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Abstract
Chain-of-thought (CoT) prompting can guide001
language models to engage in complex multi-002
step reasoning. The quality of provided demon-003
strations significantly impacts the success of004
downstream inference tasks. While existing005
automated methods prioritize accuracy and se-006
mantics in these demonstrations, we show that007
the underlying reasoning patterns play a more008
crucial role in such tasks. In this paper, we009
propose PA-CoT, a prompting method that con-010
siders the diversity of demonstration patterns.011
By incorporating patterns such as step length012
and mathematical symbols within intermediate013
steps, PA-CoT effectively mitigates the issue014
of bias induced by demonstrations and enables015
better generalization to diverse scenarios. We016
conduct experiments on six reasoning bench-017
mark tasks using two open-source LLMs. The018
results show that our method substantially en-019
hances reasoning performance and exhibits ro-020
bustness to errors. The code will be made avail-021
able upon acceptance.022

1 Introduction023

Large language models (LLMs) have been proven024

highly effective in solving complex reasoning tasks.025

One technique contributing to their success is026

the chain-of-thought (CoT) prompting (Wei et al.,027

2022b), which motivates the LLMs to perform028

multi-step reasoning instead of providing direct029

answers. This approach can significantly enhance030

the model’s ability to handle challenging tasks such031

as arithmetic and commonsense questions.032

Generally, the overall effectiveness of CoT re-033

lies on the quality of the demonstrations provided.034

When confronted with no examples but only the035

prompt “Let’s think step by step”, known as Zero-036

Shot-CoT (Kojima et al., 2022), LLMs struggle037

with reasoning and encounter hallucination-related038

issues. While manually designing demonstrations039

for each question can alleviate such problems (Wei040

et al., 2022b), it comes with a significant labour041

Figure 1: Example of the chain-of-thought reasoning
process: This comprises a question accompanied by a
rationale. The rationale serves as a depiction of how
LLMs navigate the reasoning process to arrive at the
answer to the given question.

cost. To address such challenges, Zhang et al. 042

(2023) propose Auto-CoT, which can automati- 043

cally construct demonstrations as prompts. It ini- 044

tially partitions questions from a given dataset into 045

clusters and then selects a representative question 046

from each cluster. The selected questions are an- 047

swered using Zero-Shot-CoT to obtain their ratio- 048

nales (the intermediate reasoning chain). The per- 049

formance of this automated method is comparable 050

to that of Manual-CoT. 051

Despite the efficacy of the automated method, 052

how to develop a sound and complete set of demon- 053

strations remains an area for further exploration. 054

Several studies advocate for incorporating external 055

knowledge to ensure the accuracy of the intermedi- 056

ate reasoning chain (Zhao et al., 2023; Weng et al., 057

2023; Li et al., 2024). Others suggest generating 058

multiple CoT paths, complemented by a verifica- 059

tion process to maintain self-consistency (Wang 060

et al., 2023b; Yao et al., 2023; Liu et al., 2023). 061
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However, most prior research focuses on the preci-062

sion of demonstrations, with limited exploration of063

the distributional power inherent in these demon-064

strations. Enlightened by Min et al. (2022) and065

Madaan et al. (2023), LLMs perform CoT through066

a counterfactual approach: it does not necessitate067

precise example results but rather learns from the068

underlying patterns (e.g. equations, templates)069

exhibited by the examples.070

In this paper, we introduce a novel approach071

called Pattern-Aware Chain-of-Thought (PA-CoT)072

and demonstrate that LLMs can achieve improved073

reasoning performance by embracing the diversity074

inherent in demonstration patterns. Following the075

Auto-CoT schema, we automatically generate ques-076

tion clusters and select representative questions077

from each cluster. However, instead of relying078

solely on question embeddings for clustering, we079

explore multiple methods to enrich the diversity080

of rationale patterns. We contend that the conven-081

tional embedding-based clustering focuses solely082

on question semantics, lacks reflection on the ra-083

tionale, and consequently fails to encompass the084

full spectrum of demonstrations, as shown in Fig-085

ure 1. To quantify the diversity of patterns, we086

introduce three metrics: (i) the length or steps of087

the rationale, where a shorter rationale implies a088

simpler solution, while a longer one indicates more089

complex reasoning requirements; (ii) the mathemat-090

ical symbols within the rationale, where distinct091

equations represent different solving approaches;092

and (iii) a combination of rationale steps and sym-093

bols, providing a comprehensive perspective that094

considers both aspects simultaneously.095

We evaluate the performance of PA-CoT across096

six arithmetic reasoning tasks. The experimental097

results consistently demonstrate that the combina-098

tion strategy outperforms other methods across two099

LLMs. This suggests that LLMs derive substan-100

tial benefits from the diverse patterns presented101

in demonstrations. Further experiments are con-102

ducted to examine the impact of rationale step and103

symbol aspects. We empirically find that PA-CoT104

introduces less bias to the generated answer and105

exhibits error robustness, attributed to our strategy106

emphasizing diversity.107

2 Related Work108

This section reviews how chain-of-thought (CoT)109

prompting works and introduces various advanced110

approaches.111

2.1 Chain-of-Thought Prompting 112

Large language models have demonstrated signifi- 113

cant ability in comprehending context and respond- 114

ing to prompts (Brown et al., 2020; Ouyang et al., 115

2022). Recent studies highlight that LLMs can 116

achieve improved task completion without fine- 117

tuning, particularly on reasoning tasks, when pro- 118

vided with few-shot demonstrations (Wei et al., 119

2022b). For instance, when presented with an ex- 120

ample like Q: Mary has 9 yellow marbles. John 121

has 3 yellow marbles. How many yellow marbles 122

do they have in all? A: They have 9 + 3 = 12 yel- 123

low marbles. The answer is 12, LLMs are expected 124

to emulate such a format, deconstruct the ques- 125

tion, engage in multi-step reasoning, and refrain 126

from generating random answers in subsequent 127

tasks. This process is commonly referred to as 128

chain-of-thought prompting or in-context learning 129

(Wei et al., 2022a; Xie et al., 2022). However, im- 130

plementing this practice often involves the manual 131

design of prompts at a labour cost. Consequently, 132

researchers are exploring more efficient example 133

selection strategies to streamline this process. 134

2.2 Example Selection and Refinement 135

Several CoT studies are directed towards automat- 136

ing the generation of demonstrations, such as 137

retrieval-based (Rubin et al., 2022), zero-shot (Ko- 138

jima et al., 2022), clustering-based (Zhang et al., 139

2023), and self-prompt (Shao et al., 2023). How- 140

ever, many of these approaches encounter chal- 141

lenges in achieving performance comparable to 142

Manual-CoT, primarily due to the absence of super- 143

vision in example selection. In another branch of re- 144

search, efforts are focused on enhancing the quality 145

of CoT demonstrations. They incorporate elements 146

such as knowledge-infusion (Zhao et al., 2023; 147

Weng et al., 2023; Li et al., 2024), self-consistency 148

(Wang et al., 2023b), complexity-based (Fu et al., 149

2022), contrastive-based (Chia et al., 2023), and 150

progressive-hint (Zheng et al., 2023). The primary 151

goal of these strategies is to ensure that LLMs ad- 152

here to the correct prompt and avoid being misled. 153

2.3 Role of Example Pattern 154

To understand the underlying mechanism of CoT, 155

Min et al. (2022) and Madaan et al. (2023) employ 156

counterfactual prompting methods. These methods 157

involve substituting question-answer mapping, to- 158

ken distributions, answer patterns, and many other 159

factors. Their findings consistently show that the 160
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Figure 2: Example of Auto-CoT and PA-CoT. The upper part comprises selected demonstrations and a test question,
and the lower part displays the corresponding answer generated by the same LLM.

correctness of examples is not the most crucial161

factor, but rather the distribution or pattern (e.g.162

equations, templates, sentence structure) of the ex-163

amples. In this paper, we continue to uncover the164

power of CoT patterns and show how they can im-165

prove the reasoning process.166

3 Pattern-Aware Chain-of-Thought167

We now explore the impact of diverse demonstra-168

tion reasoning patterns on chain-of-thought prompt-169

ing. According to Min et al. (2022), the precision170

of demonstrations is not crucial when LLMs en-171

gage in CoT. Even if all the demonstrations pro-172

vided are incorrect, it would only marginally im-173

pede performance. This aligns with the insight de-174

rived from Auto-CoT (Zhang et al., 2023): cluster-175

ing zero-shot question-answer pairs (Kojima et al.,176

2022) without emphasizing accuracy can still yield177

valuable examples. Consequently, our focus shifts178

to a more nuanced factor - the underlying reason-179

ing pattern that harbours more informative content180

(Madaan et al., 2023) - to evaluate its potential181

benefits for the CoT process.182

We argue that demonstrations function as tem-183

plates, and they provide accessible reasoning for-184

mats for LLMs to emulate. The homogeneity in185

demonstrations poses a risk of introducing bias 186

into the generated answers (Wang et al., 2023a). 187

Conversely, maintaining diverse demonstrations 188

enables a broader exploration of new reasoning 189

inferences. Although Auto-CoT claims to cluster 190

based on diversity, it predominantly clusters by 191

question semantics, providing limited assistance 192

in problem-solving. In light of this, we propose 193

Pattern-Aware Chain-of-Thought (PA-CoT) that 194

refines the example selection process to enhance 195

the variety of reasoning chains. This approach en- 196

sures that selected examples contribute to a broader 197

range of cases, fostering more generalizable out- 198

comes. 199

In particular, we choose to experiment with arith- 200

metic problems since the symbol patterns are rel- 201

atively intuitive. Given a dataset, each question is 202

first answered by adding the phrase “Let’s think 203

step by step” (zero-shot). Then we select k ques- 204

tions along with their rationales to serve as a gen- 205

eral demonstration prompt for the entire dataset 206

(Wei et al., 2022b; Zhang et al., 2023). We design 207

a rationale-based demonstration selection method 208

followed by three simple yet efficient variants to 209

form our testbed: 210

• Cluster based on rationale semantics. This 211
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approach involves a straightforward shift from212

question embeddings to rationale embeddings.213

The goal is to determine if the underlying214

pattern can be discovered through this mi-215

nor alteration. However, our experiment indi-216

cates that this method can still be distracted217

from irrelevant elements such as characters218

or scenes, hindering its ability to generate di-219

verse demonstrations.220

• Cluster based on rationale step length. This221

approach is inspired by the notion of reason-222

ing complexity (Fu et al., 2022; Zhou et al.,223

2022), where a simple task typically involves a224

few steps, and a complex task requires longer225

reasoning chains. Our aim is for the demon-226

strations to encompass both aspects simultane-227

ously. For instance, if all demos are complex,228

the test question may involve an unnecessar-229

ily lengthy reasoning process, and vice versa.230

To validate this hypothesis, we include two231

comparative studies in our experiment.232

• Cluster based on symbols in the rationale.233

This approach is specifically designed for234

mathematical problems, where explicit equa-235

tions are prevalent. In these problems, a sym-236

bol can effectively represent a solution for237

a particular question type. For example, an238

equation like 2+3 = 5 can evoke the associa-239

tion of addition, but it provides little assistance240

in understanding multiplication. Our findings241

demonstrate that diverse symbol patterns can242

significantly mitigate bias in the rationale, as243

illustrated in Figure 2.244

• Combination of step length and symbols.245

Given that the previously mentioned methods246

focus on distinct dimensions of rationale pat-247

terns, this approach seeks to integrate them,248

offering a comprehensive perspective. As se-249

mantics may introduce irrelevant distractions,250

it is not considered in this method. There251

are various ways to combine step length and252

symbols, and we opt for the straightforward253

concatenation of the two dimensions. We also254

test additional variants in subsequent experi-255

ments.256

In summary, we adopt the aforementioned257

methods as our demonstration clustering strategy.258

We explicitly extract patterns for each question-259

rationale pair and encode them into vector rep-260

resentations using Sentence-BERT (Reimers and261

Gurevych, 2019). For instance, we encode “3” if 262

the step length is 3 (split by “. ” or “\n”), encode 263

“+” if the symbol appears in the rationale (concate- 264

nate if there are multiple symbols), and encode “3 265

+” for our combination strategy. These representa- 266

tions undergo processing by the k-means clustering 267

algorithm, similar to Auto-CoT. Within each clus- 268

ter, we sort the distances and select the example 269

closest to the centre. It is important to note that 270

Wei et al. (2022b) and Zhang et al. (2023) both 271

impose restrictions on the chosen example, requir- 272

ing it to be simple (question less than 60 tokens 273

and rationale less than 5 steps). In contrast, we 274

do not impose such restrictions to preserve variety. 275

The k selected question-rationale pairs are then 276

assembled as the final prompt for inference. 277

4 Experiments 278

In this section, our objective is to evaluate the ef- 279

fectiveness of our proposed PA-CoT and assess 280

whether the introduced variety yields benefits. 281

4.1 Experimental Setup 282

Datasets. We adopt six arithmetic problem 283

datasets for our reasoning tasks: MultiArith (Roy 284

and Roth, 2015), GSM8K (Cobbe et al., 2021), 285

AddSub (Hosseini et al., 2014), AQUA-RAT (Ling 286

et al., 2017), SingleEq (Koncel-Kedziorski et al., 287

2015), and SVAMP (Patel et al., 2021). They re- 288

quire certain reasoning steps and are commonly 289

used for CoT method comparisons (Wei et al., 290

2022b; Kojima et al., 2022; Zhang et al., 2023; 291

Wang et al., 2023a; Fu et al., 2022). 292

Language Models. We consider open-source 293

large language models as our inference engine. 294

Specifically, we choose LLaMA-2-7b-chat-hf (Tou- 295

vron et al., 2023) and qwen-7b-chat (Bai et al., 296

2023) models, as they have been reported to be 297

comparable to GPT-3.51 in terms of arithmetic abil- 298

ity and possess chain-of-thought reasoning capabil- 299

ities. These LLMs are deployed on our local server 300

equipped with 8x NVIDIA GeForce RTX 3090. 301

We use the inference function of these models 302

and the process does not involve training or fine- 303

tuning. We set the hyperparameter temperature as 304

0.4 to regulate the model’s randomness (Xu et al., 305

2022). 306

It is noteworthy that, as highlighted by Wei et al. 307

(2023), larger models are more susceptible to the 308

1https://platform.openai.com/docs/models
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Table 1: Accuracy (%) on six arithmetic reasoning datasets.

Model MultiArith GSM8K AddSub AQuA SingleEq SVAMP

LLaMA-2-7b-chat-hf

Zero-Shot-CoT 72.33 21.00 57.97 24.01 57.67 41.90
Auto-CoT 76.00 27.36 58.48 24.01 64.96 43.80

PA-CoT-semantic 74.83 26.76 63.29 24.80 66.92 47.19
PA-CoT-step 76.16 24.41 67.59 29.13 66.14 47.59
PA-CoT-symbol 79.66 25.39 65.06 25.19 71.85 48.50
PA-CoT-concat 76.67 28.05 66.83 29.92 71.06 50.10

qwen-7b-chat

Zero-Shot-CoT 87.33 42.83 54.93 35.03 69.09 55.70
Auto-CoT 90.66 47.01 62.53 30.31 80.31 60.19

PA-CoT-semantic 91.33 44.80 65.06 31.88 78.74 59.00
PA-CoT-step 90.33 46.85 74.17 33.07 78.14 62.00
PA-CoT-symbol 90.50 47.16 67.59 29.52 82.08 61.50
PA-CoT-concat 91.33 48.14 72.40 33.46 83.85 62.30

influence of examples. We observe that these 7B309

models can also be impacted. Thus, PA-CoT is310

expected to be effective in enhancing their perfor-311

mance.312

Baselines. We primarily compare our methods313

with Zero-Shot-CoT (Kojima et al., 2022) and314

Auto-CoT (Zhang et al., 2023). To clarify the dif-315

ferent variations of our proposed PA-CoT method,316

we note each pattern at the end of its name. For317

example, PA-CoT-semantic for clustering based on318

rationale semantics, and similarly for PA-CoT-step,319

PA-CoT-symbol, and PA-CoT-concat.320

4.2 Main Results321

Table 1 displays the overall performance of various322

methods on two LLMs. Since our primary focus323

is on evaluating the effectiveness of PA-CoT, we324

are not concerned with determining which LLM325

outperforms the other. Based on the results, we326

have the following observations:327

• Auto-CoT consistently outperforms Zero-328

Shot-CoT, indicating that the cluster-sample329

strategy is effective across different LLMs.330

With the guidance of demonstrations, LLMs331

exhibit an enhanced capability to generate im-332

proved results.333

• Simply switching from question embeddings334

(Auto-CoT) to rationale embeddings (PA-CoT-335

semantic) does not yield significant benefits,336

as they generally perform at a similar level.337

We attribute this phenomenon to the inherent338

similarity between the two embeddings. As339

the embedding encoder considers the entire340

sentence as input, it unavoidably incorporates 341

numerous irrelevant elements, such as charac- 342

ters and scenes. Consequently, this approach 343

does not effectively address the fundamental 344

problem. 345

• Considering naive rationale patterns (PA-CoT- 346

step and PA-CoT-symbol) can notably en- 347

hance performance in various scenarios, with 348

some instances even ranking first among all 349

methods. This observation suggests that by 350

incorporating diverse patterns into demonstra- 351

tions, LLMs can effectively learn from this 352

variability and generalize better across the en- 353

tire dataset. However, given the inherent char- 354

acteristics of different datasets, a single pat- 355

tern may not universally adapt to every case, 356

leading to occasional failures. 357

• Concatenating step length and symbol pat- 358

terns (PA-CoT-concat) consistently produces 359

the most favourable results across various sce- 360

narios compared to alternative methods. This 361

finding implies that LLMs derive substantial 362

benefits from incorporating multiple dimen- 363

sions in the demonstration. The inclusion of 364

both step length and symbol patterns encom- 365

passes a broader spectrum of the data distri- 366

bution. Consequently, they are less prone to 367

sampling similar examples, contributing to 368

improved overall performance. 369

In summary, we present different approaches 370

and evaluate their performance on arithmetic rea- 371

soning tasks. The results indicate the significance 372

of demonstration patterns. 373
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Table 2: Comparison between methods with various demonstration lengths.

Model MultiArith GSM8K AddSub AQuA SingleEq SVAMP

qwen-7b-chat
PA-CoT-step 90.33 46.85 74.17 33.07 78.14 62.00
CoT-simple 84.50 43.82 70.37 27.55 80.31 62.00
CoT-complex 81.50 41.16 74.43 OOM 78.14 59.40

(a) MultiArith (b) SVAMP

Figure 3: The box plot of generated rationale length across CoT-simple (pink), PA-CoT-step (blue), CoT-complex
(green). The x-axis represents method names, and the y-axis represents the number of sentence tokens. The box
in the middle represents where half of the numbers are. Extending from the box are whiskers that reach out to
the minimum and maximum values within a specific range. Circles denote outliers, and the line splitting the box
represents the median.

4.3 Impact of Step Length374

To explore the influence of step length on LLMs’375

inference, we conduct additional experiments on376

this factor. In particular, we introduce two com-377

parison methods: CoT-simple and CoT-complex.378

CoT-simple involves selecting examples with the379

fewest rationale steps, while CoT-complex involves380

selecting examples with the most (Fu et al., 2022).381

We aim to assess whether our PA-CoT-step method382

outperforms these two comparison methods.383

Table 2 illustrates the performance of PA-CoT-384

step alongside two comparison methods. Over-385

all, PA-CoT-step demonstrates advantages over the386

other two methods in most scenarios. We observe387

that CoT-complex tends to generate more errors388

during long intermediate steps and faces an out-389

of-memory (OOM) issue when the input becomes390

excessively long. While CoT-simple yields decent391

results in specific cases, it struggles with tasks re-392

quiring intricate reasoning.393

We further visualize the distribution of gener-394

ated answer length as in Figure 3. The box in the395

middle represents the interquartile range (IQR) and396

encapsulates the middle 50% of the data, with its 397

lower and upper boundaries marked by the first 398

quartile (Q1) and third quartile (Q3), respectively 399

(Williamson et al., 1989; Kampstra, 2008). Inside 400

the box, a line denotes the median (Q2) and in- 401

dicates the dataset’s central tendency. Extending 402

from the box are whiskers that reach out to the min- 403

imum and maximum values within a specific range. 404

Individual points beyond the whiskers signify po- 405

tential outliers in the dataset. 406

The plot illustrates the correlation between the 407

length of demonstrations and the number of gen- 408

erated tokens. With predominantly short demon- 409

strations, CoT-simple tends to produce concise an- 410

swers, resulting in a lower average value. Con- 411

versely, CoT-complex encourages longer answers, 412

with most taking an extended route to complete 413

the task. PA-CoT-step, on the other hand, main- 414

tains a moderate average rationale length. It covers 415

a wider range from simple to complex reasoning. 416

This adaptability allows it to perform well in more 417

general situations. 418
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Table 3: Comparison between methods with various combination strategies.

Model MultiArith GSM8K AddSub AQuA SingleEq SVAMP

LLaMA-2-7b-chat-hf
PA-CoT-concat 76.67 28.05 66.83 29.92 71.06 50.10
PA-CoT-sep 76.16 26.09 66.58 25.19 68.91 49.70
PA-CoT-mean 75.83 27.67 68.86 24.01 70.86 48.19

4.4 Impact of Symbol Patterns419

To investigate the role of symbol patterns in demon-420

strations, we also perform additional experiments421

on this aspect. Specifically, we categorize answers422

from Auto-CoT and PA-CoT-symbol based on ba-423

sic arithmetic symbols: Addition, Subtraction, Mul-424

tiplication, and Division. We then tally the num-425

ber of correct and incorrect instances within each426

group. Figure 4 presents a comparison of the re-427

sults on datasets AddSub and SingleEq, where the428

tasks are relatively straightforward.429

Our observations reveal that Auto-CoT produces430

more incorrect arithmetic equations, leading to a431

higher error rate within each symbol group. This432

indicates a higher likelihood of being misled by433

the demonstrations. For instance, as depicted in434

Figure 2, the selected demos for Auto-CoT exhibit435

an overemphasis on multiplication. This trend is436

reflected in the results of Figure 4, where Auto-437

CoT generates instances solved using multiplica-438

tion even when it is not appropriate. In contrast,439

PA-CoT-symbol exhibits a better ability to select440

the correct solving approach, resulting in fewer441

errors within each group.442

4.5 Combination Strategy443

The preceding sections showcase the impact of444

different pattern aspects. We now turn our atten-445

tion to exploring the optimal way to combine them.446

We initially devise PA-CoT-concat to encode the447

concatenation of step length and symbol strings.448

Considering the potential limitations of this ap-449

proach, we introduce two alternative methods to450

explore potential improvements. The first approach451

involves concatenating separate vector representa-452

tions encoded from step length and symbol strings,453

denoted as PA-CoT-sep. The second approach em-454

ploys mean pooling over the separate vector rep-455

resentations, denoted as PA-CoT-mean. All other456

settings remain constant as we conduct experiments457

on LLaMA-2-7b-chat-hf.458

Table 3 presents the comparison results of these459

combination strategies. Overall, the performance460

of PA-CoT-concat slightly exceeds that of PA-CoT-461

(a) AddSub

(b) SingleEq

Figure 4: The distribution of the number of correct and
wrong instances regarding different arithmetic symbols.

sep and PA-CoT-mean. We attribute this outcome 462

to the different practices of semantics encoding. 463

PA-CoT-concat takes the entire pattern string as 464

input, where the encoded vector reflects an inte- 465

gration of information. In contrast, the other two 466

approaches separate the two patterns into distinct 467

vectors, which creates a gap between their distribu- 468

tions. 469

In conclusion, our exploration of PA-CoT and 470

its combination strategies sheds light on the im- 471

portance of considering diverse demonstration pat- 472

terns in enhancing language models’ reasoning ca- 473
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MultiArith GSM8K AddSub

AQuA SingleEq SVAMP

Figure 5: Visualization of clustering on six reasoning tasks. Cluster centres are noted as stars. The scatter of
PA-CoT-concat clusters shows its superiority in example differentiation.

Dataset Demos Incorrect Error Rate

MultiArith 8 2 25.0%
GSM8K 8 5 62.5%
AddSub 8 3 37.5%
AQuA 4 4 100%

SingleEq 8 2 25.0%
SVAMP 8 3 37.5%

Table 4: The number of demonstrations and their error
rate for each dataset.

pabilities. Despite slight variations in performance474

among the approaches, our findings underscore the475

significance of integrating multiple pattern aspects476

for improved reasoning outcomes.477

4.6 Error Robustness478

It is noteworthy that we do not enforce accuracy479

constraints on demonstrations. We proceed to480

count the incorrect instances within our selected481

demonstrations, as illustrated in Table 4.482

It is intriguing to notice that the majority of483

our provided prompts are imperfect, with AQuA484

even exhibiting a 100% error rate. This phe-485

nomenon suggests that LLMs struggle to discern486

incorrect examples from correct ones. Instead, they487

learn from how the example approaches problem-488

solving, which we refer to as “pattern”. PA-CoT489

encourages LLMs to follow the most probable rea-490

soning chain towards the final answer and thus 491

provides a significant improvement. 492

4.7 Visualization 493

Figure 5 visualizes the k clusters of PA-CoT-concat 494

on six reasoning tasks through PCA projection. 495

The plot depicts that there is an apparent diver- 496

gence between each cluster. The scatter implies 497

that the step length and symbols can effectively dif- 498

ferentiate the patterns. With such diversities, LLMs 499

can more effectively learn from demonstrations to 500

generalize reasoning scenarios. 501

5 Conclusion 502

This paper introduces a novel pattern-aware chain- 503

of-thought prompting method, which significantly 504

enhances the reasoning performance of language 505

models. Our experiments reveal that incorporating 506

a variety of rationale step lengths prevents LLMs 507

from taking excessively long or short steps, thereby 508

maintaining a balanced inference chain. Similarly, 509

diverse symbol patterns instruct LLMs to select 510

appropriate reasoning routes and reduce bias from 511

singular patterns. We also introduce a combination 512

strategy that considers both aspects simultaneously 513

with the best performance. Further investigations 514

show the effectiveness of our proposed strategy. 515

Apart from performance gains, our method offers 516

additional advantages such as ease of use and error 517

robustness. 518
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Limitations519

Due to the shutdown of OpenAI code-davinci-002520

and text-davinci-002 API, we are unable to perform521

experiments on their models. Since most previous522

works choose to experiment on these models, we523

seek alternative LLMs as our inference engine. The524

two LLMs used in this paper are open-source, CoT-525

capable, and comparable to code-davinci-002. We526

hope such a practice can help future researches.527
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