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Abstract
We consider Bayesian optimization using Gaus-
sian Process models, also referred to as kernel-
based bandit optimization. We study the method-
ology of exploring the domain using random sam-
ples drawn from a distribution. We show that this
random exploration approach achieves the opti-
mal error rates. Our analysis is based on novel
concentration bounds in an infinite dimensional
Hilbert space established in this work, which may
be of independent interest. We further develop
an algorithm based on random exploration with
domain shrinking and establish its order-optimal
regret guarantees under both noise-free and noisy
settings. In the noise-free setting, our analysis
closes the existing gap in regret performance un-
der a mild assumption on the underlying func-
tion and thereby partially resolves a COLT open
problem. The proposed algorithm also enjoys a
computational advantage over prevailing methods
due to the random exploration that obviates the
expensive optimization of a non-convex acquisi-
tion function for choosing the query points at each
iteration.

1. Introduction
1.1. GP-based Bayesian Optimization

We consider the problem of sequential optimization of an
unknown, possibly non-convex, function f : X → R. The
learner sequentially chooses a query point xt ∈ X at each
time t and observes the function value (potentially subject to
noise) at xt. The learning objective is to approach a global
maximizer x∗ of the function through a sequence of query
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points {xt}Tt=1 chosen sequentially in time. In addition to
the convergence of {xt}Tt=1 to x∗, an online measure of the
learning efficiency is the cumulative regret

R(T ) =

T∑
t=1

[f(x∗)− f(xt)] . (1)

The above problem finds a wide range of applications in-
cluding hyperparameter optimization (Li et al., 2016), ex-
perimental design (Greenhill et al., 2020), recommendation
systems (Vanchinathan et al., 2014) and robotics (Lizotte
et al., 2007). An approach that has proven to be particularly
effective is Bayesian Optimization (BO) using Gaussian
Process (GP) models (a.k.a. kernel-based bandit optimiza-
tion). The unknown objective function f is assumed to live
in a Reproducing Kernel Hilbert Space (RKHS) associated
with a known kernel. Within the GP-based BO framework,
f is viewed as a realization of a Gaussian process over X .
With each new query xt, the learner sharpens the posterior
distribution and uses it as a proxy for f for subsequent op-
timization. We point out that such a Bayesian approach is
equally applicable to a frequentist formulation where f is
deterministic as considered in this work. In this case, the
GP model of f is fictitious and internal to the algorithm.

Under the assumption of noise-free query feedback,
BO techniques were used for optimization as early as
1964 (Kushner, 1964). GP-based BO was popularized
through the work of Močkus et al. (1978). Since then, a
number of approaches have been developed and analyzed
over the years, often under certain conditions on the ker-
nels and functional characteristics around x∗ (see Sec. 1.3
for a detailed discussion). Surprisingly, despite the long
history, an algorithm with guaranteed order-optimal regret
performance remains open as discussed in Vakili (2022).

GP-based BO under noisy query was studied much more
recently, following the pioneering work by Srinivas et al.
(2010) where they proposed the celebrated GP-UCB algo-
rithm. Extensive studies since then have fully character-
ized the achievable learning performance, both in terms of
information-theoretic lower bounds (Scarlett et al., 2017)
and the design of algorithms such as SupKernel-UCB (Valko
et al., 2013), GP-ThreDS (Salgia et al., 2021), BPE (Li
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& Scarlett, 2022), and RIPS (Camilleri et al., 2021) that
achieve the optimal performance.

Under both the noise-free and noisy settings, a key practical
concern for GP-based algorithms is their computational cost.
The major computational bottleneck of prevailing GP-based
algorithms is the maximization of an acquisition function
for choosing the query point at each time instant. The acqui-
sition functions are often non-convex and computationally
expensive to maximize. To achieve low regret order, such an
optimization often needs to be carried out with increasing
accuracy as time goes, resulting in a high overall computa-
tional requirement.

1.2. Main Results

We explore a new design methodology for GP-based BO:
an open-loop exploration of the domain using query points
sampled at random from an arbitrary probability distribu-
tion supported over the domain. We show that this random
exploration approach, while simplistic in nature, leads to
order-optimal regret guarantees under both noise-free and
noisy feedback models, thus closing the long standing regret
gap in the noise-free setting. Moreover, the non-adaptive
nature of random sampling bypasses the expensive step of
optimizing a non-convex acquisition function, offering a
computationally efficient solution without sacrificing learn-
ing efficiency.

Random exploration, while not new to many problems (see
Sec. 1.3), has not been considered or analyzed for GP-based
BO. It stands in sharp contrast to the prevailing exploratory
query strategy in GP-based BO: the maximum posterior vari-
ance (MPV) sampling. Under MPV, the learning algorithm
at each time queries the point with the highest posterior
variance conditioned on past observations, i.e., a greedy ap-
proach to maximal uncertainty reduction. Surprisingly, we
show that the simple, non-adaptive scheme of random ex-
ploration achieves the same order of predictive performance
as MPV sampling, which is known to be order-optimal. In
particular, we show that the worst-case posterior variance
corresponding to n randomly drawn points is bounded with
high probability by Õ(γn/n) and Õ(n1−β) under noisy and
noise-free feedback models, where γn is the maximal infor-
mation gain from n query points and β > 1 is the order of
the polynomial eigendecay of the kernel (see Sec. 2 for their
definitions).

A simpler solution is often more demanding when it comes
to establishing optimality in performance. The drastically
different nature of random exploration from MPV demands
different analytical techniques in characterizing its predic-
tive performance. The tightest bound on the worst-case
predictive error of MPV sampling, derived in Wenzel et al.
(2021), was obtained using the results on scattered data in-
terpolation (i.e., approximating an unknown function using

a given set of points) of functions in Sobolev spaces that
provide bounds on the worst-case estimation error of the
best interpolant based on the fill distance of the given set of
points (Wendland, 2004; Narcowich et al., 2006; Brenner
et al., 2008; Arcangéli et al., 2012; Wenzel et al., 2021).
Since RKHSs of Matérn kernels are norm-equivalent to
Sobolev spaces, these results also immediately translate to
estimation errors for function interpolation in RKHSs. The
analytical techniques used in these studies require various
technical assumptions on the regularity of the function do-
main and its boundary. These technical assumptions on
the function domain present major challenges in incorporat-
ing MPV sampling with effective optimization techniques
such as domain shrinking/elimination, hindering its poten-
tial applicability in designing algorithms with optimal regret.
In contrast, in analyzing random exploration, we establish
the concentration of the spectrum of the sample covariance
operator to that of the true covariance operator that holds uni-
versally for all compact domains. The crux of our analysis
builds upon a careful treatment of the infinite-dimensional
operators to separately ensure the concentration of the initial
spectrum (consisting of the larger eigenvalues) and the tail
spectrum, which allows us to obtain optimal convergence
rate. The simplicity of random exploration in its imple-
mentation and the generality in its guaranteed predictive
performance as established in this work make this explo-
ration strategy an attractive alternative to MPV. We believe
that the tools and techniques established here are of inde-
pendent interest for extending the methodology of random
exploration to other problem fields.

Built upon the above key results on random exploration,
we develop and analyze a new algorithm for GP-based BO.
Referred to as Random Exploration with Domain Shrinking
(REDS), this algorithm integrates the exploration strategy
of random sampling with the optimization technique of do-
main shrinking (Li & Scarlett, 2022; Salgia et al., 2021).
Under the noise-free feedback model, we show that REDS
incurs a cumulative regret of Õ(max{T (3−β)/2, 1}), which
closes the gap to the known lower bound established in Tuo
& Wang (2020) and hence resolves the longstanding open
problem. The generality of random exploration, both in
terms of the design methodology and performance guaran-
tee is the reason behind the optimal regret performance of
REDS. In particular, the order-optimal predictive perfor-
mance of random exploration that holds universally over
all compact domain enables a seamless integration of this
exploration strategy with domain shrinking. Similarly, in
the noisy setting, we show that REDS offers a cumulative re-
gret of Õ(

√
TγT ), which is order-optimal up to logarithmic

factors.

The computational advantage of REDS is evident due to the
simplicity of random exploration. We further demonstrate
this with empirical studies where we compare REDS with
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BPE (Li & Scarlett, 2022) and GP-ThreDS (Salgia et al.,
2021), all offering optimal regret performance. GP-ThreDS
was shown to be computationally more efficient than prevail-
ing algorithms such as GP-UCB. We show that REDS offers
a significant speed-up in running time over both algorithms
without compromising the regret performance. As shown
in Table 1, REDS offers a ∼ 15× and ∼ 100× speed-up in
runtime over GP-ThreDS and BPE, respectively.

1.3. Related Work

For GP-based BO with noise-free feedback, a number of al-
gorithms such as GP-EI (Močkus, 1975), EGO (Jones et al.,
1998), knowledge-gradient policy (Frazier et al., 2008),
and GP-PI (Kushner, 1964; Törn & Žilinskas, 1989; Jones,
2001) have been proposed, which have since become classi-
cal. We refer the reader to the excellent tutorial by Brochu
et al. (2010) for a more detailed description of the classi-
cal approaches. Despite their good empirical performance
and popularity, theoretical guarantee on the convergence
of these algorithms has only been established relatively re-
cently. Vazquez & Bect (2010) showed that EI converges
almost surely for any function drawn from a GP prior of
finite smoothness. Grünewälder et al. (2010) established the
convergence rate of a computationally infeasible version
of EI. Later, Bull (2011) established convergence rates for
the computationally feasible version, showing that GP-EI
achieves the optimal simple regret for Matérn kernels with
smoothness ν < 1, which does not translate to optimal
cumulative regret performance. More recently, De Freitas
et al. (2012) proposed the Branch and Bound algorithm that
achieves a constant cumulative regret in Bayesian setting
under additional assumptions on the differentiability of the
kernel and the behaviour around the unique global maxi-
mum, which in practice are difficult to verify. In contrast,
REDS requires no such additional assumptions and is ana-
lyzed in the frequentist setting. Lyu et al. (2020) showed
that for kernels with a polynomial eigendecay with parame-
ter β (See Definition 2.2), the GP-UCB algorithm achieves a
regret ofO(T

1+β
2β ), which is sub-optimal, as shown in Vakili

(2022).

The idea of using random sampling has been explored in
related fields. The reconstruction of square integrable func-
tions using random samples is a well-studied problem (Bohn
& Griebel, 2017; Bastian Bohn, 2017; Bohn, 2018; Smale &
Zhou, 2004; Cohen et al., 2013; Chkifa et al., 2015; Cohen &
Migliorati, 2017). In particular, a series of studies considers
efficient reconstruction of functions in RKHS using random
samples drawn from the domain (Kämmerer et al., 2021;
Krieg & Ullrich, 2021a;b; Moeller & Ullrich, 2021). De-
spite certain similarities in the problem setup, an important
point of distinction is that these studies focus on bounding
the L2 error of the reconstruction. In this work, we focus
on bounding the sup-norm (or equivalently, L∞ norm) of

the estimation error, which is larger than the L2 norm and
more challenging than bounding the L2 norm. Since the
analysis of algorithms requires a bound on the sup-norm of
the estimation error, existing results are not applicable here.

2. Problem Statement
2.1. RKHS and Mercer’s Theorem

Let X be a compact subset of Rd and ϱ a finite Borel mea-
sure supported on X . A measure ϱ is said to be supported
on X if ϱ(Y) > 0 for all open sets Y ⊂ X . For X ⊂ Rd,
this is equivalent to ϱ being absolutely continuous w.r.t. the
Lebesgue measure. Let L2(ϱ,X ) denote the Hilbert space
of (real) functions defined over X that are square-integrable
w.r.t. ϱ1.

Consider a positive definite kernel k : X × X → R. A
Hilbert space Hk of functions on X equipped with an in-
ner product ⟨·, ·⟩Hk

is called a Reproducing Kernel Hilbert
Space (RKHS) with reproducing kernel k if the following
conditions are satisfied: (i) ∀ x ∈ X , k(·, x) ∈ Hk; (ii)
∀ x ∈ X , ∀ f ∈ Hk, f(x) = ⟨f, k(·, x)⟩Hk

. For simplicity,
we use ψx to denote k(·, x). The inner product induces the
RKHS norm, ∥f∥2Hk

= ⟨f, f⟩Hk
. WLOG, we assume that

k(x, x) = ∥ψx∥2Hk
≤ 1. For brevity, we drop the subscript

ofHk from the inner product for the rest of the paper.

Mercer’s Theorem provides an alternative representation
for RKHSs through the eigenvalues and eigenfunctions of
a kernel integral operator defined over L2(ϱ,X ) using the
kernel k.
Theorem 2.1. (Steinwart & Christmann, 2008, Theorem
4.49) LetX be a compact metric space, k : X×X → R be a
continuous kernel and ϱ be a finite Borel measure supported
on X . Then, there exists an orthonormal system of func-
tions {φj}j∈N in L2(ϱ,X ) and a sequence of non-negative
values {λj}j∈N satisfying λ1 ≥ λ2 ≥ · · · ≥ 0, such that
k(x, x′) =

∑
j∈N

λjφj(x)φj(x
′) holds for all x, x′ ∈ X and

the convergence is absolute and uniform over x, x′ ∈ X .
Moreover, {(λj , φj)}j∈N corresponds to the eigensystem of
the kernel integral operator Tk : L2(ϱ)→ L2(ϱ) given by
Tkf =

∫
X k(·, x)f(x)dϱ(x) for all f ∈ L2(ϱ).

Consequently, the Mercer representation (Steinwart &
Christmann, 2008, Thm. 4.51) of the RKHS of k is given as

Hk =

f :=
∑
j∈N

αjλj
1
2φj : ∥f∥2Hk

=
∑
j∈N

α2
j <∞

 .

This also implies that {υj}j∈N with υj =
√
λjφj is an

orthonormal basis forHk. The following definition charac-

1To be rigorous, each f ∈ L2(ϱ,X ) represents the class of
functions that are equivalent ϱ-everywhere.
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terizes a class of kernels based on their eigendecay profile
corresponding to their Mercer representation.

Definition 2.2. Let {λj}j∈N denote the eigenvalues of a
kernel k arranged in the descending order. The kernel k is
said to satisfy the polynomial eigendecay condition with a
parameter β > 1 if, for some universal constant C > 0, we
have λj ≤ Cj−β for all j ∈ N.

The above class of kernels encompasses a large number
of kernels including the widely used Matérn family. We
make the following assumption on the kernel k which is
commonly adopted in the literature (Vakili et al., 2021b;
Chatterji et al., 2019; Riutort-Mayol et al., 2023).

Assumption 2.3. The eigenfunctions {φj}j∈N correspond-
ing to k are continuous and hence bounded on X , i.e., there
exists F > 0 such that supx∈X |φj(x)| ≤ F for all j ∈ N.

2.2. Problem Formulation

We consider the problem of optimizing a fixed and unknown
function f : X → R, where X ⊂ Rd is a compact domain
and f ∈ Hk with ∥f∥Hk

≤ B. A sequential optimization al-
gorithm chooses a point xt ∈ X at each time t and observes
yt = f(xt) + εt. In the noise-free setting, εt ≡ 0 for all t.
For the noisy setting, we assume that {εt}Tt=1 are indepen-
dent, zero-mean,R-sub Gaussian random variables for some
fixed constant R ≥ 0, i.e., E[exp(ζεt)] ≤ exp(ζ2R2/2),
for all ζ ∈ R and t ≤ T . The performance of the sequential
algorithm is measured using the notion of cumulative regret,
as defined in Eqn. (1).

2.3. Preliminaries on Gaussian Processes

Under the GP model, the unknown function f is treated
hypothetically as a realization of GP(0, k), a Gaussian Pro-
cess over X with zero mean and k(·, ·) as the covariance
kernel. The noise terms ε are also viewed as zero mean
Gaussian variables with variance τ . The conjugate prop-
erty of GPs with Gaussian noise allows for a closed form
expression of the posterior distribution. Specifically, let
Zt = {(xi, yi)}ti=1 denote a collection of points and their
corresponding observations obtained according to the model
described in Sec. 2.2. Then, conditioned onZt, the posterior
distribution of f is also a GP with the following mean and
covariance functions:

µt,τ (x) = k⊤Xt,x(KXt,Xt
+ τIt)

−1Yt, (2)

kt,τ (x, x̄) = k(x, x̄)− k⊤Xt,x(KXt,Xt
+ τIt)

−1kXt,x̄,

(3)

where kXt,x = [k(x1, x), . . . k(xt, x)]
⊤, Yt =

[y1, . . . , yt]
⊤, KXt,Xt

= [k(xi, xj)]
t
i,j=1 and It is the t× t

identity matrix. The posterior variance at a point x is given
as σ2

t,τ (x) = kt,τ (x, x). The expression for posterior mean

and variance in the noise-free setting is simply obtained by
setting τ = 0 in the above relations.

The posterior mean and variance computed using the GP
model above are powerful tools to predict the values of
the unknown function f and to quantify the uncertainty in
the prediction. In particular, the prediction error at a point
x ∈ X , |f(x)−µt,τ (x)|, can be upper bounded by ασt,τ (x),
for a certain scaling factor α > 0 that depends on the feed-
back model (Vakili et al., 2021a). Lastly, we define the
information gain of a set of points Xn = {x1, x2, . . . , xn}
as

γ̃Xn,τ :=
1

2
log
(
det
(
It + τ−1KXn,Xn

))
. (4)

Similarly, we define the maximal information gain as
γn,τ := supXn⊂Xn γ̃Xn,τ . Maximal information gain is
an important term that corresponds to the effective dimen-
sion of the kernel and helps characterize the regret of the
algorithms. It depends only on the kernel and τ .

3. The Predictive Performance of Random
Exploration

The following theorem characterizes the predictive variance,
and consequently the predictive error, of a set of randomly
sampled points from the domain.

Theorem 3.1. Let X be a compact subset of Rd, ϱ be a
finite Borel measure supported on X , and k : X × X → R
be a continuous kernel satisfying the polynomial eigen-
decay condition with parameter β > 1 (Defn. 2.2). Let
Xn = {x1, x2, . . . , xn} denote a collection of n i.i.d. points
drawn from X according to ϱ. Let σ2

n,0 and σ2
n,τ denote,

respectively, the posterior variance conditioned on Xn in
the noise-free setting and the noisy setting with a noise vari-
ance of τ > 0. Then, for a given δ ∈ (0, 1), there exists
a constant N(δ, k, ϱ, τ) > 0, such that, with probability at
least 1− δ, for all n > N(δ, k, ϱ, τ),

sup
x∈X

σ2
n,τ (x) = O

(τγn,τ
n

)
= Õ((n/τ)

1
β−1),

sup
x∈X

σ2
n,0(x) = Õ(n1−β).

The above obtained bounds on the worst-case posterior
variance under the random exploration scheme are order-
optimal (up to polylogarithmic factors), matching the ex-
isting lower bounds (Scarlett et al., 2017; Tuo & Wang,
2020). The above theorem also improves upon the best
known results for noisy scattered data approximation. In
particular, for the class of Matérn kernels with smoothness
ν (i.e., β = (2ν + d)/d), Theorem 3.1 implies a worst-
case predictive error of Õ(n−

ν
2ν+d ), improving upon the

bound of Õ(n−
ν

2ν+2d ) established by Wynne et al. (2021,
Corollary 3).
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The constant N(δ, k, ϱ, τ) is related to the kernel k and
measure ϱ through two fundamental functions, N(R) and
T (R), which are given as follows for any R ∈ N:

N(R) := sup
x∈X

R∑
j=1

φ2
j (x),

T (R) := sup
x∈X

∞∑
j=R+1

λjφ
2
j (x) = sup

x∈X

∞∑
j=R+1

υ2j (x).

They are referred to as the spectral functions of the kernel
(see Gröchenig (2020) and references therein) because of
their dependence on the eigensystem corresponding to the
kernel k induced by the measure ϱ. Both N(R) and T (R)
are fundamental quantities that appear in the analysis of
reconstruction and estimation of functions in general L2

spaces. The function N(R) corresponds to the inverse of
the infimum of the Christoffel function (Dunkl & Xu, 2014)
in the special case of reconstruction using orthogonal poly-
nomials. Under Assumption 2.3 and the condition of poly-
nomial eigendecay (Def. 2.2), N(δ, k, ϱ, τ) can be shown to
be bounded as O(max{F 4, (F 2/τ)

1
β−1 } log(F/δ)). The

dependence of N(δ, k, ϱ, τ) on δ is mild, as evident from
the previous expression. Lastly, N(δ, k, ϱ, τ) is inversely
proportional to τ . Note that Theorem 3.1 ensures that a
smaller value of τ results in a tighter bound on the posterior
variance, which in turn requires a larger number of samples.
We refer the interested reader to the Appendix A for a more
detailed discussion of N(δ, k, ϱ, τ) and its dependence on
N(R) and T (R). For brevity, we drop the arguments and
use the notation N in the rest of the paper.

We provide a sketch of the proof of Theorem 3.1 below and
refer the reader to Appendix A for a detailed proof.

Proof. The main idea of the proof is to relate the worst-
case posterior variance conditioned on Xn to γ̃Xn,τ . This
relation is established in two parts. In the first part, we
establish that as the number of samples grow, the spectrum
of random operator Ẑ concentrates to that of Z, where Ẑ,Z :
Hk → Hk are defined as follows:

Ẑg :=

[
n∑

i=1

⟨g, ψxi
⟩ψxi

]
+ τg; Z := EXn

[Ẑ],

where {x1, x2, . . . , xn} denotes the random ensemble of
points drawn according to the measure ϱ. The concentration
in spectral norm allows us to approximate the expression
of σ2

n,τ (x) = τ⟨ψx, Ẑ
−1ψx⟩ as σ2

n,τ (x) ≈ τ⟨ψx,Z
−1ψx⟩,

i.e., by replacing the sample covariance operator, Ẑ, with the
true covariance operator, Z. Here, A−1 denotes the inverse
of an operator A, i.e., A ◦ A−1 = A−1 ◦ A = Id and Id
denotes the identity operator. Thus, this step allows us to
obtain a deterministic bound on posterior variance, which is

easier to understand and analyze. We establish the required
relation using the following two lemmas:

Lemma 3.2. For all n ≥ N , the following relation holds
with probability 1− δ/2:

∥Z− 1
2 ẐZ− 1

2 − Id∥2 ≤ 1/9.

Lemma 3.3. If the relation ∥Z− 1
2 ẐZ− 1

2 −Id∥2 ≤ b is true
for some b ∈ (0, 1/3), then following is true ∀ x ∈ X :

⟨ψx, Ẑ
−1ψx⟩ ≤

√
1− b

√
1− b−

√
2b
· ⟨ψx,Z

−1ψx⟩.

Lemma 3.2 forms the cornerstone of the proof of the the-
orem. The result is established by bounding the expres-
sion |⟨g, (Z−1/2ẐZ−1/2 − Id)g⟩| for an arbitrary g with
∥g∥Hk

= 1. We bound the above expression by decompos-
ing it into a sum of three terms. Each of the three terms
is then carefully bounded using a combination of Matrix-
Chernoff inequality (Tropp, 2012, Theorem 1.1), a result
for spectral norm concentration based on non-commutative
Khinchtine inequality (Buchholz, 2001; 2005; Moeller &
Ullrich, 2021) and Bernstein inequality. Lemma 3.3 is es-
tablished using a combination the structure of covariance
matrices, the Cauchy-Schwarz inequality and the relation
between the operator norm and 2-norm. We would like to
emphasize that both the above lemmas are true in general
for all eigendecay profiles and even without Assumption 2.3
being true.

In the second part, we show that, with high probability, the
information gain of the (random) set Xn is lower bounded
by n · supx∈X ⟨ψx,Z

−1ψx⟩, upto a multiplicative constant.
The above idea is formalized in the following lemma.

Lemma 3.4. For all n ≥ N , the following relation holds
with probability 1− δ/2:

γ̃Xn,τ ≥
13

54F 2
· n · sup

x∈X
⟨ψx,Z

−1ψx⟩.

Thus ⟨ψx,Z
−1ψx⟩ serves as the bridge for connecting the

posterior variance to maximal information gain.

The result for the noisy case follows immediately from the
above lemmas by noting that γXn,τ ≤ γn,τ . For the noise-
free setting, the results do not carry forward immediately as
the above analysis does not hold for τ = 0. To circumvent
this issue, we use the fact that σ2

n,τ (x) is an increasing
function of τ . Thus, we obtain a bound on σ2

n,0(x) by using
the bound on σ2

n,τ∗(x), where τ∗ is a carefully chosen value
that not only allows us to use the analysis from the noisy
case but also ensures that σ2

n,τ∗ is a close representation of
σ2
n,0 to guarantee tightest possible bounds.
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Remark 3.5. We would like to emphasize that the above
result holds for samples generated under every finite Borel
measure ϱ supported on X . However, the quality of the
estimate changes with the choice of the measure through
the leading constant in the bound in Theorem 3.1.

4. The REDS algorithm
In this section, we present the proposed algorithm and ana-
lyze its regret performance.

4.1. REDS with Noise-Free Feedback

REDS integrates random exploration with domain shrinking.
It proceeds in epochs, maintaining an active regionXr of the
domain during each epoch r ≥ 1. The sequence of active
regions {Xr}r shrinks across epochs, i.e., Xr ⊆ Xr−1 ⊆
. . .X1 = X , while ensuring x∗ ∈ Xr for all r with high
probability. During the rth epoch, REDS samples Nr points,
uniformly at random from the setXr, whereNr = N1 ·2r−1

and the initial batch size N1 is an input to the algorithm. If
Xr consists of multiple disjoint regions, then we carry out
this step for each region separately.

Using the observations from these points, REDS computes
the posterior mean and variance function over Xr, denoted
by µr and σ2

r respectively, using the Equations (2) and (3)
with τ = 0. The posterior mean and variance are then used
to obtain Xr+1, an improved localization of x∗, as follows:

Xr+1 =

{
x ∈ Xr

∣∣∣∣ UCBr(x) ≥ sup
x′∈Xr

LCBr(x
′)

}
.

Here, UCB(x) = µr(x)+Bσr(x) and LCB(x) = µr(x)−
Bσr(x) correspond to upper and lower bounds on the esti-
mate of f . A pseudocode for the algorithm is provided in
Algorithm 1.

4.2. REDS under noisy feedback

The REDS algorithm can be extended to operate under
noisy feedback with the following two minor modifications
to Algorithm 1. First, the posterior mean and variance
(µr,τ , σ

2
r,τ ) in each epoch should be computed using a noise

variance τ > 0 (Line 9 of Algorithm 1). Second, the upper
and lower confidence bounds, i.e., UCB and LCB (Line 10
of Algorithm 1), should be updated to the following:

UCBr,τ,δ(x) := µr,τ (x) + ατ,δσr,τ (x) + cT,τ,δ (5)
LCBr,τ,δ(x) := µr,τ (x)− ατ,δσr,τ (x)− cT,τ,δ, (6)

where ατ,δ = B + R
√
(2/τ) log(|DT |/δ), cT,τ,δ = 2B

T +

R
√

2
Tτ log

(
4T
δ

)
and DT is defined in Assumption 4.1.

Algorithm 1 Random Exploration with Domain Shrinking

1: Input: N1, the initial batch size.
2: Set X1 ← X , tcurr ← 0, r ← 1
3: for t = tcurr + 1, tcurr + 2, . . . , tcurr +Nr do
4: Sample a point xt uniformly at random from Xr and

observe yt
5: if t > T then
6: Terminate
7: end if
8: end for
9: Construct µr and σr based on observations {(xt, yt :
t ∈ {tcurr +1, tcurr +2, . . . , Nr}} using Eqn (2) and (3)
with τ = 0.

10: Set Xr+1 = {x ∈ Xr | UCBr(x) ≥
supx′∈Xr

LCBr(x
′)}

11: tcurr ← tcurr +Nr, Nr+1 ← 2Nr

12: r ← r + 1

4.3. Performance Analysis

For the analysis of the REDS algorithm, we need to make
the following two additional assumptions.

Assumption 4.1. For all n ∈ N, there exists a dis-
cretization Dn of X such that for all f ∈ Hk, |f(x) −
f([x]Dn

)| ≤ ∥f∥Hk
/n and |Dn| = poly(n)2, where

[x]Dn
= argminy∈Dn

∥x − y∥2, is the point in Dn that
is closest to x.

Assumption 4.2. Let Lf
η = {x ∈ X |f(x) ≥ η} denote

the level set of f for η ∈ [−B,B]. Let X ′ be a sub-
set of Lf

η with a finite number of connected components.
Let UCBt(x;X ′) denote the upper confidence bound on
the function f at any point x ∈ X ′, constructed using t
points sampled uniformly at random from each compo-
nent of X ′. For any η′ ≥ η, we define LUCBt

η′ = {x ∈
X ′|UCBt(x;X ′) ≥ η′} to be the level set of the upper con-
fidence bound at level η′. Let η0 := sup f − ε0 for some
fixed, known ε0 > 0. We assume the following for all X ′

and t ≥ N .

1. For any η ≥ η0, the number of connected components
in Lf

η are at most Mf .

2. For any η′ ≥ η ≥ η0, the number of connected compo-
nents of LUCBt

η′ are at most M more than those of {x ∈
X ′ : f(x) ≥ η′} with probability 1 − δ/(2 log2 T ),
where the probability is taken over the randomness in
query points and noise (if any).

3. For each such component of LUCBt

η′ , there exists a bi-
Lipschitzian map between each such component and
X with normalized Lipschitz constant pair L,L′ <∞.

2The notation f(x) = poly(x) is equivalent to f(x) = O(xk)
for some k ∈ N.
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Figure 1: Cumulative regret averaged over 10 Monte Carlo runs for all algorithms across different benchmark functions.
The shaded region represents the error bars upto one standard deviation. As evident from the plots, the regret of REDS is
comparable to that of BPE and GP-ThreDS.

Assumption 4.1 is only required for the noisy case and is a
standard assumption adopted in the literature. The existence
of such a discretization has been justified and adopted in pre-
vious studies (Srinivas et al., 2010; Chowdhury & Gopalan,
2017; Vakili et al., 2021a; Salgia et al., 2022) and is a mild
assumption on the kernel. Specifically, the popular class of
kernels like Squared Exponential and Matérn kernels are
known to be Lipschitz continuous, in which case a ε-cover
of the domain with ε = O(1/n) is sufficient to show the
existence of such a discretization. Assumption 4.2 is an
assumption on the regularity of the level sets of the function
f and the UCB. The existence of a bi-Lipschitzian map
between two sets implies topological similarity between
the two sets. Intuitively, this assumption ensures that the
shape of the level-sets is not “too arbitrary”. Note that such
an assumption on the level sets of UCB is relatively mild
as the RKHS endows smoothness properties to the UCB
which translate to a degree of topological regularity of level
sets (Alberti et al., 2011; Lee, 2010). We require Assump-
tion 4.2 in conjunction with separate sampling of disjoint
regions for simplicity of analysis. We believe that with re-
fined analysis techniques the need for this assumption, along
with the need to separate sampling of disjoint regions, can
be eliminated. We leave developing such refined analysis
techniques to future work.

The following theorem characterizes the regret performance
of REDS under noise-free feedback.

Theorem 4.3. Assume that the kernel k satisfies the
polynomial eigendecay condition with parameter β > 1
and function f satisfies Assumption 4.2. For a given
δ ∈ (0, 1), if REDS algorithm is run with N1 ≥
max{CLf ,L′

f
N(δ/4 log2(T )), Ñε0} and noise-free feed-

back, then the regret incurred by REDS satisfies,

R(T ) = Õ(max{T
3−β
2 , 1}).

with probability at least 1− δ. Here, CLf ,L′
f

is a constant

that depends only on Lf and L′
f and Ñε0 is a constant that

depends only on ε03 and is independent of T .

The following is an immediate corollary of the above theo-
rem for the case of Matérn kernels.

Corollary 4.4. Let k be the Matérn kernel with smooth-
ness ν > 0. For a given δ ∈ (0, 1), if REDS algorithm
is run with N1 ≥ max{CLf ,L′

f
N(δ/4 log2(T )), Ñε0} un-

der noise-free feedback on a function f ∈ Hk satisfying
Assumption 4.2, then the regret incurred by REDS satisfies,

R(T ) =


Õ(T 1−ν/d) if ν < d,

O((log T )5/2) if ν = d,

O((log T )3/2) if ν > d.

.

with probability at least 1− δ. Here, CLf ,L′
f

is a constant

that depends only on Lf and L′
f and Ñε0 is a constant that

depends only on ε0 and is independent of T .

This matches the result conjectured in Vakili (2022) upto
logarithmic factors, resolving the open problem.

The following theorem characterizes the regret performance
of REDS in the noisy feedback setting.

Theorem 4.5. Consider the noisy observation model de-
scribed in Sec. 2.2 and assume that Assumptions 4.1 and 4.2
hold. For a given δ ∈ (0, 1), if REDS algorithm is run with

3Please refer to Appendix B for additional details.
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N1 ≥ max{CLf ,L′
f
N(δ/(6 log2 T )), Ñ

′
ε0} and UCB and

LCB functions as defined in Eqns. (5) and (6) with param-
eter δ′ = δ/(6 log2 T ), then the regret incurred by REDS
satisfies,

R(T ) = Õ(
√
TγT log(T/δ)).

with probability at least 1− δ. Here Ñ ′
ε0 is a constant that

depends only on ε0 and is independent of T .

As shown by the above theorem, REDS achieves order-
optimal regret (upto logarithmic factors) even under the
noisy feedback model.

The proofs of both Theorems 4.3 and 4.5 follow a similar
blueprint. A key aspect of both the proofs is to ensure that as
Theorem 3.1 is invoked across the sets {Xr}r∈N, the leading
constant in Theorem 3.1, which has an implicit dependence
on the domain through the constant F , remains bounded and
is independent of T . The following lemma shows that for all
functions f satisfying Assumption 4.2, the leading constant
only depends on the function and the initial domain.

Lemma 4.6. Let f ∈ Hk be such that Assumption 4.2 holds.
Let X ′ denote a path connected component of any level set
of f and X ′ ⊂ X ′ be a set of n points drawn uniformly at
random from X ′. Then for n ≥ CL,L′

f
N(δ), the following

relations holds with probability 1− δ:

sup
x∈X ′

σ2
X′,τ (x) ≤ C ′

L,L′
f
· F 2τ · γn,τ

n

sup
x∈X ′

σ2
X′,0(x) ≤ C ′

L,L′
f
· F 2 · n1−β

where F and N(δ) represent, respectively, the constants
in Assumption 2.3 and Theorem 3.1 corresponding to the
uniform measure on X , and CL,L′

f
, C ′

Lf ,L′
f

are constants

that depend only on Lf , L
′
f .

At a high level, the above lemma ensures that under the
regularity condition on the topology of level sets (Assump-
tion 4.2), Theorem 3.1 can be applied across level sets of f
by just paying the penalty of a constant that depends only
on f . The proof is based on the inclusion of RKHSs over
subsets along with a change of measure argument. We refer
the reader to Appendix B for a detailed proof of Lemma 4.6
and Theorems 4.3 and 4.5.

5. Empirical Studies
We compare the computational efficiency of REDS against
algorithms with order-optimal regret performance, namely
BPE (Li & Scarlett, 2022) and GP-ThreDS (Salgia et al.,
2021) through an empirical study. We compare the re-
gret performance and the running time of the three algo-
rithms for three commonly used benchmark functions in
Bayesian Optimization, namely, Branin (Azimi et al., 2012;

BPE GP-ThreDS REDS

Branin 29.84 4.37 0.32

Hartmann-4D 38.45 7.59 0.47

Hartmann-6D 119.71 19.33 1.19

Table 1: Time taken (in seconds) by different algorithms
across the different benchmark functions.

Picheny et al., 2013), Hartmann-4D (Picheny et al., 2013)
and Hartmann-6D (Picheny et al., 2013). All the functions
are defined over X = [0, 1]d, with d = 2, 4, 6 for Branin,
Hartmann-4D and Hartmann-6D respectively.

For all the experiments, we use the Square exponential
kernel. The length scale was set to 0.2 for Branin and 1 for
Hartmann-4D and Hartmann-6D functions. We corrupted
the observations with a zero mean Gaussian noise to the
with a standard deviation of 0.2. The value of τ was also
set to 0.2. All the algorithms were run for T = 1000 time
steps. We recorded the cumulative regret and time taken
by different algorithms for 10 Monte Carlo runs for each
benchmark function. We defer the reader to Appendix C for
additional details of the experimental setup and the choice
of hyperparameters for the algorithms.

The cumulative regret for all the algorithms over different
functions is plotted in Figure 1. The shaded region corre-
sponds to the error bars for one standard deviation on both
sides of the mean. We tabulate the (mean) running time for
all the algorithms over different functions in Table 1. The
values in Table 1 refer to the wall clock time taken by the
algorithms. As evident from the plots in Figure 1, the regret
incurred by REDS is comparable to that of other algorithms
for all benchmark functions. Thus, our algorithm based on
non-adaptive randomized samples offers the same regret
performance as the best performing algorithms based on
adaptive sampling. Moreover, REDS offers the comparable
regret performance at a much lower computational cost and
runtime. Specifically, REDS offers about a 15× and 100×
speedup in terms of runtime over the GP-ThreDS and BPE
(See Table 1). The significant improvement in runtime with-
out loss of performance in regret demonstrates the practical
benefits of our proposed methodology of random sampling.

6. Conclusion
In this work, we studied the methodology of exploring the
domain using random samples drawn from a distribution
supported on a compact domain. We showed that this non-
adaptive approach offers the optimal-order of worst case
predictive error for RKHS function in both noisy and noise-
free feedback settings. The proposed approach offers a
simple alternative for designing Bayesian Optimization al-
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gorithms which typically involve choosing points through a
computationally expensive step of optimizing a non-convex
acquisition function. Based on this methodology, we devel-
oped a algorithm that achieves order-optimal regret in both
noisy and noise-free settings, partially resolving a COLT
open problem. We demonstrated the computational advan-
tage of the proposed approach through an empirical study,
where the proposed algorithm achieved upto a 100× runtime
speed up over state-of-the-art algorithms.
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A. Proof of Theorem 3.1
We begin with setting up some notation that will be used throughout the proof. Throughout the appendix, we will represent
the elements ofHk as infinite dimensional vectors and operators over these function spaces as infinite dimensional matrices.
We adopt such a convention for ease for presentation while keeping in mind that despite the matrix representation, the actual
operation is over elements ofHk. Recall that we defined the sample covariance operator Ẑ for a randomly chosen sample
Xn = {x1, x2, . . . , xn} and its expected value Z = E[Ẑ] as follows for any g ∈ Hk:

Ẑg :=

[
n∑

i=1

⟨g, ψxi⟩ψxi

]
+ τg

Z := E[Ẑ].

In the matrix-vector notation, the operators (equivalently, matrices) are given as:

Ẑ :=

(
n∑

i=1

ψxi
ψ⊤
xi

)
+ τId

Z = E[Ẑ] = E

[
n∑

i=1

ψxiψ
⊤
xi

]
+ τId

= nE[ψx1
ψ⊤
x1
] + τId = nΛ+ τId,

where Id is the identity matrix (operator) and Λ = diag(λ1, λ2, . . . ) is the diagonal matrices consisting of the eigenvalues
of the kernel k corresponding to the measure ϱ. If we define Ψn := [ψx1 , ψx2 , . . . , ψxn ], then we can also write Ẑ =
ΨnΨ

⊤
n + τId. Consequently, the posterior variance at any point x ∈ X is given as:

σ2
n,τ (x) = τψ⊤

x Ẑ
−1ψx.

For any R ∈ N, we define the following two quantities that will be relevant during our analysis:

N(R) := sup
x∈X

R∑
j=1

φ2
j (x), (7)

T (R) := sup
x∈X

∞∑
j=R+1

λjφ
2
j (x) = sup

x∈X

∞∑
j=R+1

υ2j (x). (8)

Recall that {φj}j∈N are eigenfunctions of the kernel operator and form an orthonormal system in L2(ϱ,X ) and {υ}j are an
orthonormal basis forHk. The term N(R) is often referred to as the spectral function (see (Gröchenig, 2020) and references
therein) and in case of orthogonal polynomials, it is the inverse of the infimum of the Christoffel function (Dunkl & Xu,
2014). Both N(R) and T (R) are fundamental quantities that appear in the analysis of reconstruction and estimation of
functions.

Lastly, based on N(R) and T (R), for a given kernel k, measure ϱ and δ ∈ (0, 1), we define the following terms for any
n ∈ N and τ > 0:

R(1)
k,ϱ(n, τ, δ) :=

{
R ∈ N : N(R) ≤ n

1944 log(6n/δ)

}
R(2)

k,ϱ(n, τ, δ) :=

{
R ∈ N : max{42T (R), nλR+1} log

(
12

δ

)
≤ τ

27

}
Rk,ϱ(n, τ, δ) := R(1)

k,ϱ(n, τ, δ) ∩R
(2)
k,ϱ(n, τ, δ)

N(k, ϱ, δ, τ) := max
{
min {n : Rk,ϱ(n, τ, δ) ̸= ∅} , ⌈729 · F 4 · log(12/δ)⌉

}
The dependence on k and ϱ is implicit through {φj}j∈N and {λj}j∈N used to define N(R) and T (R). For brevity of
notation, going forward, we drop the explicit description of dependence on k and ϱ.

12
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We are now ready to prove the theorem. We first prove the statement of the theorem, assuming that the lemmas hold,
followed by the proofs of the lemmas.

We begin with result for the noisy case, where τ > 0 is fixed (independent of n). From Lemma 3.2, we know that for
n ≥ N , ∥Z−1/2ẐZ−1/2 − Id∥2 ≤ 1/9 holds with probability 1− δ. Using this result along Lemma 3.3, we can conclude
that ψ⊤

x Ẑ
−1ψx ≤ 2ψ⊤

x Z
−1ψx holds for all x. Thus, we have,

σ2
n,τ (x) = τψ⊤

x Ẑ
−1ψx

≤ 2τψ⊤
x Z

−1ψx

≤ 108F 2

13
· τ · γ̃Xn,τ

n

≤ 108F 2

13
· τ · γn,τ

n
, (9)

as required. The third line in the above expression follows from Lemma 3.4. We would like to emphasize that the polynomial
eigendecay condition is not necessary to obtain the above relation. It is only necessary to bound the information gain in
terms on n. Under the polynomial eigendecay condition with parameter β > 1, the above equation can also be written as

σ2
n,τ (x) ≤ C0 ·

(n
τ

) 1
β−1

log(n),

where we used the bound on information gain from Vakili et al. (2021b, Corollary 1) and C0 is an appropriately chosen
constant independent of n and τ .

We now consider the noise-free case. Since information gain is only defined for τ > 0, we cannot directly extend the
analysis as used in the noisy case by substituting τ = 0. To circumvent this issue, we carefully choose τ∗ > 0, such that
σ2
n,τ∗ is a close representation of σ2

n,0. We choose τ∗ to be dependent on n such that τ∗ goes to 0 as n becomes larger. This
allows σ2

n,τ∗ to faithfully represent the value of σ2
n,0 over the range of n. Specifically, we choose τ∗ = c′n1−β(log(n/δ))β

for c′ ≥ C(1944F 2)β , where C is the constant in Assumption 2.3. The condition on constant c′ ensures that N(k, ϱ, δ, τ∗)
exists. Since all conditions of the analysis for τ > 0 (noisy case) are satisfied, we can directly invoke the result for τ > 0.
Using the bound on σ2

n,τ and the monotonicity of σ2
n,τ as a function of τ , we obtain,

σ2
n,0(x) ≤ σ2

n,τ∗(x) ≤ C1 · n1−β(log(n/δ))β , (10)

where C1 is a constant independent of n.

In the following subsections, we prove Lemmas 3.2, 3.3 and 3.4.

A.1. Proof of Lemma 3.2

Since we are interested in bounding the 2-norm of the operator Z−1/2ẐZ−1/2 − Id, we will focus on finding an upper
bound on g⊤(Z−1/2ẐZ−1/2− Id)g that holds uniformly for all functions g in the unit ball in RKHS, i.e., {g : ∥g∥Hk

≤ 1}.
The high level idea is to separately consider the contribution of component of g that belongs to the subspace spanned by
eigenfunctions corresponding to the “large” eigenvalues, i.e., head of the spectrum and those corresponding to the “small”
eigenvalues, i.e., tail of the spectrum.

Throughout the proof, we fix a R ∈ Rn,τ . The existence of such an R is guaranteed by the assumption n > N . For the
analysis, we define two projection operators, P and Q. We define P as the projection operator onto the subspace spanned by
{υj}Rj=1, i.e., for any g =

∑
j∈N gjυj ∈ Hk, Pg =

∑R
j=1 gjυj . Note that P is an orthogonal projection operator. Similarly,

we define Q = Id−P.

We also introduce some additional notation for the ease of presentation. We define L to be the diagonal matrix (operator)

whose jth entry is
λj

nλj + τ
. Similarly, let ωi = Λ−1/2ψxi for i = 1, 2, . . . , n. Using this notation, we can rewrite the

13
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matrix Z−1/2ẐZ−1/2 − Id as

Z−1/2ẐZ−1/2 − Id = Z−1/2

(
n∑

i=1

ψxiψ
⊤
xi

+ τId

)
Z−1/2 − Id

=

n∑
i=1

(Z−1/2ψxi)(Z
−1/2ψxi)

⊤ + τZ−1 − Id

=

n∑
i=1

(L1/2ωi)(L
1/2ωi)

⊤ − nL.

For any g ∈ Hk, we have the following decomposition:

|g⊤(Z−1/2ẐZ−1/2 − Id)g| = |(Pg +Qg)⊤(Z−1/2ẐZ−1/2 − Id)(Pg +Qg)|

≤ |(Pg)⊤(Z−1/2ẐZ−1/2 − Id)(Pg)|+ |(Qg)⊤(Z−1/2ẐZ−1/2 − Id)(Qg)|

+ |(Pg)⊤(Z−1/2ẐZ−1/2 − Id) + (Qg)⊤(Z−1/2ẐZ−1/2 − Id)(Pg)|

≤ |g⊤P(Z−1/2ẐZ−1/2 − Id)Pg|︸ ︷︷ ︸
:=E1

+ |g⊤Q(Z−1/2ẐZ−1/2 − Id)Qg|︸ ︷︷ ︸
:=E2

+ 2 |g⊤P(Z−1/2ẐZ−1/2 − Id)Qg|︸ ︷︷ ︸
:=E3

. (11)

We separately bound the terms E1, E2 and E3, beginning we E1. We have,

E1 = |g⊤P(Z−1/2ẐZ−1/2 − Id)Pg|

=

∣∣∣∣∣(Pg)⊤P
(

n∑
i=1

(L1/2ωi)(L
1/2ωi)

⊤ − nLL

)
P(Pg)

∣∣∣∣∣
=

∣∣∣∣∣(Pg)⊤
(

n∑
i=1

(PL1/2Pωi)(PL1/2Pωi)
⊤ − nPLP

)
(Pg)

∣∣∣∣∣
= n

∣∣∣∣∣(Pg)⊤PL1/2P

(
1

n

n∑
i=1

(Pωi)(Pωi)
⊤ −P

)
PL1/2P(Pg)

∣∣∣∣∣
≤ n

∥∥∥∥∥
(
1

n

n∑
i=1

(Pωi)(Pωi)
⊤ −P

)∥∥∥∥∥
2

· ∥PL1/2P(Pg)∥2Hk

≤ n

∥∥∥∥∥
(
1

n

n∑
i=1

(Pωi)(Pωi)
⊤ −P

)∥∥∥∥∥
2

· (g⊤PLPg)

≤

∥∥∥∥∥
(
1

n

n∑
i=1

(Pωi)(Pωi)
⊤ −P

)∥∥∥∥∥
2

· (n∥L∥2) · ∥Pg∥2Hk
. (12)

In the above equations, we used the fact that for any diagonal matrix D, PD = DP = PDP and that P2 = P. Firstly,
note that ∥L∥2 = maxj∈N λj/(nλj + τ) ≤ 1/n. Consequently, n∥L∥2 ≤ 1. Secondly, to bound the first term on the
RHS, we denote Pωi := Ai for all i = 1, 2, . . . , n. We have, E[AiA

⊤
i ] = PE[ωiω

⊤
i ]P = PΛ−1/2E[ψxi

ψT
xi
]Λ−1/2P =

PΛ−1/2ΛΛ−1/2P = P. Moreover, for allAi’s, only the topR×R sub-matrix has non-zero entries, implying it is sufficient
to bound the 2-norm of that finite sub-matrix to bound the first term on the RHS. We use Matrix-Chernoff inequality (Tropp,
2012, Theorem 1.1) to bound the 2-norm of this finite dimensional submatrix.

For all i = 1, 2, . . . , n, let [Ai]R ∈ RR denote the R-dimensional vector corresponding to the first R coordinates of Ai.
Thus, we are interested in applying the Matrix-Chernoff inequality to bound the following expression:

E11 :=

∥∥∥∥∥
(
1

n

n∑
i=1

[Ai]R[Ai]
⊤
R − IR

)∥∥∥∥∥
2

,

14
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where IR denotes the R dimensional identity matrix. Here, we used the fact that the relevant R × R sub-matrix of P,
or equivalently E[[A1]R[A1]

⊤
R], corresponds to IR. To invoke the Matrix-Chernoff inequality, we need bounds on the

maximum and minimum eigenvalue of E

[
1

n

n∑
i=1

[Ai]R[Ai]
⊤
R

]
and a bound on ∥[Ai]R[Ai]

⊤
R/n∥2 that holds almost surely

for all i = 1, 2, . . . , n. Since E[[A1]R[A1]
⊤
R] = IR, E

[
1

n

n∑
i=1

[Ai]R[Ai]
⊤
R

]
= IR implying that both the maximum and

minimum eigenvalues are 1. For any i = 1, 2, . . . , n, we have,

∥[Ai]R[Ai]
⊤
R∥2

n
≤ 1

n
trace([Ai]R[Ai]

⊤
R) ≤

1

n
trace([Ai]

⊤
R[Ai]R) ≤

1

n
∥Pωi∥2Hk

≤ 1

n

R∑
j=1

φ2
j (xi) ≤

N(R)

n
.

On invoking the Matrix-Chernoff inequality with these results, we obtain that the following relation is true with probability
1− δ/6:

E11 ≤
√

3N(R) log(3R/δ)

n
. (13)

On combining the above bound with Eqn. (12) along with noting that n∥L∥2 ≤ 1, we can conclude that:

E1 ≤
√

3N(R) log(3R/δ)

n
· ∥Pg∥2Hk

. (14)

We would like to mention that the above bound is only valid when the RHS in Eqn. (13) is less than 1. However, this
condition is satisfied by the choice of n > N .

We now consider the second term, E2. We have,

E2 = |g⊤Q(Z−1/2ẐZ−1/2 − Id)Qg|

=

∣∣∣∣∣(Qg)⊤
(

n∑
i=1

(QL1/2ωi)(QL1/2ωi)
⊤ − nQLQ

)
(Qg)

∣∣∣∣∣ (15)

≤ n

∥∥∥∥∥
(
1

n

n∑
i=1

(QL1/2ωi)(QL1/2ωi)
⊤ −QLQ

)∥∥∥∥∥
2︸ ︷︷ ︸

:=E21

·∥Qg∥2Hk
. (16)

Note that the term E21 has a similar structure as E11 except for the fact that E21 involves infinite-dimensional vectors as
opposed to finite-dimensional vectors. Thus, to bound E21 we use a result from Moeller & Ullrich (2021, Proposition
3.8) which is spectral concentration inequality for infinite-dimensional vectors derived using non-commutative Khinchtine
inequality (Buchholz, 2001; 2005; Moeller & Ullrich, 2021). From Proposition 3.8 in Moeller & Ullrich (2021), we can
conclude that the following relation holds with probability at least 1− δ/6:∥∥∥∥∥

(
1

n

n∑
i=1

(QL1/2ωi)(QL1/2ωi)
⊤ −QLQ

)∥∥∥∥∥
2

≤ max

{
42

n
log

(
12

δ

)
B1, B2

}
, (17)

where B1 = maxi=1,2,...,n ∥QL1/2ωi∥2Hk
and B2 = ∥QLQ∥2. We can further bound the terms B1 and B2 as follows.

B1 = max
i=1,2,...,n

∥QL1/2ωi∥2Hk
= max

i=1,2,...,n

∞∑
j=R+1

λj
nλj + τ

φ2
j (xi) ≤ sup

x∈X

1

τ

∞∑
j=R+1

λjφ
2
j (x) =

T (R)

τ

B2 = ∥QLQ∥2 = max
j∈N,j>R

λj
nλj + τ

≤ λR+1

τ
.

On plugging this into Eqn. (17), we obtain the following bound on E21.

E21 ≤
1

τ

{
42

n
log

(
12

δ

)
T (R), λR+1

}
. (18)

15
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Combining Eqn. (16) and (18) yields us,

E2 ≤
1

τ

{
42 log

(
12

δ

)
T (R), nλR+1

}
∥Qg∥2Hk

. (19)

We now move onto the third term, E3, which contains the cross terms. For brevity of notation, we define ζi := PL1/2ωi

and ξi := QL1/2ωi for all i = 1, 2, . . . , n. Note that ζ⊤i ξj = 0 for all i, j = 1, 2, . . . , n. Since P and Q commute with L,
a diagonal matrix, it is straightforward to note that PLQ = 0. Using this relation along with the definition of {ζi}ni=1 and
{ξi}ni=1, we can rewrite E3 as follows:

E3 = |g⊤P(Z−1/2ẐZ−1/2 − Id)Qg|

=

∣∣∣∣∣g⊤P
(

n∑
i=1

(L1/2ωi)(L
1/2ωi)

⊤ − nL

)
Qg

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

(g⊤PL1/2ωi)(g
⊤QL1/2ωi)

⊤

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

(g⊤ζi)(g
⊤ξi)︸ ︷︷ ︸

:=Wi

∣∣∣∣∣∣ . (20)

We use Bernstein inequality to bound the sum of the random variables Wi, for which we need the values of E[Wi], E[W 2
i ]

and an upper bound on |Wi| that holds almost surely. We begin with E[Wi]. We have,

E[Wi] = E[(g⊤ζi)(g⊤ξi)] = g⊤E[ζiξ⊤i ]g = 0. (21)

For an upper bound on |Wi|, note that for any g with ∥g∥Hk
= 1, |Wi| is maximized for the choice of g = ψxi . Thus,

|Wi| = ∥g∥2Hk

(
g⊤ζi
∥g∥Hk

)(
g⊤ξi
∥g∥Hk

)
≤ ∥g∥2Hk

(ψ⊤
xi
ζi)(ψ

⊤
xi
ξi)

≤ ∥g∥2Hk
∥ζi∥2Hk

∥ξi∥2Hk

≤ ∥g∥2Hk
·

 R∑
j=1

λj
nλj + τ

φ2
j (xi)

 ·
 ∞∑

j=R+1

λj
nλj + τ

φ2
j (xi)


≤ ∥g∥2Hk

·

 1

n

R∑
j=1

φ2
j (xi)

 ·
1

τ

∞∑
j=R+1

λjφ
2
j (xi)


≤ ∥g∥2Hk

· N(R)

n
· T (R)

τ
. (22)

From the above expressions, we can also conclude that |g⊤ζi| ≤ ∥g∥Hk
· N(R)

n
and |g⊤ξi| ≤ ∥g∥Hk

· T (R)
τ

. We use these

relations to obtain a bound on E[W 2
i ]. We have,

E[W 2
i ] = E[(g⊤ζi)2(g⊤ξi)2]

≤ ∥g∥2Hk
·min

{
E
[
(g⊤ζi)

2
](T (R)

τ

)2

,E
[
(g⊤ξi)

2
](N(R)

n

)2
}

≤ ∥g∥2Hk
·min

{
(g⊤PLPg) ·

(
T (R)

τ

)2

, (g⊤QLQg) ·
(
N(R)

n

)2
}

≤ ∥g∥2Hk
·min

{
∥Pg∥2Hk

n
·
(
T (R)

τ

)2

,
λR+1∥Qg∥2Hk

τ
·
(
N(R)

n

)2
}
. (23)
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In the last step, we used the bounds on ∥L∥2 and ∥QLQ∥2 derived in the earlier part of the proof. Lastly, since E[Wi] =
0, Var(Wi) = E[W 2

i ]. On applying Bernstein inequality (Wasserman, 2008, Lemma 7.37) using the relations from
Eqns. (21), (22) and (23), we can conclude that the following relation holds with probability 1− δ/6:

E3 =

∣∣∣∣∣
n∑

i=1

(g⊤ζi)(g
⊤ξi)

∣∣∣∣∣
≤ ∥g∥Hk

·

√√√√2n log

(
6

δ

)
min

{
∥Pg∥2Hk

n
·
(
T (R)

τ

)2

,
λR+1∥Qg∥2Hk

τ
·
(
N(R)

n

)2
}

+ ∥g∥2Hk
· 2N(R)

3n
· T (R)

τ
· log

(
6

δ

)
. (24)

On plugging the results from Eqns. (14), (19) and (24) into Eqn. (11), we obtain

∥Z−1/2ẐZ−1/2 − Id∥2 = sup
g:∥g∥Hk

≤1

|g⊤(Z−1/2ẐZ−1/2 − Id)g|

≤ sup
g:∥g∥Hk

≤1

[√
3N(R) log(6R/δ)

n
∥Pg∥2Hk

+
1

τ
max

{
42 log

(
12

δ

)
T (R), nλR+1

}
∥Qg∥2Hk

+ 2∥g∥Hk

√√√√2n log

(
6

δ

)
min

{
∥Pf∥2Hk

n
·
(
T (R)

τ

)2

,
λR+1∥Qf∥2Hk

τ
·
(
N(R)

n

)2
}

+ ∥g∥2Hk
· 4N(R)

3n
· T (R)

τ
· log

(
6

δ

)]
≤
[√

3N(R) log(6R/δ)

n
+

1

τ
max

{
42 log

(
12

δ

)
T (R), nλR+1

}

+ 2

√√√√2n log

(
6

δ

)
min

{
1

n
·
(
T (R)

τ

)2

,
λR+1

τ
·
(
N(R)

n

)2
}

+
4N(R)T (R)

3nτ
log

(
6

δ

)]

On plugging in any value of R ∈ R(n, τ, δ) and using the definition of Rn,τ,δ along with the relation n ≥ N , we can
conclude that ∥Z−1/2ẐZ−1/2 − Id∥2 ≤ 1/9 with probability at least 1 − δ/2. The overall probability on the bound is
obtained using a union bound for the relations on E1, E2 and E3.

A.2. Proof of Lemma 3.3

We begin the proof by showing that we can relate the ψ⊤
x Ẑ

−1ψx to ψ⊤
x Z

−1ψx through the operator norm of M :=
Ẑ−1/2(Z− Ẑ)Z−1/2. Specifically, we show if that operator norm of M is small, then ψ⊤

x Ẑ
−1ψx and ψ⊤

x Z
−1ψx are within

a constant factor of each other. Lastly, we use the condition on ∥Z− 1
2 ẐZ− 1

2 − Id∥2 to bound the ∥M∥op, the operator norm
of M, to obtain the required result.

We begin with considering the following expression.∣∣∣ψ⊤
x (Ẑ

−1 − Z−1)ψx

∣∣∣ = ∣∣∣ψ⊤
x Ẑ

−1(Z− Ẑ)Z−1ψx

∣∣∣
=
∣∣∣ψ⊤

x Ẑ
−1/2 · Ẑ−1/2(Z− Ẑ)Z−1/2 · Z−1/2ψx

∣∣∣
≤ ∥Ẑ−1/2ψx∥Hk

∥Z−1/2ψx∥Hk
∥Ẑ−1/2(Z− Ẑ)Z−1/2∥op

≤
√

(ψ⊤
x Ẑ

−1ψx) ·
√
(ψ⊤

x Z
−1ψx) · ∥M∥op. (25)

Consider the scenario where the relation ∥M∥op ≤ c is satisfied for some c ∈ (0, 1). We claim that under this scenario, we
have, ψ⊤

x Ẑ
−1ψx ≤ (1 − c)−1 · ψ⊤

x Z
−1ψx. To show this claim, we consider Eqn. (25). If ψ⊤

x Z
−1ψx ≥ ψ⊤

x Ẑ
−1ψx, the
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claim follows immediately. For the other case, we have,

ψxẐ
−1ψx − ψxZ

−1ψx ≤
√
(ψ⊤

x Ẑ
−1ψx) ·

√
(ψ⊤

x Z
−1ψx) · c

≤
√
(ψ⊤

x Ẑ
−1ψx) ·

√
(ψ⊤

x Ẑ
−1ψx) · c

≤ c · (ψ⊤
x Ẑ

−1ψx)

=⇒ ψxẐ
−1ψx ≤

(
ψxZ

−1ψx

)
· 1

1− c
,

as claimed. Thus, it suffices to show that ∥M∥op is small.

To that effect, note that we can write the operator M as M = Ẑ−1/2Z1/2 − Ẑ1/2Z−1/2 = C−1 − C⊤ where, C :=
Z−1/2Ẑ1/2. Consequently, using the definition of operator norm yields us,

∥M∥2op = ∥M⊤M∥2 = ∥((C⊤)−1 −C)(C−1 −C⊤)∥2
= ∥(CC⊤)−1 − Id +CC⊤ − Id∥2
≤ ∥(CC⊤)−1 − Id∥2 + ∥CC⊤ − Id∥2. (26)

From the definition of C, we have ∥CC⊤− Id∥2 = ∥Z− 1
2 ẐZ− 1

2 − Id∥2 ≤ b, from the given statement in the Lemma. Note
that if ∥CC⊤ − Id∥2 ≤ b for some b ∈ (0, 1/3), then all eigenvalues of CC⊤ lie in the interval [1− b, 1 + b]. This implies
that all the eigenvalues of (CC⊤)−1 lie in the interval [(1 + b)−1, (1 − b)−1]. Hence, ∥(CC⊤)−1 − Id∥2 ≤ b/(1 − b).
On combining this with Eqn. (26), we can conclude that if ∥CC⊤ − Id∥2 ≤ b, then ∥M∥op ≤

√
2b/(1− b) < 1. On

combining this with the previous claim that relates ψ⊤
x Ẑ

−1ψx to ψ⊤
x Z

−1ψx through ∥M∥op, we arrive at the result.

A.3. Proof of Lemma 3.4

Similar to the analysis in Appendix A.1, we fix an R ∈ R(n, τ, δ) and define projection matrices P and Q using the value
of R as defined in Appendix A.1. We define the projection of the kernel operator k(·, ·) on the subspaces spanned by P and
Q as follows:

k(P)(x, y) =

R∑
j=1

λjφj(x)φj(y); k(Q)(x, y) = k(x, y)− k(P)(x, y).

Recall that γ̃Xn,τ denotes the information gain corresponding to the randomly drawn set of points Xn = {x1, x2, . . . , xn}.
Similar to KXn,Xn

, we also define K
(P)
Xn,Xn

and K
(Q)
Xn,Xn

as K
(P)
Xn,Xn

= [k(P)(xi, xj)]
n
i,j=1 and K

(Q)
Xn,Xn

=

[k(Q)(xi, xj)]
n
i,j=1. It is straightforward to note that KXn,Xn

= K
(P)
Xn,Xn

+K
(Q)
Xn,Xn

.

We first derive some auxiliary results on the spectrum of K(P)
Xn,Xn

and K(Q)
Xn,Xn

which will be useful in the analysis later.

Recall that we defined Ψn := [ψx1
, ψx2

, . . . , ψxn
]. We can also rewrite KXn,Xn

, K(P)
Xn,Xn

and K(Q)
Xn,Xn

in terms of Ψn

as: KXn,Xn = Ψ⊤
nΨn, K(P)

Xn,Xn
= Ψ⊤

nPΨn and K(Q)
Xn,Xn

= Ψ⊤
nQΨn. Using this relation, note that the singular values

of K(P)
Xn,Xn

= (PΨn)
⊤(PΨn) and K(Q)

Xn,Xn
= Ψ⊤

nQΨn are the same as that of (PΨn)(PΨn)
⊤ = PΨnΨ

⊤
nP and

(QΨn)(QΨn)
⊤ = QΨnΨ

⊤
nQ respectively.

For the spectrum of K(P)
Xn,Xn

, note that

K
(P)
Xn,Xn

= (PΨn)
⊤(PΨn) = ((nΛ)−1/2PΨn)

⊤(nΛ)((nΛ)−1/2PΨn)

= (P(nΛ)−1/2Ψn)
⊤P(nΛ)P(P(nΛ)−1/2Ψn).

If λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃R denote the eigenvalues of K(P)
Xn,Xn

, then using Ostrowski’s Theorem (Ostrowski, 1959),
we can conclude that λ̃j = θjnλj for all j = 1, 2, . . . , R, where {nλj}Rj=1 correspond to the eigenvalues of
nPΛP and θj lie between the smallest and largest eigenvalues of the matrix n−1(PΛ−1/2Ψn)

⊤(PΛ−1/2Ψn). Note
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that the singular values (in this case, also eigenvalues) of n−1(PΛ−1/2Ψn)
⊤(PΛ−1/2Ψn) are the same as that of

n−1(PΛ−1/2Ψn)(PΛ−1/2Ψn)
⊤ = n−1

∑n
i=1(Pωi)(Pωi)

⊤, where ωi = Λ−1/2ψxi
, as defined in Appendix A.1. Using

Eqn. (13) and that R ∈ R(n, τ, δ) and n ≥ N , we can conclude that the following relation is true with probability 1− δ/6:∥∥∥∥∥
(
1

n

n∑
i=1

(Pωi)(Pωi)
⊤ −P

)∥∥∥∥∥
2

≤ 1

27
.

Thus, we can conclude that eigenvalues of n−1(PΛ−1/2Ψn)
⊤(PΛ−1/2Ψn) lie in the range [26/27, 28/27] and conse-

quently, λ̃j ≥ 26nλj/27.

As mentioned earlier, the singular values of K(Q)
Xn,Xn

are the same as those of QΨnΨ
⊤
nQ. For the analysis, it suffices

to have an upper bound on ∥K(Q)
Xn,Xn

∥2, or equivalently, ∥QΨnΨ
⊤
nQ∥2. Using the result from Moeller & Ullrich (2021,

Proposition 3.8), we know that the following relation holds with probability 1− δ/6:

∥QΨnΨ
⊤
nQ∥2 ≤ 2

{
42 log

(
12

δ

)
T (R), nλR+1

}
.

Since R ∈ Rn,τ , we can conclude that ∥K(Q)
Xn,Xn

∥2 = ∥QΨnΨ
⊤
nQ∥2 ≤ 2τ/27. We are now ready to prove the lemma.

Using the relation KXn,Xn = K
(P)
Xn,Xn

+K
(Q)
Xn,Xn

, we can decompose the information gain of Xn as follows:

γ̃Xn,τ =
1

2
log
(
det(In + τ−1KXn,Xn)

)
=

1

2
log
(
det(In + τ−1K

(P)
Xn,Xn

+ τ−1K
(Q)
Xn,Xn

)
)

=
1

2
log
(
det((In + τ−1K

(Q)
Xn,Xn

)(In + τ−1(In + τ−1K
(Q)
Xn,Xn

)−1K
(P)
Xn,Xn

))
)

=
1

2
log(det(I + τ−1K

(Q)
Xn,Xn

))︸ ︷︷ ︸
:=G1

+
1

2
log(det(I + τ−1(I + τ−1K

(Q)
Xn,Xn

)−1K
(P)
Xn,Xn

))︸ ︷︷ ︸
:=G2

.

This decomposition is similar to that derived in Vakili et al. (2021b, App. A, Eqn. 8) with the roles of K(P)
Xn,Xn

and K(Q)
Xn,Xn

interchanged.

We begin with G1. Since ∥K(Q)
Xn,Xn

∥2 ≤ 2τ/27, all eigenvalues of τ−1K
(Q)
Xn,Xn

are less than 1. Using the relation
log(1 + x) ≥ x/2, which holds for all x ∈ [0, 1], we can lower bound G1 as follows:

G1 = log(det(I + τ−1K
(Q)
Xn,Xn

)) ≥ 1

2τ
trace(K

(Q)
Xn,Xn

).

Note k(Q)(Xi, Xi) are i.i.d. random variables with E[k(Q)(Xi, Xi)] =
∑∞

r=R+1 λr and |k(Q)(Xi, Xi)| ≤ T (R). We

can thus use Hoeffding inequality to obtain the following bound on trace(K
(Q)
Xn,Xn

) which holds with probability at least
1− δ/6:

G1 ≥
1

2τ
trace(K

(O)
Xn,Xn

)

≥ 1

2τ

[
n

∞∑
r=R+1

λr − T (R)
√
n log(12/δ)

]

≥ nT (R)

2τF 2

(
1− F 2

√
log(12/δ)

n

)

≥ 13nT (R)

27τF 2

In the third line, we used the fact that T (R) ≤ F 2
∑∞

r=R+1 λr since ∥φj∥∞ ≤ F for all j ∈ N (Assumption 2.3). The
fourth line uses the condition that n ≥ N .

19



Random Exploration in Bayesian Optimization

To bound G2, first note that using the condition on the spectrum on τ−1K
(Q)
Xn,Xn

, we can conclude that all the eigenvalues of

(I + τ−1K
(Q)
Xn,Xn

) lie in the range [1, 2]. Moreover, note that the spectrum of (I + τ−1K
(Q)
Xn,Xn

)−1K
(P)
Xn,Xn

is the same as

that of (I + τ−1K
(Q)
Xn,Xn

)−1/2K
(P)
Xn,Xn

(I + τ−1K
(Q)
Xn,Xn

)−1/2. On using Ostrowski’s Theorem (Ostrowski, 1959) along

with range of eigenvalues of (I + τ−1K
(Q)
Xn,Xn

), we can conclude that

G2 = log(det(I + τ−1(I + τ−1K
(Q)
Xn,Xn

)−1K
(P)
Xn,Xn

)) ≥ log(det(I + (2τ)−1K
(P)
Xn,Xn

)).

Using the relation for the eigenvalues of K(P)
Xn,Xn

derived earlier, we can further G2 as follows:

G2 ≥ log(det(I + (2τ)−1K
(P)
Xn,Xn

))

≥
R∑

j=1

log(1 + (2τ)−1λ̃j)

≥
R∑

j=1

log

(
1 +

13nλj
27τ

)

≥
R∑

j=1

13nλj
13nλj + 27τ

≥ 13n

27F 2
sup
x∈X

R∑
j=1

λj
nλj + τ

φ2
j (x).

In the fourth line, we used the relation log(1 + x) ≥ x
x+1 , which holds for all x ≥ 0.

On combining the bounds for G1 and G2, we obtain,

γ̃Xn,τ =
1

2
(G1 +G2)

≥ 13nT (R)

54τF 2
+

13n

54F 2
sup
x∈X

R∑
j=1

λj
nλj + τ

φ2
j (x)

≥ 13n

54F 2

sup
x∈X

R∑
j=1

λj
nλj + τ

φ2(x) +
T (R)

τ


≥ 13n

54F 2
sup
x∈X

 R∑
j=1

λj
nλj + τ

φ2
j (x) +

∞∑
j=R+1

λj
nλj + τ

φ2
j (x)


≥ 13n

54F 2
sup
x∈X

ψ⊤
x Z

−1ψx,

as required. Since each of the bounds on G1 and the eigenvalues of K(P)
Xn,Xn

and K(Q)
Xn,Xn

, holds with probability at least
1− δ/6, the overall bound holds with probability at least 1− δ/2.

B. Proof of Theorems 4.3 and 4.5
The proof of both the theorems is based along the lines of the proof of the Batched Pure Exploration (BPE) algorithm (Li &
Scarlett, 2022). We first begin with a brief discussion about Assumption 4.2 and the choice of constants Ñε0 and Ñ ′

ε0 and
then move on to the proof.
Definition B.1. Let Γ : X → X ′ be a map between two sets X ,X ′ ⊂ Rd. We call Γ to be a bi-Lipschitz map if the inverse
map, Γ−1, exists and the following relations hold for some L,L′ > 0:

∥Γ(x)− Γ(y)∥2 ≤ L∥x− y∥2 ∀x, y ∈ X
∥Γ−1(x)− Γ−1(y)∥2 ≤ L′∥x− y∥2 ∀x, y ∈ X ′.
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We refer to (L,L′) the Lipschitz constant pair of Γ. We also define normalized Lipschitz constant pair of Γ to be the pair

(L̃, L̃′) =

(
L
(

vol(X )
vol(X ′)

)1/d
, L′
(

vol(X ′)
vol(X )

)1/d)
.

The normalized Lipschitz constant pair quantifies solely the change due to structure and discounts for the change in size
between X and X ′. The following is a restatement of Assumption 4.2.

Assumption B.2. Let Lf
η = {x ∈ X |f(x) ≥ η} denote the level set of f for η ∈ [−B,B]. Let X ′ be a subset of Lf

η with a
finite number of connected components. Let UCBt(x;X ′) denote the upper confidence bound on the function f at any point
x ∈ X ′, constructed using t points sampled uniformly at random from each component of X ′. For any η′ ≥ η, we define
LUCBt

η′ = {x ∈ X ′|UCBt(x;X ′) ≥ η′} to be the level set of the upper confidence bound at level η′. Let η0 := sup f − ε0
for some fixed ε0 > 0. We assume the following for all X ′ and t ≥ N .

1. For any η ≥ η0, the number of connected components in Lf
η are at most Mf .

2. For any η′ ≥ η ≥ η0, the number of connected components of LUCBt

η′ are at most M more than those of {x ∈ X ′ :
f(x) ≥ η′} with probability 1− δ/(2 log2 T ), where the probability is taken over the randomness in query points and
noise (if any).

3. Let LUCBt,i
η′ denote the ith such connected component of LUCBt

η′ . We assume that there exists a bi-Lipschitzian map
Γη′,i : X → LUCBt,i

η′ with normalized Lipschitz constant pair L̃η′,i, L̃
′
η′,i > 0 for all η′, i. Let Lf = supη′,i L̃η′,i and

L′
f = supη′,i L̃

′
η′,i. We assume that Lf , L

′
f <∞.

Assumption 4.2 is an assumption on the regularity of the level sets of the function f . The term Mf can be thought of as the
number of local maximas of f and hence finiteness of Mf is a mild assumption on f satisfied by functions encountered
in practice. Moreover, the knowledge of Mf is only required for analysis and not for the algorithm to run. Furthermore,
since we only require the number of connected components to be finite for values close to the maximum value, we allow the
function f have a large number of local maximas with small value. The last condition is to ensure that the these connected
components are topologically regular enough and to avoid certain pathological cases. In particular, the existence of a
bi-Lipschitzian map between two sets implies topological similarity between the two sets. Intuitively, this assumption
ensures that the shape of the level-sets is not “too arbitrary”. Note that such an assumption on the level sets of UCB is
relatively mild as the RKHS endows smoothness properties to the UCB which translate to a degree of topological regularity
of level sets (Alberti et al., 2011; Lee, 2010). Please refer to Appendix D for additional discussion on Assumption 4.2.

The constants Ñε0 and Ñ ′
ε0 are chosen to ensure that the conditions in Assumption 4.2 are satisfied. Specifically, we choose

the constants to ensure that the algorithm encounters level sets corresponding to η ≥ f(x∗)− ε0. Thus, we set

Ñε0 := min
{
n ∈ N : 4BC1n

1−β(log(4n/δ))β ≤ ε0
}

Ñ ′
ε0 := min

{
n ∈ N : 4ατ (δ/6) · C0 ·

(n
τ

) 1
β−1

+
2B

T
+R

√
2

Tτ
log

(
4T

δ′

)
≤ ε0

}
,

where C0 and C1 are the constants in Eqns. (9) and (10) respectively. On invoking the results from Lemmas B.4, B.6 and
Theorem 3.1, we can conclude that the choices of Ñε0 and Ñ ′

ε0 ensure that the condition in Assumption 4.2 is satisfied with
probability 1− δ/4 and 1− δ/6 respectively.

B.1. Proof of Theorem 4.3

At a high level, the bound on regret is obtained by first separately bounding the regret during every epoch r and then
summing it across all epochs. During any epoch r, since REDS chooses points uniformly at random from the current
domain Xr, we simply bound the regret incurred at each point queried during this epoch by the worst case scenario, i.e.,
ςr := f(x∗)− infx∈Xr

f(x). This leads to an upper bound of ςrNrM
′ on the regret incurred during epoch r, where M ′

denotes the bound on the number of connected components in Xr. Since poorly performing regions of the domain are
eliminated as the algorithm proceeds, infx∈Xr f(x) gets closer to f(x∗), reducing the regret in each epoch as the algorithm
proceeds.

The following two lemmas ensure the correctness of the algorithm and help bound the regret incurred during each epoch.
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Lemma B.3. x∗ ∈ Xr for all r ≥ 1.

Lemma B.4. For all epochs r, we have,

ςr ≤

{
2B if r = 1,

4B supx∈Xr−1
σr−1(x) if r ≥ 2.

Lemma B.5. For all epochs r, with probability at least 1− δ/2, the number of connected components in Xr are at most
(Mf +M)(1 + log2(T/N1)).

We defer the proof of these lemmas to Appendix B.3. Equipped with these lemmas, we move on to the proof of Theorem 4.3.
The regret incurred by REDS can be bounded as

R(T ) =

T∑
t=1

f(x∗)− f(xt) ≤
S∑

r=1

ςrNr(Mf +M)(1 + log2(T/N1))

≤ 2BN1 + 4B(Mf +M)(1 + log2(T/N1))

S∑
r=2

[
Nr · sup

x∈Xr−1

σr−1(x)

]
.

In the above expression, S denotes the total number of epochs that begin during a run of REDS algorithm before reaching
a total of T queries. Since the epoch lengths double every epoch, we have S ≤ 1 + log2(T/N1). We can further bound
R(T ) using Lemma 4.6 (which in turn is based on Theorem 3.1) to bound the worst-case posterior standard deviation in
the above equation. Since Xr−1 is compact (Xr−1 is closed by definition and Xr−1 is bounded because Xr−1 ⊆ X ) and
Nr−1 ≥ N1 ≥ CLf ,L′

f
N , we can invoke Lemma 4.6 to conclude

R(T ) ≤ 2BN1 + 4BC2C
′
Lf ,L′

f
(Mf +M)(1 + log2(T/N1))

S∑
r=2

Nr ·N (1−β)/2
r−1 (log(n/δ′))β/2, (27)

where δ′ = δ/4 log2 T , C2 =
√
C1 and CLf ,L′

f
, C ′

Lf ,L′
f

are the constants from Lemma 4.6 and depend only on Lf , L
′
f .

For simplicity, we define Cf := C ′
Lf ,L′

f
(Mf +M), as a constant that depends only on the function f . On plugging in the

values of Nr, Eqn. (27) simplifies to

R(T ) ≤ 2BN1 + 4BC2Cf (1 + log2 T )

S∑
r=2

Nr ·N (1−β)/2
r−1 (log(n/δ′))β/2

≤ 2BN1 + 4BC2Cf (1 + log2 T )N
(3−β)/2
1

S∑
r=2

2r−1 · 2(r−2)(1−β)/2

(
log

(
N1

δ′
· 2r−2

))β/2

≤ 2BN1 + 8BC2Cf (1 + log2 T )N
(3−β)/2
1

S−2∑
r=0

2r(3−β)/2

(
log

(
N1

δ′
· 2r
))β/2

. (28)

We consider three separate cases based on the value of β:

• β < 3: Under this case, Eqn. (28) can be simplified as follows:

R(T ) ≤ 2BN1 + 8BC2Cf (1 + log2 T )N
(3−β)/2
1

S−2∑
r=0

2r(3−β)/2

(
log

(
N1

δ′
· 2r
))β/2

≤ 2BN1 + 8BC2Cf (1 + log2 T )N
(3−β)/2
1

(
log

(
T

δ′

))3/2 S−2∑
r=0

2r(3−β)/2

≤ 2BN1 + 8BC2Cf (1 + log2 T )N
(3−β)/2
1

(
log

(
T

δ′

))3/2
2(S−1)(3−β)/2 − 1

2(3−β)/2 − 1

≤ 2BN1 +
8BC2Cf

2(3−β)/2 − 1
T (3−β)/2

(
log

(
T

δ′

))3/2

(1 + log2 T ).
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• β = 3: For this value of β, Eqn. (28) can be simplified as follows:

R(T ) ≤ 2BN1 + 8BC2Cf (1 + log2 T )N
(3−β)/2
1

S−2∑
r=0

2r(3−β)/2

(
log

(
N1

δ′
· 2r
))β/2

≤ 2BN1 + 8BC2Cf (1 + log2 T ) ·
(
log

(
T

δ′

))3/2

·
S−2∑
r=0

1

≤ 2BN1 + 8BC2Cf ·
(
log

(
T

δ′

))3/2

· log
(
T

N1

)
(1 + log2 T ).

• β > 3: For this range, we have,

R(T ) ≤ 2BN1 + 8BC2Cf (1 + log2 T )N
(3−β)/2
1

S−2∑
r=0

2r(3−β)/2

(
log

(
N1

δ′
· 2r
))β/2

≤ 2BN1 + 8BC2Cf (1 + log2 T ) ·
(
log

(
T

δ′

))3/2

·
S−2∑
r=0

2r(3−β)/4

[
log(N1 · 2r) + log(1/δ′)

N1 · 2r/2

](β−3)/2

≤ 2BN1 + 8BC2Cf (1 + log2 T ) ·
(
log

(
T

δ′

))3/2

·
[
log(N1/δ

′)

N1

](β−3)/2

·
S−2∑
r=0

2r(3−β)/4

≤ 2BN1 + 8BC2Cf (1 + log2 T ) ·
(
log

(
T

δ′

))3/2

·
[
log(N1/δ

′)

N1

](β−3)/2

·
∞∑
r=0

2r(3−β)/4

≤ 2BN1 +
8BC2Cf

1− 2(3−β)/4
·
(
log

(
T

δ′

))3/2

(1 + log2 T ).

In the third step, we used the fact that
log(N1 · 2r/δ′)
N1 · 2r/2

is a decreasing function of r for all r ≥ 0 and in the fifth step

we used the fact that N1 ≥ log(N1/δ
′) since N1 ≥ N(δ′).

On combining all the cases, we arrive at the result. Lastly, note that the relation on Ñε0 guarantees that Assumption 4.2
holds with probability 1 − δ/4, Lemma B.5 holds with probability 1 − δ/2 and the relation in Eqn. (27) holds for all
epochs simultaneously with probability 1− δ/4. Thus, the overall theorem holds with probability 1− δ. The statement in
Corollary 4.4 follows immediately from the above proof by plugging in β = 1 + 2ν/d.

B.2. Proof of Theorem 4.5

The proof of Theorem 4.5 is almost identical to that of Theorem 4.3. The following lemma is a counterpart to Lemma B.4
for the noisy case.
Lemma B.6. For all epochs r, the following relation holds with probability at least 1− δ/6:

ςr ≤

2B if r = 1,

4ατ (δ
′)
[
supx∈Xr−1

σr−1,τ (x)
]
+ 2B

T +R
√

2
Tτ log

(
4T
δ′

)
if r ≥ 2.

The proof of this lemma is identical to that of Lemma B.4 with the definitions of UCB and LCB changed according to
the noisy setup (See (Vakili et al., 2021a) for an exact derivation). On using Lemma 4.6 (for the noisy case) along with
Lemma B.6, we can rewrite Eqn. (27) as

R(T ) ≤ 2BN1 + (Mf +M)(1 + log2 T )

S∑
r=2

Nr ·

[
4
√
CτC

′
Lf ,L′

f
ατ (δ

′/2)

√
γNr−1,τ

Nr−1
+

2B

T
+R

√
2

Tτ
log

(
4T

δ′

)]

≤ 2BN1 + (Mf +M)(1 + log2 T )

S∑
r=2

Nr ·

[
4
√
CτC

′
Lf ,L′

f
ατ (δ

′/2)

√
γT,τ

Nr−1
+

2B

T
+R

√
2

Tτ
log

(
4T

δ′

)]
,

(29)
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where second line follows using monotonicity of γn,τ i.e., γn1,τ ≤ γn2,τ for all n1 ≤ n2 and Cτ is the leading constant in
Eqn. (9). On plugging in the values of Nr in Eqn. (29), we obtain,

R(T ) ≤ 2BN1 +

S∑
r=2

Nr ·
[
4
√
CτC

′
Lf ,L′

f
(Mf +M)ατ (δ

′/2)

√
γT,τ

Nr−1
+

2B(Mf +M)

T

+R(Mf +M)

√
2

Tτ
log

(
4T

δ′

)]
(1 + log2 T )

≤ 2BN1 +

S∑
r=2

[
4
√
N1CτCfατ (δ

′/2)
√
γT,τ · 2r−1 · 2−(r−2)/2 + (Mf +M) · 2BN1

T
· 2r−1

+ (Mf +M) ·RN1

√
2

Tτ
log

(
4T

δ′

)
· 2r−1

]
(1 + log2 T )

≤ 2BN1 + 16
√
N1CτCfατ (δ

′/2)
√
γT,τ

(
S−2∑
r=0

2r/2

)
log2 T

+ 2(Mf +M) log2 T ·

(
4B

T
+ 2R

√
2

Tτ
log

(
4T

δ′

))
N1

(
S−2∑
r=0

2r

)

≤ 2BN1 +
16√
2− 1

√
N1CτCfατ (δ

′/2)
√
γT,τ ·

√
T

N1
· log2 T

+ 2(Mf +M) log2 T ·

(
4B

T
+ 2R

√
2

Tτ
log

(
4T

δ′

))
·N1 ·

T

N1

≤ 2BN1 +
16√
2− 1

√
CτCfατ (δ

′/2)
√
TγT,τ · log2 T

+ 8B(Mf +M) log2 T + 4R(Mf +M)

√
2T

τ
log

(
4T

δ′

)
log2 T,

where Cf = C ′
Lf ,L′

f
(Mf +M) as before. Hence, R(T ) satisfies Õ(

√
TγT,τ ), as required. Lastly, the relation on Ñ ′

ε0

guarantees that Assumption 4.2 holds with probability 1− δ/6, Lemma B.5 holds with probability 1− δ/2, Lemma B.6
holds with probability 1− δ/6 and the relation in Eqn. (29) (consequence of Lemma 4.6) holds for all epochs simultaneously
with probability 1− δ/6. Thus, the overall theorem holds with probability 1− δ.

B.3. Proof of Auxiliary Lemmas

B.3.1. PROOF OF LEMMA B.3

The main ingredient in the proof is the relation: |f(x)− µr−1(x)| ≤ Bσr−1(x), which holds for all x ∈ Xr−1 and across
all epochs r. This is a well-known relation in the literature (Vakili et al., 2021a; Lyu et al., 2020) that bounds the predictive
performance of the posterior mean in terms of posterior variance.

We use induction to prove the lemma. Since X1 = X and x∗ ∈ X holds by definition, x∗ ∈ X1. Assume that x∗ ∈ Xr−1.
Using the relation |f(x)− µr−1(x)| ≤ Bσr−1(x), we can conclude,

sup
x′∈Xr−1

LCBr−1(x
′) = sup

x′∈Xr−1

(µr−1(x
′)−Bσr−1(x

′)) ≤ sup
x′∈Xr−1

f(x′) = f(x∗) ≤ UCBr−1(x
∗),

where we used the inductive hypothesis to establish supx′∈Xr−1
f(x′) = f(x∗). This implies that x∗ ∈ Xr, as required.

B.3.2. PROOF OF LEMMA B.4

We separately show the bounds for r = 1 and r ≥ 2. For the first epoch, we have,

ς1 = f(x∗)− inf
x∈X1

f(x) = f(x∗)− inf
x∈X

f(x) ≤ 2 sup
x∈X

f(x) ≤ 2B.
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We used the fact that supx∈X f(x) = supx∈X f
⊤ψx ≤ supx∈X ∥f∥Hk

∥ψx∥Hk
≤ B. Consider any epoch r ≥ 2. For the

analysis, we define

X ′
r := {x ∈ Xr−1 : f(x) + 2Bσr−1(x) ≥ sup

x′∈Xr−1

f(x′)− 2Bσr−1(x
′)}.

The region X ′
r satisfies Xr ⊆ X ′

r. To establish this, we once again employ the relation |f(x) − µr−1(x)| ≤ Bσr−1(x).
Using the relation, we can conclude that

UCBr−1(x) = µr−1(x) +Bσr−1(x) ≤ (f(x) +Bσr−1(x)) +Bσr−1(x) = f(x) + 2Bσr−1(x)

LCBr−1(x) = µr−1(x)−Bσr−1(x) ≥ (f(x)−Bσr−1(x))−Bσr−1(x) = f(x)− 2Bσr−1(x).

The inclusion Xr ⊆ X ′
r follows immediately from the definition of Xr and X ′

r and the above expressions.

Consider the following relation which holds for any x ∈ X ′
r.

f(x) + 2Bσr−1(x) ≥ sup
x′∈Xr−1

f(x′)− 2Bσr−1(x
′)

=⇒ f(x) ≥ sup
x′∈Xr−1

[f(x′)− 2Bσr−1(x
′)]− sup

x′′∈Xr−1

[2Bσr−1(x
′′)]

≥ sup
x′∈Xr−1

f(x′)− sup
x′′∈Xr−1

[4Bσr−1(x
′′)]

≥ f(x∗)− sup
x′′∈Xr−1

[4Bσr−1(x
′′)]. (30)

In the last line, we used Lemma B.3 to conclude supx′∈Xr−1
f(x′) = f(x∗). Since Xr ⊂ X ′

r, we can use Eqn. (30) to
obtain an upper bound on ςr as follows:

ςr = f(x∗)− inf
x∈Xr

f(x)

≤ f(x∗)− inf
x∈X ′

r

f(x)

≤ f(x∗)−

[
f(x∗)− sup

x′∈Xr−1

4Bσr−1(x
′)

]
≤ 4B sup

x′∈Xr−1

σr−1(x
′).

B.3.3. PROOF OF LEMMA 4.6

We begin with the noiseless case. For brevity, we drop the subscript 0 from the posterior variance corresponding to the
noiseless case. Consider a kernel k and let H and H′ denote the RKHS induced by k on X and X ′. Since X ′ ⊂ X ,
it is straightforward to note that H′ ⊆ H. Using the result from Wendland (2004, Theorem 10.46), we know that for
every f ∈ H′ there exists a natural extension E f ∈ H such that ∥E f∥H = ∥f∥H′ . Consequently, we can conclude
{f : ∥f∥H′ ≤ 1} ⊆ {f : ∥f∥H ≤ 1}. Lastly, note that H′ is same as the RKHS of the kernel k′(x, y) = k(Γ(x),Γ(y))
over the domain X . Here Γ denotes the bi-Lipschitian map Γ : X → X ′ as given by Assumption 4.2.

Let X ⊂ X be any set of distinct points and σ′
X(x) and σX(x) denote the posterior standard deviation at any point x

computed using the kernels k′ and k. Using the dual formulation of posterior variance, we have the following relation:

σ′
X(x) = sup

f∈H′

∥f∥H′≤1
f(X)={0}

f(x) ≤ sup
f∈H

∥f∥H≤1
f(X)={0}

f(x) = σX(x).

In the above relation, we used the fact thatH′ ⊂ H and the unit ball inH′ is contained in the unit ball inH. This implies
that the prediction made using the kernel k′ has a smaller error than the prediction made by using kernel k. If we set
X = Γ−1(X ′)4, then the above is equivalent to saying that the prediction error using kernel k corresponding to set of points
X ′ ∈ X ′ is smaller than the prediction error using kernel k corresponding to set of points X ∈ X .

4For any operator Γ and X = {x1, x2, . . . , xn}, we use the shorthand Γ(X) for the set {Γ(x1),Γ(x2), . . . ,Γ(xn)}.
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Since the points X ′ are distributed uniformly in X ′, the points X = Γ−1(X ′) are distributed according to density
ϑ(x) = det(∇Γ(x))

vol(X ′) for all x ∈ X , where det(A) denotes the determinant of a matrix A and ∇Γ denotes the Jacobian of
Γ. Note that ∇Γ (and hence the density ϑ) is well-defined almost everywhere (a.e.) as a consequence of Rademacher’s
theorem (Rudin, 1987, Chp. 7) and Lipschitz continuity of Γ.

Let ϱunif denote the uniform distribution on X (i.e., the Lebesgue measure). We construct a (random) subset of X , denoted
by Y , as follows. Each point xi for i ∈ {1, 2, . . . , n} is added into Y independently of others with probability cϑ

ϱunif (xi)
ϑ(xi)

,

where cϑ = infx
ϑ(x)

ϱunif (x)
(where the infimum is taken over where ϑ is well defined). It is straightforward to note that the

samples in Y are distributed according to ϱunif . Using the Bernstein inequality for sum of Bernoulli random variables,
we can conclude that |Y |, the number of points in Y satisfies the relation |Y | ≥ cϑn

2Cϑ
with probability 1 − δ as long as

3cϑn
16Cϑ

≥ log(2/δ). Here Cϑ = supx
ϑ(x)

ϱunif (x)
. Since Y ⊆ X , the prediction based on the values of X is no worse than the

prediction based on the values of Y . Thus,

sup
x′∈X ′

σ2
X′(x′) ≤ sup

x∈X
σ2
X(x) ≤ sup

x∈X
σ2
Y (x)

An identical result holds for the noisy case using an identical series of arguments using the kernel kτ (x, x′) = k(x, x) +
τδx=x′ (Kanagawa et al., 2018), where δx=x′ denotes the dirac delta function. We can invoke the result from Theorem 3.1
for uniform samples on X to bound σ2

Y (x) under both the noisy and noiseless settings to obtain the following relations

sup
x′∈X ′

σ2
X′,τ (x

′) ≤ sup
x∈X

σ2
Y,τ (x) ≤

Cϑ

cϑ
· 216
13
· F 2τ · γn,τ

n
,

sup
x′∈X ′

σ2
X′,0(x

′) ≤ sup
x∈X

σ2
Y,0(x) ≤

Cϑ

cϑ
· 216
13
· F 2 · n1−β .

We only need to obtain a bound the ratio Cϑ/cϑ that is independent of n to complete the proof. Using the Lipschitzness of Γ
and Γ−1, we can conclude that

L′−d
f ≤ |det(∇Γ)| ≤ Ld

f .

Using the definition of cϑ, we have,

cϑ = inf
x

ϑ(x)

ϱunif(x)
= inf

x

det(∇Γ(x))vol(X )
vol(X ′)

≥ vol(X )
L′d
f vol(X ′)

= L̃f
′−d

.

Similarly,

Cϑ = sup
x

ϑ(x)

ϱunif(x)
= sup

x

det(∇Γ(x))vol(X )
vol(X ′)

≤
Ld
fvol(X )
vol(X ′)

= L̃f
d
.

Hence, Cϑ/cϑ ≤ (L̃f/L̃
′
f )

d depends only on (L̃f , L̃
′
f ) and is independent of n, as required.

B.4. Proof of Lemma B.5

In order to establish this bound, we claim that it is sufficient to show that the number of connected components increase by
at most Mf +M in each epoch. If the number of connected components increase by at most Mf +M in each epoch, then
the total number of connected components in any epoch is bounded by (Mf +M)(1 + log2(T/N1)). This follows from the
fact that there are at most 1 + log2(T/N1) epochs as the epoch lengths double every time. Thus, for the rest of the proof we
focus on establishing the relation that the number of connected components increase by at most Mf +M in each epoch.

To obtain this relation, we bound the number of connected components in Xr+1 = L
UCBNr+1

(·;Xr)
ηr+1 where ηr+1 is the

threshold corresponding to the algorithm for a general epoch r. By Assumption 4.2, these are M more than those in
Xr ∩ Lf

ηr+1
. Since Xr is the level set of upper confidence bound, which is always greater than f , it contains the level sets of

f at the same threshold. Thus, every connected component of Lf
ηr+1

completely belongs to a connected component of Xr.
Consequently, number of connected components in Xr ∩ Lf

ηr+1
is at most sum of the number of connected components in

Xr and Lf
ηr+1

. Thus, at every iteration, the number of connected components increases at most by Mf +M . Lastly, based
on Assumption 4.2, this relation holds for each epoch with probability 1− δ/(2 log2 T ). Using a union bound argument, we
can conclude that this holds for all epochs r with probability at least 1− δ/2.
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C. Additional Details on the Experimental Setup
We compare the regret performance and the running time of the BPE (Li & Scarlett, 2022), GP-ThreDS (Salgia et al., 2021)
and REDS algorithm (Algorithm 1) for three commonly used benchmark functions in Bayesian Optimization, namely,
Branin (Azimi et al., 2012; Picheny et al., 2013), Hartmann-4D (Picheny et al., 2013) and Hartmann-6D (Picheny et al.,
2013). The analytical expressions for the three benchmark functions are given as follows:

• Branin function, denoted by B(x1, x2), is defined over X = [0, 1]2.

B(x1, x2) = −
1

51.95

((
v − 5.1u2

4π2
+

5u

π
− 6

)2

+

(
10− 10

8π

)
cos(u)− 44.81

)
,

where u = 15x1 − 5 and v = 15x2.

• Hartmann-4D function, denoted by H4(x1, x2, x3, x4), is defined over X = [0, 1]4.

H4(x1, x2, x3, x4) =

4∑
i=1

wi exp

− 4∑
j=1

Aij(xj − Cij)
2

 .

• Hartmann-6D function, denoted by H6(x1, x2, x3, x4, x5, x6), is defined over X = [0, 1]6.

H6(x1, x2, x3, x4, x5, x6) =

4∑
i=1

wi exp

− 6∑
j=1

Aij(xj − Cij)
2

 .

In the definitions above, Aij and Cij refer to the (i, j)th element of the matrices A and C and wi denotes the ith element of
the vector w, defined below:

w =
(
1.0 1.2 3.0 3.2

)⊤
A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



C = 10−4 ·


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


For BPE and REDS, we consider a discretized version of the domain consisting of 2000, 7000 and 20000 points chosen
uniformly at random from the domain for the Branin, Hartmann-4D and Hartmann-6D functions respectively. We use the
exponentially growing epoch schedule for both BPE and REDS as described in (Algorithm 1) for a fair comparison. We
implement GP-ThreDS as described in (Salgia et al., 2021). For each node in the tree, we consider a discretization, chosen
uniformly at random, of size 100, 200 and 500 for the Branin, Hartmann-4D and Hartmann-6D functions respectively. The
values of (a, b) (the lower and upper bound on f(x∗)) are set to (0.5, 1.2), (0, 3.8) and (0, 3.5) for Branin, Hartmann-4D
and Hartmann-6D respectively. We set τ = 0.2 for all experiments. The value of ατ is set to 1 across all experiments, except
for BPE with Hartmann-4D and Hartmann-6D for which we set it to 0.75. These values are obtained using a grid search
over [0.25, 2] in steps of 0.25. The parameter N1 in REDS and BPE was set to 50 for Branin and 100 for Hartmann-4D and
Hartmann-6D functions. For the implementation of REDS, we sample uniformly directly from the entire domain Xr. We do
not separately consider each connected component as it is not possible to define them for discrete domain.

For all the experiments, we used the Square exponential kernel. The length scale was set to 0.2 for Branin and 1 for
Hartmann-4D and Hartmann-6D functions. We corrupted the observations with a zero mean Gaussian noise to the with a
standard deviation of 0.2. All the algorithms were run for T = 1000 time steps. We recorded the cumulative regret and time
taken by different algorithms for 10 Monte Carlo runs for each benchmark function.
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Figure 2: Cumulative regret averaged over 10 Monte Carlo runs for all algorithms across different benchmark functions.
The shaded region represents the error bars upto one standard deviation. As evident from the plots, the regret of REDS is
comparable to that of BPE and GP-ThreDS.

BPE GP-ThreDS REDS

Branin 29.84± 6.13 4.37± 0.28 0.32± 0.08

Hartmann-4D 38.45± 3.93 7.59± 0.54 0.47± 0.11

Hartmann-6D 119.71± 23.75 19.33± 0.54 1.19± 0.08

Table 2: Time taken (in seconds) by different algorithms across the different benchmark functions.

The regret for the algorithms over different functions is plotted in Figure 2. The shaded region represents the error bars upto
standard deviation on either side. The running times, with an error bar of one standard deviation, are tabulated in Table 2. As
evident from the plots in Figure 2, the regret incurred by REDS is comparable to that of other algorithms for all benchmark
functions. At the same time, REDS offers about a 15× and 100× speedup in terms of runtime over the GP-ThreDS and
BPE (See Table 2), demonstrating the practical benefits of our proposed methodology of random sampling.

D. Additional Discussion on Assumption 4.2
In this section, we discuss some additional details about Assumption 4.2. At a high level, the assumption is required
to guarantee the topological regularity of level sets at each iteration, which allows for analytical convenience in the
proof of Theorems 4.3 and 4.5. Note that during any epoch r, the active domain Xr is a collection of closed, connected
components and hence is compact. This implies that we can directly invoke Theorem 3.1 to ensure that the posterior
variance corresponding to N randomly sampled points from this domain decays as

√
γN/N . However, the leading constant

in Theorem 3.1 implicitly depends on the geometry of the domain. Thus, a direct application of Theorem 3.1 results
in appearance of leading constants that are difficult to characterize and may potentially affect the order of regret with
T . Assumption 4.2 allows us to circumvent this issue by providing a means to precisely characterize this constant and
consequently the order of regret in terms of number of samples. By considering each connected component individually,
we can ensure that each component is explored irrespective of their volume. While the adaptive sampling approaches that
use an acquisition function implicitly account for this in the step where the acquisition function is maximized, we need to
explicitly incorporate this into algorithm design as small regions are less likely to ne sampled than the larger ones under our
non-adaptive scheme. Moreover, the topological regularity of each connected component ensures that the leading constant
in Theorem 4.2 cannot be much worse than that corresponding to the original domain X . See Lemma 4.6 and its proof in
Sec. B.3.3 for more details. We believe that this is a minor technical requirement in our analysis and can potentially be
improved with a combination of different algorithm design and refined analytical tools.

While it is not possible to completely eliminate the need for Assumption 4.2 in our work, we propose below two variants of
the assumption that are potentially more intuitive or less restrictive.
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D.1. Replacing UCB with posterior mean

Instead of assuming regularity of level sets of the Upper Confidence Bound (UCB) of f , it is sufficient to assume the
regularity of level sets of the posterior mean of f constructed using the randomly sampled points. Since the posterior mean
represents the underlying f more closely than the UCB, especially in the noise-free case, it is more intuitive to understand
the regularity of level sets of f being endowed to that of posterior mean when compared to being endowed to that of UCB.

Under this variant of Assumption 4.2, it is sufficient to modify the update rule in line 10 of Alg. 1 to the following for
noise-free observations:

Xr+1 =

{
x ∈ Xr

∣∣∣∣µr(x) ≥ sup
x′∈Xr

µr(x
′)− 2BC

√
γNr

Nr

}
,

where C is the leading constant in Lemma 4.6. For the noisy case, the update rule can be modified to

Xr+1 =

{
x ∈ Xr

∣∣∣∣µr,τ (x) ≥ sup
x′∈Xr

µr,τ (x
′)− 2ατ,δC

√
γNr

Nr
− 2cT,τ,δ

}
.

It is straightforward to note that even after this modification, Lemma B.4 continues to hold by replacing the term
supx∈Xr−1

σr−1(x) with its upper bound from Lemma 4.6. Thus, the analysis goes through almost as is with this
modification, retaining the original order of the regret.

D.2. Replacing the value of η0

In the current version of Assumption 4.2, η0 = f(x∗) − ε0 is a non-adaptively chosen constant value. Such a bound is
useful if ε0 is tuned or known to be smaller than the range of the function. Often, it might be not be possible to obtain to
know such a bound ahead of time. In such a case, we replace the non-adaptive bound with an adaptive one. In particular, we
can set η0 := c sup f + (1 − c) inf f for some c ∈ (0, 1). Such a choice gives us the advantage of being adaptive to the
range thereby making the algorithm more robust to the knowledge of ε0.

To ensure the condition that we only encounter level sets for η ≥ cf(x∗) + (1− c)f(x∗) during the algorithm, i.e., after
the first epoch, the termination criteria of the first epoch needs to be updated to an adaptive one as opposed to the current
non-adaptive strategy of having a fixed bound. Here x∗ ∈ argminx∈X f . Specifically, after taking CLf ,L′

f
N(δ/ log2 T )

samples, we continue to run the first epoch until the following condition is met:

c · supUCB + (1− c) inf UCB ≤ supLCB− 2B sup
x∈X

σ(x).

For the remaining epochs, we continue to run the algorithm as earlier.

We claim that the above termination condition ensures that the algorithm only encounters level sets corresponding to
η ≥ η0 = c sup f + (1 − c) inf f . The proof of the claim is straightforward. Note that the following relation holds by
definition of UCB:

c · supUCB + (1− c) inf UCB ≥ cf(x∗) + (1− c)f(x∗).

Thus, after the termination condition is met, we will always have

{x : UCB(x) ≥ supLCB(x)} ⊆ {x : f(x) ≥ supLCB(x)− 2B sup
x∈X

σ(x)} ⊆ {x : f(x) ≥ cf(x∗) + (1− c)f(x∗)},

as required.

Moreover, we also claim that this modified version of REDS also achieves the same regret guarantees as the original version.
In order to establish the claim, we only need to bound the regret in the first epoch as the regret analysis for the remaining
epochs carries through as is. Moreover, WLOG we assume this happens after CLf ,L′

f
N(δ/ log2 T ) samples have been taken.

Otherwise, anyway the current analysis goes through. To bound the regret in the first epoch, we first obtain a bound on the
number of samples taken in the first epoch. To this effect, note that the termination condition would have been definitely
satisfied if

cf(x∗) + (1− c)f(x∗) + 2B sup
x∈X

σ(x) ≤ supLCB− 2B sup
x∈X

σ(x) ≤ f(x∗)− 4B sup
x∈X

σ(x),
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or equivalently,

6B sup
x∈X

σ(x) ≤ cf(x∗) + (1− c)f(x∗).

Using Theorem 3.1 to bound the left hand side of the above relation, we can conclude that N1 = O((f(x∗)− f(x∗))
2

1−β ).
Since the instantaneous regret is trivially bounded by f(x∗) − f(x∗), the regret in the first epoch is bounded by C ·
min{(f(x∗)− f(x∗))

3−β
1−β , T · (f(x∗)− f(x∗))} = O(T

3−β
2 ), matching the overall regret bound of REDS.
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