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MASSIVE ACTIVATIONS ARE THE KEY TO LOCAL DE-
TAIL SYNTHESIS IN DIFFUSION TRANSFORMERS

Anonymous authors
Paper under double-blind review

Detail Guidance
CFG CFG + DG

CFG CFG + DG

Detail Guidance (DG) Enhances CFG Details

Figure 1: Visual results of our Detail Guidance (DG). Left: DG explicitly enhances fine-grained
visual details, yielding high-quality outputs. Right: DG integrates seamlessly with Classifier-Free
Guidance (CFG), allowing for further refinement of details.

ABSTRACT

Massive Activations (MAs) are a well-documented phenomenon across Trans-
former architectures, and prior studies in both LLMs and ViTs have shown that
they play a substantial role in shaping model behavior. However, the nature and
function of MAs within Diffusion Transformers (DiTs) remain largely unexplored.
In this work, we systematically investigate these activations to elucidate their role
in visual generation. We found that these massive activations occur across all spa-
tial tokens, and their distribution is modulated by the input timestep embeddings.
Importantly, our investigations further demonstrate that these massive activations
play a key role in local detail synthesis, while having minimal impact on the overall
semantic content of output. Building on these insights, we propose Detail Guidance
(DG), a MAs-driven, training-free self-guidance strategy to explicitly enhance local
detail fidelity for DiTs. Specifically, DG constructs a degraded “detail-deficient”
model by disrupting MAs and leverages it to guide the original network toward
higher-quality detail synthesis. Our DG can seamlessly integrate with Classifier-
Free Guidance (CFG), enabling joint enhancement of detail fidelity and prompt
alignment. Extensive experiments demonstrate that our DG consistently improves
local detail quality across various pre-trained DiTs (e.g., SD3, SD3.5, and Flux).

1 INTRODUCTION

Diffusion models (Rombach et al., 2022; Saharia et al., 2022) have recently achieved remarkable suc-
cess across a wide range of generative tasks. Among various architectures, the Transformer (Vaswani
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DiT-XL/2 SD3.5SD3 Flux

Figure 2: Massive Activations in DiTs. The activation magnitudes of internal hidden states from the
middle block (k = N/2) and timestep (t = T/2). We present the average magnitudes over 1,000 text
prompts. Massive Activations (MAs) are consistently concentrated in a few fixed dimensions across
all image patch tokens. The MA dimensions remain consistent across all layers (see Figure 14).

et al., 2017) has emerged as a powerful and versatile backbone for diffusion models (Peebles & Xie,
2023), thanks to its flexibility and scalability. With the increasing availability of large-scale data and
computational resources, many large Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Esser
et al., 2024) have recently emerged, achieving state-of-the-art performance in both image and video
synthesis (Yang et al., 2024b; Hong et al., 2022; Wan et al., 2025).

Along with the rapid progress of DiTs, recent studies (Sun et al., 2024; Darcet et al., 2024; Gan
et al., 2025) have uncovered an interesting phenomenon known as Massive Activations (MAs) in
these Transformer-based models, where rare hidden activations exhibit unusually large magnitudes.
Specifically, (Sun et al., 2024; Xiao et al., 2024) identifies the massive activations in Large Language
Models (LLMs) and demonstrates that they are essential for long-context learning. Similar activation
patterns are observed in Vision Transformers (ViTs), where they are utilized to process global
semantic information (Darcet et al., 2024). More recently, several works (Gan et al., 2025; Fang
et al., 2025) have reported the presence of massive activations in DiTs. However, their functional role
within the visual generation process of DiTs remains largely unexplored.

In this paper, we aim to gain a deeper understanding of the role massive activations play in the visual
generation tasks. We first conduct systematic investigations to study the characteristics of massive
activations. Our investigations reveal that massive activations appear in a few fixed dimensions across
all image tokens, which are text-independent ( Figures 2 and 4). In addition, we demonstrate that
these activations are closely associated with the input timestep embeddings, where the timestep
encoding can directly shape its distribution (Figure 4).

Furthermore, we perform activation intervention by disrupting the internal massive activations to
directly investigate their impact on DiT generation. Our analysis shows that, when disrupting the
massive activations, the visual output preserves consistent semantic content with the original images
(Figure 5). These results suggest that the massive activations exert minimal influence on the semantics
of the generation process. On the other hand, we found that the local details of visual output are
significantly degraded when massive activations are disrupted, suggesting their crucial role in local
detail synthesis (Figure 5). We propose the following interpretation to these findings: DiT assigns
massive activations to all spatial tokens to drive fine-grained local detail synthesis of each token,
while timestep embeddings modulate these activations to adaptively control the detail synthesis
process throughout generation.

Motivated by these insights, we introduce Detail Guidance (DG), a MAs-driven, training-free self-
guidance strategy for detail enhancement in DiT generation. Specifically, we construct a degraded
“detail-deficient” network by disrupting the massive activations, and then leverage it to explicitly
guide the original model toward generating higher-quality details. Our approach can be seamlessly
integrated with classifier-free guidance (CFG), thereby achieving joint enhancement of detail fidelity
and prompt alignment. Our main contributions can be summarized as follows.

• We provide a comprehensive study of massive activations in DiTs, demonstrating that these
activations are crucial for fine-grained local detail synthesis while exerting minimal influence
on the overall semantic content.

• We trace the massive activations to the influence of the input timestep embeddings, revealing
that the input timestep encoding can directly shape their distribution.
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• We introduce Detail Guidance (DG), a MA-driven, training-free self-guidance strategy to
explicitly enhance local detail synthesis in DiTs. DG integrates seamlessly with Classifier-
Free Guidance (CFG), leading to improved local detail synthesis.

2 RELATED WORK

2.1 DIFFUSION MODEL

Diffusion models (Rombach et al., 2022; Dhariwal & Nichol, 2021; Saharia et al., 2022) have
become a dominant paradigm for high-quality visual synthesis. Early approaches primarily relied
on U-Net architectures (Rombach et al., 2022) to model the denoising process. Recently, the field
has shifted toward Transformer-based backbones (Vaswani et al., 2017). Among these advances,
Diffusion Transformers (DiTs) (Peebles & Xie, 2023) have rapidly established themselves as a
powerful backbone for visual generation. Due to the strong scalability and flexibility of transformer
architecture, a new wave of large-scale DiTs(Esser et al., 2024; black-forest labs, 2024) (e.g., SD3,
Flux) has emerged, achieving superior performance in various visual generation tasks (Yang et al.,
2024b; Wan et al., 2025).

2.2 MASSIVE ACTIVATIONS

Massive activations in LLMs. Recent studies (Sun et al., 2024; Zhao et al., 2023; Xu et al.,
2025) have identified the presence of massive activations in large language models (LLMs). These
activations typically emerge at fixed dimensions of low-information tokens, such as starting or
delimiter tokens. Importantly, some works (Xiao et al., 2024; Jin et al., 2025) have shown that
massive activations contribute positively to contextual knowledge modeling, enabling LLMs to
capture long-range dependencies more effectively. In addition, (Jin et al., 2025) traced the emergence
of concentrated massive values into rotary position embeddings (RoPE).

Massive activations in ViTs. Similar activation patterns have also been observed in Vision Trans-
formers (ViTs) (Darcet et al., 2024; Yang et al., 2024a; Sun et al., 2024). In ViTs, massive activations
frequently arise in redundant background tokens and have been associated with encoding global
semantic information. Moreover, (Yang et al., 2024a) traced the emergence of these activations to the
influence of the input positional embeddings.

Massive activations in DiTs. Several studies on the acceleration of Diffusion Transformers
(DiTs) (Liu & Zhang, 2024; Fang et al., 2025; Zhao et al., 2024) have highlighted the presence of
outlier activations, whose extreme values pose a significant challenge for model quantization and
distillation. More recently, DiTF (Gan et al., 2025) found that massive activations occur at fixed
dimensions across all spatial tokens when employing DiTs as feature extractors, and showed that
these activations substantially influence the discriminative quality of extracted features. However, the
function of these massive activations in visual generation remains largely unexplored.

2.3 SAMPLING GUIDANCE FOR DIFFUSION MODELS.

Classifier-free guidance (CFG) (Ho & Salimans, 2022) has become the standard guidance mechanism
for diffusion sampling. It extrapolates between the conditional and unconditional branches to amplify
conditioning signals, thereby enhancing controllability and improving semantic alignment. Recently,
a number of advanced strategies (Fan et al., 2025; Chung et al., 2024; Shen et al., 2024; Sadat et al.,
2024; Zhang et al., 2024) have been proposed to further improve its effectiveness. For example,
(Shen et al., 2024) introduces content-adaptive guidance strengths for different semantic components,
while (Zhang et al., 2024) propose a frequency-aware guidance mechanism that adaptively modulates
different frequency bands. Beyond CFG, auto-guidance (Karras et al., 2024) introduced a self-
guidance signal by guiding the base model with a deliberately degraded “bad” version (e.g., reduced
capacity or under-trained checkpoints), steering sampling toward higher-quality outputs. Other
approaches (Ahn et al., 2024; Hong et al., 2023; Hyung et al., 2025) construct degraded predictions
by perturbing internal mechanisms such as modifying attention maps or skipping blocks to bias the
sampler toward a better image distribution.
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Figure 3: Illustration of several properties of massive activations in DiT-XL. (a) Activation
distribution of the hidden states along DiT layers (b) Activation distribution of the hidden states
along training iterations (c) Activation distribution of the hidden states across different model sizes.
Massive activations occur throughout all layers and persist across different model sizes.

3 PRELIMINARIES

Diffusion models. Diffusion models (Ho et al., 2020; Karras et al., 2022) generate data by progres-
sively denoising Gaussian noise, starting from zT ∼ N (0, I). Given a clean sample x ∼ pdata(x), the
forward diffusion process can be expressed as zt = x+σ(t) ϵ, where σ(t) denotes the noise schedule
and ϵ ∼ N (0, I). To learn the reverse process, a denoising network Dθ(zt, t, c) is trained to predict
the injected noise at each step, where c is the conditioning signals (e.g., class labels or text prompts).

Classifier-Free Guidance. Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) enhances
diffusion model quality by jointly training the denoising network in conditional Dθ(zt, t, c) and
unconditional Dθ(zt, t) modes. At sampling time, it combines the two predictions to amplify the
conditioning signal:

D̂θ (zt, t, c) = Dθ (zt, t) + w (Dθ (zt, t, c)−Dθ (zt, t)) (1)

where w is the guidance scale. By extrapolating their difference, CFG strengthens semantic alignment
and improves generation fidelity, but can sometimes lead to insufficient synthesis of fine-grained
local details (Sadat et al., 2024; Chung et al., 2024).

DiT architecture. We provide the architecture of Diffusion Transformer (DiT) following (Peebles &
Xie, 2023). For clarity, we omit the VAE component and focus on the latent diffusion transformer,
denoted as Dθ = {Dk}Nk=1, where k indexes the block and N is the total number of blocks. Given
noised latent zt ∈ RC×H×W , the DiT block Dk forward the internal hidden state zkt through a
residual connection (He et al., 2016) to the next block, formulated as

zk+1
t = zkt + αkDk(z

k
t , t, c) (2)

where αk ∈ RC denotes the dimension-wise residual scaling factor derived from the AdaLN
layer (Perez et al., 2018). More architecture details can be found in Appendix A.

4 MASSIVE ACTIVATIONS IN DIFFUSION TRANSFORMERS

As shown in Figure 2, the hidden states of various DiTs consistently exhibit a prominent phenomenon:
Massive Activations (MAs). This observation suggests that massive activations must play a crucial
role in the visual generation process of DiTs. In this section, we conduct an in-depth investigation
to understand why and where these massive activations emerge, and analyze their role in the visual
generation process of DiTs.

4.1 CHARACTERISTICS OF MASSIVE ACTIVATIONS

Massive activations occur throughout all layers across different model sizes. We first investigate
where massive activations emerge. As shown in Figure 3, we observed that massive activations exist in
all internal DiT layers(Figure 3(a)). They emerge early during training (before 50k training iterations
in Figure 3(b)), underscoring their crucial role in the internal computations of DiTs. Moreover,
massive activations persist across models of different scales (Figure 3(c)). We present the layer
properties of SD3, SD3.5, and Flux in Appendix B, which further confirm their presence throughout
all internal blocks.
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Figure 4: Impact of the input timestep and text on Massive Activations (MAs) in SD3. (a)
Comparison of the distributions of hidden-state zkt activations and their corresponding residual
scaling factor αk. (b) Respective impact of input timestep and text embeddings on the magnitude
distribution of MAs, where we compare the MAs of 1000 different text inputs. The massive activations
are governed by the residual scaling factor; their magnitude is primarily shaped by the input timestep
embedding t, while text embeddings c have negligible effect.

Massive activations appear in fixed dimensions across all patch tokens. Then, we analyze the
spatial distribution of massive activations, as illustrated in Figure 2. The results reveal that massive
activations consistently appear at a fixed feature dimension (e.g., dimension 810 for SD3) across all
spatial tokens. DiTF (Gan et al., 2025) has also characterized similar properties.

To delve into the massive activations in hidden states, we first examine the computation of hidden
states zkt ∈ RC×H×W :

zk+1
t = zkt + αkDk(z

k
t , t, c), αk = MLPk(t, c) (3)

where hidden states are computed via a residual connection, and αk ∈ RC denotes the dimension-
wise scaling factor parameters regressed by the AdaLN layer with an MLP network (see Appendix A
for details). As shown in Figure 4(a), we compare the activation distributions of hidden states zkt and
the scaling factor αk across dimensions. It can be observed that a prominent peak of αk at dimension
810 leads to a corresponding concentration of massive activations (Figure 4(a)), indicating that the
scaling factor αk governs the dimension pattern of massive activations.

As the scaling factor αk is produced by the AdaLN layer conditioned on the input timestep embedding
t and text embedding c (see Equation (3)), we further examine how t and c respectively influence
MAs (Figure 4(b)). This analysis leads to two key observations:

Text embeddings have minimal impact on massive activations. As shown in Figure 4(b), we
compare the massive activation value across 1,000 different text prompts. We observe that these
activations remain nearly constant (around 150) regardless of the input text embeddings, indicating
that the text embeddings have negligible influence on the magnitude of the massive activations.

Timestep embeddings shape the massive activations. In contrast, we find that the timestep t plays
a dominant role for massive activation: the magnitude of massive activations increases steadily as t
decreases from T to 0. We also get similar observations for SD3-5 and Flux (see Appendix C). These
results suggest that massive activations in DiTs are mainly modulated by the timestep embeddings.

4.2 MASSIVE ACTIVATIONS FOR LOCAL DETAIL SYNTHESIS

Previous works (Darcet et al., 2024) have characterized massive activations in ViTs, showing that they
primarily arise in specific tokens (e.g., background tokens) and serve to encode global information.
In contrast, massive activations in DiTs occur across all spatial tokens. This fundamental difference
naturally raises a key research question: What role do massive activations play in DiTs? To address
this question, we perform activation intervention (Sun et al., 2024) to examine how massive activa-
tions influence the behavior of DiTs. Specifically, we manually disrupt the massive activation values
in a single layer and then propagate the modified hidden state through the remaining DiT blocks.
The results are presented in Figure 5. We provide the full activation intervention setting, including
original, Non-MAs disrupted, and MAs-disrupted in Appendix D.

Massive activations have minimal impact on semantic content. We observe that the images
generated by the MAs-disrupted model still preserve global semantics such as object identity, color
composition, and overall layout, remaining consistent with those from the original model (Figure 5(a)).
Moreover, the MAs-disrupted model maintains comparable prompt alignment metrics, achieving
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Figure 5: Comparison of the original and Massive Activations (MAs) disrupted models. (a)
Sampling results comparison between the original and MAs-disrupted models for SD3. (b) Win
probability comparison for different models where we evaluate the model from two perspectives:
Prompt Alignment (Blipscore and Clipscore) and Local Detail Quality (HPSv2.1 and Laion-
Aesthetics). Disrupting massive activations markedly degrades the fidelity of fine-grained details in
the generated images while exerting minimal impact on semantic content.

similar Blipscore (Li et al., 2022) (0.462 vs. 0.538) and Clipscore (Radford et al., 2021) (0.512 vs.
0.488) win probabilities relative to the original output (Figure 5(b)). These results indicate that the
inherent massive activations exert minimal influence on the overall semantic content in the visual
generation process of DiTs. This finding is consistent with the characteristic described in Section 4.1,
where the input text embedding has negligible effect on massive activations.

Massive activations play a key role in local detail synthesis. More importantly, it can be easily
observed that the fine-grained local details, including textures and subtle object parts (e.g., eyes and
hair), are markedly degraded when massive activations are disrupted. Moreover, the MAs-disrupted
model attains much lower win probabilities (0.028 on HPSv2.1 and 0.078 on Laion-Aesthetics)
than the original model on the local detail quality metric, underscoring the crucial role of massive
activations in fine-grained detail synthesis.

In combination with the characteristics of MAs described in Section 4.1, we summarize two key
findings: (1) MAs are mainly shaped by the input timestep embedding, and (2) they are crucial
for local detail synthesis. These findings are consistent with the generative dynamics of diffusion
models (Ho et al., 2020; Rombach et al., 2022): the timestep embedding t encodes the noise level
and generation stage, with large t guiding coarse structure reconstruction and small t driving fine-
grained refinement. As sampling proceeds from T to 0, t modulates the residual scaling factor
αk, progressively amplifying massive activations (Figure 4(b)), which in turn orchestrate the detail
synthesis process in DiTs.

4.3 DETAIL GUIDANCE FOR DIFFUSION TRANSFORMERS

Based on these findings, we make the following hypothesis: during training, DiT learns to assign
massive activations to all spatial tokens to drive fine-grained local detail synthesis of each token,
and uses timestep embeddings to modulate massive activations, thereby adaptively orchestrating the
detail synthesis process throughout generation.

Motivated by these insights, we seek a concise and effective approach to exploit the capacity of MAs
for enhancing fine-grained detail synthesis in DiTs. Accordingly, we propose a MAs-driven, training-
free self-guidance strategy, termed Detail Guidance (DG). Our approach draws inspiration from the
self-guidance mechanism (Karras et al., 2024), which guides the base model with a deliberately
degraded “bad” version. Different from them, we construct the “bad” model by explicitly degrading
its capacity for local detail synthesis.

Formally, let Dθ be the original pretrained DiT model and zkt ∈ RC×H×W be the hidden state output
of k-th block. We disrupt the massive activations in zkt by masking (zeroing out) the corresponding
dimensions to the massive activations and then propagate the modified hidden state z̃kt through the
remaining blocks. By disrupting the massive activations (drivers of local detail), we build a degraded
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huge wide open plan house many couches arranged in circleA house in the style of Escher

A war weary hamster soldier

Baseline CFG DG(our) Baseline CFG DG(our)

cubic building on clouds of colorful trees

samurai pizza cat

tulips leaves flowers oil painting seamless "vase" "centerpiece"

OrisaA cute anime girl with blue eyes standing in a pine forest wearing a black dress

Figure 6: Visual results of Detail Guidance (DG) on SD3. Baseline denotes visual outputs without
CFG. DG produces high-quality images with improved fine-grained details compared to Baseline.
The CFG output is included as a reference for better comparison of detail quality.

model Dθ,m that produces detail-deficient outputs, where m is the disrupted layer depth. Leveraging
this degraded “detail-deficient” model Dθ,m, we formulate our Detail Guidance (DG) following the
diffusion self-guidance mechanism (Karras et al., 2024):

D̂θ(zt, t, c) = Dθ(zt, t, c) + w
(
Dθ(zt, t, c)−Dθ,m(zt, t, c)

)
(4)

where w controls the strength of the detail guidance. Our approach requires no extra training and can
be directly applied to mostly pretrained DiT models ( Table 1).

Integration with CFG. Classifier-free guidance (CFG) (Ho & Salimans, 2022) is a standard
technique that enhances semantic alignment by extrapolating between conditional and unconditional
predictions. Our DG method is naturally complementary to CFG: whereas CFG strengthens semantic
fidelity, DG explicitly enhances local detail quality. The combined guidance is expressed as

D̂θ(zt, t, c) = Dθ(zt, t, c) + λ
(
Dθ(zt, t, c)−Dθ(zt, t)

)
+ w

(
Dθ(zt, t, c)−Dθ,m(zt, t, c)

) (5)

where λ and w are the guidance scales of CFG and DG, respectively.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model Variants. As our approach merely modifies internal hidden states, it can be readily applied to
most pretrained DiTs without additional training or tuning. We evaluate DG on three representative
text-to-image DiTs, SD3-Medium (Esser et al., 2024) (SD3), SD3.5-Large (Esser et al., 2024) (SD3.5),
and Flux (black-forest labs, 2024). To comprehensively assess its effectiveness, we test DG under two
settings: Conditional (Cond) generation without CFG and CFG generation. The default generated
image size is 1024x1024. Further implementation details are provided in Appendix H.2.

7
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Figure 7: Integration with CFG. Rows 1-2: SD3; Rows 3-4: SD3.5. Incorporating DG into
Classifier-Free Guidance (CFG) yields outputs with markedly richer and more refined local details.

Model Type DG
Prompt Alignment Detail Quality

Clipscore Blipscore HPSv2.1 Aesthetic

SD3
Cond

× 22.11 66.74 21.84 5.58
✓ 24.15 76.52 28.65 6.01

CFG
× 26.64 87.01 28.23 5.80
✓ 26.25 86.32 29.87 6.03

SD3.5
Cond

× 24.90 70.09 23.65 5.94
✓ 26.01 83.66 29.23 6.16

CFG
× 27.67 92.62 29.9 6.01
✓ 27.68 91.61 30.7 6.18

Flux
Cond

× 22.09 57.60 19.33 5.50
✓ 25.69 80.55 27.88 6.13

CFG
× 27.04 87.76 29.16 5.96
✓ 27.14 86.23 29.25 6.12

Table 1: Quantitative comparison on dataset Pick- a-Pic. Our DG strategy brings substantial
improvements on detail quality for both settings, demonstrating its effectiveness in enhancing visual
details. The best highlights in bold.

Datasets and Evaluation Metric. We assess our method on two standard benchmarks: the Pick-a-Pic
“test unique” split (Kirstain et al., 2023) and HPSv2.1 (Wu et al., 2023). To quantify prompt alignment,
we compute Clipscore (Radford et al., 2021) and Blipscore (Li et al., 2022). To evaluate the fidelity
of fine-grained local details, we adopt HPSv2.1 (Wu et al., 2023) and Laion-Aesthetics (Schuhmann,
2022) as quality metrics. Further evaluation details are provided in Appendix H.3.

5.2 MAIN RESULTS ON VISUAL GENERATION

Evaluation of DG. Table 1 reports the quantitative results of Detail Guidance (DG) on three pre-
trained DiTs. DG achieves substantial improvements in both prompt alignment and detail quality,
(e.g., Blipscore from 70.09 to 83.66 and Aesthetic from 5.94 to 6.16 on SD3.5). Qualitative results
in Figure 6 further confirm that DG effectively enhances fine-grained local details while faithfully pre-
serving the overall image structure. We provide qualitative results on SD3.5 and Flux in Appendix P.
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Train Method
HPSv2.1

Aesthetic
Anime Concept Painting Photo Avg.

✓

CFG 31.34 30.62 30.98 28.01 30.24 5.93
APG 30.76 29.98 30.24 26.86 29.46 5.89
CFG++ 31.58 30.32 30.95 27.24 30.02 5.91
Semantic-CFG 30.92 29.99 30.92 29.16 30.25 5.89
FA-CFG 31.07 30.10 31.09 28.76 30.26 5.96
CFG-Zero 31.64 31.05 31.35 28.25 30.57 6.07

× PAG 30.59 28.92 29.38 27.91 29.20 6.10
DG (Ours) 31.14 30.17 30.05 28.70 30.14 6.14

✓ CFG+DG (Ours) 32.23 31.11 31.27 29.21 30.96 6.13

Table 2: Evaluation of different guidance on dataset HPSv2.1 with SD3. Train means whether
need to train an unconditional branch. The best highlights in bold, while the second best is underlined.

CFG DG CFG + DG
Aesthetic Clipscore

Guidance scale Guidance scale

Aesthetic

Guidance scale

(d)Aesthetic

Disrupted depth

(a) (c)(b)

Figure 8: Investigations of disrupted depth m, scales λ and w for SD3.

Moreover, we report experiments on ImageNet 256×256 in Appendix I, showing that our DG strategy
also enhances visual quality in class-conditional generation tasks.

DG versus CFG. From Table 1, DG yields higher detail-quality scores (e.g., Aesthetic 6.01 vs. 5.80
for SD3), whereas CFG achieves stronger prompt alignment. As illustrated in Figure 6, DG produces
outputs with richer local textures, while CFG excels at semantic alignment. These results indicate
that DG primarily enhances local detail synthesis, while CFG strengthens semantic alignment.

Integrating DG with CFG. DG integrates seamlessly with CFG, consistently improving detail
quality as shown in Table 1. Visual comparisons in Figure 7 highlight that the combined strategy
further refines fine-grained details, yielding higher overall image quality. We provide more visual
results of SD3 and SD3.5 in Appendix O.

DG versus PAG. PAG generates the bad version by modifying the self-attention maps of the
conditional branch and does not require training an unconditional branch. As shown in Table 2,
DG achieves better performance than PAG (e.g., 30.14 vs. 29.20 on HPSv2.1 and 6.14 vs. 6.10 on
Aesthetic), demonstrating its stronger effectiveness in enhancing visual details.

DG versus advanced CFG. We further compare DG with advanced CFG strategies such as FA-CFG,
Semantic-CFG, and CFG-Zero (see Table 2). DG requires no unconditional-branch training, yet still
obtains the highest Aesthetic score (6.14) and competitive HPSv2.1 performance among all methods.
When combined with CFG, DG achieves the best results on both HPSv2.1 and Aesthetic metrics,
underscoring its effectiveness and generality in improving visual quality.

5.3 ABLATION STUDY

Disrupted depth m. We examine the effect of the disrupted depth m of massive activations, as shown
in Figure 8(a). Our DG strategy achieves the best performance when applied to intermediate blocks
(e.g., m ranging from 4 to 10). We hypothesize that early blocks mainly contain heavy noise and lack
even coarse image structures, making disruption there uninformative, while applying disruption in late
blocks occurs too close to the final output and thus has minor impact on generation. Based on these
observations, we primarily perturb massive activations in the intermediate layers and set the default
m = 6 for the SD3 model. The configurations for SD3.5 and Flux are provided in Appendix H.2.

Guidance scales w and λ. We present the quantitative results across different scales in Figure 8.
Our DG consistently achieves stable and high Aesthetic (AES) scores (Figure 8(b)) and CLIPScore

9
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Baseline Local DG DG

Figure 9: Visual results of our Local DG on SD3. We implement the Local DG strategy by
selectively disrupting the MAs in tokens within a target region (e.g., the dog). Local DG significantly
enhances the details of the local region (e.g., dog in the first row) while leaving other regions, such as
the cat and background, essentially unaffected.

(Figure 8(c)). When combined with CFG, it further boosts AES performance (Figure 8(d)). These
results highlight the effectiveness and robustness of our approach in enhancing fine-grained details.

User study. We conduct a user study to evaluate the benefits of our DG strategy from three
key aspects: prompt alignment, color consistency, and detail preservation(see Appendix J). The
results show that our DG strategy yields substantial improvements in color consistency and detail
preservation, demonstrating its effectiveness in enhancing fine-grained visual details.

5.4 TOKEN-SPECIFIC GUIDANCE USING LOCAL DG

To further investigate the locality property of MAs, we design a Local DG strategy in which we
mask MAs exclusively for a selected subset of spatial tokens, rather than masking MAs across all
spatial tokens as in the original DG setting. As shown in Figure 9, Local DG effectively guides
local details in the generated images. Specifically, by disrupting the Massive Activations only in the
tokens corresponding to the dog, Local DG successfully enhances the local details of the dog while
leaving other regions, such as the cat and background, essentially unaffected. These results clearly
demonstrate the locality of massive activations: each MA primarily drives the local detail synthesis of
its corresponding spatial token. By exploiting this property, we can achieve token-specific guidance
using DG by selectively disrupting MAs in the target regions.

6 CONCLUSION

In this paper, we systematically investigate an intriguing phenomenon in DiTs, termed Massive
Activations (MAs). We find that these activations emerge across all spatial tokens and that their
distribution is shaped by the input timestep embeddings. Our further analysis demonstrates that these
activations are critical for local detail synthesis in DiTs. We interpret them as drivers of local detail
information whose magnitude is dynamically modulated by timestep embeddings, thereby orchestrat-
ing detail synthesis during the DiT generation process. Building on these insights, we propose Detail
Guidance (DG), a MAs-driven, training-free self-guidance strategy to explicitly enhance local detail
synthesis. Our DG can be seamlessly combined with CFG, enabling joint enhancement of detail
fidelity and prompt alignment. Extensive experiments demonstrate the effectiveness of our approach
in improving fine-grained detail synthesis.

10
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APPENDIX
MASSIVE ACTIVATIONS ARE THE KEY TO LOCAL DETAIL SYNTHESIS IN
DIFFUSION TRANSFORMERS

A DIFFUSION TRANSFORMER ARCHITECTURE

Self-
Attention

Feedforward

Scale

Scale, Shift

Scale

Scale, Shift

t, c

Layer Norm

Layer Norm

MLP

Self-
Attention

Scale

Scale, Shift

t, c

Layer Norm MLP

Hidden state

Hidden state

Figure 10: Illustration of the architecture of DiT block Dk.
We present the architecture of a DiT block in Figure 10. Each block consists of three key components:
an AdaLN layer, a Self-Attention layer, and a Feedforward layer. The AdaLN layer encodes the
input timestep t and the additional conditioning information c (e.g., class or text embedding) into
channel-wise scale and shift parameters γk and βk. It then performs Adaptive Layer Normalization
(AdaLN) on the hidden state zkt :

ẑkt =
(
1 + γk

)
LayerNorm(zkt ) + βk, (6)

where γk, βk are regressed by the MLP networks of AdaLN layer conditioned on input timestep
embedding t and text embedding c:

γk, βk, αk = MLPk(t, c) (7)

where αk scales the k-th residual connection.

Next, ẑkt is processed by the Self-Attention layer to produce an intermediate feature representation.
A second adaptive layer normalization is then applied before passing this intermediate feature to the
Feedforward layer, which outputs the updated hidden state. Finally, a residual connection combines
the input and the transformed features to produce the block output:

zk+1
t = zkt + αk Dk(z

k
t , t, c), (8)
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B LAYER PROPERTIES OF MASSIVE ACTIVATIONS

In this section, we examine the layer-wise characteristics of MAs in SD3, SD3.5, and Flux. The
results are shown in Figures 11 to 13, revealing that massive activations consistently occur throughout
all layers in these DiT models. Furthermore, it can be observed that the MAs dimensions remain
consistent across all DiT layers (e.g., 810 for SD3, 676 for SD3.5), as shown in Figure 14.
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Figure 11: Layer properties of MAs in SD3. Massive activations in SD3 occur in all layers.
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Figure 12: Layer properties of MAs in SD3.5. Massive activations in SD3.5 occur in all layers.
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Figure 13: Layer properties of MAs in Flux. Massive activations in Flux occur in all layers.
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Figure 14: MA dimensions are consistent across all layers. We report the average activation values
of MA dimensions across DiT layers. “Mean” denotes the mean activation value of the hidden state
zkt . The results show that MA dimensions remain consistent across all layers for different DiT models
(e.g., 810 for SD3, 676 for SD3.5).
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Figure 15: Impact of the input timestep and text on Massive Activations (MAs) in SD3.5. The
input timestep t plays a dominant role for massive activation: the magnitude of massive activations
increases steadily as t decreases from T to 0.
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Figure 16: Impact of the input timestep and text on Massive Activations (MAs) in Flux. The
input timestep t plays a dominant role for massive activation: the magnitude of massive activations
increases steadily as t decreases from T to 0.

dimension

Ac
tiv

at
io

n 
va

lu
e

Sc
al

in
g 

va
lu

e

Ac
tiv

at
io

n 
va

lu
e

timestep

Activation
Scaling factor

class id

Ac
tiv

at
io

n 
va

lu
e

(a) Scaling factor impact on activations (b) Timestep vs class impact on MAs

Figure 17: Impact of the input timestep and text on Massive Activations (MAs) in DiT-XL. The
input timestep t plays a dominant role for massive activation: the magnitude of massive activations
increases steadily as t decreases from T/2 to 0.

C TIMESTEP VS TEXT IMPACT ON MASSIVE ACTIVATIONS

We provide additional analysis for the massive activation of SD3-5, Flux and DiT-XL in Figures 15
to 17. As the hidden states zk+1

t in DiTs are computed via a residual connection (Equation (2)):

zk+1
t = zkt + αkDk(z

k
t , t, c) (9)

where the αk is the residual scaling factor. We first examine the impact of the residual scaling
factor on these activations. Specifically, we visualize the average magnitude of each dimension for
activation values and scaling factor values. We observe that the residual scaling factors αk govern the
dimension and values of massive activations in DiTs.

Furthermore, the residual scaling factor αk is regressed by the AdaLN layer conditioned on input
timestep embedding t and text embedding c:

αk = MLPk(t, c) (10)

Therefore, we next investigate the respective impact of the input timestep t and text c to the massive
activations. As shown in Figure 15(b), Figure 16(b) and Figure 17(b), it can be found that the
magnitude of MAs is mainly influenced by the input timestep embedding while the input text
embedding exerts minimal impact on it.
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D ACTIVATION INTERVENTION FOR DITS

To better understand the functional role of Massive Activations (MAs) in the visual generation of
Diffusion Transformers (DiTs), we conduct an activation intervention study with four experimental
settings:

Original Non-MAs Disrupted MAs Disrupted

Figure 18: Visual comparison of activation intervention. MAs-disrupted models produce images
with noticeably degraded local details, whereas non-MAs disruption preserves similar high-quality
details with the original outputs. These results demonstrate that massive activations are crucial for
fine-grained local detail synthesis in DiT generation process.

• Original. The pretrained DiT models are used to generate visual outputs without any
modification.

• MAs Disrupted. We disrupt the massive activations by masking (zeroing out) their corre-
sponding dimensions (e.g., dimension 293 for SD3 in Figure 2), as MAs consistently occur
at fixed dimensions across all spatial tokens. Specifically, we mask the massive-activation
dimensions in the block-output hidden state of a single block and propagate the modified
state through the remaining DiT blocks. All other configurations (e.g., sampling steps) are
kept same to the Original setting to ensure fair comparison.
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• Non-MAs Disrupted. To provide a rigorous control, we additionally mask an equal number
of randomly selected non-Massive dimensions instead of the massive-activation dimensions.
This setting verifies that any observed effect arises specifically from disrupting MAs rather
than from the masking operation itself.

• Matched-non-MAs Disrupted. To incorporate a stricter control, we introduce a Matched
non-MAs disruption setting where the total perturbation applied to non-MA dimensions is
adjusted to match that of the MAs-disruption setting. Specifically, we scale the masking of
randomly selected non-MA dimensions so that the resulting L1 perturbation norm equals
that of the MA disruption. In the SD3 model, achieving this match requires applying the
scaled masking to approximately 50× non-MA dimensions to reach the same perturbation
magnitude of MA.

Original Matched-non-MAs Disrupted MAs Disrupted

Figure 19: Visualization of Matched-non-MAs disruption. The Matched-non-MAs disruption
preserves high-quality details similar to the original outputs, but introduces uniformly distributed
noise artifacts. This happens because zeroing a large set of non-MA dimensions causes a systematic
shift in the hidden-state distribution, disrupting the numerical balance of the decoding process. In
contrast, disrupting MAs does not introduce such noise, as MAs act as modulation signals that guide
the synthesis of local details for each token. Disrupting MAs primarily suppresses the model’s ability
to synthesize local details without affecting the overall decoding stability.
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From the results in Figure 18, it can be observed that disrupting the massive activations in DiTs
markedly degrades the fidelity of fine-grained local details, whereas disrupting non-MA dimensions
has almost no effect on the generated images. Even under the stricter Matched-non-MAs Disrupted
setting (see Figure 19), the generated outputs still preserve the similar high-quality semantic structure
and fine-grained detail.

In the Matched-non-MAs Disrupted setting, the generated images exhibit uniformly distributed noise
artifacts. This arises because zeroing out a large set of non-MA dimensions causes a systematic shift
in the hidden-state distribution, which disrupts the numerical balance of the subsequent decoding
process. As a result, isolated noise artifacts appear in the final images. In contrast, disrupting MAs
causes a more focused degradation of local details without introducing such noise artifacts. This
suggests that removing MAs does not alter the model’s decoding stability but instead suppresses
the modulation signal responsible for synthesizing local details. The absence of noise in the MA
disruption setting further emphasizes the specific role of MAs in driving local detail synthesis. These
findings demonstrate that massive activations play a crucial role in driving the synthesis of local
details during the visual generation process of DiTs.

E SPATIAL ANALYSIS OF MASSIVE ACTIVATIONS

In this section, we provide a detailed spatial analysis of the Massive Activations (MA) in DiTs.

Statistics of MA spatial map. We first analyze the statistics of the spatial map in the MA dimension
(dimension 810 for SD3). As shown in Table 3, at timestep t = 15

28T , the median activation value of
the hidden state zkt is 0.60, which is more than 100× smaller than the activation values in the MA
dimension, where the minimum activation reaches 71.0. Furthermore, the activation values in the MA
spatial map range from 71.0 to 136.0, indicating that these activations are consistently large across
all spatial tokens without isolated outliers. These observations demonstrate that MAs systematically
appear at a fixed dimension for all spatial tokens and exhibit similar functional behavior throughout
the DiT generation process.

timestep t
Spatial map of MAs: zkt [:, 810] , k = 6

Median(zkt )
Min Max Mean Std

t = 25
28T 72.0 135.0 87.4 7.6 0.57

t = 15
28T 71.0 136.0 89.5 9.6 0.60

t = 5
28T 70.0 138.0 86.4 8.8 0.60

Table 3: Statistics of MA spatial map for SD3.
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Figure 20: Visualizations of MA spatial map: MAs appear across all spatial tokens, while tokens
corresponding to detail-richer regions (e.g., the fox) exhibit slightly higher MA values.

Spatial map of MA dimension. To analyze the spatial characteristics of MA, we visualize the spatial
maps of MA dimension across different timesteps, as shown in Figure 20. From the results, we obtain
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the following observations: (1) Activations in the MA dimension remain consistently large across
all spatial locations. For SD3.5, the MA values range from approximately 70 to 180 without any
extreme outliers. These activation values are more than 100x larger than the median activation value
of the hidden states (approximately 0.6 from Table 3). This confirms that MAs appear across all
spatial tokens, which serves as token-wise modulation signal for local detail synthesis of each token.
(2) Tokens corresponding to detail-richer regions exhibit slightly higher MA values. In particular,
the region containing the fox shows marginally higher MA values. This suggests that while the MA
dimension is activated for every spatial token, its magnitude adapts subtly to local visual complexity.
Spatial tokens responsible for synthesizing richer or more intricate details receive slightly stronger
MA responses.

F ADAPTING DG TO OTHER SCHEMES

Our DG strategy is a detail guidance approach driven by massive activations, and it is applicable to a
wide range of models that exhibit massive activations, not limited to the standard DiTs. To assess the
generality of our approach across different architectures, we evaluate our strategy on several other
models, including efficient DiTs and non-DiT models.

Efficient DiT. To examine the robustness of DG on efficient DiT, we conduct experiments with
the popular PixArt-alpha (Chen et al., 2023). PixArt-alpha adopts an efficient DiT architecture
that injects text conditioning through cross-attention and employs shared AdaLN layers across all
blocks to encode the timestep. These experiments allow us to specifically verify whether DG remains
applicable under the shared-AdaLN setting.

Non-DiT. To further examine DG beyond transformer-based diffusion architectures, we experiment
with the recent SANA (Xie et al., 2024), which introduces a novel Linear-DiT design. SANA
replaces all vanilla attention with linear attention and integrates 3×3 convolutions into the MLP.
These experiments allow us to verify whether DG remains effective under such a hybrid design that
incorporates convolutional operations

Implementation details. We analyze the pattern of Massive Activations (MAs) in the models and
observe prominent MAs phenomena in both PixArt-alpha and SANA. These models exhibit similar
characteristics to standard DiTs, with MAs primarily occurring across all spatial tokens of fixed
dimensions. For PixArt-alpha, we create a “bad” version by masking dimension 273 in block 6. In
the case of SANA, we mask dimensions 56 and 597 in block 2 to disrupt the MAs.

Model Type DG
Prompt Alignment Detail Quality

Clipscore Blipscore HPSv2.1 Aesthetic

PixArt-alpha
Cond

× 22.64 68.41 25.63 6.01
✓ 23.43 72.07 29.18 6.53

CFG
× 26.20 87.64 29.99 6.21
✓ 26.17 86.88 30.74 6.34

SANA
Cond

× 23.52 78.25 24.40 5.91
✓ 24.98 84.11 28.72 6.12

CFG
× 27.07 91.03 30.13 6.00
✓ 27.20 90.25 30.52 6.07

Table 4: Evaluation of DG on other architectures. Our DG strategy generalizes effectively to other
architectures and significantly enhances the visual detail quality for both Pixart-Alpha and SANA.

As shown in Table 4, our DG strategy consistently improves the performance of both PixArt-alpha
and SANA. In the conditional generation setting, DG yields substantial improvements in detail
quality, HPSv2.1 increases from 24.40 to 28.72 and the Aesthetic score from 5.91 to 6.12 for the
Linear-DiT SANA model. Moreover, when combined with CFG, DG further enhances visual quality,
improving HPSv2.1 from 30.13 to 30.52 and the Aesthetic score from 6.00 to 6.07. These results
indicate that DG significantly boosts visual fidelity, with particularly notable gains in fine-grained
local details. Overall, these findings demonstrate that DG generalizes effectively beyond standard
DiT architectures, delivering robust improvements across both efficient DiT variants and non-DiT
models.
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G COMPUTATIONAL OVERHEAD OF DG

In this section, we investigate the computational overhead of our DG strategy. Specifically, we
generate 100 images at 1024×1024 resolution using a single L40S (48GB) GPU. The average
computational cost is reported in Table 5.

Model Type GPU memory (GB) Generation latency (s) Aesthetic

SD3

Cond 17 2.3 5.58
CFG 20 4.3 5.80
DG (Ours) 20 3.5 6.01

SD3.5

Cond 28 7.2 5.94
CFG 32 15.7 6.01
DG (Ours) 32 10.6 6.16

Flux

Cond 35 16.2 5.50
CFG 42 36.0 5.96
DG (Ours) 42 24.8 6.13

Table 5: DG is approximately 1.5x faster than CFG. Since DG only forwards one conditional
branch before the disrupted depth m, while CFG requires both the conditional and unconditional
branches to be processed, DG achieves superior efficiency. For the SD3.5 model, our DG generates a
1024x1024 image in 10.6s, approximately 1.5x faster than CFG, which takes 15.7s.

DG is approximately 1.5× faster than CFG and delivers superior performance. As demonstrated
in Table 5, DG achieves higher performance than CFG (e.g., 6.16 vs. 6.01 on SD3.5 model).
Moreover, DG generates a 1024×1024 image in 10.6s, approximately 1.5× faster than CFG, which
requires 15.7s. This efficiency stems from DG’s architectural design: it leverages an MAs-disrupted
conditional branch to guide the base model. Before the disruption depth (e.g., m = 20 out of N = 38
blocks for SD3.5), DG requires forwarding only the conditional branch, while CFG necessitates
forwarding both the conditional and unconditional branches throughout the entire sampling process.
This architectural difference makes DG both more efficient and effective than CFG.

H MORE IMPLEMENTATION DETAILS

H.1 IMPLEMENTATION DETAILS FOR FIGURES

This section provides the implementation details for the figures 1-5 presented in our paper.

Figure 1. Prompts used for the visual examples in the figure:

• Prompts for the examples with Detail Guidance (DG). [(1)"Card Magic the
gathering style of tom whalen022 2e SM Ricardo. Lavage du
char au gazole a Biesheim.", (2)"Movie Still of The Joker
wielding a red Lightsaber, Darth Joker a sinister evil
clown prince of crime, HD Photograph", (3)"Bichon maltais
fou", (4)"Frank Lloyd public library with a coffee shop, mid
century, interior"].

• Prompts for the examples with DG and CFG. [(1)"A cat, chubby, very
fine wispy and extremely long swirly wavy fur, under water,
Kuniyoshi Utagawa, Hishida Shunsō, a very curvy chubby cat,
golden embroidery fabric kimono, flowing glowing biomorphic
wisps, phosphorescent swirls, tendrils, wavelets, streamers,
a murmuration of bioluminescent bubbles, , detailed and
intricate, elegant aesthetic, ornate, finely detailed, 128K
UHD Unreal Engine, octane, fractal pi, fBm", (2)"Dream alpine
treehouse with sweeping mountain views"]

Figures 2 to 5. For configuration of the hidden states (block index k and timestep index t) used for
different DiT models, please refer to Table 6.
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Figure 2
Figure 3 Figure 4 Figure 5

DiT-XL/2 SD3 SD3.5 Flux
Architecture

Image size 256x256 1024x1024 256x256 1024x1024 1024x1024
Hidden size d 1152 1536 2432 3072 - 1536 1536

Hidden state zkt
Total blocks N 28 24 38 57 - 24 24
Block index k 14 12 19 28 - 12 6

Total timesteps T 250 28 28 50 250 28 28
Timestep index t 125 14 14 25 125 14 -

Table 6: Configuration of hidden states used in Figures 2-5.

H.2 IMPLEMENTATION DETAILS OF EXPERIMENTAL RESULTS

We implement DG on three pretrained large diffusion models: SD3-Medium (Esser et al., 2024),
SD3.5-Large (Esser et al., 2024), and Flux-dev (black-forest labs, 2024). Notably, Flux is a
CFG-distilled model. To evaluate DG independently of CFG, we adopt the de-distilled variant
from (black-forest labs, 2024). Full experimental settings are provided in Tables 7 and 8.

Configurations for DG. For each Diffusion Transformer, we construct a degraded detail-deficient
model Dθ,m by disrupting the dimensions corresponding to massive activations in the m-th blocks,
following the intrinsic activation patterns of each DiT. Detailed configurations are summarized
in Table 7.

Hyperparameters setup. All models adopt the default diffusion sampling settings (e.g., sampler
type and number of steps). Specific hyperparameter choices are listed in Table 8.

Computing Resources. All experiments are performed on a single NVIDIA L40S (48 GB) GPU.
DG builds the degraded detail-deficient model by directly disrupting massive activations in hidden
states without additional training.

Model Blocks N Hidden size d Disrupted dimensions Disrupted depth m

SD3 24 1536 810 6
SD3.5 38 2432 676 20
Flux 57 3072 [154, 1446] 22

Table 7: Configurations of Detail Guidance (DG) for different DiTs.

Model Guidance Type sampling step λ w

SD3
CFG 28 4 -
DG 28 - 1

CFG+DG 28 3 1

SD3-5
CFG 28 4 -
DG 28 - 4

CFG+DG 28 3 2

Flux
CFG 50 3.5 -
DG 50 - 4

CFG+DG 50 3 2

Table 8: Hyperparameter setup.
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H.3 EVALUATION DETAILS

We evaluate different guidance strategies from two key perspectives: prompt alignment and detail
quality. Prompt alignment reflects how well the generated image semantically matches the input
prompt, while detail quality measures the fidelity and richness of fine-grained visual details.

Specifically, we adopt Clipscore (Radford et al., 2021) and Blipscore (Li et al., 2022) to quantify
prompt alignment, and employ HPSv2.1 (Wu et al., 2023) and Laion-Aesthetics (Schuhmann, 2022)
as indicators of visual detail quality. The details of each metric are as follows.

Clipscore measures the global semantic consistency between text and image by computing the cosine
similarity between their CLIP-encoded features. We adopt the clip-vit-large-patch14 version for all
experiments.

Blipscore estimates prompt-image alignment through a fine-grained image-text matching model
(BLIP), capturing nuanced semantic relationships beyond global similarity. We use the blip-itm-large-
coco version to evaluate the model.

HPSv2.1 is a human preference score that provides a perceptual measure of visual realism and
aesthetic quality. It is widely used to benchmark high-fidelity image synthesis, and we adopt HPSv2.1
for evaluation.

Laion-Aesthetics predicts aesthetic appeal using a model trained on LAION’s large-scale human-
rated dataset, serving as an automated proxy for human aesthetic assessment.

I CLASS-CONDITIONAL GENERATION

To evaluate the robustness of our Detail Guidance (DG) strategy, we perform class-conditional gener-
ation on the ImageNet 256×256 dataset by applying DG to the pretrained DiT-XL/2 model (Peebles
& Xie, 2023).

Type DG FID ↓ IS ↑ Prec. ↑ Rec. ↑

Uncond
× 16.95 105.64 0.61 0.76
✓ 9.68 122.22 0.66 0.67

Cond
× 9.52 122.79 0.66 0.63
✓ 5.77 179.26 0.78 0.55

Table 9: Performance comparison on dataset ImageNet 256× 256. Prec: Precision, Rec: Recall.

For DiT-XL/2, we set the disrupted depth m = 7. We assess DG under both unconditional and
conditional generation settings, with results reported in Table 9. DG delivers consistent performance
improvements in both settings, demonstrating the robustness of our guidance strategy.

J USER STUDY

Figure 21: User study on SD3, SD3.5, and Flux. We report the win rates comparing CFG with our
method.

We conduct a user study to evaluate the benefits of our DG strategy from three key aspects: prompt
alignment, detail preservation, and color consistency. Prompt alignment measures how well the
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generated images match the input prompts. Detail preservation reflects the fidelity of fine-grained
visual details, while color consistency captures the naturalness and realism of colors.

For each model, 20 annotators compared 100 pairs of images produced by CFG and CFG + DG with
respect to these criteria. We report the averaged win rates in Figure 21, which show that our approach
yields significant improvements across all metrics, particularly for Detail and Color.

K DISCUSSION: CFG AND AUTOGUIDANCE VS. OUR DG

To facilitate a clearer conceptual understanding of DG and its relationship to existing guidance
strategies, we present a unified formulation of CFG, Autoguidance, and DG in Table 10.

Type Formulation Disruption
CFG D̂θ (zt, t, c) = Dθ (zt, t, c) + w (Dθ (zt, t, c)−Dθ (zt, t, ĉ)) c

Autoguidance D̂θ (zt, t, c) = Dθ (zt, t, c) + w (Dθ (zt, t, c)−Dθ∗ (zt, t, c)) θ

DG D̂θ (zt, t, c) = Dθ (zt, t, c) + w (Dθ (zt, t, c)−Dθ (ẑt, t, c)) zt

Table 10: Unified formulations of CFG, Autoguidance and Our DG. ĉ denotes the unconditional
prompt, θ∗ denotes under-capability model, and ẑt denotes zt with MAs-disrupted hidden state.

Under this unified formulation (see Table 10), the distinction becomes clear:

• CFG constructs a degraded version by “disrupting” the input prompt condition c, resulting
in prompt-alignment guidance.

• Autoguidance constructs a degraded version by “disrupting” the model θ, resulting in
entangled prompt-alignment and visual detail guidance.

• Our DG constructs a degraded version by “disrupting” the visual input zt itself through MA
disruption, resulting in visual detail guidance.

Our DG can be seamlessly combined with CFG, enabling a decoupled guidance mechanism where
CFG handles prompt alignment while DG focuses on visual detail guidance.

L ANALYSIS OF FAILURE CASES

In this section, we present visualizations and analyses of the failure cases associated with our DG
strategy. DG is explicitly designed to enhance the local detail fidelity of generated images. However,
this emphasis on fine-grained detail can occasionally compromise semantic faithfulness. In particular,
when the prompt specifies strong stylistic, identity-related, or conceptual requirements, DG may
favor detail enhancement over strict adherence to the intended semantics.

As illustrated in Figure 22, DG produces outputs with noticeably richer textures and enhanced local
details but may fail to fully satisfy the semantic requirements of the prompt. For instance, given the
prompt “The Mona Lisa as a vogue model, 1989 punk-inspired portrait, dramatic lighting, cinematic
lighting”, DG generates a portrait with improved local details and textures, yet the output lacks the
expected vogue style and the distinctive identity features of Mona Lisa. A promising direction to
address this limitation is to combine DG with CFG, enabling joint control over both local detail and
semantic alignment. Moreover, when the guidance scale becomes relatively large (e.g., greater than
5), our DG strategy may also exhibit oversaturation effects, similar to those observed with CFG.

M LIMITATIONS AND FUTURE WORK

Limitations. Our Detail Guidance (DG) method is primarily designed to explicitly enhance the detail
quality of generated images. While it does improve prompt alignment, its ability to ensure strong
alignment throughout the generation process is somewhat constrained. For prompts that specify
strong stylistic, identity-related, or conceptual requirements, we recommend combining DG with
CFG to provide joint guidance on prompt alignment and detail enhancement.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt

A 20 young girl in cyberpunk outfit

Flat design eye icon

The Mona Lisa as a vogue model, 1989 punk-inspired 
portrait, drama�c ligh�ng, cinema�c ligh�ng

DG(Ours) CFG

Figure 22: Failure Cases of Our DG. DG explicitly enhances local detail fidelity, which can
occasionally compromise semantic alignment. DG produces outputs with improved texture and
fine-grained details but fails to satisfy the prompt requirement (e.g., “Mona Lisa as a Vogue model”),
leading to missing identity and stylistic attributes. The words highlighted in red correspond to
semantic requirements in the prompt that are not fulfilled by the generated image from DG.

Future Work. This paper mainly explores the potential of Massive Activations (MAs) during the
sampling stage of DiTs. A more promising direction for future work lies in leveraging the capacity of
MAs during the training stage. Since MAs play a crucial role in local detail synthesis, incorporating
them more effectively into the training process could significantly enhance the performance of DiTs.
This approach offers valuable insights for optimizing future DiTs, driving further advancements in
their generative capabilities.

N USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used large language models solely as a lightweight writing aid
for grammar, wording, and formatting suggestions. The models were not used to generate research
ideas, design algorithms, write code, run experiments, analyze data, or draft scientific content. All
technical claims, methods, and conclusions were conceived, produced, and verified by the authors.
Suggested edits from LLMs were manually reviewed and integrated at the authors’ discretion. And
we accept full responsibility for the accuracy and integrity of the manuscript, including ensuring that
no plagiarized or misrepresented content from a LLM is included.
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O MORE QUALITATIVE RESULTS FOR INTEGRATION WITH CFG
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Figure 23: Visual results on SD3.
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Figure 24: Visual results on SD3.
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Figure 25: Visual results on SD3.5.
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P MORE QUALITATIVE RESULTS FOR DG

a spanish water dog breed as arthur morgan from red dead redemption

an cherry-colored dream, a fantasy painting

anime portrait of a beautiful vamire witch, sci fi suit, intricate, highly detailed 

a mouse

An image of a cyborg

Baseline CFG DG(our)

Figure 26: Visual results on SD3. Baseline indicates visual output without CFG.
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swirling water tornados epic fantasy

cinematic still of highly reflective stainless steel train in the desert, at sunset

A sign that says "Hatsune Miku es real"

little bunny

Most Expensive Sports Car

Baseline CFG DG(our)

Figure 27: Visual results on SD3.5. Baseline indicates visual output without CFG.
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A close-up photograph of a fat orange cat with lasagna in its mouth.

toilet design toilet in style of dodge charger toilet, black

aristocratic russian noblewoman, dressed in medieval dress, model face

Movie Still of The Joker wielding a red Lightsaber

a playful maid, undercut hair, apron, amazing body, pronounced feminine feature

Baseline CFG DG(ours)

Figure 28: Visual results on Flux. Baseline indicates visual output without CFG.
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