
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EGO-CENTRIC LEARNING OF COMMUNICATIVE
WORLD MODELS FOR AUTONOMOUS DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study multi-agent reinforcement learning (MARL) for tasks in complex high-
dimensional environments, such as autonomous driving. MARL is known to suffer
from the partial observability and non-stationarity issues. To tackle these chal-
lenges, information sharing is often employed, which however faces major hurdles
in practice, including overwhelming communication overhead and scalability con-
cerns. Based on the key observation that world model encodes high-dimensional
inputs to low-dimensional latent representation with a small memory footprint,
we develop CALL, Communicative World Model, for ego-centric MARL, where
1) each agent first learns its world model that encodes its state and intention into
low-dimensional latent representation which can be shared with other agents of
interest via lightweight communication; and 2) each agent carries out ego-centric
learning while exploiting lightweight information sharing to enrich her world
model learning and improve prediction for better planning. We characterize the
gain on the prediction accuracy from the information sharing and its impact on
performance gap. Extensive experiments are carried out on the challenging local
trajectory planning tasks in the CARLA platform to demonstrate the performance
gains of using CALL.

1 INTRODUCTION

Many multi-agent decision-making applications, such as autonomous driving Kiran et al. (2021),
robotics control Kober et al. (2013) and strategy video games Kaiser et al. (2019) require agents
to interact in a high-dimensional environments. In this work, we study distributed reinforcement
learning (RL) for autonomous driving Zhang et al. (2021a); Busoniu et al. (2008), where each agent
carries out ego-centric learning with communication with other agents in the proximity Claus &
Boutilier (1998); Matignon et al. (2012); Wei & Luke (2016). Departing from conventional stochastic
game-theoretic approaches for studying equilibrium behavior in partially observable stochastic games
(POSGs), which would not applicable to real-time applications de Witt et al. (2020); Matignon et al.
(2012), we focus on the more practical setting that each agent is ego-centric and chooses actions to
maximize her own interest Ozdaglar et al. (2021); Brown (1951). We propose Communicative World
Model (CALL) to tackle two notorious challenges in multi-agent RL, namely partial observability
and non-stationarity.

In multi-agent systems, information sharing has long been recognized as a crucial technique for
improving decision-making Liu & Zhang (2023); Jiang & Lu (2018); Zhang et al. (2021a); Foerster
et al. (2016); Sukhbaatar et al. (2016). For instance, agents can reduce uncertainty and improve
coordination in complex environments by exchanging observations through a central server Oliehoek
et al. (2008); Lowe et al. (2017); Wang & Meger (2023) or directly sharing with other agents
Sukhbaatar et al. (2016); Jiang & Lu (2018); Foerster et al. (2016). However, in high-dimensional
environments, simply sharing raw observations or state information does not scale efficiently Canese
et al. (2021); Dutta et al. (2005). Therefore, more efficient and targeted information sharing strategies
are critical to enabling scalable and effective multi-agent learning in high-dimensional environments.

Another significant challenge arises from the non-stationarity when other interacting agents adapt
their policies in response to one another Moerland et al. (2023); Silver et al. (2017). This issue
becomes even more pronounced in high-dimensional environments, where the interactions between
agents become increasingly complex and grow exponentially in the number of agents. Clearly, direct
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prediction of these intertwined environment dynamics in such high-dimensional spaces becomes
computationally intractable Qu et al. (2020); Zhang et al. (2021a). A promising approach to address
this challenge is to leverage the generalization of world models (WMs), which learn latent dynamics
models in a much lower-dimensional latent space. However, recent works on WM based reinforce-
ment learning still face significant limitations, and often rely on rigid, static information-sharing
mechanisms, such as sharing information with all agents Pretorius et al. (2020), using centralized
frameworks Krupnik et al. (2020); Pan et al. (2022); Liu et al. (2024), or adopting heuristic approaches
that limit sharing to neighboring agents Egorov & Shpilman (2022). These systems will likely struggle
with scalability and lack the adaptability needed for real-time decision making in the non-stationary
environments. In order to harness the power of world models and address the challenges of partial
observability and non-stationarity in high-dimensional environments, it is therefore of great interest
to develop a decentralized, adaptive communication strategy that allow agents to share only the more
relevant latent information. This paper seeks to answer the following question:

How to synergize WM’s generalization capability with lightweight information sharing for enhancing
Ego-centric MARL in high-dimensional, non-stationary environments?

Table 1: Comparison of Bandwidth and Look-
ahead Prediction Accuracy (%) Between Base-
line Methods and CALL

Raw Inputs CALL

Bandwidth↓ 5MB 0.11MB

Pred. Accu.↑ w/o sharing CALL

5 steps 75% 87%

30 steps 63% 80%

60 steps 58% 72%

To this end, we propose Communicative World
Models (CALL) for ego-centric MARL, where each
agent makes decisions while utilizing lightweight,
prediction-accuracy-driven information sharing to
enhance and strengthen its world model learning.
The proposed CALL method is built on three key
ideas: 1) Latent state and intention representation.
In CALL, agents encode high-dimensional sensory
inputs, such as camera images, into compact latent
states that represent the key features of the environ-
ment. Agents also encode their planned actions as
latent intentions that capture their future goals (i.e.,
the waypoints in planning tasks). These latent rep-
resentations are more efficient to share and require
only a fraction of the memory compared to the raw
data. For instance, as summarized in Table 1, the
latent representations generated at each time step require only 1/50th of the bandwidth compared with
a single high-definition sensor image, making lightweight information sharing much more feasible in
practice. 2) Prediction-accuracy-driven information sharing. This low-overhead communication is
further enhanced by prediction-accuracy-driven sharing, where agents judiciously exchange latent
states and intentions based on their impact on improving prediction accuracy. This adaptability
ensures that agents focus on sharing information that are more relevant to a better decision-making,
avoiding the inefficiencies caused by transmitting unnecessary data. 3) Synergization of WM’s
generalization capability with information sharing. The generalization capability of world models,
together with information sharing, ensures that agents can achieve high prediction accuracy while
minimizing communication overhead. As illustrated in Table 1, the information sharing in CALL
significantly improves prediction accuracy of the future latent state compared to the baseline without
information sharing across by a notable margin.

Our main contributions can be summarized as follows:

• By synergizing world model’s generalization with lightweight information sharing, we propose
CALL to tackle two key challenges in MARL, namely partial observability and non-stationarity.
Specifically, in CALL, each agent uses a world model to encode high dimensional data into
low-dimensional latent representation, thereby facilitating information sharing among agents and
improving learning the dynamics. The predictive capability, enabled by world models, allows
agents to plan and make decisions that go beyond the current environment.

• To provide the guidance on information sharing in CALL, we characterize the prediction per-
formance, and systematically study the impact of the generalization error in the world model
and the epistemic error due to partial observability and non-stationarity. Guided by the the-
oretical results, we propose a prediction-accuracy-driven information sharing strategy which
allows agents to selectively exchange the most relevant latent information. This adaptive sharing
scheme is designed to reduce prediction error and minimize the sub-optimality gap in the value
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Table 2: Related works in terms of (1) World Model, (2) State Sharing, (3) Intention sharing and (4)
Information Sharing Mechanism.

Paper World Model State Sharing Intention Sharing Information Sharing Mechanism

Das et al. (2019); Ma et al. (2024)
√

k-hop neighbors
Jiang & Lu (2018); Kim et al. (2020)

√ √
Attention Mechanism

Egorov & Shpilman (2022)
√ √

Neighboring agents
Pretorius et al. (2020)

√ √ √
All agents

This Work
√ √ √

Prediction Accuracy guided

function. Furthermore, CALL leverages WM’s generalization capability to significantly improve
the prediction of environment dynamics.

• To showcase the effectiveness of CALL, we conduct extensive experiments on the trajectory
planning tasks in autonomous driving. The results shows that CALL can achieve superior
performance with lightweight communication. Ablation studies further validate the importance of
information sharing in addressing key MARL challenges, aligning with our theoretical predictions.
Additionally, experiments in more complex environments highlight the CALL’s potential for
scalability in real-world applications. To the best of our knowledge, our work is the first attempt
to use world-model based MARL to solve autonomous driving tasks in the complex high-
dimensional environments.

1.1 RELATED WORK

World Model (WM). WMs are emerging as a promising solution to model based learning in the
high-dimensional environment Ha & Schmidhuber (2018); Hafner et al. (2019; 2020; 2023). For
instance, world model based agents exhibit state-of-the-art performance on a wide range single-agent
visual control tasks, such as Atari benchmark Bellemare et al. (2013), Deepmind Lab tasks Beattie
et al. (2016) and Minecraft game Duncan (2011). These approaches typically involve two crucial
components: (1) An encoder which process and compress environmental inputs (images, videos, text,
control commands) into a more manageable format, such as a low-dimension latent representations
and (2) a memory-augmented neural network, such as Recurrent Neural Networks (RNN) Yu et al.
(2019), which equips agents with generalization capability. More importantly, compared to conven-
tional planning algorithms that generate numerous rollouts to select the highest performing action
sequence Bertsekas (2021), the differentiable world models can be more computationally efficient
Levine & Koltun (2013); Wang et al. (2019); Zhu et al. (2020). Most recently, there are also efforts on
developing a modularized world models for multi-agent environment, while requiring a separate large
model Zhang et al. (2024) for inference or requiring assumptions on the value function decomposition
Xu et al. (2022b).

Communication in Multi-agent RL. Recent works Jiang & Lu (2018); Foerster et al. (2016) adopt
an end-to-end message-generation network to generate messages by encoding the past and current
observation information. CommNet Sukhbaatar et al. (2016) aggregates all the agents’ hidden states
as the global message and shares the information among all agents or neighbors. MACI Pretorius
et al. (2020) allows agents to share the their imagined trajectories to other agents through world
model rollout. Furthermore, Kim et al. (2020) compresses the imagined trajectory into intention
message to share with all other agents. To reduce the communication burden, ATOC Jiang & Lu
(2018) and Liu et al. (2020) use the attention unit to select a group of collaborator to communicate
while learning (or planning) directly in the (potentially high-dimensional) space. Egorov & Shpilman
(2022) considers the notion of “locality” where the agent receive only history information from its
neighbours in the environment. Ma et al. (2024) applies a static communication strategy by share the
raw state information with nearby k-hop neighbors. In CALL, agent acquires both the latent state
and latent intention information from other agents through prediction accuracy guided lightweight
information sharing. Furthermore, we summarize the comparison between our work and related work
in Table 2. Our work is also relevant to the literature on model-based RL, end-to-end autonomous
driving and cooperative perception. Due to space limitation, we relegate the literature review to
Appendix A.
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2 CALL FOR EGO-CENTRIC MARL

Basic Setting. The distributed decision making problem in the multi-agent system is often cast as
a (partial-observable) stochastic game ⟨S, {Ai}i∈N , P, {ri}i∈N , {Ωi}i∈N , γ⟩, where N is the set
of N agents in the system, S ⊆ Rds is the state space of the environment, and Ωi and Ai are the
observation space and action space for agent i ∈ N , respectively Shapley (1953). Meanwhile, it is
assumed that the state space is compact and the action space is finite. γ ∈ [0, 1) is the discounting
factor. It can be seen that from a single agent’s perspective, each agent’s decision making problem
can be viewed as a Partial-Observable Markov Decision Process (POMDP) Kaelbling et al. (1998).
At each time step t, each agent i chooses an action ai,t by following policy πi : S → A, and denote
the joint action by at = [a1,t · · · , aN,t] ∈ A, A := ΠiAi. Then the environment evolves from st to
st+1 following the state transition function P (st+1|st,at) : S ×A× S → [0, 1]. Each agent i has a
partial observation, e.g., sensory inputs of an autonomous vehicle, oi,t ∈ Ωi and receive the reward
ri,t := ri(st,at).

CALL for Ego-centric MARL. We consider Ego-centric MARL setting Ozdaglar et al. (2021);
Matignon et al. (2012); Zhang et al. (2021a; 2018), where each agent i learns a policy πi, i ∈ N
aided by lightweight information sharing among agents. During the interaction with the environment,
agent i chooses an action ai,t ∼ πi based on received information Ti,t and current state xi,t. Then the
goal of ego-centric learning for agent i is to find a policy πi(·|xi,t, Ti,t) that maximizes her own value
function vi(xi,t) ≜ Eai∼πi

[Qπ
i (xi,t, ai,t)], with Q-function Qπ

i (xi,t, ai,t) = Eai∼πi
[
∑
t γ

tri,t]
being the expected return when the action ai,t is chosen at state xi,t.

As shown in Figure 1, each agent in CALL aims to train a world model WMϕ to represent
the latent dynamics of the environment and predict the reward r and future latent state z.
Each component is implemented as a neural network and ϕ is the combined parameter vec-
tor. Specifically, WM first learns a latent state zi,t ∈ Z ⊆ Rd based on the agent’s
partial observation from sensory inputs oi,t through autoencoding Kingma & Welling (2013).

Figure 1: Illustration of CALL: Ego-centric
learning in the two-agent case.

Moreover, a RSSM Hafner et al. (2023; 2020) model
is used to capture the context information of the cur-
rent observation in the latent space by incorporating
the hidden state in the encoder, i.e.,

Encoder: zi,t ∼ qϕ(zi,t|hi,t, oi,t, Ti,t),
For brevity, we denote the concatenation of hi,t and
zi,t as the model state xi,t := [hi,t, zi,t] ∈ X . Then
a recurrent model, e.g., RNN, uses the current model
state to predict the next recurrent state hi,t+1 given
action ai,t, i.e.,

Sequence Model: hi,t+1 = fϕ(xi,t, ai,t, Ti,t),

where hi,t+1 contains information about the latent
representation for the next time step, i.e., ẑi,t+1 ∼
pϕ(·|hi,t+1). Based on the model state, WM also
predicts the reward r̂i,t+1 ∼ pϕ(·|xi,t+1) and
episode continuation flags ĉi,t+1 ∼ pϕ(·|xi,t+1).

In what follows, we use an example with two inter-
acting homogeneous agents, to illustrate the basic ideas in the proposed CALL; and this method is
applicable to general heterogeneous multi-agent systems, as will be elaborated further below.

An Illustration of CALL in A Two-Agent Case. Figure 1 illustrates the interplay between two agents,
where agent i, i = 1, 2, employs a world model each, in terms of latent state and latent intention
[zi(t), hi(t), wi(t)], to represent its local dynamics model at time t. Since latent information has a
very small memory footprint, agents can share [z, h, w] via lightweight communications, i.e., blue
arrows in Figure 1, enabling them to acquire information about other agents of interest and thereby
alleviating the challenges of high-dimensionality and incomplete state information stemming from
partial observability. Furthermore, from a single agent’s perspective, non-stationarity would arise as
agents adapt their action policy during the interaction. Fortunately, the generalization capabilities of
WMs (particularly from the RNN) lend the agents the power of foresight, allowing them to better
predict the future environment. By having access to the latent intention of neighboring agents, each
agent can leverage the WM to reason about what to expect in the near future, thus mitigating the
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challenge of non-stationarity. For instance, in the example in Figure 1, Agent 1 can use [z1, h1, w1]
and [z2, h2, w2], together with the learned policy, to improve the prediction for ‘near future’ dynamics
and obtain a more expanded view of its environment; and so can Agent 2.

Notation. The Frobenius norm of matrix A is denoted by ∥A∥F and the Euclidean norm of a vector is
denoted by |·|. A function f : Rn → Rm is said to be L-Lipschitz, L > 0, if |f(a)−f(b)| ≤ L|a−b|,
∀a, b ∈ Rn. E[X] is the expected value of random variable X .

3 PREDICTION ERROR AND SUB-OPTIMALITY GAP IN CALL

CALL benefits from the innovative synergy of WM’s generalization capability and lightweight
information sharing to improve the performance of ego-centric MARL. To develop a systematic
understanding, in this section we first quantify the prediction error (or uncertainty) when using WMs
for predictive rollouts, and investigate the impact of the insufficient information through a structural
dissection of the prediction error. More importantly, the prediction error analysis offers valuable
insights on how to synergize WM’s generalization and information sharing to improve the prediction
in CALL. We also quantify the benefits of the proposed information sharing scheme in CALL on the
learning performance by deriving the upper bound of the sub-optimality gap.

3.1 ERROR ANALYSIS OF MULTI-STEP PREDICTION

RNN Model. At each time step t, the agent will leverage the sequence model fϕ in the world model
to generate imaginary trajectories {ẑi,t+k, ai,t+k}Kk=1 with rollout horizon K > 0, based on the
model state xi,t := [zi,t, hi,t], policy ai,t ∼ πi and shared information Ii,t. We consider the sequence
model in the world model to be the RNN, which computes the hidden states hi,t and state presentation
zi,t as follows,

hi,t+1 = fh(xi,t, ai,t, Ii,t), zi,t+1 = fz(hi,t+1), (1)
where fh maps the input to the hidden state and fz maps the hidden state to the state representation.
In our theoretical analysis, for simplicity, we abuse notation slightly by using xi,t to represent the
‘updated’ model state after incorporating the shared information Ii,t when no confusion may arise.
Following the same line as in previous works Lim et al. (2021); Wu et al. (2021), we consider
fh = Axi,t + σh(Wxi,t + Uai,t + b) and fz = σz(V hi,t+1), where σh is a Lh-Lipschitz element-
wise activation function (e.g., ReLU Agarap (2018)) and σz is the Lz-Lipschitz activation functions
for the state representation.The matrices A,W,U, V, b are trainable parameters.

Without loss of generality, we have the following standard assumptions on actions and RNN model.
Assumption 1 (Action and Policy). The action input is upper bounded, i.e., |ai,t| ≤ Ba, t = 1, · · ·
and the policy πi is La-Lipschitz for all i ∈ N , i.e., dX(πi(·|x)−πi(·|x′)) ≤ LadX(x, x′), x, x′ ∈ X ,
where dA and dX are the corresponding distance metrics defined in the action space and state space.
Assumption 2 (Weight Matrices). The Frobenius norms of weight matrices W , U and V are upper
bounded by BW , BU and BV , respectively.

Assumption 1 and Assumption 2 also imply that the world model state xi,t is bounded and we assume
|xi,t| ≤ Bx. Both assumptions are standard assumptions in the analysis of RNN Lim et al. (2021);
Wu et al. (2021); Pan & Wang (2011). In particular, the Lipschitz assumptions on the policy is widely
used in the literature on MDPs analysis Shah & Xie (2018); Dufour & Prieto-Rumeau (2013; 2012).
An example of the policy that satisfies Assumption 1 is the linear controller as considered in the
world model proposed in Ha & Schmidhuber (2018).

Structure of Multi-step Lookahead Prediction Error. The prediction error is the difference
between the underlying true state and the state predicted by RNN. Specifically, the prediction error at
prediction steps k ≥ 1 is defined as follows,

ϵi,t+k = zi,t+k − ẑi,t+k := (zi,t+k − z̄i,t+k) + (z̄i,t+k − ẑi,t+k), (2)
where zi,t+k is the state representation for the ground truth state that is aligned with the ego agent’s
planning objective (e.g., the planning horizon K). ẑi,t+k is the prediction generated by RNN (ref.
Eqn. equation 1) when using the agent’s local information, i.e., xi,t. Meanwhile, we denote z̄t+k as
the prediction generated by RNN if the shared information from other agents is employed as input. To
further analyze the impact of information sharing, we decompose the prediction error into two parts in
Equation (2). The first term captures the generalization error inherent in the RNN, while the second
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term pertains to the epistemic error, arising from the absence of information sharing, For our analysis,
we assume the RNN is trained with supervised learning on n i.i.d. samples of state-action-state
sequence and the empirical loss is ln. Meanwhile, let the expected total-variation distance between
the true state transition probability P (z′|z, a) and the predicted one P̂ (z′|z, a) be upper bounded by
EP , i.e., Eπ[DTV(P ||P̂ )] ≤ EP . Moreover, we denote the gap of the input model state at time step t
as a random variable ϵx with expectation Ex := argmaxk E[xt+k − xi,t+k], where xt is the model
state obtained by using shared information.

For brevity, we denote M = BVBU
(BW )k−1
BW−1 , Ψk(δ, n) = ln +3

√
log( 2

δ )
2n +O

(
d

MBa(1+
√

2 log(2)k)
√

n

)
,

where d is the dimension of the latent state representation and N1 = LhLzLaUV , N2 = LhLzVW+
LzV A. Then we obtain the following result on the upper bound of the prediction error.

Theorem 1. Given Assumptions 1 and 2 hold, with probability at least 1− δ, we have the multi-step
lookahead prediction error ϵi,t+k, for k ≥ 1, is upper bounded by

ϵi,t+k ≤
k∑
j=1

N j
1

(√
Ψh(δ, n) + 1/δ(N2Ex + 2hBxEP )

)
:= Eδ,k

The upper bound in Theorem 1 reveals the impact of the prediction horizon k, the generalization
error of RNN (the first term), model state error Ex (the second term), and modeling error EP (the
third term), thereby providing the guidance on what information is essential in order to reduce the
prediction error. In particular, the generalization error of RNN stems from the training process and is
related to the training loss and the number of training samples. In general, it can be seen that as the
prediction horizon k increases, the modeling error and generalization error in the upper bound tends
to have more pronounced impact on the overall prediction. Meanwhile, the summation structure
of the upper bound also implies potential error accumulation over prediction horizons. Guided by
the insights from Theorem 1, we next elaborate how to synergize the WM’s generalization with
information sharing to improve the prediction in CALL.

Prediction performance gain from information sharing. The error term Ex originates from the gap
between model states xt and xi,t, where the latter is obtained by using ego-agent’s local observation
and shared information. To this end, in the proposed CALL, ego-agent will benefit from accessing
other agent’s local state information, i.e., the model state {zj,t, hj,t}, j ∈ Gt ⊆ N , to acquire a better
estimation of the model state xt from a subset of agents Gt. Meanwhile, the error term EP quantifies
the disparity of the state transition model predicted by RNN and the underlying real transition model.
To alleviate the modeling error and the curse of non-stationarity, it is plausible for the agents to share
their intentions wj,t when needed. More concretely, assume that after acquiring the information
{zj,t, hj,t, wj,t}, j ∈ Gt ⊆ N , the error terms Ex and EP are reduced by εx, εp, respectively, then we
can obtain that the prediction error can be improved by at least

∑k
j=1 N

j
11/δ(N2εx + 2hBxεP ) (ref.

Theorem 1).

3.2 SUB-OPTIMALITY GAP

Next, we carry out theoretical studies to quantify the benefits of the information sharing in CALL.
Notably, the conventional solution concept in seeking equilibrium in partially observable stochastic
games (POSGs) may not work well with the real-time applications such as autonomous driving. For
instance, previous theoretical results on equilibrium-based solutions have primarily focused highly
structured problems such as two-player zero-sum game Kozuno et al. (2021); Zinkevich et al. (2007)
or potential game Mguni et al. (2021); Yang & Wang (2020). However, the complex real-world tasks
often deviate from these settings and it also has been shown that equilibrium computation is PPAD in
general stochastic games Daskalakis et al. (2009). In light of these well-known computational and
statistical hardness results Jin et al. (2020), we instead advocate to reap the benefits of information
sharing by evaluating the learning performance gain due to the shared information, akin to natural
learning algorithms Ozdaglar et al. (2021).

We provide the upper bound on the prediction error in Theorem 1, from which we identify the
information needed to reduce the prediction error while addressing the partial observability and
non-stationarity in distributed RL. Clearly, the prediction error has direct impact on the agent’s
decision making performance. We characterize the condition on the prediction error under which
the sub-optimality gap can be upper bounded by a desired level. We first impose the following
assumptions on the reward.
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Assumption 3. The one step reward r(x,a) is Lr-Lipschitz, i.e., for all x, x′ ∈ X and a,a′ ∈ A,
we have,

|r(x,a)− r(x,a′)| ≤ Lr(dX(x, x′) + dA(a, a
′)),

where dX and dA are the corresponding metrics in the state space and action space, respectively.

The assumption on the reward function in Assumption 3 follows the same line as (or less restrictive
than) the ones in the literature Shah & Xie (2018); Dufour & Prieto-Rumeau (2015); Chow &
Tsitsiklis (1991); Rust (1997). Notably, the reward function considered in this assumption is defined
on the latent state x, which can be obtained by encoding the state s using the encoder. Let Ē :=
1−γK−1

1−γ Lr(1 + Lπ) + γKLQ(1 + Lπ), Emax = maxt Eδ,t and LQ = Lr/(1 − γ), then we obtain
the following proposition on the impact of the prediction error on the sub-optimality gap, i.e., the gap
between the optimal value function v∗i (xi,t|Ti,t) and v∗i (xi,t|It), where It contains all the information
in the system and Ti,t is the information shared to agent i at time t.

Proposition 1. Given Assumption 3 holds. If the prediction error induced by using shared information
Ti,t) satisfies Emax ≤ ϵ/Ē, then the sub-optimality gap is upper bounded by ϵ, i.e., |v∗i (xi,t|Ti,t)−
v∗i (xi,t|It)| ≤ ϵ.

Proposition 1 shows the connection between the world model’s prediction error and the sub-optimality
gap of the value function. As expected, to reduce the sub-optimality gap, it is imperative to reduce
the prediction error. Notably, if the prediction error induced by information Ti,t) is small enough,
Ti,t) can be seen as “locally sufficient information” for achieving desired prediction accuracy. As an
example, for driving, it suffices for an agent to acquire information about vehicles within its local
view and its planned path. Meanwhile, thanks to the latent representations in world models, obtaining
such information only requires lightweight communication among agents, which is highly desired in
the practical distributed RL implementations. The theoretical results in Theorem 1 and Proposition 1
lay the foundation for our proposed CALL. The proof can be found in Appendices B and C.

3.3 PREDICTION-ACCURACY-DRIVEN INFORMATION SHARING

CALL allows agents to adaptively adjust their information sharing based on real-time evaluation
of their prediction accuracy. By leveraging insights from our theoretical results in Theorem 1 and
Proposition 1, we understand how prediction errors accumulate over time due to factors like partial
observability and non-stationarity, which in turn widen the sub-optimality gap. CALL continuously
monitors these errors, enabling agents to detect when their world models are underperforming and
triggering selective, lightweight information sharing to correct course.

We summarized the proposed CALL in Algorithm 1. Specifically, each agent begins by encoding its
local sensory inputs oi,t and planned actions into compact latent representations, specifically latent
state zi,t and latent intention wi,t. This encoding facilitates lightweight communication.At each time
step, agent i evaluates its prediction errors by comparing the previously predicted latent states and
intentions X̂i,t = {ẑi,t−k, ŵi,t−k}K−1

k=0 against the actual observations Xi,t = {zi,t−k, wi,t−k}K−1
k=0

from the last K time steps. The prediction error is then calculated as: Ei,t = ∥X̂i,t − Xi,t∥. If
this error exceeds a predefined threshold c, the agent increase its communication range Gi,t (e.g.,
increase by 5 meters) and exchanges relevant latent information. This ensures that only lightweight
and targeted information sharing takes place, reducing unnecessary communication overhead.

Each agent continuously updates its policy by computing its value function vi based on the shared
information and world model predictions for the next K steps. This adaptive process allows agents
to refine their decision-making, improving their ability to handle partial observability and non-
stationarity in complex environments. By monitoring prediction errors in real time and engaging in
selective information sharing, CALL can achieve scalable and efficient performance in ego-centric
MARL systems. To assess the efficiency and practical viability of CALL, we next conduct extensive
experiments and ablation studies.

4 EXPERIMENTS

Environment Settings. We validate the efficiency of CALL in CARLA, an open-source simulator
with high-fidelity 3D environmentDosovitskiy et al. (2017). At time step t, agent i, i ∈ N receives
bird-eye-view (BEV) as observation oi,t, which unifies the multi-modal information Liu et al. (2023);
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Algorithm 1 CALL for Ego-centric MARL.

Require: World Model WMϕ, initial policy πi,0, all agents N , agents in the initial communication
range G0 ⊆ N , planning horizon K, prediction accuracy threshold c.
for each agent i, step t = 1, 2, · · · do

Encode local sensory input oi,t and planned actions {ai,t}t+Kt and obtain latent representation
{zi,t, hi,t, wi,t}.
Evaluate prediction error (Theorem 1) and update communication range Gt accordingly
# Prediction accuracy guided lightweight information sharing
Exchange information Ti,t = {zj,t, hj,t, wj,t} with selected agents j ∈ Gt
for k = 1, 2, · · · ,K do

Predict ẑi,t+k, ĥi,t+k using WMϕ(oi,t, Ti,t, πi,t).
# Harness WM’s generalization capability

end for
Compute vi(xi,t|Ti,t), e.g., Equation (3).
Update policy: πti ← argmax vi.

end for

Li et al. (2023). Furthermore, by following the planned waypoints generated by the CARLA planning
module, agents navigate the environment by executing commands ai,t and receive the reward ri,t
from the environment. We define the reward as the weight sum of five attributes: safety, comfort,
driving time, velocity and distance to the waypoint. The details of the CARLA environment and
reward design are relegated to Appendix E. We also include the detailed discussion on baseline and
benchmark in Appendix E.3 and the impact of the threshold c in Appendix G.

Notably, we consider with two configurations: I) 150 agents and II) 230 agents, which requires more
challenging maneuver. Due to space limitation, the experiment results for the latter configuration
are relegated to Appendix E.4. In both cases, our findings are consistent and corroborate that the
proposed CALL exhibits great potential to navigate in complex environments. In our figures, we use
shaded area to represent the standard deviation.

Trajectory Planning Tasks. In our experiments, we consider the trajectory planning tasks in au-
tonomous driving, where the objective of the ego vehicle is to safely navigate through the traffic
to reach the designed exit point. Each agent first learns the target waypoints for the vehicle to
drive to and then, based on these higher-level decisions, makes the lower-level decisions, such as
steering angle, throttle control, and brake control in order to reach the waypoints Hu et al. (2018);
Naveed et al. (2021); Lu et al. (2023). To distinguish the difference, we use notation ai,t to represent
the action of agent i at time step t and wi,t to represent a set of waypoints planned at time step t.
Note that the waypoints will remain fixed until the path is re-planned at (t+K)-time steps. In our
experiments, we adopt the CALL for the lower-level of decision making while adhering to the planned
waypoints. Specifically, the agent aims to find the next K-step actions such that the value function vi
is maximized. For convenience, let x̂i,t+k := [ẑi,t+k, ĥi,t+k] and r̂i,t := ri(x̂i,t, ai,t), then the value
function is defined as,

vi(xi,t) =Eπi
[
∑K−1
k=0 γkr̂i,t+k + γKvi(x̂i,t+K)], (3)

πi ← argmax{ai,t+k,k=0,··· ,K−1} vi(xi,t).

Ego-centric MARL Performance with CALL. We summarize the proposed CALL in Algorithm 1
(see Appendix E), where the outer-loop t = 1, 2, · · · represents agent’s interaction with the environ-
ment and the inner-loop k = 1, · · · ,K is the world model’s rollout horizon. For ease of exposition,
we focus on the setting where agents share the same encoder-decoder architecture so that the agent is
able to decode the shared model state [z, h] directly. We will elaborate the case with heterogeneous
agents in Appendix F. We build the world model upon Dreamer V3 Hafner et al. (2023) and the
details of the model training are summarized in Appendix E. During training, the agent selects an
communication range Gt and exchange information with agents within that range to acquire their
model state and intention {xj,t, wj,t}, j ∈ Gt ⊆ N . The shared information is integrated into
agent’s ‘updated’ BEV for decision making. During the interaction, the agent adaptively update the
communication range to achieve prediction accuracy guided information sharing.
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Figure 2: (a) RL performance comparison between two settings: Local observation only (no commu-
nication) vs. CALL (sharing latent state & intention, i.e., waypoints). (b) RL performance comparison:
CALL vs. full observation. (c) Ablation studies on the impact of latent state sharing (LSS): Full
observation, ‘latent state sharing (LSS)’, and local observation only.

Figure 3: Multi-step predictions results. The first five frames are used as context input; and the
model predicts the future frames (the second row); the third row is the error. The yellow line in front
of the vehicles is the waypoints. The first row is the results with local observation only, while the
second row is the prediction results by synergizing WM’s generalization capability with lightweight
information sharing in CALL. Additional results on WM’s generalization capability in CALL can be
found in Appendix E.

As shown in Figure 2(a), we first compare the learning performance in two settings: one based on
the shared information, and another relying on local observation alone (as in DreamerV3 Hafner
et al. (2023) and Think2Drive Li et al. (2024)). As expected, the ego agent using shared informa-
tion achieves significant around 100% performance improvement. Next, we compare the learning
performance with full observation case in Figure 2(b), and it is somewhat surprising to observe
that the training using CALL can in fact result in faster learning compared to the case with full
observation (i.e, all available observations). As shown in Figure 2(b), the training curve for the full
observation setting reaches the return value around 200 at step 180k; in contrast, the agent with
shared information achieves this value at step 120k. Our intuition is that the full observation may
contain noisy and non-essential information for agent’s decision making, which can impede the
learning speed. Moreover, the performance gain in CALL incurs very low communication overhead.
Specifically, we show the bandwidth requirements in Figure 5 (Appendix D). In average, it requires
significantly lower data transmission (0.106 MB) than the case of sharing information with all agents,
which requires more than 5.417 MB data in a 230 vehicle system per 0.1 second.

In what next, we conduct ablation studies to show the benefits of CALL on addressing partial
observability and non-stationarity issues in ego-centric MARL, respectively.

Ablation Studies. 1) Addressing Partial Observability. We elucidate the impact of the model state
sharing on the learning performance through both the learning performance comparison (Figure 2(c))
and an illustrative example (Figure 4(c)). As shown in Figure 4(c), by integrating the shared model
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(a)
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Figure 4: (a-b) Ablation studies on the impact of waypoints: ‘Local obs. + WP’ represents the case
where the waypoints information is utilized together with local observation. (c) Illustration on ego
vehicle’s (red) observability. The green vehicles can be observed directly. The yellow vehicle can be
‘observed’ by decoding the middle vehicle’s model state. The gray vehicle is not observed.

state, the agent is able to acquire the essential information that are beyond its own sensing limitations.
For instance, even the yellow vehicle is at ego vehicle’s blind spot but its location is critical for ego
agent’s decision making along the planned waypoints (the blue line). Furthermore, as evidenced in
Figure 2(c), sharing the model state brings promising performance gain comparing with the scenario
without communication. More demonstrations on the BEV can be found in Figure 14.

2) Addressing Non-stationarity. To evaluate the prediction performance, we first compare the BEV
prediction results under three settings: with information sharing, without information sharing and
full observation in Appendix E.5. Consistent with Theorem 1, it is evident that the prediction error
increases with the rollout horizon in all cases. Meanwhile, it can be seen that CALL can greatly
improve the BEV prediction and hence benefit the planning. For instance, as shown in Figure 3, by
synergizing WM’s generalization capability and lightweight information sharing, CALL in generally
can make better prediction. On the other hand, among the shared information, waypoints encapsulate
agents’ intention in the near future and is particularly crucial for better prediction in the non-stationary
environment. In this regard, we quantify the benefits of sharing waypoints by studying the overall
learning performance gain. As can been seen in Figure 4(a), sharing waypoints information results in
around 100% performance gain comparing with the case with latent state sharing (“LSS”). Meanwhile,
Figure 4(b) demonstrates that the waypoints information can greatly help with the learning even in
the case when agents only have have access to their own observation of the environment. The results
in Figure 4(a) and Figure 4(b) show that the synergy between WM generalization capability and
the information sharing (especially the intention sharing) in CALL is the key to mitigate the poor
prediction challenge in the distributed RL.

5 CONCLUSION

In this work, we introduce CALL to address the key challenges of partial observability and non-
stationarity in ego-centric MARL in complex, high-dimensional environments. The core innovation of
CALL lies in the synergization of the generalization capability of world models and lightweight infor-
mation sharing. In particular, CALL facilitates prediction-accuracy-driven information sharing, which
allows agents to selectively and flexibly exchange only the most relevant information, improving
prediction accuracy while keeping the approach efficient and suitable for real-time decision-making.
Our theoretical results in Theorem 1 and Proposition 1 demonstrate how world models can improve
prediction performance and reduce the sub-optimality gap through the use of shared information.
Extensive experiments in autonomous driving tasks show that CALL achieves promising results, with
ablation studies supporting our theoretical analysis. Looking ahead, we hope CALL can open a new
avenue to devise practical CALL algorithms in other applications involving planning and navigation.
Meanwhile, the consideration on the uncertainty during the information sharing is also worth to
explore. Another important direction is exploring privacy-preserving mechanisms for information
sharing, ensuring that agents can collaborate without revealing sensitive or private information.
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ETHICS STATEMENT

In developing CALL, we are mindful of the ethical implications surrounding multi-agent reinforcement
learning, particularly in high-stakes applications such as autonomous driving. CALL is designed to
enhance decision-making efficiency and scalability, but it is crucial to ensure that this technology
is applied responsibly. We commit to considering the safety, fairness, and privacy of all individuals
impacted by the deployment of multi-agent systems. Furthermore, our approach involves the sharing
of information between agents, which must be handled with strict adherence to data privacy and
security standards. Ensuring that autonomous systems behave safely and fairly, without bias or
unintended consequences, remains a priority in the development and deployment of CALL.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide a detailed description of the CALL algorithm,
including the source code and all experimental settings, in the main text and supplementary materials.
Hyperparameters, network architectures, and training protocols are described in full, and all data sets
and simulated environments used in our experiments will be made publicly available upon publication,
allowing other researchers to replicate and build upon our findings with ease.
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Appendix.

A RELATED WORK

Model-based MARL. Model based RL in single-agent setting has shown promising results in both
theoretical analysis and practical experiments, especially in terms of the sampling efficiency Moerland
et al. (2023); Yarats et al. (2021); Kaiser et al. (2019); Janner et al. (2019). However, the studies on
model-based MARL has just recently started to attract attention. For instance, Zhang et al. (2018)
investigates a two-player discounted zero-sum Markov games and establishes the sample complexity
of model-based MARL. Park et al. (2019) proposes a RNN based actor-critic networks and policy
gradient method to promote agents cooperation by sharing the gradient flows over the agents during
the centralized training. Zhang et al. (2021b) utilizes opponent-wise rollout policy optimization in
MARL, where the ego agent models all other agents during the decision-making process. Xu et al.
(2022b) suggests using world model rollout in cooperative MARL but requires the access of all
agent’s history information. Xu et al. (2022b) proposed to use the world model rollout in cooperative
MARL while requires the access of all agent’s history information. Furthermore, Chockalingam et al.
(2018) extends the world model for MARL by defining a meta-controller that takes all agents state
information as input to generate the teams control actions. In an open multi-agent system, where the
number of the agents changes over time, the aforementioned methods may suffer from the scalability
and stability issue.

End-to-end Autonomous Driving. The field of end-to-end systems has gained a lot popularity due to
the availability of large-scale datasets and closed-loop evaluation Chen et al. (2023). In particular, our
work is relevant to the world model (model-based) learning paradigm. Clearly, modeling the complex
world dynamics plays an important role on the learning performance while also poses significant
challenges. In this regard, Chen et al. (2021) introduces a probabilistic sequential latent environment
model to address the issues on high dimensnionality and partial observability by utilizing the latent
representation and historical observations. Recent studies, as demonstrated by Wang & Meger
(2023), have revealed the difficulty of learning holistic models in environments with non-stationary
components. This observation has prompted investigations into modular representations to effectively
decouple world models into distinct modules. For instance, Wang & Meger (2023) considers three
components when training the model, i.e., action-conditioned, action-free and static. In Pan et al.
(2022), the dynamics model is decoupled into passive and active components. Notably, such training
methods generally require the access to the full observation of the world for the disentanglement. In
the contrary, the world model training in the proposed WM-DRL framework considers the setting of
ego agent’s partial observability in the multi-agent system. A more thorough review can be found in
Chen et al. (2023).

Cooperative Perception in Autonomous Driving. Cooperative perception (CP) seeks to extend
single vehicle’s perception range by the exchange of local sensor data with other vehicles or in-
frastructures Kim et al. (2015). In the transportation system studies, CP has been widely used for
3D object detection by using LiDAR point cloud Chen et al. (2019b), camera images Arnold et al.
(2020) and/or RADAR Rauch et al. (2012). However, sharing massive amounts of raw data among
vehicles can be prohibited in practice. Additionally, the processing of those high-volume data will
introduce extra latency Yang et al. (2021). To this end, Xu et al. (2022a) presents mobility-aware
sensor scheduling algorithm, considering both viewpoints and communication quality, to efficiently
schedule cooperative vehicles for the most beneficial data exchange. Our proposed WM-DRL framework
goes beyond the CP tasks and aims to address the decision making of ego vehicles in the multi-agent
system by taking advantage of the light-weight communication.

BEV Representation in Autonomous Driving. Learning the world model directly in raw image
space is challenging and may not suitable for autonomous driving. This approach is prone to missing
crucial small details, such as traffic lights, in the predicted images Chen et al. (2023). Meanwhile, the
autonomous driving systems generally equip with diverse sensors with different modalities, which
makes the sensor fusion to be essential and a standard approach in practice. For instance, Liu et al.
(2023) proposes BEVFusion unifies multi-modal features in the shared BEV representation space.
Fadadu et al. (2022) shows that the fusion of sensor data in a unified BEV can improve the perception
and prediction in autonomous driving. Zhang et al. (2021c) trains an end-to-end RL expert that maps
BEV images to continuous low-level actions for imitation learning. Similarly, Chen et al. (2020)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Summary of Notations

Notation Description

N Set of N agents in the system
S ⊆ Rds State space of the environment
Ωi Observation space for agent i
Ai Action space for agent i
γ ∈ [0, 1) Discount factor
ai,t Action chosen by agent i at time t
at Joint action [a1,t, · · · , aN,t]
oi,t ∈ Ωi Local observation of agent i at time t
ri,t Reward received by agent i at time t
πi Policy of agent i
zi,t ∈ Z Latent state representation
hi,t Hidden state from RNN
xi,t = [hi,t, zi,t] Model state
wi,t Latent intention (planned waypoints)
Gt Set of agents in communication range at time t
Ti,t Information shared with agent i at time t
K Prediction/planning horizon
EP Upper bound on expected total-variation distance
Ex Expected gap in model state
Lh, Lz Lipschitz constants for activation functions
BW , BU , BV Upper bounds on weight matrices norms
Ba, Bx Upper bounds on action and state norms
La, Lr Lipschitz constants for policy and reward
c Prediction accuracy threshold

use the BEV as the privileged information in order to obtain a privileged agent as a teaching agent.
Chen et al. (2019a) leverages the latent representation of BEV as state to train a model-free RL agent.
Bansal et al. (2018) also uses the BEV as the training input.

B PROOF OF THEOREM 1

Table of Notations. In Table 3, we summarize the notations used.

Structure Dissection of Prediction Error. We define the prediction error to be the difference
between the underlying true state and the state predicted by RNN. In particular, we consider the
structure dissection of the prediction as follows: at prediction steps k = 1, · · · ,K,

ϵi,t+k =zi,t+k − ẑi,t+k

:= (zi,t+k − z̄i,t+k)︸ ︷︷ ︸
Generalization Error

+(z̄i,t+k − ẑi,t+k)︸ ︷︷ ︸
Epistemic Error

. (4)

For clarity, we summarize the notations in the list below.

• zi,t+k: state representation for the ground truth state that is aligned with agent’s individual
planning objective (e.g., the planning horizon K).

• ẑi,t+k: the prediction generated by RNN (ref. Eqn. equation 1) when using the agent’s local
observation, i.e., xi,t.

• z̄t+k: the prediction generated by RNN if the Locally Sufficient Information (LSI) is
employed as input.

To further analyze the impact of LSI, we decompose the prediction error into two parts: (1) General-
ization error inherent in the RNN and (2) Epistemic error, arising from the absence of LSI. Next, we
first investigate the generalization term.
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Generalization Error Term. We consider the setting where RNN model is obtained by training on
n i.i.d. samples of state-action-state sequence {xt, at, xt+1} and the empirical loss is ln with loss
function f . The RNN is trained to map the one step input, i.e., xt, at, to the output xt+1. Particularly,
the world model leverage the RNN to make prediction over the future steps. In the analysis of the
first term in Equation (4), with the input satisfying LSI, the error term capture the generalization
of using RNN model on a new state-action-state sample {xt, at, xt+1}. Following the standard
probably approximately correct (PAC) learning analysis framework, we first recall the following
results Alnajdi et al. (2023); Wu et al. (2021) on the RNN generalization error. For brevity, we denote

M = BVBU
(BW )k−1
BW−1 , Ψk(δ, n) = ls +3

√
log( 2

δ )
2n +O

(
d

MBa(1+
√

2 log(2)k)
√

n

)
, where d is the dimension

of the latent state representation

Lemma 1 (Generalization Error of RNN). Assume the weight matrices satisfy Assumption 2 and
the input satisfies Assumption 1. Assume the training and testing datasets are drawn from the same
distribution. Then with probability at least 1− σ, the generalization error in terms of the expected
loss function has the upper bound as follows,

E[f(zi,t+k − z̄i,t+k] ≤ ln + 3

√
log
(
2
δ

)
2n

+O

(
Lrdy

dMBa(1 +
√
2 log(2)k)√

n

)

In particular, the results in Lemma 1 considers the least square loss function and the generalization
bound only applies to the case when the data distribution remains the same during the testing. In
our case, since the testing and training sets are collected from the same simulation platform thus
following the same dynamics. For simplicity, in our problem setting, we assume the underlying
distribution of input {xt, at} is assumed to be uniform. Subsequently, we establish the upper bound
for the generalization error. Let ϵt+k = zi,t+k − z̄i,t+k, then we have, with probability at least 1− δ,

ϵRNN
t+k ≤

√
Ψk(δ, n) (5)

Epistemic Error Terms. The epistemic error term stems from agent’s lack of LSI. In the multi-agent
system, the agents knowledge can be further decomposed into stationary part and non-stationary part.
Without loss of generality, we assume z̄i,t = [z̄si,t,0]

⊤ + [0, z̄nsi,t ]
⊤, where 0 is the all zero vector

with proper dimension. Then we have the epistemic error with the following form.

• At current time step t:
ϵEpistemic
t :=z̄i,t − ẑi,t

≜ z̄si,t − ẑsi,t︸ ︷︷ ︸
Stationary

+ z̄nsi,t − ẑnsi,t︸ ︷︷ ︸
Non-stationary

= z̄si,t − ẑsi,t︸ ︷︷ ︸
Stationary

+0

:=ϵst .

• At future time step t = t+ 1, t+ 2, · · · , t+K (using world model to predict future steps
observations),

ϵEpistemic
t :=z̄i,t − ẑi,t

≜ z̄si,t − ẑsi,t︸ ︷︷ ︸
Stationary

+ z̄nsi,t − ẑnsi,t︸ ︷︷ ︸
Non-stationary

:=ϵst + ϵnst .

In what follows, we characterize the stationary and non-stationary part in the epistemic error, respec-
tively.

Stationary Part. At each time step t, the agent will leverage the sequence model fϕ in the world
model to generate imaginary trajectories {x̂i,t+k, ai,t+k}Kk=1 with prediction horizon K > 0, based
on the model state xi,t := [zi,t, hi,t] and policy ai,t ∼ πi. In our theoretical analysis, we consider the
sequence model in the world model to be the RNN and follow the same line as in previous works
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Lim et al. (2021); Wu et al. (2021). In particular,
hi,t+1 =Axi,t + σh(Wxi,t + Uai,t + b)

zi,t+1 =σz(V hi,t+1), (6)
where σh is a Lh-Lipschitz element-wise activation function (e.g., ReLU Agarap (2018)) and σz
is the Lz-Lipschitz activation functions for the state representation.The matrices A,W,U, V, b are
trainable parameters.

Assume the gap between the (stationary part) state obtained by using LSI and the state using only
local information to be a random variable ϵx,t := xt − xi,t with expectation Ex,t, where xt is the
model state obtained by using LSI. Then by using the Lipschitz properties of the activation functions
and Assumption 1, we obtain the upper bound for the error in the stationary part as,

ϵsi,t+k ≤LhLzV (Wϵi,x,t+k + ULaϵi,x,t+k−1) + LzV Aϵi,x,t+k, (7)

=(LhLzVW + LzV A)ϵi,x,t+k + LhLzV ULaϵi,x,t+k−1 (8)
where ϵi,x,t+k−1 is the state difference from last time step. Note that the second term on the LHS is
due to the action error which is directly related to the state from previous time step.

Non-stationary Part. The prediction error of the future steps also result from the non-stationarity
of the environment since the other agents may adapt their policies during the interaction. To this
end, let the expected total-variation distance between the true state transition probability P (z′|z, a)
and the predicted one P̂ (z′|z, a) be upper bounded by EP , i.e., Eπ[DTV(P ||P̂ )] ≤ EP . Moreover,
we denote the gap of the input model state at time step t as a random variable ϵx with expectation
Ex := maxk E[xt+k − x̂i,t+k], where xt is the model state obtained by using LSI.

Following the same line as in Lemma B.2 Janner et al. (2019), we assume
max
t

Ez∼pt(z)DKL (p (z′ | z) ∥p̂ (z′ | z)) ≤ EP ,
and the initial distributions are the same.

Then we have the marginal state visitation probability is upper bounded by
1

2

∑
z

|ρt+k(z)− ρ̂t+k(z)| ≤ kEP .

Meanwhile, for simplicity, we define the following notations to characterize the prediction error due
to the non-stationarity (such that the predicted MDP is different from the underlying real MDP).

E[zt+k1 ] =ρk1 ≥ 0,

E[zt+k2 ] =ρ̂k2 ≥ 0,

ϵnst+k :=zt+k1 − zt+k2 ,

where ρk1 = Ez1∼ρk(z1)[z1] =
∑
z zρ

k(z) is the mean value of the marginal visitation distribution at
time step t+ k (starting from time step t).

Then we obtain the upper bound for the non-stationary part of the prediction error as follows,
E[ϵnst+k] :=ρk1 − ρ̂k2 ≤ 2kBxEP

Error Accumulation and Propagation. We first recall the decomposition of the prediction error as
follows.

ϵt−1 = ϵst−1 + ϵnst−1︸ ︷︷ ︸
Epistemic Error

+ϵRNN
t−1 (9)

Bring Equation (8) to Equation (9) gives us (we omit the agent index i for brevity),

ϵt+k =ϵnst+k + ϵRNN
t+k + ϵst+k

≤ϵnst+k + ϵRNN
t+k + LhLzV (Wϵx,t+k + ULaϵx,t+k−1)

=ϵnst+k + ϵRNN
t+k + LhLzVWϵx,t+k + LhLzV ULaϵx,t+k−1

=ϵnst+k + ϵRNN
t+k + (LhLzVW + LzV A)ϵi,x,t+k + LhLzV ULaϵi,x,t+k−1

:=Mt+k +Nϵx,t+k−1 (10)
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where
Mt+k :=ϵnst+k + ϵRNN

t+k + (LhLzVW + LzV A)ϵx,t+k

N :=LhLzV ULa.

Notice that in the stationary part of the prediction error, we have |ϵx,t+k| = |ϵt+k|. Furthermore,
by abuse of notation, we apply Equation (10) recursively and obtain the relationship between the
prediction error at k rollout horizon and the gap from the input, i.e.,

ϵt+k ≤Mt+k +Nϵt+k−1

≤Mt+k +NMt+k−2

≤ · · ·

≤
k∑
h=0

NhMt+k−h +Nkϵt

Taking expectation on both sides gives us,

E[ϵt+k] ≤
k∑
h=0

NhE[Mt+k−h] +NkE[ϵt]

≤
k∑
h=0

Nh(2hBxEP +N1Ex +E[ϵRNN
t+h ]),

where N1 = LhLzVW + LzV A.

The Upper Bound of the Prediction Error. Then by invoking Markov inequality, we have the
upper bound for ϵt with probability at least 1− δ as follows,

ϵt+k ≤
k∑
h=1

Nh

(
1

δ
(2hBxEP +N1Ex) +

√
Ψt(n, δ)

)
:= Eδ,t

C PROOF OF PROPOSITION 1

The Sub-optimality Gap Due to Prediction Error. Given a policy π, we aim to quantify the gap
of the value function between using underlying ground truth state (e.g., with LSI) and the predicted
state. Assume the underlying true state is s0 and the predicted state is o0. Then we have the gap of
the value function to be as follows,

v(s0)− v(o0) =Ea∼π

[
L−1∑
l=0

γlr(st+l, at+l, a
′
t+l) + γLQt−1(st+L, at+L, a

′
t+L)

]

−Ea∼π

[
L−1∑
l=0

γlr(ot+l, at+l, a
′
t+l) + γLQt−1(ot+L, at+L, a

′
t+L)

]

=Ea∼π

[
L−1∑
l=0

γl(rt+l − r̂t+l)

]
+ γLEa∼π

[
Qt+L − Q̂t+L

]
For simplicity, we denote the reward of the underlying real state as rt+l := r(st+l, at+l, a

′
t+l) and

the reward based on prediction observation as r̂t+l := r(ot+l, at+l, a
′
t+l).

In the previous theorem, we have the bound for ϵt := st − ot. Now we will characterize the impact
of ϵt on the sub-optimality gap. We first recall the following assumptions on the MDP considered in
this work.

Assumption 4 (MDP Regularity). We assume that 1) The state space X is a compact subset of Rd
and the action space is finite; 2) The one step reward r(s, a) is Lr-Lipschitz, i.e., for all s, s′ ∈ S
and a, a′ ∈ A

|r(s, a)− r(s′, a′)| ≤ Lr(dS(s, s
′) + dA(a, a

′)),
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where dS and dA is the corresponding metric in the state space and action space (both are metric
space); 3) The policy π is Lπ-Lipschitz, i.e.,

dA(π(·|s)− π(·|s′)) ≤ LπdS(s, s
′).

With Assumption Assumption 3 holds, we obtain the following bound,
rl − r̂l ≤Lr(1 + Lπ)ϵt+l

Qt+L − Q̂t+L ≤LQ(1 + Lπ)ϵt+L,

where LQ := Lr

1−γ .

Then we have the upper bound for the sub-optimality gap as,

Ea

[
Q(st, at)− Q̂(ot, at)

]
≤Ea∼π

[
L−1∑
l=0

γlLr(1 + Lπ)ϵt+l

]
+ γLEa∼π [LQ(1 + Lπ)ϵt+L]

=

L−1∑
l=0

γlLr(1 + Lπ)Ea∼π[ϵt+l] + γLLQ(1 + Lπ)Ea∼π[ϵt+L]

Additionally, we assume that maxt Eδ,t = Emax, then we have the upper bound for the sub-optimality
gap as follows,

Eat [Q(st, at)− Q̂(ot, at)] ≤
(
1− γL−1

1− γ
Lr(1 + Lπ) + γLLQ(1 + Lπ)

)
Emax := ϵ

Let the right side equal to ϵ, then we have that when the prediction error when using the infor-
mation T (It) satisfies the following condition, then we say the information T (It) is Ego-centric
ϵ-approximate sufficient.

Emax ≤
ϵ

M̄

M̄ :=
1− γL−1

1− γ
Lr(1 + Lπ) + γLLQ(1 + Lπ)

C.1 CONSIDER THE FUNCTION APPROXIMATION ERROR

The non-stationarity originates from the policies anticipated by the ego agent when estimating the
future reward is different from the agent’s real action taken after observing new information. In this
regard, we revise the results in the multi-step lookahead planning literature Janner et al. (2019) and
have the following upper bound of the prediction error related to the non-stationarity. We assume the
resulting MDP to be M̂ and the Total Variation distance bound is ϵP , then we have, with probability
at least 1− δ for H-step prediction, then the sub-optimality gap of the Q-function is upper bounded
by,

|Q̂t −Qt| ≤
2

(1− γh)δ

[
C (ϵP , H, γ) +

ϵv
2

+ γHϵv

]
,

where C (ϵP , h, γ) = Rmax

∑h−1
t=0 γttϵP + γhhϵPVmax.

D COMMUNICATION BANDWIDTH (IN BYTES) REQUIREMENTS

We summarize the bytes requirements for various information available in the CARLA platform. In
Figure 5, we show the bandwidth requirements during the testing. In average, it only requires 0.106
MB data transmission, which is significantly lower than the full observation case, which requires
more than 5.417 MB data in a 230 vehicle system per 0.1 second.

Hidden Variables from Memory Units (h)

• Dimensions: 2048 (32-bit float tensors).
• Total size: 2048× 4 bytes/dimension = 8, 192 bytes.

Latent Variables from Encoder (z)
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Figure 5: The bandwidth requirements (MB) of WM-MBRL in one testing. The red line is the
average bandwidth requirements over all steps.

Figure 6: BEV encoding. In this case, each vehicle will generate the encoded messages based on its
own BEV. The other agents are able to decode the model state directly by using their local decoder.

• Structure: 32 categorical variables with 32 classes each.

• Total size: 32× log2(32) = 60 bits = 7.5 bytes.

Raw Image Time-Series Data

• Assume 2K camera resolution: 2560× 1440 pixels.

• For a T -step sequence: Size = T × 2560× 1440× 3 bytes.

• This size is significantly larger than that of h and z variables.

Model Weights or Gradients

• Model parameters: Approximately 77 million.

• Total size: 77× 106 parameters ×4 bytes/parameter = 3.08× 108 bytes.

Bounding Boxes

• Bounding boxes: four-tuple (x, y, height,width), each an int32.

• For n bounding boxes: Total size = 4× 4 bytes ×n boxes = 16n bytes.

Waypoints Each waypoint is represented as a relative coordinate in the 128x128 BEV, and it will
take approximately 14 bits.
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Figure 7: BEV decoding. In the setting where agents share the same encoder-decoder in the WM, the
agents are able to decode the state from other agents directly using the locol decoder.

E EXPERIMENTS DETAILS

Open Source. Each agent is trained on one Nvidia A100 GPU. The overall training time for the
agent is about 20 hours. The source code and numerical results will be open sourced. The overall
flowchart of the proposed CALL is depicted in Figure 6 and Figure 7.

Demo videos and images. We provide the detailed demo videos and images in the supplementary
materials.

Report of Standard Deviation in Figures. Note that all the learning curves presented in this work
are smoothed by using exponential moving average with smoothing factor 0.72, with the shaded area
to be the standard deviation. We use the smoothing algorithm provided by wandb.ai platform.

E.1 TRAINING ENVIRONMENT AND TASKS.

Local Trajectory Planning. The conventional approach to studying autonomous driving involves
distinct modules, comprising perception, planning, and control. Perception aims to extract relevant
information for autonomous vehicles from their surroundings. Control is responsible for determining
optimal actions such as steering, throttle, or brake, ensuring the autonomous vehicles adhere to the
planned path. The primary objective of planning is to furnish vehicles with a secure and collision-free
path toward their destinations, considering vehicle dynamics, maneuvering capabilities in the presence
of obstacles, and adherence to traffic rules and road boundaries. In our work, we take an end-to-end
approach to address the local trajectory planning tasks for autonomous driving and focus on the
lower-level of decision making while adhering to the planned waypoints. The goal of the vehicle is to
generate a sequence of actions in order to travel along the planned waypoints while following the
travel rules (e.g., speed limit) and avoiding collision with other vehicles. In particular, we consider
the decision making problem in the multi-agent system as a stochastic game with state space, action
space and reward defined as follows.

State Space. There are two parts of information considered as vehicle’s state. First, the environment
observation from sensors such as cameras, radar and LiDAR, which captures the objects in the
environments and corresponding geographical information. Meanwhile, the other vehicles behavior
information, such as their waypoins as action intention. Following the standard approach Bansal et al.
(2018); Chen et al. (2023), we use a BEV semantic segmentation image with size of 128 as the unified
state representation of the state. For instance, in Figure 8, the blue line represents ego vehicle’s
planned waypoints. The yellow line is the other vehicle’s planned waypoints. The ego vehicle is
marked in red while the other vehicle that can be observed by ego agent is marked in green. The
vehicle in yellow represents the blocked vehicle (from ego agent’s perspective) but can be ‘observed’
by using shared information. The gray vehicle is not visible for ego agent.

Action Space. In our experiments, we consider the discrete action space. Particularly, at
each time step, the agent needs to choose acceleration and steering angle from [−2, 0, 2] and
[−0.6,−0.2, 0, 0.2, 0.6], respectively.
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Figure 8: Examples of BEV representations (top left square).

Reward. We design the reward as the weighted sum of six different factors, i.e.,
Rt = w1Rsafe + w2Rcomfort + w3Rtime + w4Rvelocity + w5Rori + w6Rtarget,

In particular,

• Rsafe is the time to collision to ensure safety

• Rcomfort is relevant to jerk behavior and acceleration

• Rtime is to punish the time spent before arriving at the destination

• Rvelocity is to penalize speeding when the velocity is beyond 5m/s and the leading vehicle is
too close

• Rori is to penalize the large orientation of the vehicle

• Rtarget is to encourage the vehicle to follow the planned waypoints

Number of Vehicles. In our experiments, we consider the number of vehicles to be 150 and 250,
respectively, to demonstrate the scalability of the proposed CALL framework. The agents determine
their waypoints for the next steps while updating them during the interaction. All the experiments are
conducted in CARLA Town04 as shown in Figure 8. In this section, we summarize the experiment
results in the 250 vehicles systems.

E.2 WORLD MODEL TRAINING

We use Dreamer v3 Hafner et al. (2023) structure, i.e., encoder-decoder, RSSM Hafner et al. (2019),
to train the world model and adopt the large model for all experiments with dimension summarized
in Table 4. We first restate the hyper-parameters in Table 5.

Learning BEV Representation. The BEV representation can be learnt by using algorithms such as
BevFusion Liu et al. (2023), which is capable of unifying the cameras, LiDAR, Radar data into a
BEV representation space. In our experiment, we leverage the privileged information provided by
CARLA Dosovitskiy et al. (2017), such as location information and map topology to construct the
BEVs.
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Dimension L

GRU recurrent units 2048
CNN multiplier 64

Dense hidden units 768
MLP layers 4

Parameters 77M

Table 4: Model Sizes Hafner et al. (2023).

Name Symbol Value
General

Replay capacity (FIFO) — 106

Batch size B 16
Batch length T 64
Activation — LayerNorm+SiLU

World Model
Number of latents — 32
Classes per latent — 32

Reconstruction loss scale βpred 1.0
Dynamics loss scale βdyn 0.5

Representation loss scale βrep 0.1
Learning rate — 10−4

Adam epsilon ϵ 10−8

Gradient clipping — 1000

Actor Critic
Imagination horizon H 15

Discount horizon 1/(1− γ) 333
Return lambda λ 0.95

Critic EMA decay — 0.98
Critic EMA regularizer — 1

Return normalization scale S Per(R, 95)− Per(R, 5)
Return normalization limit L 1
Return normalization decay — 0.99

Actor entropy scale η 3 · 10−4

Learning rate — 3 · 10−5

Adam epsilon ϵ 10−5

Gradient clipping — 100

Table 5: Dreamer v3 hyper parameters Hafner et al. (2023).

World Model Training. The world model is implemented as a Recurrent State-Space Model (RSSM)
Hafner et al. (2019; 2023) to learn the environment dynamics, encoder, reward, continuity and
encoder-decoder. We list the equations from the RSSM mode as follows:

RSSM


Sequence model: ht = fϕ(ht−1, zt−1, at−1)

Encoder: zt ∼ qϕ(zt|ht, xt)
Dynamics predictor: ẑt ∼ pϕ(ẑt|ht)
Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)
Continue predictor: ĉt ∼ pϕ(ĉt|ht, zt)
Decoder: x̂t ∼ pϕ(x̂t|ht, zt)

(11)

We follow the same line as in Dreamer v3 Hafner et al. (2023) to train the parameter ϕ. We include
the following verbatim copy of the loss function considered in their work.
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Given a sequence batch of inputs x1:T , actions a1:T , rewards r1:T , and continuation flags c1:T , the
world model parameters ϕ are optimized end-to-end to minimize the prediction loss Lpred, the
dynamics loss Ldyn, and the representation loss Lrep with corresponding loss weights βpred = 1,
βdyn = 0.5, βrep = 0.1:

L(ϕ) .
= Eqϕ

[∑T
t=1(βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
. (12)

Lpred(ϕ)
.
= − ln pϕ(xt|zt, ht)− ln pϕ(rt|zt, ht)− ln pϕ(ct|zt, ht)

Ldyn(ϕ)
.
= max

(
1,KL[sg(qϕ(zt|ht, xt))|| pϕ(zt|ht) ]

)
Lrep(ϕ)

.
= max

(
1,KL[ qϕ(zt|ht, xt) ||sg(pϕ(zt|ht))]

) (13)

Actor-Critic Learning. We consider the prediction horizon to be 16 as the same as in Dreamer v3
while training the actor-critic networks. We follow the same line as in Dreamer v3 and consider the
actor and critic defined as follows.

Actor: at ∼ πθ(at|xt)
Critic: vψ(xt) ≈ Epϕ,πθ

[Rt],
(14)

where Rt
.
=
∑∞
τ=0 γ

τrt+τ with discounting factor γ = 0.997. Meanwhile, to estimate returns that
consider rewards beyond the prediction horizon, we compute bootstrapped λ-returns that integrate
the predicted rewards and values:

Rλt
.
= rt + γct

(
(1− λ)vψ(st+1) + λRλt+1

)
RλT

.
= vψ(sT ) (15)

E.3 CHOICE OF DATASET AND BASELINE

Choice of Baseline. Our choice of baselines was guided by several important considerations:

• First, we focused on world model-based approaches specifically designed for autonomous
driving tasks, given the unique challenges of the high-dimensional CARLA environment.
Many conventional RL approaches struggle with the curse of dimensionality in such settings
without substantial modifications. We choose the SOTA work just published in 2024 Li
et al. (2024) on autonomous driving planning, which is based on DreamerV3, as our primary
baseline (denoted as ‘Local Obs.’ in Figure 3(a)). Additionally, we included a variant
without waypoint sharing (LSI) for ablation studies of the impact of our communication
mechanism.

• The works in Table 1 either not using world model (hence not being able to effectively deal
with high-dimensional inputs in CARLA), or lack of intention sharing (which is essential
for planning) or have requirements on for sharing all information among agents (hence
impractical for a large multi-agent systems as considered in our work). While the works by
Pan et al. (2022); Liu et al. (2024) are world model based methods, they were developed
for fundamentally different environments, i.e., the DeepMind Control Suite and SMAC
benchmark respectively. Adapting these methods to CARLA’s autonomous driving setting
would require significant architectural modifications that could compromise their original
design principles. For instance, both [R1,R2] do not have dedicated module for intention
process, which is critical for autonomous driving to understand the potential actions of other
agents in the environment.

• To ensure fair comparison, we believe it’s more appropriate to compare against methods
specifically designed for similar autonomous driving scenarios, and in this case, Think2drve
(Dreamerv3 based) approach is the SOTA on solving planning in CARLA benchmart. To our
knowledge, CALL represents the first multi-agent world model-based approach specifically
designed for autonomous driving tasks.

Choice of Benchmark. CARLA presents substantially more challenging scenarios compared to
traditional multi-agent benchmarks like DeepMind Control Suite and SMAC, particularly due to its
realistic vehicle dynamics and multi-agent interactions that follow traffic rules and safety protocols.
Meanwhile, the planning in CARLA generally need longer-horizon and prediction (3-5 seconds
ahead) versus shorter planning horizons as in other benchmarks.

While CALL’s core principles of distributed learning, prediction-driven communication, and ego-
centric world models, are indeed applicable to other multi-agent scenarios, we chose autonomous
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driving as our primary test case due to its compelling combination of real-world significance and
rigorous requirements for safety, efficiency, and scalability. The successful demonstration of CALL
in this challenging environment provides strong evidence for its potential effectiveness in other
multi-agent settings.

E.4 SUPPLEMENTARY EXPERIMENT RESULTS

Pre-training. We warm-start our agents to facilitate the training speed. The pre-trained model is
obtained from trajectory planning tasks with 50 background vehicles and a fixed ego path. The BEVs
consist of all the vehicles without waypoints and are used as inputs. We migrate the model after 80k
steps to more a complex setting with 150 vehicles, and 170k steps to the setting with 250 vehicles
and random ego paths.

Larger Scale Experiments. To validate the scalability of the proposed CALL, we consider the
challenging setting in the CARLA simulator with 250 agents. The learning performance and ablation
studies are summarized below.

(a) Learning performance. (b) Ablation study on state sharing.

Figure 9: The learning performance comparison and the ablation study on the model state.

Figure 10: The ablation studies on the waypoints sharing.

Figure 11: Learning Speed Comparison. It can be seen that at around 230k, the full observation with
WP setting reaches the same return as in LSI setting. We include the standard error in the figures
(shaded area) coming from the exponential moving average smoothing process with parameter 0.72
(we use the same smoothing code as the one provided by wandb.ai platform).
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Evaluation Metrics We evaluate the performance of the ego agent in the multi-agent system, where
we assume the RL agents in the system have the same world model, e.g., encoder-decoder and RSSM
Hafner et al. (2023). Each evaluation session contains 15k steps. In particular, we consider the
following metrics. The testing results are summarized in Table 6.

• Percentage of successes: the percentage of the waypoints that the car successfully reached.
• Average TTC: the average Time to Collision during the testing episode
• Collision Rate: The percentage of collision steps over all the evaluation steps.

Metric Success Rate Average TTC Collision Rate
Full Observation 80% 2.233 0.59 %

LSI 87% 2.845 0.28 %
LSS 52% 1.52 0.63 %

Table 6: Testing Results.

Evaluation Curve. We summarize the agent’s performance in the same testing environment with
different settings in Figure 12. It can be seen that LSI and full observation setting reach the very
similar return during the evaluation, while both are better than local information setting.

0.0 0.6 1.2
Steps 1e4

300

150

0

150

Re
tu

rn

Full obs.
Local obs.
ESI

Figure 12: Evaluation curves in three settings: Local observation, Full observation and CALL.

E.5 WORLD MODEL’S GENERALIZATION CAPABILITY

In Figures 13 and 14, we provide more examples of the prediction results during training stage using
the world model.

World Model’s Generalization Capability in the Seen Environment with Changing Background
Traffics. We train the world model within a four-lane road section in CARLA Town04. The total
distance between the source and destination endpoints is around 150m. To evaluate the generalization
capability of the world model, we randomly generate source and destination endpoints, lane changing
points, and background traffic (ref. Figure 15).

World Model’s Generalization Capability in the Unseen Environment. Next, we evaluate the
world model’s generalization capability in unseen road sections such as the two-lane section and
crossroad. The evaluation results in Figure 16 show that the world model can generalize to various
environments without compromising the overall performance.
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(a) Multi-step Prediction with Local Information only.

(b) Multi-step Prediction with LSI in CALL.

(c) Multi-step Prediction with Full Observation.

Figure 13: The comparison of the BEV multi-step prediction results with different information
settings.

Figure 14: Comparison of underlying true BEV and LSI BEV.

F THE HETEROGENEOUS CASE: DIFFERENT AGENTS HAVE DIFFERENT WORLD
MODELS

In this case, the WMs vary across agents and, therefore, latent spaces may be different. As a result,
the shared latent representation is not decodable. To resolve this issue, it is plausible for each agent
to first map local high-dimensional sensory inputs to semantic BEVs, in a cross-modal manner. Since
semantic BEVs are interpretable by all vehicle agents (BEV can be viewed as a common language by
vehicles), agents of interest can share local BEVs, which can then be fused, together with waypoints,
into an enhanced and expanded BEV for the ego agent. As illustrated in Figure 17, the fused BEV
can be then encoded into latent representation by WM to improve prediction and planning.
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Figure 15: Evaluation of World Model’s Generalization Capability in the four-lane road section with
randomly generated traffic and ego paths.

Figure 16: Evaluation of World Model’s Generalization Capability in the unseen environment.

Figure 17: Heterogeneous World Model Setting. In this setting, agents are equiped with different
encoder-decoders.

G IMPACT OF THE PREDICTION ACCURACY THRESHOLD c

We first summarize the prediction accuracy driven mechanism as follows:

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 18: An illustration of CALL in a two-agent case: Each agent encodes high-dimensional sensory
inputs and planned waypoints into low-dimensional latent state and latent intent, which can be shared
via lightweight communications (e.g., red dashed arrow) and used as inputs to enrich perception and
planning. Aided by information sharing, the generalization capabilities of world models lend each
agent the power of foresight, enabling it to obtain better prediction of future environment dynamics
in multi-agent systems.

• Step 1: Each agent continuously monitors its prediction performance by comparing predicted
latent states and intentions against actual observations over the past K time-steps.

• Step 2: When prediction errors exceed a threshold c, the agent automatically increase its
communication range by 5 meters and initiates selective information exchange with relevant
neighboring agents. Otherwise, the agent will remain its current communication range for
information exchange.

Our empirical analysis demonstrates the critical relationship between the prediction accuracy threshold
c and system performance. Figure 19 reveals that at 120k training steps, very low c values necessitate
near-complete network communication, approaching centralized implementation with substantial
bandwidth requirements ( 5MB). However, this extensive information sharing does not translate to
optimal performance, likely due to the inclusion of non-essential or potentially noisy information
that may impede efficient learning. We observe that performance generally improves as c increases
from 0 to 50, reaching peak efficiency in the range c ∈ [10, 80], before declining for larger values. At
the extreme (c→∞), agents operate in isolation without communication, leaving the fundamental
challenges of partial observability and non-stationarity in MARL unaddressed.

Figure 20 illustrates the relationship between communication bandwidth and the prediction accuracy
threshold. Higher c values indicate greater tolerance for prediction errors, resulting in more selective
information sharing. Notably, when c = 50, the communication bandwidth requirements are
approximately 50 times lower than the full observation case, while maintaining strong performance.
This demonstrates that CALL achieves efficient communication without sacrificing effectiveness.
Furthermore, the broad range of c values yielding good performance (c ∈ [10, 80]) suggests that the
algorithm is robust to threshold selection, making it practical for real-world implementation.
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Figure 19: Return v.s. Parameter c

Figure 20: Bandwidth v.s. Parameter c
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