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Abstract

We focus on source-free domain adaptation for semantic segmentation, wherein
a source model must adapt itself to a new target domain given only unlabeled
target data. We propose Augmentation Consistency-guided Self-training (AUGCO),
an adaptation algorithm that uses the model’s pixel-level predictive consistency
across diverse, automatically generated views of each target image along with
model confidence to identify reliable pixel predictions, and selectively self-trains
on those, leading to state-of-the-art performance within a simple to implement
and fast to converge approach. An extended version of our paper is available at
https://arxiv.org/abs/2107.10140.

1 Introduction
Consider a deep model trained to perform semantic segmentation deployed atop an autonomous
vehicle. While unsupervised domain adaptation (DA) has been extensively studied [1–5], most
prior DA methods assume continued access to labeled source data during adaptation. However, this
may be impractical due to the limitations of on-board compute and memory, particularly so for a
compute-heavy task such as segmentation.

We consider the problem of adapting such a trained semantic segmentation model to a new target
domain given only its trained parameters and unlabeled target data. The absence of source data for
regularization makes this setting very challenging and highly susceptible to divergence from original
task training. We build upon recent work in parameter constrained self-training called TENT [6],
which constrains optimization to only update the model’s batch-norm parameters (both affine and
normalization), and self-trains on unlabeled target data by minimizing a conditional entropy [7] loss.
While TENT leads to modest performance improvements on standard domain shifts, it performs self-
training on all model predictions. Under a domain shift, many of the model’s predictions may initially
be incorrect, and entropy minimization encourages the model to increase its confidence even on such
incorrect predictions! As a result, unconstrained self-training leads to error accumulation [8–10],
particularly on categories on which the source model does poorly to begin with.

To address this, prior work has proposed selective self-training on instances deemed reliable via
model confidence [11] or consistency under random image augmentations [10]. However, model
confidence from deep networks is known to be miscalibrated under a domain shift [12], and the
suitability of augmentation consistency for semantic segmentation has not been previously studied.
We propose AUGCO, a selective self-training algorithm that makes use of a novel selection strategy
based on combines pixel-level predictive consistency across diverse, automatically generated target
image views with per-class confidence.

2 AUGCO: Augmentation Consistency-guided Self-Training
Setup and Notation. In semantic segmentation we are given an input image, x ∈ RH×W×3, and
the goal is to label every pixel, xij , with one of C semantic labels, yij ∈ {1, 2, . . . , C}, producing
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Figure 1: Overview of Augmentation Consistency-guided Self-Training (AUGCO). Left: First, the model makes
predictions on two views of each target image that differ in scale, spatial context and color statistics, that are
generated via a random crop, resize, and jitter strategy (Sec. 2.1). Right: Next, reliable pixel predictions for
self-training are identified based on pixel-level consistency across aligned predictions and class-conditioned
confidence thresholding, followed by selective self-training (Sec. 2.2).

an output label image, y ∈ RH×W . To do this, we will learn a function h (CNN in our case) which
takes images as input and produces a probabilistic output over C classes for each output pixel:
h : x → p ∈ RH×W×C . We produce a pseudolabel by taking the argmax of the output probabilities:
ŷ = p. In source-free domain adaptation, we assume access to a model trained on labeled source (S)
data, hS , as well as N unlabeled instances xT ∼ PT (X ) from a target domain T .

Overview. Our method first uses a random crop, resize, and jitter strategy to generate two aligned
predictive views of each target image that capture model predictions across varying object scale,
spatial context, and color statistics (Sec. 2.1). Next, AUGCO identifies reliable model predictions on
which to self-train using self-supervised signals in the form of pixel-level predictive consistency
across the two aligned views, as well as model confidence. Finally, the model is self-trained using
pseudolabels for reliable predictions. See Fig. 1.

2.1 Aligned predictive view generation

A key facet of our approach will be to identify pixels for which model predictions are deemed reliable.
To do this we ensemble model predictions over random image regions that differ in scale and spatial
context. We begin by randomly selecting a bounding box with coordinates, (r1, c1, r2, c2), for each
target image that satisfies two constraints: i) it spans an area that is 25-50% of the area of the original
image and ii) it matches the aspect ratio of the original image (i.e. (r2 − r1)/(c2 − c1) = H/W ).

View 1 (resized crop of prediction): To create the first output prediction, we pass the original image,
xT , through the current model, h, to produce an output probabilistic prediction, p = h(xT ). This
original output prediction will be cropped using the random bounding box coordinates and resized to
the original output image size: V = resize(p[r1 : r2, c1 : c2], H,W )

View 2 (prediction on resized image crop): For our second output prediction we first modify image
appearance by applying a pixel-level color jitter x′

T = jitter(xT ). We then use the same bounding
box coordinates to extract a cropped image region and resize that region to the original image size
to produce a rescaled image view x̃T = resize(x′

T [r1 : r2, c1 : c2], H,W ). This jittered, cropped,
and resized image is then passed through the model to produce a probabilistic output, p̃ = h(x̃T )

and associated predicted view, Ṽ = p̃.

We thus obtain aligned predictive views V and Ṽ , which capture model predictions made at varying
object scale (e.g. in Fig. 1, the size of the car in the secondary view is larger than in the original),
spatial context (e.g. additional cars are absent in the secondary view), and color statistics.

2.2 Selective Self-Training

2.2.1 Measuring Reliability
Pixel-level predictive consistency. First, we measure pixel-level consistency between the model’s
aligned predictions V and Ṽ , and mark pixels with identical predictions (Vij == Ṽij) across the two
views as “consistent” and those with different predicted labels as “inconsistent”.

Class-conditioned confidence thresholding. In addition to predictive consistency, we also aim
to capture a notion of the intrinsic model confidence. We compute a per-category empirical range
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Method G→C S→C C→DZN
source 34.4 29.4/34.1 28.8
TENT [6] 38.9 35.5/41.6 26.6
Test-time BN [18] 37.7 35.0/40.8 28.0
SFDA [19] 43.2 39.2/45.9 -
AUGCO (ours) 47.1 39.5/45.9 32.4

Table 1: Results: We report mIoU over the target test set. On S→C we follow prior work and report mIoU over
16 and 13 categories.

to choose an adaptive per-category confidence threshold. Given a batch, we gather all output
probabilities and select a confidence threshold per category, tc ∈ R, corresponding to the top K-th
percentile (K=50 in our experiments) of observed confidence values for category c. We consider
an output prediction to be high confidence if its top score is greater than the corresonding category
threshold: maxpij > tpij

.

Overall, for a pixel, xij , with per-view probabilistic and categorical predictions, p, V and p̃, Ṽ , we
define a binary reliability value, rij , in the following way:

rij =

1 if

consistent︷ ︸︸ ︷
Vij = Ṽij or

confident︷ ︸︸ ︷
max p̃ij > tṼij

0 otherwise
(1)

Selective self-training. Having obtained pseudolabels and reliability assignments, we update model
parameters via self-training. To prevent task divergence in the source-free setting, we update only the
model’s batch-norm parameters (affine and normalization), as proposed in Wang et al. [6].

We then minimize a cross-entropy loss LCE over reliable predictions. The self-training objective we
minimize is:

LSST (xij) = rijLCE(p̃ij , Ṽij) (2)

Finally, to encourage the model to make diverse predictions over the target domain, we add a target
“information entropy” loss LIE proposed in Li et al. [13]: we update the model to maximize entropy
over the running average of its predictions q. LIE is given by: LIE(xij) =

∑C
c=1 p̃ijc log qc For

LIE loss weight α, the complete AUGCO loss objective that is backpropagated is given by:

LAUGCO = Ex∼PT

[
1

HW

∑H,W
i=1,j=1 LSST (xij) + αLIE(xij)

]
(3)

3 Experiments

Setup. We evaluate AUGCO on 3 shifts: GTA5[14]→Cityscapes [15] (G→C) SYN-
THIA [16]→Cityscapes (S→C) , and Cityscapes→Dark Zurich Night (C→DZN [17]). We report
mean Intersection-over-Union (mIoU) across classes on the target test set. Across settings, we
evaluate our method (AUGCO) after a single pass over the unlabeled target data (i.e. one epoch)

Baselines. We use DeepLabV3 [20] with a ResNet50 [21] backbone and compare against state-of-the
art methods for test-time and source free adaptation: TENT [6], Test-time BN [18], and SFDA [19].

Results. Table 1 presents results. Across shifts, AUGCO outperforms prior work, often by significant
margins (eg. 3.9 points and 13/19 categories over SFDA [19] on G→C), despite being considerably
simpler (SFDA uses 120 epochs of adversarial learning whereas AUGCO uses 1 epoch of selective
self-training). AUGCO also significantly outperforms TENT [6] (+8.2 on G→C).

Ablations. In Table 2 we present ablations of AUGCO for both architectures. We observe:

▷ Unconstrained self-training leads to suboptimal performance (Row 1). We first try self-training
on all pixels by minimizing cross-entropy with respect to predictions. As seen, this achieves 34.04,
underperforming even the source model (mIoU=34.4).
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Reg. Selection strategy Class bal. Loss mIoU ↑
H(Y) loss Confidence Consistency Loss wts. Reliable Unreliable

(Unconstrained self-training on all predictions) CE CE 34.04

✓ CE CE 39.11
✓ ✓ CE None 16.93
✓ ✓ CE None 47.05
✓ ✓ ✓ CE None 47.12

✓ ✓ ✓ ✓ CE None 47.12

Table 2: Ablating AUGCO on GTA→Cityscapes. We report mIoU over all categories. CE = cross-entropy against
predicted pseudolabel.

▷ Pixel-level predictive consistency is an effective selection strategy (Row 3-6). To regularize
self-training, we first add a target information entropy regularizer (Sec 2) and find that mIoU increases
to 39.11(Row 2). Next, to validate our selection criterion, we first use only confidence for selection
(we select predictions in the top-50 %ile by confidence per-category) – despite careful tuning this
leads to a low mIoU of 16.93 (Row 3), indicating that confidence alone is a poor indicator of reliability.
Next, we try using predictive consistency for selection, and find this improves mIoU to 47.05 (Row
4), validating the hypothesis that predictive consistency is an effective proxy for reliability. Finally,
combining consistency and confidence obtains the same best performance of 47.12.

▷ Varying optimization parameters. We now try alternatively training all model parameters instead
of just batch norm. We observe rapid task with larger learning rates and carefully tune optimizers to
obtain an mIoU of 46.74 with a learning rate of 5×10−6 and weight decay of 5×10−4, worse than
when training batch-norm parameters alone.

Analysis. To measure AUGCO’s reliability measure, we evaluate if it is indeed a good indicator of
reliability. We first measure the accuracy of pseudolabels marked as reliable and unreliable – reliable
pseudolabels have an accuracy of 86.2%, whereas unreliable ones have a low accuracy of 19.1%;
further these statistics are stable over the course of training.

Next, we evaluate the reliability measure by category. For each category, we report i) precision of
reliability with respect to correctness (when a pixel prediction is reliable, how often is it actually
correctly classified?), and ii) precision of unreliability with respect to incorrectness. We find that
unreliable predictions are highly correlated with being incorrect across categories, which explains the
effectiveness of excluding them from training. However, the precision of the reliability measure is
significantly higher for head categories (e.g. road, building, car) than for the tail (e.g. bicycle, bus).

Target Image TENTSource OnlyGround Truth AUGCO (ours)

mIoU=25.6 mIoU=36.6 mIoU=46.3

mIoU=32.9

mIoU=32.9 mIoU=41.8

mIoU=48.3 mIoU=57.9

mIoU=52.7

Figure 2: Qualitative segmentation results of the source model, TENT [6], and AUGCO. White boxes highlight
categories recovered by AUGCO, whereas red boxes show failure cases.

4



References
[1] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in

European conference on computer vision, pp. 213–226, Springer, 2010.

[2] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in International
Conference on Machine Learning, pp. 1180–1189, 2015.

[3] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with deep adaptation networks,”
in International Conference on Machine Learning, pp. 97–105, 2015.

[4] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell, “Cycada: Cycle-
consistent adversarial domain adaptation,” in International Conference on Machine Learning, pp. 1989–
1998, 2018.

[5] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “Advent: Adversarial entropy minimization for
domain adaptation in semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2517–2526, 2019.

[6] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, T. Darrell, U. Berkeley, and A. Research, “Tent: Fully
test-time adaptation by entropy minimization,” in International Conference on Learning Representations,
vol. 4, p. 6, 2021.

[7] Y. Grandvalet, Y. Bengio, et al., “Semi-supervised learning by entropy minimization.,” in CAP, pp. 281–296,
2005.

[8] C. Chen, W. Xie, W. Huang, Y. Rong, X. Ding, Y. Huang, T. Xu, and J. Huang, “Progressive feature
alignment for unsupervised domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 627–636, 2019.

[9] X. Jiang, Q. Lao, S. Matwin, and M. Havaei, “Implicit class-conditioned domain alignment for unsupervised
domain adaptation,” in International Conference on Machine Learning, pp. 4816–4827, PMLR, 2020.

[10] V. Prabhu, S. Khare, D. Kartik, and J. Hoffman, “Sentry: Selective entropy optimization via committee con-
sistency for unsupervised domain adaptation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8558–8567, 2021.

[11] S. Tan, X. Peng, and K. Saenko, “Class-imbalanced domain adaptation: An empirical odyssey,” in
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, September 2020.

[12] J. Snoek, Y. Ovadia, E. Fertig, B. Lakshminarayanan, S. Nowozin, D. Sculley, J. Dillon, J. Ren, and
Z. Nado, “Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift,”
in Advances in Neural Information Processing Systems, pp. 13969–13980, 2019.

[13] B. Li, Y. Wang, T. Che, S. Zhang, S. Zhao, P. Xu, W. Zhou, Y. Bengio, and K. Keutzer, “Rethinking
distributional matching based domain adaptation,” arXiv preprint arXiv:2006.13352, 2020.

[14] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground truth from computer games,” in
European conference on computer vision, pp. 102–118, Springer, 2016.

[15] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3213–3223, 2016.

[16] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia dataset: A large collection
of synthetic images for semantic segmentation of urban scenes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3234–3243, 2016.

[17] C. Sakaridis, D. Dai, and L. V. Gool, “Guided curriculum model adaptation and uncertainty-aware
evaluation for semantic nighttime image segmentation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7374–7383, 2019.

[18] Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and J. Snoek, “Evaluating prediction-
time batch normalization for robustness under covariate shift,” arXiv preprint arXiv:2006.10963, 2020.

[19] Y. Liu, W. Zhang, and J. Wang, “Source-free domain adaptation for semantic segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2021.

[20] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image
segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

5


	Introduction
	AUGCO: Augmentation Consistency-guided Self-Training
	Aligned predictive view generation
	Selective Self-Training
	Measuring Reliability


	Experiments

