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ABSTRACT

Designing more efficient, reliable, and explainable neural network architectures
is a crucial topic in the artificial intelligence (AI) field. Numerous efforts have
been devoted to exploring the best structures, or structural signatures, of well-
performing artificial neural networks (ANN). Previous studies, by post-hoc anal-
ysis, have found that the best-performing ANNs surprisingly resemble biological
neural networks (BNN), which indicates that ANNs and BNNs may share some
common principles to achieve optimal performance in either machine learning
tasks or cognitive/behavior processes. Inspired by this phenomenon, rather than
relying on post-hoc schemes, we proactively instill organizational principles of
BNNs to guide the redesign of ANNs by infusing an efficient information commu-
nication mechanism of BNNs into ANNs. Specifically, we quantified the typical
Core-Periphery (CP) organization of the human brain networks, infused the Core-
Periphery principle into the redesign of vision transformer (ViT), and proposed
a novel CP-ViT architecture: the pair-wised densely interconnected self-attention
architecture of ViT was upgraded by a sparse Core-Periphery architecture. In CP-
ViT, the attention operation between nodes (image patches) is defined by a sparse
graph with a Core-Periphery structure (CP graph), where the core nodes are re-
designed and reorganized to play an integrative role and serve as a center for other
periphery nodes to exchange information. We evaluated the proposed CP-ViT on
multiple public datasets, including medical image datasets (INbreast) and natural
image datasets (CIFAR-100). We show that there exist sweet spots of CP graphs
that lead to CP-ViTs with significantly improved performance. In general, our
work advances the state of the art in three aspects: 1) This work provides novel
insights for brain-inspired AI: we can instill the efficient information communi-
cation mechanism of BNNs into ANNs by infusing similar organizational princi-
ples of BNNs into ANNs; 2) The optimized CP-ViT can significantly improve its
predictive performance while dramatically reducing computational cost by bene-
fiting from the infused efficient information communication mechanism existing
in BNNs; and 3) The core nodes in CP-ViT can identify task-related meaningful
and important image patches, which can significantly enhance the interpretability
of the trained deep model. (Code is ready for release).

1 INTRODUCTION

Aided by the rapid advancement in hardware and massively available data, deep learning models
have witnessed an explosion of various ANN architectures He et al. (2016); Krizhevsky et al. (2017);
Vaswani et al. (2017), and made breakthroughs in many application fields due to their powerful au-
tomatic feature extraction capabilities. It has been proven that the design of ANN architecture,
particularly the neuron wiring patterns and their message exchange mechanisms, can play a criti-
cal role in the feature representation and the downstream task performance, e.g., in convolutional
neural networks (CNNs)Simonyan & Zisserman (2014); Szegedy et al. (2015); Ren et al. (2015);
Krizhevsky et al. (2017) and recurrent neural networks (RNNs) Gers et al. (2000); Cho et al. (2014).
More recently, transformer has become another mainstream ANN architecture due to its outstand-
ing self-attention mechanism that allows effective and efficient message exchanges among neurons,
and produced promising results in the natural language processing Vaswani et al. (2017); Devlin
et al. (2018) and computer vision domains Dosovitskiy et al. (2020); Liu et al. (2021). In partic-
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ular, many advancements in transformer architecture design, e.g., vision transformer (ViT) Doso-
vitskiy et al. (2020), have centered around more effective message exchange mechanisms among
spatial tokens by designing different Token Mixers. For instance, the shifted window attention in
Swin Liu et al. (2021), the token-mixing MLP in Mixer Tolstikhin et al. (2021), and the pooling in
MetaFormer Yu et al. (2022), among others, were all designed to improve the self-attention upon
the original vanilla ViT Dosovitskiy et al. (2020), and thus enable more effective and efficient mes-
sage exchanges among spatial patches/tokens. However, despite tremendous advancements in ANN
architecture design in CNNs, RNNs, and transformers, particularly for better message exchange
mechanisms, there has been a fundamental lack of general principles that can inform and guide such
ANN architecture design and redesign.
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Figure 1: The Core-Periphery principle in brain networks inspires the design of ANNs. The Core-
Periphery structure broadly exists in brain networks, with a dense “core” of nodes (pink) densely
interconnected with each other and a sparse “periphery” of nodes (blue) sparsely connected to the
core and among each other. Inspired by this principle of BNN, we aim to instill the Core-Periphery
structure into the self-attention mechanism and propose a new CP-ViT model.

To seek such guiding principles for ANN architecture design, more and more research studies started
with exploring the “structural signatures” of well-performing ANNs. The deep learning community
has witnessed a paradigm shift from optimal feature design to optimal ANN architecture design.
In general, the major strategies for optimal ANN architecture design can be categorized into two
basic streams based on how to search in the neural architecture space. The first strategy is to design
neural architectures that achieve the best possible performance using given computing resources in
an automated way with minimal human intervention. Neural architecture search (NAS) Zoph &
Le (2016); Ren et al. (2021); Elsken et al. (2019) is a mainstream methodology in this category.
The advantage of the first category is obvious: it has relatively low demand on the researchers’
prior knowledge and experience, making it easier to perform modifications to the neural architecture
in line with their actual tasks. However, these methods usually come with a high computational
cost. The second category of strategy is to take the advantage of prior knowledge from specific
domains, such as brain science, to guide ANN architecture design. For example, the authors in
Zhang et al. (2021) designed a two-stream model for grounding language learning in vision based
on the brain science principle that humans learn language by grounding concepts in perception
and action, and encoding “grounded semantics” for cognition. It is worth noting that the above-
mentioned two strategies should be viewed as complementary to each other rather than being in
conflict, and their combination provides the researchers with an opportunity to explore and design
well-performing neural architectures under different principles. For instance, recent studies, via
qualitatively post-hoc analysis, have found that the best-performing ANNs surprisingly resemble
BNNs You et al. (2020), which indicates that ANNs and BNNs may share some common principles
to achieve optimal performance in either machine learning tasks or cognition/behavior processes.

Inspired by the above-mentioned prior outstanding studies, in this work, we aim to proactively in-
still the organizational principle of Core-Periphery structure in BNNs to guide the redesign of ANNs
by using ViT as a working example. The concept of Core-Periphery brain network is illustrated in
Figure 1. It has been widely confirmed that the Core-Periphery pattern universally exists in the
functional networks of human brains and other mammals, effectively promoting the efficiency of
information transmission and communication for integrative processing Bassett et al. (2013); Gu
et al. (2020). By using the Core-Periphery property as a guiding principle, we infused its effective
and efficient information communication mechanism into the redesign of ViT. To this end, we quan-
tified the Core-Periphery property of the human brain network, infused the Core-Periphery property
into ViT, and proposed a novel CP-ViT architecture. Specifically, we upgrade the complete graph
of dense connections in the original vanilla ViT Dosovitskiy et al. (2020) with a sparse graph with
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Core-Periphery property (CP graph), where the core nodes are redesigned and reorganised to play
an integrative role and serve as a center for other periphery nodes to exchange information. More-
over, in our design, a novel learning mechanism is used to endow the core nodes with the power
to identify and capture the task-related meaningful and important image patches. We evaluated the
proposed CP-ViT on multiple public datasets, including medical image datasets (INbreast) and nat-
ural image datasets (CIFAR-100). The results suggest that the optimized CP-ViT in sweet spots
You et al. (2020) outperforms other ViTs. We summarize our contributions in three aspects: 1) This
work provides novel insights for brain-inspired AI: we can instill the efficient information commu-
nication mechanism in BNNs into ANNs by infusing similar organizational principles of BNNs into
ANNs; 2) The optimized CP-ViT can significantly improve its predictive performance while dramat-
ically reducing computational cost, benefiting from the infused efficient information communication
mechanism; and 3) The core nodes in CP-ViT can identify task-related meaningful and important
image patches, which can significantly enhance the interpretability of the trained deep model.

2 RELATED WORK

Core-periphery Structure The Core-Periphery structure is a fundamental network signature that is
composed of two qualitatively distinct components: a dense “core” of nodes strongly interconnected
with one another, allowing for integrative information processing to facilitate the rapid transmission
of message, and a sparse “periphery” of nodes sparsely connected to the core and among each
other Gallagher et al. (2021). The Core-Periphery pattern has helped explain a broad range of phe-
nomena in network-related domains, including online amplification Barberá et al. (2015), cognitive
learning processes Bassett et al. (2013), technological infrastructure organization Alvarez-Hamelin
et al. (2005); Carmi et al. (2007), and critical disease-spreading conduits Kitsak et al. (2010). All
these phenomena suggest that the Core-Periphery pattern may play a critical role to ensure the ef-
fectiveness and efficiency of information exchange within the network. In the literature, there are
two widely-used approaches for generating graphs with Core-Periphery property (CP graphs): the
classic two-block model of Borgatti and Everett (BE algorithm) Borgatti & Everett (2000) and the
k-cores decomposition Gallagher et al. (2021). The former approach partitions a network into a
binary hub-and-spoke layout, while the latter one divides it into a layered hierarchy. In this work,
for simplicity, we adopted a two-block model to generate a CP graph which is used to guide the
self-attention operations between patches (tokens) in ViT. In this way, the Core-Periphery property
is infused into the ViT model.

Methods for Designing More Efficient ViT Architecture ViT and its variants have achieved
promising performances in various computer vision tasks, but their gigantic parameter-counts, heavy
run-time memory usage, and high computational cost become a major burden for the application.
Therefore, there exists an impending need to develop lightweight and efficient vision transformers.
For this purpose, several studies aimed to use network pruning, sparse training, and supernet-based
NAS to slim vanilla ViT. From token level, Tang et al. Tang et al. (2022) designed a patch slimming
method to discard useless tokens. Evo-ViT Xu et al. (2022) updated the selected informative and
uninformative tokens with different computation paths. VTP Zhu et al. (2021) reduced embedding
dimensionality by introducing control coefficients. From model architecture level, UP-ViTs Yu &
Wu (2021) pruned the channels in ViTs in a unified manner, including residual connections in all the
blocks, MHSAs, FFNs, normalization layers, and convolution layers in ViT variants. SViTE Chen
et al. (2021b) dynamically extracted and trained sparse subnetworks instead of training the entire
model. To further co-explore data and architecture sparsity, a learnable token selector was used to
determine the most vital image patch embeddings in the current input sample. AutoFormer Chen
et al. (2021a) and ViTAS Su et al. (2021) leveraged supernet-based NAS to optimize the ViT archi-
tecture. Despite the remarkable improvements achieved by the above methods, both token-sampling
and data-driven strategies may highly depend on the data and tasks performed, impeding the vision
transformers’ generalization capability. A more universal principle (e.g., derived from BNNs) that
can guide a more efficient design of ANN’s architecture is much desired. In this work, we will
leverage a widely existing Core-Periphery property in BNN to develop a more efficient CP-ViT.
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3 CORE-PERIPHERY PRINCIPLE GUIDED TRANSFORMERS

The Core-Periphery principle can be applied to ViT and its variants via a unified framework that is
illustrated in Figure 2. The framework has two main parts, Core-Periphery graph generation and
Core-Periphery graph guided re-design of self-attention mechanism.

3.1 CORE-PERIPHERY GRAPH GENERATION

The self-attention of our proposed CP-ViT is controlled by Core-Periphery graphs (CP graphs). We
proposed a Core-Periphery graph generator to generate a large spectrum of CP graphs in the graph
space defined by the total node number and the core node number. Although several graph genera-
tors have been proposed in previous works, they were not designed for generating CP graphs. For
example, Erdos-Renyi (ER) generator samples graphs with given node and edge numbers uniformly
and randomly Erdos et al. (1960); Watts-Strogatz (WS) generator generates graphs with small-world
properties Watts & Strogatz (1998); and complete graphs generator generates graphs where nodes
are pair-wise densely connected with each other Skiena (1991).

To generate graphs with the Core-Periphery property, we proposed a novel CP graph generator which
is parameterized by a total node number n, a core node number m, and three wiring thresholds
pcc, pcp, ppp which are the wiring probabilities between core-core nodes, core-periphery nodes,
and periphery-periphery nodes, respectively. Based on these measures, the CP graph generation
process is as follows: we first defined the core nodes number m and the periphery nodes number
n−m; Then, for core-core node connections, we traversed all core-core node pairs. And for each of
them, we used a random seed sampled from the continuous uniform distribution in [0, 1] to generate
a wiring probability prs, and if the wiring probability is greater than the threshold pcc, the two core
nodes are connected. This wiring process is formulated as:

A (i, j) =

{
1 if prs ≥ pcc
0 if prs < pcc

(1)

where A is the adjacency matrix of the generated graph, 1 means that there exists an edge between
nodes i and j, 0 means there is no edge. The same procedure was applied to core-periphery and
periphery-periphery node pairs with the corresponding thresholds pcp and ppp, respectively. In this
way, by using different n and m and wiring thresholds, we can generate different graphs extensively
in the graph space; finally, all the generated graphs were examined by the Core-Periphery detection
algorithm (BE algorithm) Borgatti & Everett (2000) and the graphs with the Core-Periphery property
will be used in further steps to guide the self-attention operation.

3.2 CORE-PERIPHERY GUIDED SELF-ATTENTION

To instill the Core-Periphery principle into the self-attention mechanism in ViT, we redesigned the
self-attention operations according to the generated CP graphs where the patches are replaced by
the nodes, and the new self-attention relations are replaced by the edges in the CP graph. With
this representation paradigm, a complete graph can represent the self-attention of the vanilla ViT,
and similarly, the Core-Periphery principle can be effectively and conveniently infused into the
ViT architecture by upgrading the complete graph with the generated CP graphs. The new self-
attention rules can then be redefined: CP graph can be represented by G = (V, E), with nodes set
V = {ν1, ..., νn}, edges set E ⊆ {(νi, νj)|νi, νj ∈ V}, and adjacency matrix A. The CP graph
guided self-attention for a specific node i at r-th layer of CP-ViT is defined as:

x
(r+1)
i = σ(r)({(

q
(r)
i (K

(r)
j )T

√
dk

)V
(r)
j ,∀j ∈ N(i)}) (2)

where σ(·) is the activation function, which is usually the softmax function in ViTs, q(r)i is the query
of patches in the i-th node in G, N(i) = {i|i∨ (i, j) ∈ E} are the neighborhood nodes of node i, dk
is the dimension of queries and keys, and K

(r)
j and V

(r)
j are the key and value of patches in node j.

In CP-ViT, each node can contain a single patch or a set of multiple patches. We proposed the
following patch assigning pipeline to map the original patches to the nodes of the CP graph. In
vanilla ViT, one input image is divided into 16× 16 = 196 patches. When we use a CP graph with
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Figure 2: Core-Periphery Principle Guided Re-design of Self-Attention. The proposed Core-
Periphery guided re-design framework for ViTs consists of two major components: the Core-
Periphery graph generator and re-design of the self-attention mechanism. The basic idea is that
we mapped the ViT structure to graphs and proposed a new graph representation paradigm to repre-
sent the self-attention mechanism. Under this paradigm, the design of self-attention mechanism can
be turned into a task of designing desirable graphs. (a) The CP graph generator was proposed to gen-
erate graphs with Core-Periphery property in a wide range of search spaces. (b) The self-attention
of the nodes is controlled by the generated CP graph and the patches are re-distributed to different
nodes by a novel patch distribution method. (c) The new self-attention mechanism will upgrade the
regular self-attention in vanilla ViT. The new ViT architecture is thus named as CP-ViT

n nodes to design the self-attention mechanism, 196 mod n nodes will be assigned ⌊196/n⌋ + 1
patches and the remaining n− (196mod n) nodes will be assigned ⌊196/n⌋ patches. For example,
if we use a 5 node CP graph, the 5 nodes will have 40, 39, 39, 39, and 39 patches, respectively; and
if we use a 196 nodes CP graph in another case, each node will contain a single patch. The patches
are randomly assigned to the nodes at the beginning of the training process and then they will be
re-distributed iteratively after each training epoch based on a novel patch distribution method to be
elaborated in the next section. Based on the above discussion, the CP graph guided self-attention
that is conducted at the node level can be formulated as:

Attention(Q,K, V,Mcp) = softmax(
QKT ⊙Mcp√

dk
V ) (3)

where queries, keys, and values of all patches are packed into matrices Q, K, and V , respectively,
Mcp is the mask matrix derived from the adjacency matrix A of the CP graph, and ⊙ is the dot
product. The derivation of Mcp from A is detailed in the appendix.

3.3 PATCH REDISTRIBUTION

The organization of Core-Periphery structure will make the information communication and mes-
sage exchange at core nodes more intensive while less frequently at periphery nodes. This is based
on the foundation that the core nodes usually process the basic information in many biological net-
works Bassett et al. (2013). To this end, we need to evaluate the importance of the patches and select
the most important ones to assign to the core nodes, which is defined as task activation mapping.

For a specific task of CP-ViT, in order to identify the important patches, we computed the gradients
of the output y (before the activation function) with respect to patch features (after patch embedding)
P k, i.e. ∂y

∂Pk . These gradients flowing back to the patch features are global-average-pooling over
the feature dimensions to obtain the patch importance weights. The important weights are:

αk =
1

Z

Z∑
i=1

∂y

∂P k
i

(4)

where Z is the dimension of the patch embedding features. Then top K patches that have the highest
importance weights are selected and re-distributed to the core nodes. Note that the patch distribution
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process is not random but distributed based on the nodes’ degree in a descending manner: the patches
with higher importance weights are distributed to the core nodes with a higher degree.

4 EXPERIMENTS

4.1 EXPLORING CORE-PERIPHERY GRAPHS

Core-Periphery property in brain networks. We quantitatively measured the Core-Periphery
property in two typical functional brain networks under working memory (BN-WM) and motor
(BN-M) tasks. Specifically, the functional brain networks under specific task were created by using
task fMRI data. Each fMRI voxel represents a tidy cube of brain tissue — a 3D image building
block. Using voxels as nodes and the correlations between two fMRI signals of each pair of vox-
els as edges, we generated two population level functional networks and showed their connection
patterns and adjacency matrix in Figure 3(b). To measure the Core-Periphery property of the two
functional brain networks, we adopted independent probability Cucuringu et al. (2016). Indepen-
dent probability is defined as the probability that there is an edge between any pairs of nodes in a
given matrix. It is an important measurement to indicate if the matrix or graph is organized in Core-
Periphery manner Holme (2005) Rombach et al. (2014). According to previous studies Liu et al.
(2019), the convex gyri and the concave sulci areas of the cerebral cortex function as the “core” and
“periphery”, respectively, in the process of the brain’s functional networking. Taking voxels in gyri
areas as core and in sulci areas as periphery, we calculated the independent probabilities Icc, Ipp and
Icp for core-core connections, periphery-periphery connections, and core-periphery connections, re-
spectively, and showed the results in Table 1. We can see that Icc > Icp > Ipp, which suggests that
the proposed CP graphs have true Core-Periphery structure.

Core-Periphery structure in artificial neural networks. We introduced the Core-Periphery orga-
nization into ANNs by CP graphs. As discussed in Sections 3.1 and 3.2, there are two key factors
that have an important influence on the CP graph generation process. One is the node number,
including the total nodes number and core nodes number, and the other is the wiring thresholds.
The total nodes number and the core nodes number define the whole search space that contains∑196

i=1

∑0<j<=i
j (i + j) = 19208 types of CP graphs. The wiring thresholds pcc, pcp, and ppp

determine the wiring pattern of a specific CP graph. The search space of CP graphs was shown
in Figure 3(a) where the complete graphs located at the diagonal were highlighted by a red box
and three types of CP graphs were highlighted by pink circles. The wiring patterns and adjacency
matrices of the complete graph and the three CP graphs were shown in Figure 3(b). As shown in
Figure 3(b), CP graphs are densely connected in core nodes and sparsely connected in periphery
nodes. The overall connection patterns of CP graphs are more sparse than the complete graph. For
each type of CP graph, we generated 5 samples with different wiring patterns and obtained 19208
* 5 CP graphs in total. Since the number of the generated CP graphs could be too big (19208 * 5
in total) to explore, we sampled 190 types of CP graphs out of the total 19208 and finally obtained
190*5 candidates. In our experiments, we only adopted the 190*5 candidates to design the CP-ViTs.

Table 1: Evaluation of the Core-Periphery property in CP graphs, graphs generated by other graph
generators, and brain networks

IP CP Graphs Comp. Graphs WS Graphs ER Graphs BN-M BN-WM
Icc 0.89± 0.06 1.00± 0.00 0.48± 0.27 0.42± 0.23 0.70± 0.11 0.72± 0.09
Icp 0.53± 0.13 1.00± 0.00 0.49± 0.28 0.42± 0.24 0.22± 0.07 0.30± 0.10
Ipp 0.10± 0.06 1.00± 0.00 0.24± 0.28 0.32± 0.22 0.07± 0.05 0.04± 0.04

Similar to brain networks, we also used the independent probability to measure the Core-Periphery
property for generated CP graphs. We calculated the averaged independent probability over 190*5
CP graphs and showed the results in Table 1. From the table we can see that Icc > Icp > Ipp, which
suggests that the generated CP graphs also have Core-Periphery property. We further compared our
proposed CP graph generator with the following classic graph generators: (1) Erdos-Renyi (ER)
generator; (2) Watts-Strogatz (WS) generator; and (3) Complete graph generator. As shown in Table
1, the graphs generated by the classic graph generators don’t have Core-Periphery property.

6



Under review as a conference paper at ICLR 2023

Complete Graph

G
ra

p
h

A
d
ja

ce
n

cy
 M

at
ri

x

Core-Periphery Graphs (Nodes, Core Nodes)

(50, 20) (190, 20)(150, 40)

(b) Connection patterns and adjacency matrices of complete graph, Core-Periphery

graphs, and brain networks

Nodes = Core Nodes

(a) Searching Space

Complete Graph

(Vanilla ViTs)

(50, 20)

(150, 40)

(190, 20)

C
o

re
 N

o
d

es

Nodes

CP Graphs

(CP-ViTs)

Brain Networks

Motor Working Memory

Figure 3: (a) Graph search space defined by the total nodes number and the core nodes number. The
complete graphs are located at the diagonal highlighted by red box and the CP graphs are located at
the remaining parts. Three examples of the CP graphs are shown in (b) where the first shows their
wiring patterns, and the second row shows their corresponding adjacency matrices. Black color in
adjacency matrices means connections between nodes, while white represents no edge. Two types
of representative brain networks in motor and working memory tasks are presented in (b).

4.2 SWEET SPOTS FOR CP-VITS

In this section, we evaluated the performance of the proposed CP-ViT. The CP-ViT was implemented
based on the ViT-S/16 architecture Chen et al. (2021c) and evaluated on 2 different types of public
datasets, the medical image dataset INbreast (Moreira et al. (2012)) and the natural image dataset
CIFAR-100 (Krizhevsky et al. (2009)). The parameters of CP-ViT were initialized and fine-tuned
from ViT-S/16 trained on ImageNet (Russakovsky et al. (2015)). The introduction of the datasets
and experiment settings are in the appendix.
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(a) Acc. of CP-ViT on INbreast

Connection Ratio

(b) CR of CP-ViT on INbreast

Top 1 Acc.

Sweet Spots:

(110, 100)  (160, 150)

(180, 160)  (180, 170)

(190, 170)  (190, 180)

(c) Acc. of CP-ViT on CIFAR-100

Connection Ratio

(d) CR of CP-ViT on CIFAR-100

Figure 4: Performance of CP-ViT measured using INbreast and CIFAR-100 datasets. Sub-figures
(a) and (c) show the classification accuracy of the CP-ViTs and vanilla ViTs in the search space. A
deeper color means higher top-1 accuracy. Sweet spots are marked by red crosses, in which CP-ViTs
achieve better performance than vanilla ViT. Sub-figures (b) and (d) are the self-attention connection
ratio of the CP-ViTs and vanilla ViT. Lighter color means a lower connection ratio. Sweet spots are
marked by the blue crosses.

We explored the performance of different types of CP graphs in the search space (Figure 3(a)) in
terms of top 1 accuracy and connection ratio. The connection ratio (CR) quantitatively measures the
computational costs of different self-attention operations, which is defined by (5):

CR =
|1|Mcp

∥Mcp∥1
(5)

where |1| represents the number of 1 in the mask matrix of cp graphs, and ∥•∥1 is the number of
elements in the mask matrix. In general, CR is the ratio of actual self-attention operations to the
potential maximum self-attention operations. Given a graph, the potential maximum self-attention
operation is fixed. Less actual self-attention operation means less computational cost and hence it
has a smaller CR value.
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Table 2: Comparison between the proposed CP-ViT with other ViTs, including ViT-S Dosovitskiy
et al. (2020), DeiT-B Touvron et al. (2021), and DeiT-T Touvron et al. (2021)

Dataset Model CP Graph CR (%) Param.(M) Top1 Acc. (%)
ViT-S − 100.00 21.7 89.91

CP-ViT (30, 10) 32.36 16.8 90.58
CP-ViT (50, 10) 29.20 16.6 90.01
CP-ViT (90, 20) 43.82 17.6 90.58
CP-ViT (90, 70) 84.50 20.6 90.01
CP-ViT (100, 90) 92.80 21.2 90.69

INbreast CP-ViT (130, 80) 31.34 19.4 90.58
CP-ViT (130, 100) 82.94 20.5 90.69
CP-ViT (150, 120) 84.18 20.6 90.01
CP-ViT (160, 140) 87.77 20.8 90.58
CP-ViT (170, 130) 80.79 20.3 90.58
CP-ViT (170, 150) 87.65 20.8 90.12
CP-ViT (190, 180) 84.89 21.3 90.69
ViT-S − 100.00 21.7 91.20

DeiT-B − 100.00 86.6 90.85
DeiT-T − 100.00 5.7 85.01
CP-ViT (110, 100) 94.49 21.3 91.45

CIFAR-100 CP-ViT (160, 150) 90.48 21.0 91.26
CP-ViT (180, 160) 93.67 21.2 91.36
CP-ViT (180, 170) 95.84 21.4 91.23
CP-ViT (190, 170) 92.59 21.2 91.24
CP-ViT (190, 180) 94.89 21.3 91.22

For each specific combination in the search space, we trained the CP-ViT with 5 different CP graph
samples and reported the best result in Figure 4. We highlighted the sweet spots with red crosses in
Figure 4(a)(c). In Figure 4(a)(c), deeper color means better performance. The performance of CP-
ViTs varies in the search space. This result indicates that different self-attention patterns have great
influences on the performances of ViTs. Compared to vanilla ViTs with a fully-connected self-
attention pattern, the proposed CP-ViT provides the potential for the model to search for optimal
self-attention patterns. The CRs of all the ViTs including vanilla ViTs and CP-ViTs were shown in
Figure 4(b)(d). The CRs of sweet spots were marked with a blue cross. The results show that besides
the improvement in classification accuracy ( +0.78% for INbreast, +0.25% for CIFAR-100), the
proposed CP-ViT also leads to a great reduction in computational cost thanks to less self-attention
operations ( −70.80% connections for INbreast, −9.52% connections for CIFAR-100). The model
setting, top 1 accuracy, and CRs of different ViTs were reported in Table 2. Compared to other ViTs,
the CP-ViT can not only improve classification performance but also reduce the computational cost.
On CIFAR-100, we compared the performance of the proposed CP-ViT with other variants of ViTs,
and the results show that the proposed CP-ViT outperforms other state-of-the-art methods. Notably,
the “sweet spots” exist on both INbreast and CIFAR-100 datasets, which indicates that CP-ViTs can
improve the classification performance on different datasets and reduce the computational cost. The
results demonstrate the superiority of the CP-ViT.

4.3 VISUALIZATION OF IMPORTANT PATCHES

Another advantage of CP-ViTs is that they can identify task-related meaningful and important image
patches and effectively improve the interpretability of the deep learning model by allocating these
important patches to core nodes (core patches). To evaluate this, we show the patches that were re-
distributed to core nodes when the model was well trained in Figure 5. For INBreast, we randomly
selected images of three subjects of each class and displayed the original images, the images overlaid
with important patches, and images overlaid with expert’s eye gazes in three columns. As shown in
the figure, the patches of the core nodes are well co-localized with the locations that were identified
as diagnostic biomarkers of the disease in literature publications Ibrokhimov & Kang (2022). We
also show the medical physicians’ eye gaze maps on these images, given that the eye gaze acquired
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by eye-tracking equipment is considered as the ground truth for identifying important areas in the
image. The important patches identified by CP-ViT highly overlap with the eye gaze maps, demon-
strating that CP-ViT can effectively identity important meaningful patches. For CIFAR-100, we also
visualized the patches assigned to the core nodes under the black dotted line in Figure 5. It is clear
that the objects in the patches of core nodes are semantically related to the class labels.

Core Patches Identified on INbreast. Overlapping rate (OR) is shown under each image. 
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Castle Oak Tree Possum

Boy Keyboard Television

Palm Tree Forest Telephone

Crocodile

Rabbit

Lizard

OR = 87.8% OR = 85.7% OR = 89.8% 

OR = 93.4% OR = 57.1% OR = 88.8% 

N
o

rm
al

OR = 76.8% 

Input Image Core Patches Eye Gaze

OR = 82.7% 

Input Image Core Patches Eye Gaze

OR = 56.9% 

Input Image Core Patches Eye Gaze

Figure 5: Visualization of important image patches that were distributed to the core nodes. For
the INbreast dataset (first block), images of three randomly selected subjects for each class were
shown. For each subject, there are three images displayed in three columns. The left column is the
original image, the middle column shows the important patches marked by red, and the right column
is the eye gaze of medical physicians on the image. For the CIFAR-100 dataset (second block), the
important patches identified in the twelve randomly selected classes were displayed.

5 CONCLUSIONS

In this work, we proactively instilled an organizational principle of BNN, that is, Core-Periphery
property, to guide the design of ANN of ViT. Our extensive experiments suggest that there exist
sweet spots of CP graphs that lead to CP-ViTs with significantly improved predictive performance.
In general, our work advances the state of the art in three ways: 1) this work provides novel in-
sights for brain-inspired AI by applying organizational principles of BNNs to ANN design; 2) the
optimized CP-ViT can significantly improve its predictive performance while dramatically reducing
the computational cost; and 3) the core nodes in CP-ViT can identify task-related meaningful image
patches, which can significantly enhance the interpretability of the trained deep model.
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A APPENDIX

A.1 DERIVATION OF MASK MATRIX Mcp

The size of mask matrix Mcp is 197 × 197 (196 patches plus 1 classification token), and it is a
symmetric matrix. The derivation process of Mcp is as follows: suppose we use a 5 node CP graph,
without the loss of the generality, the size of the corresponding adjacency matrix is 5 × 5. These 5
nodes will have 40, 39, 39, 39, and 39 patches, respectively. If the (1, 2) element in A is 1, which
means the node 1 is connecting to the node 2, the 40 patches in the node 1 are connecting to the 39
patches in the node 2, as a result, the elements in (1 : 40, 40 : 79) and (40 : 79, 1 : 40) of the mask
matrix Mcp will be 1, where the (40 : 79, 1 : 40) means the elements from the 40th row to 79th row,
and from the 1st column to the 40th column. The elements in the last row and column of Mcp are 1
because the classification token is connected to all nodes, including core and periphery nodes.
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A.2 THE SAMPLING OF CP GRAPHS

For example, if the total number of nodes is 50, the numbers of core nodes are set to be [10, 20, 30,
40], and four kinds of CP graphs, including [50, 10], [50, 20], [50, 30], [50, 40] are obtained. For
these 4 kinds of CP graphs, we generate 5 samples for each of them.

A.3 EXPERIMENT SETTINGS

We trained the CP-ViT for 100 epochs with batch size 64 for INBreast and 256 for CIFAR-100 ,
and used cosine learning rate schedule (Loshchilov & Hutter (2016)) with an initial learning rate
of 0.0001 and minimum of 1e−7. All the experiments were conducted using NVIDIA Tesla V100
GPU.

A.4 INTRODUCTION OF DATASETS

The INbreast database Ma et al. (2022) is a mammographic database that contains images that were
taken at the Breast Center in the Hospital de So Joo in Porto, Portugal. INbreast has a total of 115
cases (410 images) where 90 cases are from women with both breasts (4 images per case) and 25
cases are from mastectomy patients (2 images per case). This dataset has 3 classes: normal, benign,
and malignant. The CIFAR-100 dataset (Krizhevsky et al. (2009)) consists 60000 color images in
100 classes with 600 images per class. There are 500 training images and 100 testing images for
each class.
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