approach requires training new heads for new environments, hindering zero-shot transfer.
A truly capable model for heterogeneous environments requires a more flexible architecture. To
address this, we propose the Trajectory World Model (TrajWorld), a novel architecture that integrates
interleaved variate and temporal attention mechanisms. It is enabled to naturally accommodate
varying numbers of sensors and actuators through variate attention and, more importantly, to capture
their relationships in-context through temporal attention. This in-context learning capability goes
beyond learning specific environment dynamics and thus enhances the model’s generalizability across
environments.

By pre-training our flexible TrajWorld architecture on the diverse and massive UniTraj dataset,
we demonstrate, for the first time, the transfer benefits of world models across heterogeneous and
complex control environments. Fine-tuning TrajWorld on 15 datasets from three previously unseen
environments (Fu et al.|[2020) significantly reduces transition prediction errors for both in-distribution
and out-of-distribution actions (as shown in Figure [Tb). This improved predictive accuracy also
translates to our state-of-the-art performance on off-policy evaluation (OPE) tasks (Fu et al., 2021)),
enabling the offline evaluation and selection of a set of complex policies for best performance.

The main contributions can be summarized as follows:
* We investigate an under-explored world model pre-training paradigm across heterogeneous
environments.
* We curate UniTraj, a unified trajectory dataset, enabling large-scale pre-training of world
models.
* We propose TrajWorld, a novel architecture to facilitate transfer between heterogeneous
environments.
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Table 1: Statistics for six components of the UniTraj dataset. The checkmark (v') represents a dataset
collected or curated by ourselves.

Dataset #Env.  #Episodes #Steps State dim.  Action dim.  Characteristic

ExORL (Yarats et al.|[2022) 4 541,336 330,985,000 5~ T8 1~12 Exploratory

RL Unplugged (Gulcehre et al.|[2020) 7 5,841 5,841,000 5~ 67 1~21 Experience replay

JAT (Gallouédec et al.[[2024) 5 50,000 26,238,954 4~ 23 1~7 Expert

DB-1 (Wen et al.[[2022) 58 290 19,320 5~ 67 1~21 Expert; Diversity

TD-MPC?2 (Hansen et al.|[2024) 30 672,000 336,000,000 3~24 1~6 Experience replay
V" Modular RL (Huang et al.|[[2020) 20 37,199 19,996,902 T~ 23 1~6 Experience replay
v" UniTraj (Ours) 80 1,306,666 719,081,176 3~ 78 1~21 Omnifarious

* For the first time, our experiments demonstrate positive world model transfer across diverse
and complex environments, achieving significant improvements in both transition prediction
and policy evaluation.

2 PROBLEM FORMULATION

An environment is typically described by a Markov decision process (MDP) M = {S, A, P,r, u},
specified by the state space S (of sensors), the action space A (of actuators), the transition function
P:SxA— A(S), the reward function r : S x A — R, and the initial state distribution ;1 € A(S).

Given an MDP, a trajectory 7 = (Sg, ag, 1,81, - ,ar—2,77—1, ST—1) Of length T is recorded as
interactions between the environment and an agent, according the following protocol: starting from
an initial state sp ~ p, at each discrete time step ¢t = 0, 1, ..., the agent performs an action a; € A

according to its policy, receives an immediate reward .11 = 7(s¢, a;), and observes the next state
after transition sy11 ~ P(s¢,a).

A world model pg(S¢41, 7418, ar), or more generally pg(S¢41,7¢+1|51:4, @1.¢), learns its parameter
6 from a dataset of recorded trajectories D = {7;} to approximate the underlying transition probability
and reward function, thus serving as an alternative of the environment.

Our work. While most literature learns a world model on target environment M? from scratch,
we investigate an under-explored paradigm of pre-training a world model from a family of het-
erogeneouﬁﬂ environments { M, M2 ...  M&}. Through learning from mixed trajectory data
{D',D?,..., DK}, we obtain a good starting-point of the model 6, ready for either zero-shot
generalization to unseen M or fine-tuning to obtain a world model of M? with strong generalization
given limited data. We elaborate on the intuition behind this paradigm in Section[d.1]

3 UNITRAJ DATASET

We introduce UniTraj, a large-scale unified trajectory dataset from heterogeneous environments, to
support the pre-training of a trajectory world model. To ensure diversity, we merge five publicly
available datasets with different characteristics. To further enhance diversity, we also by ourselves
collect the training buffer of agents from a set of diverse morphologies (Huang et al.,[2020). As a
result, UniTraj occupies a total of 1.3M trajectories (or 719M steps) from 80 distinct environments,
as summarized in Table[T} A detailed list of dataset information can be found in Appendix [A]

Beyond its unprecedented scale, the collected UniTraj represents diversity in several aspects:

Environment diversity. UniTraj encompasses a wide range of control environments. These include
not only widely-used environments from the DeepMind Control Suite (DMC) (Tassa et al.,[2018) and
OpenAl Gym (Brockman, [2016)), but also customized embodiments and tasks proposed in Modular
RL and TD-MPC2. Notably, we purposely exclude all trajectories from the HalfCheetah, Hopper, and
Walker2D environment of OpenAl Gym, which are held out as our downstream test environments.

'We use the term “heterogeneous” to highlight that different environments not only feature varying transition
and reward functions but also, more challengingly, possess distinct state and action spaces tied to unique sets of
sensors and actuators.
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Figure 2: Architecture of Trajectory World Models. A trajectory is first flattened into scalars,
organized into two dimensions by timesteps and variates (each variate corresponds to a single
dimension in the state, action, and reward), and then discretized into categorical representations.
A Transformer with interleaved temporal and variate attentions processes the inputs to predict the
categorical distribution for the next timestep autoregressively. Layer normalizations and residual
connections are omitted for simplicity.
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Distribution diversity. The dataset contains data collected from various distributions, resulting
from different collection methods and policies. Specifically, data from RL Unplugged, TD-MPC2,
and Modular RL are gathered by recording the training agent’s replay buffer, while JAT and DB-1
data are collected through expert policies rollouts. Additionally, ExXORL data are collected by storing
the transitions from running unsupervised exploration algorithms (Laskin et al.,|2021)). The policies
cover a range of approaches, including a wide range of reinforcement learning algorithms (e.g., D4PG
(Barth-Maron et al.,2018), PPO (Schulman et al.,2017)) and state-of-the-art model predictive control
algorithms, TD-MPC2.

By scaling up the dataset while preserving diversity, we empower the model with the potential to
generalize across varied environments.

4 TRAJECTORY WORLD MODELS

In this section, we first explain the intuition behind the proposed Trajectory World Models (TrajWorld)
(Section[d.T)), then provide a detailed overview of the architecture implementation (Section[4.2)), and
conclude with a discussion of the pre-training and fine-tuning paradigm (Section [4.3).

4.1 INTUITION

To address the challenges of heterogeneity and promote knowledge transfer, we make three key
observations:

Rediscovering homogeneity in scalars. While heterogeneity often arises in differently sized vector
information, there exists an inherent homogeneity at the scalar level. Each variate—a single scalar
dimension in the state, action, or reward—represents a fundamental quantity with its own physical
meanings of the environment, e.g., position or torque of a single joint, and can be consistently
modeled, regardless of the shape of the whole vector information. This insight leads to our design
choice: Instead of treating vector information as a whole, we break it into the scalar level for
processing and prediction.

Identifying environment through historical context. Unlike single-environment scenarios with
fixed state and action definitions, in our setting, variants can represent different quantities across
environments despite the same index in the vector. While environment IDs are typically included as
inputs to distinguish environments, we instead leverage the in-context learning ability of Transformers
(Brown et al., [2020): history transitions can provide the context needed for the model to infer
relationships between variants. This makes pre-training even more critical. By exposing the model to
diverse data across environments, we encourage it to learn “how to learn environment dynamics,”—a
more generalizable knowledge—rather than solely focusing on specific environments. This ability is
demonstrated in Section [5.1] where our pre-trained model has satisfactory zero-shot performance. In
summary, we provide historical context instead of environment identities, guiding the model to learn
to infer dynamics through context.
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Inductive bias for two-dimensional representations. So far, our modeling for heterogeneous
dynamics involves two dimensions: one focuses on capturing the relationships among variants, and
the other models how actions drive transitions from the current state to the next. Instead of using
simple one-dimensional attention over flattened sequences, explicitly modeling these two dimensions
has the potential to enhance transferability in downstream tasks, as it guides the model to learn in
a more structured and systematic manner. This is supported by empirical results in Section[5.2] In
short, we use a two-way attention mechanism instead of one-dimensional attention on sequences.

4.2 ARCHITECTURE

Building on the above intuitions, we realize a Transformer-based architecture (see Figure [2).

Scalarization. To exploit the inherent homogeneity at the scalar level, we flatten a trajectory 7
from the spaces S C R™, A C R" into a two-dimensional representation organized by timesteps and

variates:
(1) (m) (1) (n)

SO .« .. SO 7"0 a/O e a’O
X = : '.. : : : 3 (1)
(1) (m) (1) (n)
Sp~y 0 Sp—y Tr—1 GQply 0t Aply

where sgl) denotes the i-th dimension of s;. Padding is applied to rg and ar_; as zeros. This
transformation converts heterogeneous trajectories of varying lengths and dimensions into matrices

X € RTXM 'where M = m + n + 1, which can be flexibly processed by the attention mechanism.

Discretization and embeddings. Transformers excel in processing discrete inputs, so we further
convert scalars into categorical representations. For each variate s() or a(?), we define B uniform
bins with boundaries by < by < --- < bg, where by and b represent the minimum and maximum
values of the variate in the training data. Scalars are then mapped to these bins using one-hot encoding
or Gaussian histograms (Imani & White, 2018} [Farebrother et al., 2024)).

The resulting discrete representation Q € [0,1]7*M*B i linearly projected to match the Trans-

former’s hidden size d. Additionally, we apply three learned embeddings—timestep-embedding
(TE), variate embedding (VE), and prediction embedding (PE)—to capture timestep indices, variate
identities, and whether a variate is a target for prediction. Formally, for each ¢ € [T] and j € [M]:

Z9; = WinQij + TE(i) + VE(j) + PE(1[j < m + 1]). 2

Interleaved temporal-variate attentions. The input Z° € RT*M x4 i processed through a series

of L transformer blocks, adapted for the two-dimensional input structure. In each block I =1,..., L,
we first apply temporal attention, processing each variate independently:

Ul.p,; = CausalAttention(Z 7 ), Vj € [M], 3)

followed by a feedforward network (FFN): Ul = FFN(U'). Afterwards, variate attention is applied
at each timestep:

VZLM = Attention(UfJ:M), Vi e [T]. 4)
Since there are no causal dependencies between variates at the same timestep, no causal mask is
applied during variate attention. Finally, another FFN is applied: Z! = FFEN(V!).

Through interleaved temporal and variate attentions, each entry in our model efficiently aggregates
information from all variates across all previous timesteps. As previously discussed, this enables the
model to infer environment dynamics in-context for transition prediction.

Prediction and objective. A linear prediction head, followed by a softmax operation, produces
the prediction distribution P = Softmax(WouZ%) € [0,1]7*M>*B_ Our model is trained using a
next-step prediction objective to match the categorical representation of the inputs:

T—1m+1 B

L(P,Q)=— Z Z Z Qit1,5,110g P j 1. (5)

i=1 j=1 k=1
During inference, the next-step prediction can be obtained by sampling from or taking the expectation
of the predicted categorical distribution over bin centers.
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Figure 3: Zero-shot generalization. (a) Mean squared error of zero-shot transition predictions in
modified Gym Pendulum (holdout gravity) and Walker2D (holdout friction etc.). (b) TrajWorld’s
zero-shot predictions for two Cart-2-Pole trajectories, which share 10 context steps but diverge due to
differing subsequent actions.

4.3 TOWARDS A GENERAL TRAJECTORY WORLD MODEL

We pre-train a general Trajectory World Model on offline datasets from diverse environments. This
same pre-trained model can then be applied to all downstream tasks for fine-tuning. Thanks to
the Transformer’s flexible architecture design and in-context learning capabilities, the pre-trained
knowledge becomes more transferable, benefiting a wide range of heterogeneous and complex control
environments.

5 EXPERIMENTS

In this section, we test the following hypotheses:

» Large-scale trajectory pre-training can generalize effectively and even enable zero-shot
generalization, contrary to the common belief. (Section [5.1))

* TrajWorld outperforms alternative architectures for transition prediction when transferring
dynamics knowledge to new environments. (Section[5.2))

* TrajWorld leverages the general dynamics knowledge acquired from pre-training to improve
performance in downstream tasks. (Section

5.1 ZERO-SHOT GENERALIZATION

We first demonstrate that through in-context learning ability, TrajWorld exhibits favorable generaliza-
tion across heterogeneous environments, which differ not only in their transition dynamics but also in
state and action spaces.

Environment parameter transfer. We pre-train a TrajWorld model on data from Gym Pendulum
environments with varying gravity values and evaluate its transition prediction error on holdout gravity
values. As shown in Table [3a] TrajWorld achieves significantly lower prediction error in zero-shot
settings compared to a naive baseline that simply mimics the last timestep. Moreover, the performance
of TrajWorld deteriorates noticeably when historical information is excluded, highlighting the critical
role of contexts for the model to effectively infer environment parameters. The results are consistent
in a similar experiment conducted on Gym Walker2D, where friction, mass, etc., are varied.

Cross-environment transfer. We further find that TrajWorld, when trained on the large-scale
UniTraj dataset, is also capable of zero-shot generalizing to unseen environments, Cart-2-Pole and
Cart-3-Pole from DMC (Figure[3b|and[7). Specifically, TrajWorld successfully infers the influence of
the action value (pushing force) on the state dimension (cart position) and accurately predicts the
outcomes for different action sequences performed subsequently.
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Figure 4: Overall off-policy evaluation (OPE) results across 15 datasets of 3 environments, averaged
across three random seeds.

5.2 TRANSITION PREDICTION

We then evaluate how different world models benefit from pre-training for transition prediction,
particularly for out-of-distribution queries, when fine-tuned to more complex, standard environments.

Setup. We use datasets of three environments—HalfCheetah, Hopper, and Walker2D—from D4RL
(Fu et al., [2020) as our testbed. Each environment in D4RL is provided with five datasets of different
distributions from policies of varying performance levels. We train world models in each of the
fifteen datasets and test prediction errors of states and rewards across all five datasets under the same
environment, resulting in 75 train-test dataset pairs.

Baselines. We compare our approach against two baselines: an ensemble of MLPs (Chua et al.,
2018)), widely adopted for dynamics modeling, and TDM (Schubert et al.,|2023)), which is similar
to our model but uses one-dimensional attention. Each baseline is evaluated both for training from
scratch and fine-tuning pre-trained ones on the same UniTraj dataset as TrajWorld. To enable pre-
training, we pad the state and action vectors with zeros to match the same dimensionality for MLP.
Additionally, we include our model trained from scratch for comparison.

Results. Figure [Ib] presents the aggregated mean absolute error of 75 train-test dataset pairs for
various models. TrajWorld outperforms all baselines, highlighting the effectiveness of its pre-training
strategy and architecture design. Notably, MLP Ensemble with pre-training performs worse than
its non-pre-trained counterpart, emphasizing the importance of careful model design for world
modeling across heterogeneous environments. While TDM also benefits significantly from pre-
training, it still lags behind TrajWorld. This is likely because TDM naively treats everything as a 1D
sequence, neglecting the unique problem structures. In contrast, TrajWorld explicitly models variate
relationships and temporal transitions, leveraging different facets of dynamics knowledge from the
pre-training. Moreover, TDM predicts variants sequentially, which may accumulate errors and lead
to less accurate results.

In Figure[6al we further show detailed prediction error results for TrajWorld compared to its non-pre-
trained counterparts. In 12 out of 15 training datasets, fine-tuned TrajWorld achieves a lower average
prediction error across 5 test datasets, further validating the effectiveness of pre-training. Moreover,
the transfer benefits are evident in both in-distribution and out-of-distribution scenarios.

5.3 OFF-PoLICY EVALUATION

Off-policy evaluation (OPE) estimates the value of a target policy using an offline transition dataset
collected by a separate behavior policy. It is commonly used to select the most performant policy
from a set of candidates when online evaluation is too costly to be practical. This task provides an
ideal evaluation scenario for world models, as value estimation can be acquired by rolling out the
target policy within the learned world model.

Setup. We adopt the DOPE benchmark (Fu et al.| 2021) over various D4RL environments. The
tasks in this benchmark are particularly challenging, as the target policies are of different levels
and may differ significantly from the behavior policy. To perform well on these tasks, the world
model must generalize well across all possible state-action distributions. Evaluation metrics include
mean absolute error comparing estimated vs. ground-truth policy values, rank correlation between
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Figure 5: Model analysis. (a) Downstream prediction error of TrajWorld under varying data scarcity
levels. (b) t-SNE visualization of the linear weights in the model’s prediction head. (c) Variate
attention map from the third layer of TrajWorld fine-tuned on Walker2D.

estimated and actual policy rankings, and Regret@ I measuring accuracy in selecting the best policy,
as detailed in Appendix[B.4.3]

Baselines. In addition to the MLP Ensemble and TDM models mentioned earlier, we compare our
approach against several other baselines. Notably, Energy-based Transition Models (ETM) (Chen
et al., [2024)) currently sets the state-of-the-art on this benchmark, outperforming prior methods by a
significant margin. We also include the classical methods from the original DOPE paper (Fu et al.,
2021)) for a more comprehensive comparison.

Results. Figure [] shows that TrajWorld significantly improves OPE compared to its non-pre-
trained variant and outperforms all baselines in both average normalized absolute error and rank
correlation. TrajWorld slightly underperforms on Regret@1, likely due to bounded reward prediction
(see discussion in Appendix D). Consistent with Section[5.2] MLP Ensemble with pre-training suffers
from negative transfer, showing a notable drop in performance compared to the non-pre-trained model.
Although TDM also benefits from pre-training, it does not reach the same level of performance as
TrajWorld. We attribute this to the same reason discussed in Section 5.2}

5.4 ANALYSIS

Few-shot adaptation. TrajWorld presents pre-training benefits in few-shot scenarios. In Figure [5a]
we show the prediction error across varying levels of data scarcity and compare TrajWorld with and
without pre-training. These results highlight that the advantages of pre-training become increasingly
pronounced as data becomes more limited.

Effects of pre-training dataset. To further investigate which aspects contribute to the pre-training
benefits, we train TrajWorld on a modified UniTraj dataset with the Modular RL and TD-MPC2 data
removed. Despite this modification, TrajWorld still demonstrates significant pre-training advantages
(Appendix [C.6). This highlights that the benefits of pre-training are derived from the diversity of the
entire UniTraj dataset, rather than relying exclusively on data from domains that are relatively similar
to target environments.

Discretization visualization. We use t-SNE (van der Maaten & Hinton, 2008) to visualize the
linear weights of our model’s prediction head for each category. The mapped weights exhibit strong
continuity in Figure[5b] Since the output categories’ indices are aligned with the bins in increasing
order, this indicates that our model has learned the ordering of bins shared by variants, despite
being trained via an unordered classification objective. This suggests the model’s potential for fine
interpolation between existing bins and extrapolation to unseen ranges of variant values.

Variate attention visualization. We visualize the variate attention maps of our fine-tuned model
in the Walker2D environment, whose states are ordered with joint positions first, followed by their
velocities. As shown in Figure|Sc| the attention map exhibits prominent diagonal patterns that focus
on the corresponding joint’s position and velocity, suggesting the model’s understanding of each
variate’s semantics. Additionally, the strong attention between neighboring variate, such as physically
linked joints, further confirms the model’s grasp of joint relationships. We also observe notable
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attention patterns between states and actions, and these additional results are available in Appendix

6 RELATED WORK

Trajectory dataset. Data-driven approaches for control like imitation learning (Florence et al.,
2022 |Shafiullah et al.| 2022} |Gallouédec et al., |2024) and offline reinforcement learning (Fu et al.,
2020; Rafailov et al.| [2024; |Gulcehre et al., [2020; Qin et al., [2022)) have promoted the public
availability of trajectory datasets. However, these datasets are rarely utilized as unified big data for
foundation models, likely due to their isolated characteristics, such as differences in policy levels,
observation spaces, and action spaces. In fact, the largest robotics dataset, Open X-Embodiment
(O’ Neill et al., 2024), is typically used for imitation learning with homogeneous visual observations
and end-effector actions (Team et al., 2024} Kim et al.| [2024). Gato (Reed et al., 2022) collects a
large-scale dataset across diverse environments for a generalist agent, but it is not publicly available.
In contrast, we curate public heterogeneous datasets, targeting a more capable trajectory world model.

Cross-environment architecture. Zero-padding to fit a maximum length (Yu et al., 2020a; [Hansen
et al., 2024} Schmied et al.| 2024; |Seo et al., 2022) or using separate neural network heads (Wang
et al.| 2024a;D’Eramo et al.,|2020) hinders knowledge transfer between heterogeneous environments
with mismatched or differently sized state and action spaces. Previous work has resorted to flexible
architectures like graph neural networks (Huang et al.| |2020; |[Kurin et al.,|2021)) and Transformers
(Gupta et al., [2022; |Hong et al.,|2021) for policy learning. Our method leverages a similar architecture
for world modeling (Janner et al.l 2021; |[Zhang et al.| [2021)), but with a novel two-dimensional
attention design to enhance cross-environment transfer.

World model pre-training. The homogeneity of videos across diverse tasks, environments, and
even embodiments has driven rapid advancements in large-scale video pre-training for world models
(Seo et al.,[2022; 'Wu et al., [2024ajb; Ye et al., 2024} |(Cheang et al., |2024). However, heterogeneity
across different sets of sensors and actuators poses significant challenges to developing general world
models based on low-dimensional sensor information.

Our work is particularly relevant to |Schubert et al.| (2023)), which trains a generalist transformer
dynamics model from 80 heterogeneous environments. Still, they only observe positive transfer when
adapting to a simple cart-pole environment and fail for a more complex walker environment. In
contrast, our work, for the first time, validates the positive transfer benefits across such more complex
environments.

7 CONCLUSION

We address the challenge of building large-scale pre-trained world models for heterogeneous environ-
ments with distinct sensors, actuators, and dynamics. Our contributions include UniTraj, a dataset
of over one million trajectories from 80 environments, and TrajWorld, a flexible architecture for
cross-environment transfer. Pre-training TrajWorld on UniTraj achieves superior results in transition
prediction and off-policy evaluation, demonstrating the first successful transfer of world models
across complex control environments.

Limitations and future work. While this work takes a successful first step, there is significant
room for further study. Despite the strong practical performance, one limitation of our architecture
is that the discretization scheme constrains predictions to a fixed range, making it theoretically
difficult to model extremely out-of-distribution transitions beyond these bounds. Additionally, our
model, designed for scalable pre-training, has a larger capacity compared to classic MLPs, which
poses challenges in model calibration (Guo et al., 2017), particularly in scenarios where uncertainty
quantification is critical, such as offline RL (Yu et al., 2020b). This increased complexity also comes
with additional computational costs. For future work, we envision that pre-training multimodal world
models incorporating both visual and proprioceptive observations could lead to models with a deeper
understanding of the physical world.
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A UNITRAJ DATASET DETAILS

A.1 OVERVIEW OF UNITRAJ COMPONENTS

In this part, we provide a brief overview of each component of the UniTraj dataset.

ExORL (Yarats et al., 2022). Exploratory Data for Offline RL (ExORL) follows a two-step
data collection protocol. First, data is generated in reward-free environments using unsupervised
exploration strategies (Laskin et al., 2021). Next, this data is relabeled with either a standard or
hand-designed reward function specific to each environment’s task. This procedure leads to data with
broader state-action space coverage, which benefits generalization-demanding scenarios like offline
RL.

RL Unplugged (Gulcehre et al., 2020). We incorporate RL Unplugged’s dataset from the Deep-
Mind Control Suite domains. Most of the data collected in this domain are generated by recording
D4PG’s training runs (Barth-Maron et al., [2018), while Manipulator insert ball and Manipulator
insert peg’s data is collected using V-MPO (Song et al., 2020).

JAT (Gallouédec et al., 2024). We utilize Jack of All Trades (JAT)’s released dataset, which
is collected using expert RL agent’s rollouts. These agents are trained using asynchronous PPO
(Schulman et al.l [2017), following the Sample Factory implementation (Petrenko et al., [2020).
Specifically, we only use the subset of the dataset that was collected in the OpenAI Gym environments,
excluding data collected in Walker2D, HalfCheetah, and Hopper.

DB-1 (Wen et al.} 2022). The dataset for Digital Brain-1 (DB-1), a reproduction of Gato (Reed
et al., [2022), also consists solely of expert policy rollouts. Although the released dataset contains
only five expert episodes per domain, it spans multiple environments, including various DeepMind
Control Suite environments and custom ones from Modular RL.

TD-MPC2 (Hansen et al.; 2024). TD-MPC?2 is a state-of-the-art model-based RL algorithm. We
include released data from single-task TD-MPC2 agents’ replay buffers, collected from DeepMind
Control Suite environments.

Modular RL (Huang et al., 2020). The Modular RL environments introduced by [Huang et al.
(2020) feature customizable embodiments with varying limb and joint configurations. We collected
the data on these environments by ourselves. Specifically, we used the provided XML files to define
different embodiment structures and followed the original reward function designs. We ran the
TD3 algorithm (Fujimoto et al., 2018) and stored all episodes until the policy began to converge.
The hyperparameters for TD3 are kept consistent with the default settings provided in the official
repository repositor

A.2 LIST OF ENVIRONMENTS

The curated UniTraj dataset spans a diverse range of environments from multiple sources, including
DeepMind Control Suite, OpenAl Gym, and various customized environments. In Table [2| we
provide a detailed list of environments used in each component of UniTraj.

B EXPERIMENTAL DETAILS

B.1 MODEL IMPLEMENTATION

TrajWorld. For discretization, as described in Section we can employ two methods: one-hot
encoding and Gaussian histograms. Specifically, the Gaussian histogram method is utilized for input
discretization, while the one-hot encoding is applied for target discretization. Compared to one-hot
encoding, Gaussian histograms provide a more fine-grained representation of value information.

https://github.com/sfujim/TD3
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Component Environments

ExORL Cartpole, Jaco, Quadruped, Walker!

RL Unplugged Cartpole, Fish, Humanoid, Manipulator, Walker

JAT Double Pendulum®, Pendulum*, Pusher®, Reacher*, Swimmer*

Acrobat, Ball In Cup, Cartpole, Cheetah-2-back, Cheetah-2-front,
Cheetah-3-back, Cheetah-3-balanced, Cheetah-3-front,
Cheetah-4-allback, Cheetah-4-allfront, Cheetah-4-back, Cheetah-4-front,
Cheetah-5-back, Cheetah-5-balanced, Cheetah-5-front, Cheetah-6-back,
Cheetah-6-front, Finger, Fish, Hopper', Hopper-3, Hopper-5, Humanoid,

DB-1 Humanoid-2d-7-left-arm, Humanoid-2d-7-left-leg, Humanoid-2d-7-lower-arms,
Humanoid-2d-7-right-arm, Humanoid-2d-7-right-leg, Humanoid-2d-8-left-knee,
Humanoid-2d-8-right-knee, Humanoid-2d-9-full,

Manipulator, Reacher, Swimmer6, Swimmer15, Walker,
Walker-2-flipped, Walker-2-main, Walker-3-flipped, Walker-3-main,
Walker-4-flipped, Walker-4-main, Walker-5-flipped,
Walker-5-main, Walker-6-flipped, Walker-6-main

Acrobot, Ball In Cup, Cartpole, Cheetah', Finger, Fish, Hopper',

TD-MPC2 Pendulum®, Reacher’, Walker®

Cheetah-2-back, Cheetah-2-front, Cheetah-3-back, Cheetah-3-balanced,
Cheetah-4-allback, Cheetah-4-back, Cheetah-4-front, Cheetah-5-back,
Modular RL Cheetah-5-balanced, Cheetah-5-front, Cheetah-6-back, Cheetah-6-front,
Hopper-3, Hopper-5, Walker-2-flipped, Walker-3-flipped,
Walker-4-flipped, Walker-5-flipped, Walker-6-flipped, Walker-7-flipped

Table 2: A detailed list of environments used in the UniTraj dataset. For environments sharing the
same name, we mark those from OpenAl Gym with an asterisk (*) and those from DeepMind Control
Suite with a dagger (f). Notably, the Gym Hopper, Walker2D, and HalfCheetah environments used
for evaluating our methods and baselines differ from their DeepMind Control Suite counterparts,
exhibiting variations in state/action definitions and environment parameters.

While we can also use Gaussian histograms for target discretization, one-hot encoding is more
suitable for uncertainty quantization in future applications such as offline RL. This is because two
Gaussian distributions with the same standard derivation can yield different entropy when discretized
into histograms.

For prediction, each bin [b;_1, b;] is represented by its center ¢; = (b;_1 + b;) /2. Given the predicted
bin probability p;, the output value distribution can be expressed as P(X = z) = Zle pil(z = ¢)
orP(X =x)= Zil pil(bi—1 < x < b;)/(b; — b;—1). We use the former for simplicity.

When pre-training with data from heterogeneous environments, for practical reasons, each batch is
made up of data from a single environment.

We provide the hyperparameters used in pre-training and fine-tuning in Table [3] On transition
prediction and OPE experiments, the environment-specific models trained from scratch use the same
set of hyperparameters as fine-tuning.

Baseline: Transformer Dynamics Model (TDM). TDM (Schubert et al.,2023)) does not provide
an official implementation. To enable a fair comparison, we adapt our TrajWorld implementation to re-
produce TDM while maintaining consistency in discretization and embedding methods. Furthermore,
when trained using a cross-entropy loss, we mask actions and require the model to only predict the
next states and rewards—unlike the TDM paper, where all variates are predicted. During inference,
the model predicts each scalar dimension of the state sequentially, followed by setting each scalar of
the action (e.g., provided by the policy in off-policy evaluation) one at a time. The hyperparameters
for pre-training and fine-tuning are kept consistent with those used in TrajWorld (Table 3)), except
for the batch size for pre-training. Due to GPU memory constraints, the batch size for pre-training,
originally set to 64, is reduced to 16. Like TrajWorld, we use the same hyperparameters as fine-tuning
for environment-specific models trained from scratch.
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Hyperparameter Value
Input discretization Gauss-hist
Target discretization One-hot
Transformer blocks number 6
Architecture Attention heads number 4
Transformer context length 20
Hidden dimension 256
MLP hidden [1024,256]
MLP activation GeLU
Total gradient steps IM
Batch size 64
Learning rate 1x 1074
Pre-training Dropout rate 0.05
Optimizer Adam
Weight decay 1x107°
Gradient clip norm 0.25
Scheduler Warmup cosine decay
Scheduler warmup steps 10000
Total max gradient steps 1.5M
Max epochs 300
Steps per epoch 5000
Batch size 64
Learning rate 1x107°
Fine-tuning Dropout rate 0.05
Optimizer Adam
Weight decay 1x107°
Gradient clip norm 0.25
Scheduler Warmup cosine decay
Scheduler warmup steps 10000

Table 3: Hyperparameters for TrajWorld.

Baseline: MLP Ensemble. Following prior work (Chua et al.l|2018; Janner et al.,|2019; |Yu et al.,
2020b)), we train an ensemble of transition models, parameterized as a diagonal Gaussian distribution
of the next state and reward, implemented using MLPs. These models are trained with bootstrapped
training samples, and optimized via negative log-likelihood. After training, we select an elite subset of
models based on validation loss, and during inference, a model from this subset is randomly sampled
for predictions. For pre-training on heterogeneous environments, we implement the MLP Ensemble
baseline by padding each state vector to 90 dimensions and each action vector to 30 dimensions,
resulting in a 120-dimensional input to the MLP. The model outputs the distribution over a 91-
dimensional vector (90 for the next state and 1 for the reward). To ensure a fair comparison with other
methods, we match the parameter count of the ensemble to TrajWorld, and no environment identities
are provided to this baseline. The hyperparameters are listed in Table[d] Environment-specific models
trained from scratch use the same hyperparameters as in fine-tuning.

B.2 ZERO-SHOT GENERALIZATION

B.2.1 ENVIRONMENT PARAMETER TRANSFER

Pendulum. We pre-train the TrajWorld model on 60 Gym Pendulum environments, where the
gravity values range from 8 m/s? to 12 m/s2. The pre-training dataset is collected by running the TD3
algorithm (Fujimoto et al.| 2018)) and storing all episodes until the policy converges. For evaluation,
we use five holdout environments with gravity values between 6.5m/s? and 7.5m/s?, collecting data in
the same manner as the training datasets. The zero-shot results are reported as the average prediction
error on these holdout datasets.
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Hyperparameter Value
MLP hidden [640, 640, 640, 640]
Architecture Ensemble number 7
Ensemble elite Number 5
Total gradient steps M
Pre-trainin Batch size 256
& Learning rate 1x1074
Optimizer Adam
Total max gradient steps 1.5M
Max epochs 300
. . Steps per epoch 5000
Fine-tuning Batch size 256
Learning rate 1x107°
Optimizer Adam

Table 4: Hyperparameters for MLP Ensemble.

Walker2D. We pre-train a four-layer TrajWorld model using 45 training datasets provided by
MACAW (Mitchell et al}2021)) and evaluate it on a separate dataset also from MACAW. The datasets
in MACAW are collected under varying physical conditions, including differences in body mass,
friction, damping, and inertia.

B.2.2 CROSS-ENVIRONMENT TRANSFER

We evaluate the model pre-trained on UniTraj by performing a ten-step rollout in the Cart-2-Pole and
Cart-3-Pole environment from the DeepMind Control Suite. The rollout is conditioned on a history
of ten prior timesteps. After this initial context, actions are applied in a simple predefined manner:
either continuously pushing to the right (a = 0.5) or to the left (a = —0.5). The action repeat for the
Cart-2-Pole and Cart-3-Pole environment is set to 4.

B.3 TRANSITION PREDICTION

The model is trained on a dataset using this dataset’s training set and tested on five test datasets that
come from the same environment. The evaluation for each test set is based on the model’s prediction
error across the entire test dataset. We use the Mean Absolute Error (MAE) as the evaluation metric.
The prediction of TrajWorld is done by maintaining a history context window of 19 to predict the
20th state and reward.

In Figure[Tb] the prediction errors for each train-test dataset pair are normalized by dividing them by
the MAE of the TrajWorld model without pre-training. The final result is then obtained by averaging
across all environments.

B.4 OFF-PoLICY EVALUATION

B.4.1 IMPLEMENTATION: MODEL-BASED OPE

Given a world model, the most direct method for off-policy evaluation (OPE) is Monte Carlo policy
evaluation. This involves starting from a set of initial states, performing policy rollouts within the
learned model, and averaging the accumulated rewards to estimate the policy value. The procedure is
summarized in Algorithm

In practice, we use a discount factor of v = 0.995 and a horizon length of h = 2000. The number of
samples N is set such that each trajectory’s initial state from the behavior dataset is used exactly once,
resulting in approximately /N ~ 1000. We use KV cache to accelerate the rollouts of our TrajWorld.
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Algorithm 1 Model-Based OPE

Input: learned world model Py (S¢41, 7¢++1]8¢, at), test policy w, samples number N, initial state
distribution .Sy, discount factor -y, horizon length h.
fori=1to N do
R, <0
Sample initial state sg ~ Sy
fort =0toh —1do
ar ~ 7 (-|s¢)
St+1,Te+1 ~ Pol:[se, ar)
R, <+ R; +v'ri4q
end for
end for
Return V(7) = 4 vazl R;

B.4.2 BASELINES

We primarily compare against model-based OPE with Energy-based Transition Models (ETM)
(Chen et al., [2024)), a strong baseline that significantly outperforms previous methods and represents
state-of-the-art on the DOPE benchmark (Fu et al., 2021).

We also include five classic OPE methods as baselines from the DOPE benchmark: Fitted Q-
Evaluation (FQE) (Le et al., 2019), Doubly Robust (DR) (Jiang & Li,|2016), Importance Sampling
(IS), (Kostrikov & Nachum, |2020) DICE (Yang et al., 2020), and Variational Power Method (VPM)
(Wen et al.| [2020).

B.4.3 METRICS

We adopt the evaluation metrics used in the DOPE benchmark.

Mean Absolute Error. The absolute error quantifies the deviation between the true value and the
estimated value of a policy, defined as:

AbsErr = [V™ — V™, (6)

where V'™ represents the true value of the policy, and V™ denotes its estimated value. The Mean
Absolute Error (MAE) is computed as the average absolute error across all evaluated policies. To
aggregate results, these values are normalized by the difference between the maximum and minimum
true policy values.

Rank correlation. Rank correlation, also known as Spearman’s rank correlation coefficient (p),
measures the ordinal correlation between the estimated policy values and their true values. It is given
by:

RankCorr = M, o
U(VlT:rN)J(Vf;rN)

where 1 : N represents the indices of the evaluated policies.

Regret@k. Regret@Fk quantifies the performance gap between the actual best policy and the best
policy selected from the top-k candidates (ranked by estimated values). It is formally defined as:

Regret@k = max V" —  max V[ 8)
i€l:N jEtopk(1:N)

where topk(1 : N) denotes the indices of the top k policies based on estimated values V™. In our
experiments, we specifically use normalized Regret@1 as the evaluation metric.

B.5 COMPUTATIONAL COST

Our implementation, built upon JAX (Bradbury et al., [2018)), benefits from significant computational
efficiency. Both pre-training and fine-tuning of the TrajWorld model can be conducted on a single
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24GB NVIDIA RTX 4090 GPU. For comparison, the computational cost for 1.5M training steps in our
implementations of the MLP Ensemble, TDM, and TrajWorld is 1.5, 36, and 28 hours, respectively.
This highlight that TrajWorld achieves strong performance with lower computational cost than TDM.

C EXTENDED EXPERIMENTAL RESULTS

C.1 DETAILED PREDICTION ERROR FOR BASELINES

We report the prediction error for MLP Ensemble and TDM in Figure [6b|and [6c] respectively.

C.2 QUANTITATIVE RESULTS FOR OFF-POLICY EVALUATION

We report the raw absolute error, rank correlation and regret@1 for each OPE method and task in
Table

C.3 OFfF-PoLIiCY EVALUATION WITH PRE-TRAINED MODELS ON PARAMETER-VARIANT
ENVIRONMENTS.

In addition to the zero-shot prediction error reported in Section we further investigate our
four-layer model pre-trained on Walker2D with variant friction, mass, etc. Specifically, we evaluate
the model’s performance by fine-tuning it and testing it on downstream off-policy evaluation tasks
on standard Walker2D. The results are summarized in Table[6] This provides additional evidence,
beyond the zero-shot prediction error, demonstrating that TrajWorld exhibits strong capability for
transfer to environments with varying parameters.

Env. Level TrajWorld (w/o PT)  TrajWorld (w/ PT)
random 262 £ 34 76 £ 6
medium 68 +2 40+4

Walker2D  m-replay 71+11 46 + 1
m-expert 49+ 1 76+ 1
expert 281 +8 186 £ 1

Table 6: Raw absolute error of off-policy evaluation for a four-layer TrajWorld model trained from
scratch compared to a model fine-tuned from a pre-trained version on the Walker2D dataset with
variant environment parameters with holdout onest, averaged over two seeds.

C.4 ADDITIONAL ZERO-SHOT CROSS-ENVIRONMENT TRANSFER

Zero-Shot Prediction on Cart-3-Pole
T T

We also test TrajWorld’s zero-shot prediction on the more e S
. . . —= Tt (e a2 (Pre -
challenging Cart-3-pole environment, which has an 11- T— Traj 1 (Real) rrajzmeanr»

dimensional state space. Surprisingly, TrajWorld can still g oo ‘ : ‘
give cart’s position predictions roughly aligned with the § = «‘?_\\
ground truth, despite not seeing this embodiment before. & =
The action sequence is depicted in Section[B.2.2] _O'ZH
3 12 15 18
Time Step

C.5 ADDITIONAL

VARIATE ATTENTION VISUALIZATION Figure 7: TrajWorld’s zero-shot predic-

tions for two Cart-3-Pole trajectories,
We present the variate attention maps of our TrajWorld Which share 10 context steps but diverge
model across all six layers, comparing a fine-tuned model ~due to differing subsequent actions.
and a model trained from scratch, in Figures B] and E}

For the fine-tuned model, in the early layers (Layer O and 1), attention is more scattered and less
structured, likely capturing broad and low-level features. In contrast, later layers (Layer 4 and 5)
exhibit more focused attention, suggesting the model is concentrating on specific relationships or
entities. The prominent diagonal patterns and neighboring attentions discussed in Section[5.4]can also
be clearly observed in Layer 2. Additionally, diagonal patterns linking joint velocities and actions
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Figure 6: Mean absolute errors (MAE) of transition prediction for different methods, with and
without pre-training (PT), across different train-test dataset pairs. Each subplot corresponds to a
distinct training dataset, with the test datasets shown on the x-axis (r=random, m-r=medium-replay,
m=medium, m-e=medium-expert, e=expert). Error bars represent the standard deviation across three
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Env. Level ET™M MLP (w/o PT) MLP (w/PT) TDM (w/oPT) TDM (w/PT) TW (w/oPT) TW (w/PT)
random 236+ 15 245+9 307 £ 15 79+ 19 160 + 17 259 +27 98 £ 1
medium 47 +21 149 + 30 181 +18 140 + 10 145 +7 81+11 127 +9

Hopper m-replay 29+8 24+5 33+2 38+13 56+ 13 60+7 73+6
m-expert 32+4 87+35 173+ 15 116 21 79+3 48 +7 69+38
expert 71 +16 167 £ 36 218+29 283 +8 100 +2 105 + 31 42+2
random 339+ 10 356 +4 372+£3 291 +£40 264 +9 312+ 19 269 + 1
medium 159+ 13 181 £ 10 3719 104 £22 123+ 12 61+6 101 7

Walker2D m-replay 132 %31 131 +8 313+ 15 143 +52 147+3 54+12 182+10
m-expert  152+9 210 £ 47 340+ 19 87 +24 13717 60 £ 11 72+7
expert 364+7 344 £20 368 + 15 403 + 141 458 + 19 272 £ 124 100 £2
random 842 +42 965 £2 1137 £27 1079 = 11 1050 + 4 1028 + 17 1059 +7
medium 655+ 114 734 £24 973 £91 1435 + 54 1312 +21 568 +23 444 £ 4

Halfcheetah m-replay 727 +119 712+359 993 +41 927 +261 730 £ 25 540 + 45 540 + 16
m-expert 689 + 203 692 + 65 1117 £90 923 +98 1319 +£23 809 + 150 528+ 10
expert 758 £ 116 973 175 1243 £ 36 1273 £ 158 646 + 50 1013 £ 246 841+ 14

(a) Raw absolute error

Env. Level ETM MLP (w/o PT) MLP (w/PT) TDM (w/o PT) TDM (w/PT) TW (w/oPT) TW (w/PT)
random random  0.61 £0.15 0.65+0.17 0.43 +0.09 0.90 +0.05 0.82 +0.05 056+023  0.81+0.01
medium 0.94 +0.04 0.81 +£0.05 0.72+0.03 0.64 +0.10 0.46 +£0.07 0.81+£0.06 031+0.10

Hopper m-replay 0.97 £ 0.02 0.99 +0.00 0.98 + 0.00 0.96 +0.01 0.89 +0.04 0.86+0.05 0.61+0.36
m-expert 0.95+0.01 0.90 +0.09 0.79 £0.05 0.55+0.32 0.86+0.01 0.93+0.01 0.87 +0.02
expert 0.85 £ 0.05 0.62 +0.07 0.42 +0.09 -0.34+£0.17 0.78 £ 0.04 0.86£0.04  0.95+0.00
random -0.12+£0.32 0.75 +0.03 0.58 +0.17 0.73£0.10 0.79 £ 0.02 0.67 £0.01 0.78 + 0.00
medium 0.78 £0.12 0.90 + 0.03 0.44+0.12 0.86 +0.04 0.91 +£0.02 0.95+0.01 0.94 + 0.00

Walker2D m-replay 0.77 £0.10 0.95 +0.01 0.72 £ 0.08 0.88 +£0.03 0.93 +0.02 0.97+£0.02 0.77+0.01
m-expert 0.67 £0.14 0.92 +0.02 0.74 £ 0.06 0.91 £0.04 0.79 £ 0.06 0.95 +0.01 0.96 +0.01
expert 0.54+0.11 0.36 +0.11 0.11+0.42 0.36 £ 0.42 0.80 +0.01 0.59+030  0.94+0.01
random 0.76 £0.10 0.90 +0.01 0.84 +0.12 0.93 £0.00 0.90 + 0.00 0.91+0.00 0.94+0.00
medium 0.78 £0.12 0.93+0.01 0.93+0.01 -0.29 £ 0.38 0.14 £ 0.08 0.96+0.00  0.98 +0.00

Halfcheetah m-replay 0.77 £0.10 0.90 + 0.00 0.88 +0.02 0.93 £0.03 0.86 +0.02 0.93+0.00 0.93+0.01
m-expert 0.91£0.03 0.96 + 0.02 0.90 + 0.00 0.75+0.10 0.27 £ 0.07 091+0.06 0.97+0.00
expert 0.81+0.10 0.90 + 0.06 0.24 +0.44 0.24+0.20 0.81+0.02 049+026 0.94+0.01

(b) Rank correlation

Env. Level ETM MLP Ens.(w/o PT) MLP Ens.(w/ PT) TDM (w/o PT) TDM (w/PT) TW (w/oPT) TW (w/PT)
random 0.20 +£0.10 0.30 +0.28 0.62 +0.00 0.20 +£0.15 0.25+0.08 0.39 £0.32 0.37 £0.00
medium  0.05 +0.04 0.03 +0.04 0.05 +0.04 0.17 +0.17 0.16 + 0.00 022+0.13  0.11+0.06

Hopper m-replay  0.00 + 0.00 0.08 + 0.00 0.08 + 0.00 0.09 +0.02 0.08 + 0.00 0.15+0.01 0.14 +0.00
m-expert .08 + 0.07 0.09 +0.02 0.12+0.21 0.37 £0.00 0.08 + 0.00 0.15+£0.13 0.08 +0.00
expert 0.08 + 0.02 0.17 £ 0.17 0.17 £ 0.17 0.68 +0.55 0.08 + 0.00 0.12+0.15  0.10+£0.02
random 0.16 £ 0.09 0.05 +0.01 0.41 £0.40 0.10 £ 0.04 0.05 +0.00 0.17 £0.00 0.08 £ 0.00
medium  0.00 = 0.00 0.08 + 0.00 0.28 £ 0.00 0.08 +0.07 0.12 £ 0.00 0.04 £0.07  0.08 £0.00

Walker2D m-replay  0.00 = 0.00 0.07 +0.02 0.19+0.16 0.08 +0.04 0.10 + 0.06 0.03+0.05  0.00 +0.00
m-expert  0.03 +0.02 0.08 + 0.00 0.09 +0.16 0.06 +0.10 0.12 +0.00 0.05+0.05  0.08 £0.00
expert 0.05 +0.05 0.19+0.16 0.19 +0.26 0.12+0.14 0.28 £ 0.00 0.28 +0.28 0.17 £0.10
random  0.20 +0.10 0.15+0.10 0.11+0.12 0.04 + 0.00 0.09 + 0.08 0.14+0.10  0.03+0.02
medium  0.08 + 0.08 0.18 £0.00 0.17 £0.02 0.70 £ 0.52 0.23 £0.07 0.12+0.11 0.12 +0.02

Halfcheetah m-replay 0.16 +£0.12 0.15+0.10 0.23+0.07 0.16 + 0.05 0.25+0.00 0.18+0.00  0.18 £0.00
m-expert  0.11 £0.10 0.06+0.11 0.18 +0.00 0.16 +0.05 0.37 £ 0.00 0.14+0.13  0.00 +0.00
expert 0.12£0.07 0.16 £0.02 0.04 £ 0.00 0.27 £0.10 0.14 £0.00 0.18 £0.03 0.20 £0.19

(c) Regret@1

Table 5: Quantitative results of all model-based methods (TW=TrajWorld) for OPE, averaged over 3
seeds.
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Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 8: Variate attention maps of our pre-trained TrajWorld Model, fine-tuned under Walker2D
environment.

Layer 0 Layer1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 9: Variate attention maps of our TrajWorld Model in the Walker2D environment, trained from
scratch.

appear in Layers 1 and 2. Such diagonal patterns are also observed in the attention maps of the model
trained from scratch.

A notable difference between the attention maps of the fine-tuned model and the model trained
from scratch is the earlier emergence of diagonal patterns in the layers of the model trained from
scratch. Specifically, while the first two layers of the fine-tuned model exhibit more scattered and less
interpretable attention, the scratch-trained model immediately begins capturing structured diagonal
patterns, particularly between positions and velocities, as well as velocities and actions. This probably
suggests that pre-training changes the model’s behavior. The model without pre-training tends to
focus on environment-specific patterns and more localized features for prediction. In contrast, the
fine-tuned model seems to dedicate its first two layers to extracting more semantically meaningful
and generalizable features, encouraging the model to perform inference through in-context learning
from these environment-agnostic representations.

C.6 ABLATION STUDY ON PRE-TRAINING DATASET

To investigate the contributions of different components of the UniTraj dataset to the pre-training
process, we conduct an ablation study by training a four-layer TrajWorld model on a modified version
of the UniTraj dataset, excluding two data sources more closely aligned with the target environments:
Modular RL and TD-MPC2. The results presented in Table[/|indicate that the advantages of pre-
training stem from the diversity encompassed within the complete UniTraj dataset, rather than relying
solely on data from domains closely resembling the target environments.

D EXTENDED DISCUSSION

Bounded prediction. Our discretization scheme (Section has the drawback that it can only
represent variate values within the bounded range [bg, bp], restricted by the maximum and minimum
in training data. This can lead to inaccurate predictions. For example, a model trained on trajectories
from low-performing policies, may underestimate the reward of a high-rewarding transition. This may
explain why our model slightly underperforms in Regret@1 for off-policy evaluation tasks. Since all
variates share the same bin embeddings, a promising way to address this issue is to simply extend the
value range of bins beyond the observed data limits for variates with narrow coverages. Although the
model would not have encountered those out-of-range values for a specific variate during training,
we hypothesize it could extrapolate similarly to regression models (e.g., MLPs), leveraging learned
bin ordering shared with other variates. This hypothesis is supported by the bin continuity observed
in Figure[5b] Further exploration and improvement of this approach are left for future work.
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Env. Level TrajWorld (w/o PT)  TrajWorld (w/ PT)
Halfcheetah medium 491 + 94 468 + 40
Walker2D medium 88 +21 54+2
Walker2D expert 141 + 15 116 + 12

(a) Raw absolute error
Env. Level TrajWorld (w/o PT)  TrajWorld (w/ PT)
Halfcheetah medium 0.95 £ 0.00 0.97 £ 0.01
Walker2D medium 0.93 £0.01 0.97 +0.02
Walker2D expert 0.56 £0.20 0.81 £ 0.04

(b) Rank Correlation
Env. Level TrajWorld (w/o PT) TrajWorld (w/ PT)
Halfcheetah medium 0.18 £0.00 0.05 = 0.07
Walker2D medium 0.04 = 0.06 0.00 = 0.00
Walker2D expert 0.34 £0.31 0.16 £ 0.16

(c) Regret@1

Table 7: OPE results for a four-layer TrajWorld model trained from scratch compared to a model
fine-tuned from a pre-trained version on the ablation dataset, averaged over two seeds.
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