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ABSTRACT

In this paper, we study the statistical properties of pairwise ranking using dis-
tributed learning and random features (called DRank-RF) and establish its con-
vergence analysis in probability. Theoretical analysis shows that DRank-RF re-
markably reduces the computational requirements while preserving a satisfactory
convergence rate. An extensive experiment verifies the effectiveness of DRank-
RF. Furthermore, to improve the learning performance of DRank-RF, we propose
an effective communication strategy for it and demonstrate the power of commu-
nications via theoretical assessments and numerical experiments.

1 INTRODUCTION

Distributed learning has attracted much attention in the literature and has been widely used for
kernel learning in large scale scenarios (Zhang et al., 2013; Chang et al., 2017; Lin et al., 2020b).
The distributed kernel learning has mainly three ingredients: Processing the data subset in the local
kernel machines and producing a local estimator; Communicating exclusive information such as
the data (Bellet et al., 2015), gradients (Zeng & Yin, 2018) and local estimator (Huang & Huo,
2019) between the local processors and the global processor; Synthesizing the local estimators and
the communicated information on the global processor to produce a global estimator. Note that,
in the divide-and-conquer learning, the second ingredient communications is not necessary. In the
terms of practical challenges and theoretical analysis, the distributed learning has made significant
breakthroughs in the multi-penalty regularization (Guo et al., 2019), coefficient-based regularization
(Pang & Sun, 2018), spectral algorithms (Mücke & Blanchard, 2018; Lin et al., 2020a), kernel ridgel
regression (Yin et al., 2020; 2021), and semi-supervised regression (Li et al., 2022). All the above
are restricted to pointwise kernel learning. However, the distributed learning in pairwise kernel
learning still has a long way to go. The existing distributed pairwise learning (Chen et al., 2019;
2021) has high computational requirements, which motivates us to explore theoretic foundations
and efficient methods for pairwise ranking kernel methods under distributed learning.

Random features methods (Rahimi & Recht, 2007; Carratino et al., 2018; Liu et al., 2021) have a
long and distinguished history, which embed the non-linear feature space (i.e. the Reproducing Ker-
nel Hilbert Space associated with the kernel) into a low dimensional Euclidean space while incurring
an arbitrarily small additive distortion in the inner product values. This enables one to overcome the
high computational requirements of kernel learning since one can now work in an explicit low di-
mensional space with explicit representation whose complexity depends only on the dimensionality
of the space. Random features have gained rapid progress in reducing the complexity of the ker-
nel ridge regression (Liu et al., 2021) and semi-supervised regression (Li et al., 2022).However, it
remains unclear for complexity reduction and learning theory analysis to the distributed pairwise
ranking kernel learning.

In this paper, to reduce the computational requirements of pairwise ranking kernel learning, we
investigate the method of combining distributed learning and random features for pairwise ranking
kernel learning, called distributed least square ranking with random features (DRank-RF), to deal
with large-scale applications, and study its statistical properties in probability by integral operators
framework. To further improve the performance of DRank-RF, we consider communications among
different local processors. The main contributions of this paper are as follows: 1) We construct
a novel method DRank-RF to improve the existing state-of-the-art performance of the distributed
pairwise ranking kernel learning. This work is the first time to apply random features to least square
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ranking and derive the theoretical guarantees, which is a new exploration of random features in
least square ranking. In theoretical analysis, we derive the convergence rate of the proposed method,
which is sharper than that of the existing state-of-the-art distributed pairwise ranking kernel learning
(See Theorem 1). In computational complexity, DRank-RF requires essentially O(m2|Dj |) time
and O(m|Dj |) memory, where m is the number of random features, m < |Dj |, and |Dj | is the
number of data in each local processor. The proposed method can greatly reduce the computational
requirements compared with the state-of-the-art works (See Table 1). Experimental results verify
that the proposed method keeps the similar testing error as the exact and state-of-the-art approximate
kernel least square ranking and has a great advantage over the exact and state-of-the-art approximate
kernel least square ranking in the training time, which is consistent with our theoretical analysis. 2)
We propose a communication strategy to further improve the performance of DRank-RF, called
DRank-RF-C. Statistical analysis shows that DRank-RF-C obtains a faster convergence rate with
the help of communication strategy than DRank-RF. And the numerical results validate the power
of the proposed communication strategy.

The paper is organized as follows: In section 2, we briefly introduce the least square ranking problem
and the distributed least square ranking. In section 3, we introduce the proposed methods. Section
4 shows the theoretical analysis of the proposed DRank-RF and DRank-RF-C. In section 5, we
compare the related works with the proposed methods. The following sections are the experiments
and conclusions.

2 BACKGROUND

There is a compact metric space Z := (X ,Y) ⊂ Rq+1, where X ⊂ Rq and Y ⊂ [−b, b] for some
positive constant b. The sample set D := {(xi, yi)}Ni=1 of size N = |D| is drawn independently
from an intrinsic Borel probability measure ρ onZ . ρ(y|X = x) denotes the conditional distribution
for given input x. The hypothesis space used is the reproducing kernel Hilbert space (RKHS) (HK)
associated with a mercer kernel K : X × X → R (Aronszajn, 1950). We will denote the inner
product inHK by 〈·, ·〉, and corresponding norm by ‖ · ‖K .

2.1 LEAST SQUARE RANKING (LSRANK)

Least square ranking (LSRank) is one of the most popular learning methods in the machine learn-
ing community (Chen, 2012; Zhao et al., 2017; Chen et al., 2019),which can be stated as fD,λ =

arg minf∈HK

{
ED(f) + λ‖f‖2K

}
and ED(f) = 1

|D|2
∑|D|
i,k=1 (yi − yk − (f (xi)− f (xk)))

2
,

where the regularized parameter λ > 0.

The main purpose of LSRank is to find a function f : X → R through empirical observation, so that
the ranking risk

E(f) =

∫
Z

∫
Z

(y − y′ − (f(x)− f (x′)))
2
dρ(x, y)dρ (x′, y′) (1)

can be as small as possible, where x,x′ ∈ X .

The optimal predictor (Chen, 2012; Chen et al., 2013; Kriukova et al., 2016) under Eq.(1) is the
regression function fρ(x) =

∫
Y ydρ(y|X = x),x ∈ X .

Complexity Analysis LSRank requiresO(|D|3) time andO(|D|2) space, which is prohibitive for
large-scale settings.

2.2 DISTRIBUTED LEAST SQUARE RANKING (DRANK)

Let the dataset D = ∪pj=1Dj and each subset Dj :=
{(

xji , y
j
j

)}|Dj |

i=1
be stored in the j-th local

processor for 1 ≤ j ≤ p. The DRank is defined by

f̄0
D,λ =

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

fDj ,λ (2)
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where the least squares ranking (LSRank) fDj ,λ = arg minf∈HK

{
EDj

(f) + λ‖f‖2K
}

and

EDj
(f) = 1

|Dj |2
∑|Dj |
i,k=1

(
yji − y

j
k −

(
f
(
xji

)
− f

(
xjk

)))2

.

Complexity Analysis The time complexity, space complexity, and communication complexity of
DRank for each local processor are O(|Dj |3), O(|Dj |2), and O(|Dj |), where j = 1, . . . , p and p is
the number of partitions.

3 PROPOSED ALGORITHMS

3.1 DISTRIBUTED LEAST SQUARE RANKING WITH RANDOM FEATURES (DRANK-RF)

Here we first introduce the main properties of the shift-invariant kernel and the basic idea of random
features. The shift-invariant kernel can be written as K(x,x′) =

∫
Ω
ψ(x,ω)ψ(x′,ω)%(ω)dω if

the spectral measure has a density function %(·) (Li et al., 2019; Carratino et al., 2018), where ψ :
X×Ω→ R is a bounded and continuous function with respect toω and x. The basic idea of random
features is to approximate the kernel function K(x,x′) by its Monte-Carlo estimation (Li et al.,
2019; Rahimi & Recht, 2007): Km(x,x′) = 1

m

∑m
i=1 ψ(x,ωi)ψ(x′,ωi) = 〈φm(x), φm(x′)〉,

where φm(x) = 1√
m

(ψ(x,ω1), . . . , ψ(x,ωm))T .

Back to supervised learning (Chen, 2012), combining random features with the least squares ranking
leads to, fm,D,λ(x) = gTm,D,λφm(x) with

gm,D,λ = (Φm,DWDΦT
m,D +

λ

2
I)−1Φm,DWDȳD, (3)

for Φm,D = 1√
|D|

(φm(x1), . . . , φm(x|D|)), WD = I|D| − 1
|D|1|D|1

T
|D| = 1

|D| (|D|I− 1|D|1
T
|D|),

the identity matrix I|D|, 1|D| = (1, . . . , 1)T ∈ R|D|, and ȳD = 1√
|D|

(y1, . . . , y|D|)
T .

DRank with random features (DRank-RF) is defined as

f̄0
m,D,λ =

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

fm,Dj ,λ, (4)

where fm,Dj ,λ = gTm,Dj ,λ
φm(x) with gm,Dj ,λ = (Φm,DjWDjΦ

T
m,Dj

+ λ
2 I)−1Φm,Dj

WDj
ȳDj

.

Random features have a long history and have been studied in different learning, for example kernel
ridge regression (Liu et al., 2021), kernel classification (Liu et al., 2022), kernel k-means (Chitta
et al., 2012). However, random features have not been studied in least square ranking. Our work is
the first time to apply random features to least square ranking and derive the theoretical guarantees,
which is a new exploration of the application of random features. In addition, due to the different
objective functions and integral operators, the proof of our proposed method is different from the
existing methods (See Appendix). Finally, the proposed methods greatly reduce the computational
requirements (See Table 1).

The method of synthesis operation in Eq.(4) is to weighted average the estimated values in each
local processor.

Complexity Analysis In time complexity, solving the inverse of Φm,DjWDjΦ
T
m,Dj

+ λ
2 I needs

O(m3) time and computing the matrices multiplication Φm,DjWDjΦ
T
m,Dj

requires O(m2|Dj |)
cost, where m is the number of random features. In space complexity, the key is to store Φm,Dj

,
whose space complexity is O(m|Dj |). Therefore, the time complexity, space complexity, and com-
munication complexity of DRank-RF for each local processor are O(m2|Dj |), O(m|Dj |), and
O(m), where m < |Dj |. Not that, the computational cost of random features model is far less
than m2|Dj |. It is ignored when expressing the computational complexity. In the experiments, the
training time of our methods includes the time of calculating the random features model.

The way of weighted averaging in Eq.(4) cannot improve the approximation ability of DRank-RF in
each local processor (Huang & Huo, 2019; Lin et al., 2020b; Yin et al., 2021). To further improve
the performance, we bring an efficient communication strategy into DRank-RF.
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Algorithm 1 Distributed Least Square Ranking with Random Features and communications
(DRank-RF-C)

Initialize: ḡ0
m,D,λ = 0

For l = 1 to M do
Local processor: compute the local gradient Gm,Dj ,λ(ḡl−1

m,D,λ) and communicate back to the
global processor.
Global processor: compute Ḡm,D,λ(ḡl−1

m,D,λ) =
∑p
j=1

|Dj |2∑p
k=1|Dk|2

Gm,Dj ,λ(ḡl−1
m,D,λ) in Eq.(9)

and communicate to each local processor.
Local processor: compute βl−1

j in Eq.(8) and communicate back to the global processor.
Global processor: compute ḡlm,D,λ in Eq.(7), and communicate to each local processor.
End For
Output: ḡMm,D,λ and f̄Mm,D,λ = 〈ḡMm,D,λ, φm(·)〉

3.2 DRANK-RF WITH COMMUNICATIONS (DRANK-RF-C)

In this section, we introduce the DRank-RF with communications (DRank-RF-C), which can not
only improve the approximation ability but also protect the data privacy in each local processor.

For any g, according to Eq.(3), one has the following equation:

gm,D,λ =g − (Φm,DWDΦT
m,D +

λ

2
I)−1[(Φm,DWDΦT

m,D +
λ

2
I)g −Φm,DWDȳD]

=g − (Φm,DWDΦT
m,D +

λ

2
I)−1Gm,D,λ(g),

(5)

where Gm,D,λ(g) = (Φm,DWDΦT
m,D + λ

2 I)g −Φm,DWDȳD.

Define ḡ0
m,D,λ =

∑p
j=1

|Dj |2∑p
k=1|Dk|2

gm,Dj ,λ, we can obtain that

ḡ0
m,D,λ = g −

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(Φm,DjWDjΦ
T
m,Dj

+
λ

2
I)−1Gm,Dj ,λ(g). (6)

Note that, the gradient of the empirical risk of 1
|Dj |2

∑(
yi − yk − (gTφm(xi)− gTφm(xk))

)2
+

λ‖g‖2 on g is 4Gm,Dj ,λ(g) for all (xi, yi), (xk, yk) ∈ Dj .

Comparing Eq.(5) and Eq.(6), we consider the communication strategy based on the well-known
Newton Raphson iteration (Lin et al., 2020b; Yin et al., 2021; Chen et al., 2021) for DRank-RF,
which is formed as:

ḡlm,D,λ = ḡl−1
m,D,λ −

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

βl−1
j , (7)

where
βl−1
j = H−1

Dj ,λ
Ḡm,D,λ(ḡl−1

m,D,λ), (8)

Ḡm,D,λ(g) =

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

Gm,Dj ,λ(g), (9)

HDj ,λ = Φm,Dj
WDj

ΦT
m,Dj

+ λ
2 I, and l is the number of iteration.

The method of synthesis operation in DRank-RF-C is to weighted average the model parameters
{βj} of each local processor obtained in the last iteration.

Algorithm 1 shows the detail of DRank-RF-C. In step 1, let ḡ0
m,D,λ be 0. In the following steps,

we update the global gradients and model parameters iteratively. For l = 1, . . . ,M , we distribute
ḡl−1
m,D,λ to each local processor. In step 2 (on each local processor), compute p local gradient vec-

tors Gm,Dj ,λ(ḡl−1
m,D,λ) and communicate them back to the global processor. In step 3 (on global
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processor), according to the received p local gradient vectors, we compute the global gradient
Ḡm,D,λ(ḡl−1

m,D,λ) and communicate it to each local processor. In step 4 (on each local processor),
each local processor computes βl−1

j and communicates them back to the global processor. In step 5
(on global processor), the global processor obtains the solution ḡlm,D,λ. Then we transmit ḡlm,D,λ
to each local processor and go back to step 2.

Complexity Analysis In the terms of time complexity, one needs to compute the inverse of
Φm,DjWDjΦ

T
m,Dj

+ λ
2 I and the matrices multiplication Φm,DjWDjΦ

T
m,Dj

once for each lo-
cal processor, and one needs to solve the local gradient Gm,Dj ,λ and model parameter βj in each
iteration for each local processor. Thus, the total time complexity for each local processor is
O(m2|Dj | + mM |Dj |), where M is the number of communications. In the terms of space com-
plexity, for each local processor, the key is to store Φm,Dj

, thus the space complexity of each local
processor is O(m|Dj |). In the terms of communication complexity, the global processor sends the
gradient Ḡm,D,λ and ḡlm,D,λ to each local processor and receives the local gradient Gm,Dj ,λ and
model parameter βj from each local processor in each iteration. Therefore, the total communication
complexity is O(mM). Note that, if the number of communications M ≤ m, the time complexity
and space complexity of DRank-RF-C are the same as those of DRank-RF.

4 THEORETICAL ANALYSIS

Here, we analyze the convergence rate of DRank-RF and DRank-RF-C in probability. Define the
optimal hypothesis fλ inHK as fλ = arg minf∈HK

{
E(f) + λ‖f‖2K

}
. We assume fλ exists.

4.1 CONVERGENCE RATE OF DRANK-RF

In the following, we state and discuss the convergence rate of DRank-RF in probability.
Theorem 1. Suppose ψ is continuous, such that |ψ(x,ω)| ≤ τ almost surely, τ ∈ [1,∞). As-
sume that L−rK fρ ∈ HK with 0 < r ≤ 1, where LrK is the r-th power of LK . If the reg-

ularization parameter λ = O
((∑p

j=1
|Dj |∑p

k=1|Dk|2

) 1
1+r

)
and the number of random features

m = Ω

((∑p
j=1

|Dj |∑p
k=1|Dk|2

)−2r
1+r

)
, for f̄0

m,D,λ defined in Eq.(4) and every δ ∈ (0, 1], there holds∥∥∥f̄0
m,D,λ − fρ

∥∥∥
K

= O
((∑p

j=1
|Dj |∑p

k=1|Dk|2

) r
1+r

log 1
δ

)
with confidence at least 1− δ.

Remark 1. From Theorem 1 mentioned above, one can see that if the number of random

features m is Ω

((∑p
j=1

|Dj |∑p
k=1|Dk|2

)−2r
1+r

)
, the convergence rate of the proposed DRank-RF

can reach O
((∑p

j=1
|Dj |∑p

k=1|Dk|2

) r
1+r

)
1, which is sharper than the existing convergence rate

O
((∑p

j=1
|Dj |3/2∑p
k=1|Dk|2

) r
1+r

)
of the state-of-the-art distributed pairwise ranking kernel learning

(Chen et al., 2021). When the number of partitions p = 1, the convergence rate of the proposed
DRank-RF is O

(
|D|

−r
1+r

)
with m = Ω

(
|D|

2r
1+r

)
. When |D1| = . . . = |Dp|, the convergence

rate of the proposed DRank-RF is O
(

( |D|p )
−r
1+r

)
with m = Ω

(
( |D|p )

2r
1+r

)
. Theoretical analysis

demonstrates that the proposed DRank-RF is sound and effective.
Remark 2. From a theoretical perspective, this paper is a non-trivial extension of these approximate
pairwise ranking methods. The existing papers mainly use capacity concentration estimation (Rudin,
2009; Rudin & Schapire, 2009; Rejchel, 2012) and algorithmic stability (Cossock & Zhang, 2008;
Chen et al., 2014) for the learning theory analysis of pairwise ranking. In this paper, we apply
the integral operator framework and introduce a novel technique of error decomposition so that the
proposed method can achieve a tight bound under the basic condition. The details can be seen in

1Logarithmic terms of convergence rates and complexity are hidden in this paper.
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Table 1: The computational complexity of different algorithms. m is the number of random features and
m < |Dj |. M is the number of communications. q is the dimension of data. |Dj | < |D|.

Algorithms Time Space Communication

LSRank (Chen et al., 2019) |D|3 |D|2 /
DRank(Chen et al., 2021; 2019) |Dj |3 |Dj |2 |Dj |
DRank-C(Chen et al., 2021) |Dj |3 +M |Dj ||D| |Dj |2 qM |D|
DRank-RF (This Paper) m2|Dj | m|Dj | m
DRank-RF-C (This Paper) m2|Dj |+mM |Dj | m|Dj | mM

Appendix. This is the first time that combined distributed learning and random features in LSRank
and achieved such a breakthrough.

4.2 CONVERGENCE RATE OF DRANK-RF-C

Here, we introduce and discuss the convergence analysis of DRank-RF-C in probability.

Theorem 2. Suppose ψ is continuous, such that |ψ(x,ω)| ≤ τ almost surely, τ ∈ [1,∞). Assume
that L−rK fρ ∈ HK with 0 < r ≤ 1, where LrK is the r-th power of LK . If λ = O(|D|−

1
1+r ),

|D1| = . . . = |Dp| = |D|
p , and the number of random features m = Ω

(
|D|

2r
1+r

)
, for every

δ ∈ (0, 1], with confidence at least 1− δ, we have
∥∥∥f̄Mm,D,λ − fρ∥∥∥

K
= O

((
p

1
2 |D|−

r
2(1+r)

)M+2
)
.

Proof. The proof of Theorem 1 and 2 is in Appendix.

The assumption of L−rK fρ ∈ HK with 0 < r ≤ 1 is commonly used in approximation theory (Smale
& Zhou, 2007), which can be seen as regularity assumption.

Remark 3. Theoretical analysis shows that, when p < |D|
rM

rM+M+2 , the convergence rate of DRank-
RF-C is sharper than that of DRank-RF at the same settings. Note that p is monotonically increasing
with the number of communications M , which can demonstrate the power of the proposed commu-
nications. For M → ∞, it is clear that the convergence rate of DRank-RF-C is always sharper
than that of DRank-RF. The convergence rate in Theorem 2 is also related to δ. To simplify the
representation, we omit it here. Their detailed relationship is shown in Appendix C.2.

5 COMPARED WITH THE RELATED WORKS

In this section, we introduce the related distributed pairwise ranking in kernel learning. In Chen
et al. (2019), Chen et al. construct the divide-and-conquer pairwise ranking in kernel learning, called
DRank. They study the statistical properties of DRank and establish its convergence analysis in ex-
pectation. The time complexity, space complexity, and communication complexity of DRank are
O(|Dj |3), O(|Dj |2), and O(|Dj |), respectively. The convergence rate in expectation only demon-
strates the average information for multiple trails but fails to capture the learning performance for a
single trail. Therefore, the probability version of the convergence rate of DRank in a single trial is
proposed subsequently in Chen et al. (2021). The statistical properties and the convergence rate of
DRank in probability are carefully analyzed and established in Chen et al. (2021). In addition, the
paper Chen et al. (2021) proposes a communication strategy for DRank, called DRank-C, to improve
the learning performance and provides its convergence rate in probability. The time complexity and
space complexity of DRank-C are O(|Dj |3 +M |Dj ||D|) and O(|Dj |2), respectively. However, its
communication strategy requires communicating the input data between each local processor. Thus,
it is difficult to protect the data privacy of each local processor. Furthermore, for each iteration, the
communication complexity of each local processor is O(qM |D|), where q denotes the dimension,
which is infeasible in practice for large-scale datasets.

Table 1 shows the detail complexity of the related methods. We see that the proposed DRank-RF
only requires O(m2|Dj |) time, O(m|Dj |) memory, and O(m) communications, which are smaller
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Figure 1: The testing error and training time on simulated datasets. (a) and (b) are about the number of random
features m with p = 2. (c) and (d) are about the number of partitions p with m = 200 in DRank-RF.

than other methods. For DRank-RF-C, it requires less complexity than the communication-based
method. In addition, the communication strategy proposed in this paper only requires communicat-
ing the gradient and the model parameters, rather than the data, therefore the proposed DRank-RF-C
do better on privacy protection.

The convergence rate of the proposed DRank-RF in Theorem 1 is sharper than the convergence

rateO
((∑p

j=1
|Dj |3/2∑p
k=1|Dk|2

) r
1+r

)
of the existing state-of-the-art DRank (without communications)

(Chen et al., 2021; 2019). And the convergence rate of the proposed DRank-RF-C in Theorem

2 is also sharper than the convergence rate O
(

max

{(
p

1
2 |D|−

r
2(1+r)

)M+1

, |D|−
r

2(1+r)

})
of the

existing communication-based DRank (Chen et al., 2021).

6 EMPIRICAL EVALUATIONS

We perform experiments to validate our theoretical analysis of DRank-RF and the communication
strategy on simulated and real datasets. The server is 32 cores (2.40GHz) and 32 GB of RAM.

6.1 PARAMETERS AND CRITERION

We use the Gaussian kernel K (x,x′) = exp
(
−‖x− x′‖22 /(2d2)

)
. The optimal bandwidth d ∈

2[−2:0.5:5] and regularization parameter λ ∈ 2[−13:2:−3] are selected via 5-fold cross-validation. The
criterion of evaluating the methods on testing data is as follows (Chen et al., 2021; Kriukova et al.,

2016): R(f) =

∑n′
i,j=1 I{(yi>yj)∧(f̄(xi)≤f̄(xj))}∑n′

i,j=1 I{yi>yj}
, where I{ϕ} is 1 if ϕ is true and 0 otherwise.

We use the exact LSRank as a baseline, which trains all samples in a batch. And we compare
the proposed DRank-RF and DRank-RF-C (M = 2, 4, 8) with DRank, DRank-C, and LSRank by
carrying out various settings. We repeat the training 5 times and estimate the error on testing data.

6.2 SIMULATED EXPERIMENTS

Inspired by the numerical experiments in Chen et al. (2021); Kriukova et al. (2016), we consider
the following way to generate the synthetic data. The inputs {xi}|D

′|
i=1 ∈ R|D′|×q are randomly

chosen from {1, · · · , 100}, and the corresponding outputs {yi}|D
′|

i=1 are generated from the model
yi = [‖xi‖ /7] + εi, 1 ≤ i ≤ |D′|, where [·] means the integer part of inputs and εi is the noise
independently sampled from Gaussian distribution N (0, 0.01). Dimension q is 7. We generate
20000 samples. 70% is used for training and 30% for testing.

Figure 1(a) and Figure 1(b) show the testing error and training time (logarithmizing it) in seconds
about the number of random features m with p = 2 and indicate that DRank-RF has an obvious ad-
vantage over DRank and LSRank, even one order of magnitude less, in time cost. In the testing error,
the gap between DRank-RF and DRank decreases asm increases. Finally, there is no significant dif-
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Figure 2: The testing error about the number of partitions p on simulated datasets. 2, 4, and 8 represent the
number of communications with m = 300.

ference between DRank-RF and DRank, both of which are close to the optimal level. These results
are consistent with our theoretical analysis. With the increase of the number of random features m,
the training time of DRank-RF increases, and the testing error becomes smaller, which are in line
with the theoretical reasoning. And the testing error of DRank-RF declines significantly when m
is a small number. Therefore, in practice, we only need to take a small m to obtain a satisfactory
error, which will result in the savings of computing resources. Note that, DRank and LSRank have
nothing to do with m.

Figure 1(c) and Figure 1(d) show the testing error and training time about the number of partitions
p with m = 200 for DRank-RF. Figure 1(c) shows DRank-RF keeps the same accuracy level as
DRank. With the increase of the number of partitions p, the testing errors increase in p-related
algorithms, which is in line with the theoretical analysis. In Figure 1(d), with the increase of p, the
training time decreases in distributed algorithms (DRank-RF and DRank). Our algorithm DRank-
RF has a significant advantage over LSRank and DRank in the training time. In particular, the
time cost of DRank with p = 30 is higher than that of DRank-RF with p = 15, that is to say, the
proposed DRank-RF requires less expensive hardware devices, under the same scenario and time
cost. Combining Figure 1(c) and Figure 1(d), we obtain that DRank-RF can use fewer hardware
devices (local processors) to achieve a smaller testing error under the same training time, which is
consistent with the theoretical analysis.

Figure 2 shows the relation between the testing error, p, and different numbers of communications
(M = 2, 4, 8) with m = 300 and indicates the following information: 1) With the increase of p, the
testing error gaps between p-related algorithms and exact LSRank become larger and larger. There
exists an upper bound of p for DRank-RF and DRank-RF-C respectively, when larger than it, the
testing error increases and is far from the exact LSRank. This is in line with Theorem 1 and Theorem
2. 2) The upper bound p of DRank-RF-C is much larger than DRank-RF, which is aligned with our
theoretical analysis that the bound of p is determined by the communication times. 3) Under the
same p, the performance of DRank-RF-C is better than DRank-RF. And with the increase of the
number of communications M , the testing error of DRank-RF-C is smaller. These verify the power
of the communication strategy for DRank-RF. 4) Under the same conditions, the testing errors of
the proposed DRank-RF and DRank-RF-C are similar to those of DRank and DRank-C.

6.3 REAL DATA

The real dataset of MovieLens is from website http://www.grouplens.org/taxonomy/term/14, which
is a 62423 × 162541 rating matrix where (i, j) entry is the rating score of the j-th reviewer on the
i-th movie. We group the reviewers into 500-1000 movies according to the number of movies they
have rated. And 500 reference reviewers are selected at random from this group. In addition, we
select the test reviewers from those users who had rated more than 5000 movies. So, we obtain
a small matrix with the scale of at least 5000 × 501, where the last column corresponds to the
test reviewer and the other columns correspond to the 500 reference reviewers. Then the columns
without non-zero elements are deleted and the rows without the rating of any reference reviewers
or the test reviewer are deleted. Finally, missing review values of every left movie were replaced

8



Under review as a conference paper at ICLR 2023

Table 2: Comparison of the average testing error (standard deviation) and training time (in seconds) on Movie-
Lens dataset, with partitions p = 2, 10, 15 and random features m = 100, 150. 2, 8, and 16 are the number of
communications.

Algorithm (m=100) p=2 p=10 p=15
Error Time Error Time Error Time

LSRank 0.4902± 0.0283 4.01 0.4902± 0.0283 4.01 0.4902± 0.0283 4.01
DRank 0.4904± 0.0219 2.35 0.4906± 0.0220 0.08 0.4907± 0.0222 0.05
DRank-C #2 0.4904± 0.0221 2.73 0.4905± 0.0219 0.10 0.4906± 0.0181 0.08
DRank-C #8 0.4903± 0.0192 3.69 0.4903± 0.0192 0.19 0.4905± 0.0212 0.10
DRank-RF 0.4904± 0.0221 0.16 0.4907± 0.0211 0.02 0.4908± 0.0199 0.01
DRank-RF-C #2 0.4904± 0.0210 0.22 0.4906± 0.0171 0.03 0.4907± 0.0217 0.02
DRank-RF-C #8 0.4903± 0.0187 0.32 0.4903± 0.0210 0.03 0.4905± 0.0211 0.02
DRank-RF-C #16 0.4903± 0.0103 0.41 0.4903± 0.0185 0.04 0.4904± 0.0236 0.03

Algorithm (m=150) p=2 p=10 p=15
Error Time Error Time Error Time

DRank-RF 0.4904± 0.0201 0.17 0.4906± 0.0197 0.03 0.4907± 0.0232 0.01
DRank-RF-C #2 0.4904± 0.0191 0.23 0.4905± 0.0197 0.04 0.4906± 0.0180 0.01
DRank-RF-C #8 0.4903± 0.0167 0.35 0.4903± 0.0187 0.05 0.4904± 0.0221 0.02
DRank-RF-C #16 0.4903± 0.0092 0.44 0.4903± 0.0121 0.06 0.4904± 0.0111 0.03

with the median review score of those left reference reviewers on this movie. Here, we obtain a
smaller matrix. Each row of it is a data pair (xi, yi) and the last entry was the label yi of the input
features xi. The experimental dataset is similar to that in Chen et al. (2021). On the obtained
dataset, 70% is used for training and 30% for testing. The empirical evaluations are given in Table
2 where m = 100, 150 and p = 2, 10, 15. In Table 2, we can find that the experimental results
are similar to those on the simulated data. The average testing error gaps between our methods
and the exact methods are particularly small, which verify the effectiveness of our methods on the
real dataset. Under the conditions of M=16, p=2, and p=10, the testing error of DRank-RF-C is
convergent and does not change with the increase of the number of communications. Under the
condition of p=15, the testing error of DRank-RF-C decreases with the increase of the number
of communications, which demonstrates the effectiveness of the communication strategy on the
real dataset and is consistent with our Theorem 2. The training time in the distributed algorithms
decreases with the increase of p. The training time in communication-based algorithms increases
with the increase of the number of communications. The proposed DRank-RF and Drank-RF-C have
significant advantages over LSRank, DRank, and DRank-C in the training time. These are consistent
with the theoretical analysis. More experiments on different datasets are given in Appendix E.

7 CONCLUSIONS

We propose a novel pairwise ranking method (DRank-RF) to scale to large-scale scenarios. Our
work is the first time to apply random features to least square ranking, which is a new exploration of
the application of random features. Our theoretical analysis based on the techniques of integral oper-
ators shows that its convergence rate is sharper than that of the existing state-of-the-art DRank with-
out communications. In computational complexity, DRank-RF only requires O(m2|Dj |) time and
O(m|Dj |) memory, which are the least compared with the existing state-of-the-art DRank. Experi-
ments verify that our proposed method keeps the similar testing error as the exact and state-of-the-art
approximate methods and has a greatly advantage over the exact and state-of-the-art approximate
methods in the training time, which are consistent with our theoretical analysis. To further improve
the performance of DRank-RF, we propose a communication strategy to DRank-RF, which is called
DRank-RF-C. Statistical analysis shows that DRank-RF-C obtains a faster convergence rate than
DRank-RF. Compared with the existing state-of-the-art DRank with communications, DRank-RF-C
requires less complexity and keeps a sharper convergence rate. And the numerical results validate
the power of the communication strategy.
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A PRELIMINARY DEFINITIONS

There is a compact metric space Z := (X ,Y) ⊂ Rq+1, where X ⊂ Rq and Y ⊂ [−b, b] for some
positive constant b. The sample set D := {(xi, yi)}Ni=1 of size N = |D| is drawn independently
from an intrinsic Borel probability measure ρ onZ . ρ(y|X = x) denotes the conditional distribution
for given input x. The hypothesis space used is the reproducing kernel Hilbert space (RKHS) (HK)
associated with a mercer kernel K : X × X → R (Aronszajn, 1950; Cucker & Zhou, 2007). We
will denote the inner product in HK by 〈·, ·〉, and corresponding norm by ‖ · ‖K . Kx = K(x, ·).
Let ρX be the margin distribution of ρ with respect to X and L2

ρX be the Hilbert space of ρX square
integrable functions on X .

The Mercer kernel K defines an integral operator LK onHK (or L2
ρX ) (Chen et al., 2021) by

LKf =

∫
X

∫
X
f(x) (Kx −Kx′) dρX (x)dρX (x′) .

Suppose ψ is continuous, such that |ψ(x,ω)| ≤ τ almost surely, τ ∈ [1,∞). Assume that L−rK fρ ∈
HK with 0 < r ≤ 1, where LrK is the r-th power of LK .

Before the proof, we give some definitions: Sm : Rm → L2
ρX , (Smg) (x) = 〈g, φm(x)〉,

S∗m : L2
ρX → Rm, S∗mf =

∫
X φm(x)f(x)dρX (x), S∗m,D : L2

ρX → Rm, S∗m,Df =
1
|D|
∑

xj∈DX φm (xj) f (xj) . S
∗
mSm and Φm,DΦT

m,D = S∗m,DSm are self-adjoint and positive
operators, with spectrum is

[
0, τ2

]
(Caponnetto & Vito, 2007).

This part is organized as follows: In section B, we introduce the proof of Theorem 1. Section B.1
contains the main lemmas used for the proof of Theorem 1 and Theorem 2. Section B.2 is the
detail proof process of Theorem 1. In section C, we introduce the proof of Theorem 2. Section C.1
contains the main lemmas used for the proof of Theorem 2. Section C.2 is the detail proof process
of Theorem 2. In section D, we introduce the propositions used for the proof of Theorem 1 and
Theorem 2. Section E is the experiments on Jester Joke dataset.

B PROOF OF THEOREM 1

B.1 BOUND TERMS

Lemma 1. We have
√
λ ‖gm,D,λ − gm,λ‖

≤
√

2

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DWDȳD − S∗mWDfρ)

∥∥∥∥∥+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDfρ − S∗m,DWDfρ)

∥∥∥∥∥
)

+

(
1 +

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥
)
‖fm,λ − fρ‖K .

Proof. Note that ‖gm,D,λ − gm,λ‖ ≤
∥∥∥gm,D,λ − g�m,D,λ

∥∥∥+
∥∥∥g�m,D,λ − gm,λ

∥∥∥ . Define fm,D,λ =

gT
m,D,λφm(·),

gm,D,λ = arg min
g∈Rm

{
1
|D|2

∑
zi,zk∈D

(
(gTφm (xi)− yi)− (gTφm (xk)− yk)

)2
+ λ‖g‖2

}
,

f�m,D,λ = g�Tm,D,λφm(·),

g�m,D,λ = arg min
g∈Rm

{
1
|D|2

∑
zi,zk∈D

(
(gTφm (xi)− fρ (xi))− (gTφm (xk)− fρ (xk))

)2
+ λ‖g‖2

}
.

One can have fm,D,λ = Smgm,D,λ, gm,D,λ =
(
Φm,DWDΦT

m,D + λ
2 I
)−1

Φm,DWDȳD,
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f�m,D,λ = Smg�m,D,λ, and g�m,D,λ =
(
Φm,DWDΦT

m,D + λ
2 I
)−1

S∗m,DWDfρ, so we have

gm,D,λ − g�m,D,λ

=

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDȳD − S∗m,DWDfρ

)
=

(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2

∗
(
S∗mSm +

λ

2
I

)−1/2 (
Φm,DWDȳD − S∗m,DWDfρ

)
.

(10)

Note that
∥∥∥(Φm,DWDΦT

m,D + λ
2 I
)−1/2

∥∥∥ ≤√2/λ. Thus we can obtain that∥∥gm,D,λ − g�m,D,λ
∥∥

≤
√

2/λ

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
Φm,DWDȳD − S∗m,DWDfρ

)∥∥∥∥∥
=
√

2/λ

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
Φm,DWDȳD − S∗mWDfρ + S∗mWDfρ − S∗m,DWDfρ

)∥∥∥∥∥
≤
√

2/λ

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DWDȳD − S∗mWDfρ)

∥∥∥∥∥+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDfρ − S∗m,DWDfρ)

∥∥∥∥∥
)
.

(11)

Define fm,λ = gT
m,λφm(·) with

gm,λ = arg min
g∈Rm

{∫
Z

∫
Z

(
(gTφm(x)− fρ(x))− (gTφm(x′)− fρ(x′))

)2
dρX (x, y)dρX (x′, y′) + λ‖g‖2

}
.

We know fm,λ = Smgm,λ and gm,λ =
(
S∗mWDSm + λ

2 I
)−1

S∗mWDfρ. So one can obtain

g�m,D,λ − gm,λ

=

(
Φm,DWDΦT

m,D +
λ

2
I

)−1

S∗m,DWDfρ −
(
S∗mWDSm +

λ

2
I

)−1

S∗mWDfρ

=

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 [
S∗m,DWDfρ − S∗mWDfρ

]
+

[(
Φm,DWDΦT

m,D +
λ

2
I

)−1

−
(
S∗mWDSm +

λ

2
I

)−1
]
S∗mWDfρ.

For any self-adjoint and positive operators A and B,

A−1 −B−1 = A−1(B −A)B−1, A−1 −B−1 = B−1(B −A)A−1,
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so we have

g�m,D,λ − gm,λ =

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 [
S∗m,DWDfρ − S∗mWDfρ

]
+

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
S∗mWDSm −Φm,DWDΦT

m,D

)
gm,λ

<

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 [
S∗m,DWDfρ − S∗mWDfρ

]
+

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
S∗mSm −Φm,DΦT

m,D

)
gm,λ.

We know that Φm,DΦT
m,D = S∗m,DSm (Caponnetto & Vito, 2007), thus we can obtain that

g�m,D,λ − gm,λ

<

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 [
S∗m,DWDfρ − S∗mWDfρ

]
+

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
S∗mSmgm,λ − S∗m,DSmgm,λ

)
≤
(

Φm,DWDΦT
m,D +

λ

2
I

)−1 [
S∗m,Dfρ − S∗m,DSmgm,λ

]
+

(
Φm,DWDΦT

m,D +
λ

2
I

)−1

[S∗mSmgm,λ − S∗mfρ]

=

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 [
S∗m,Dfρ − S∗m,Dfm,λ

]
+

(
Φm,DWDΦT

m,D +
λ

2
I

)−1

[S∗mfm,λ − S∗mfρ]

=

(
Φm,DWDΦT

m,D +
λ

2
I

)−1

S∗m,D [fρ − fm,λ] +

(
Φm,DWDΦT

m,D +
λ

2
I

)−1

S∗m [fm,λ − fρ] .

(12)

Thus, we have∥∥g�m,D,λ − gm,λ
∥∥

≤

(∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1

S∗m,D

∥∥∥∥∥+

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1

S∗m

∥∥∥∥∥
)
‖fm,λ − fρ‖K .

(13)

Note that∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2

S∗m,D

∥∥∥∥∥
≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2

Φm,DWDΦT
m,D

(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2
∥∥∥∥∥

1/2

≤ 1

and ∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2

S∗m

∥∥∥∥∥
=

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
S∗mSm +

λ

2
I

)−1/2

S∗m

∥∥∥∥∥
≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥
∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗m

∥∥∥∥∥ ,
14
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since
∥∥∥(S∗mSm + λ

2 I
)−1/2

S∗m

∥∥∥ =
∥∥∥(S∗mSm + λ

2 I
)−1/2

S∗mSm
(
S∗mSm + λ

2 I
)−1/2

∥∥∥1/2

≤ 1.

Substituting the above two inequalities into Eq.(13) we have

∥∥g�m,D,λ − gm,λ
∥∥ ≤ 1√

λ

(
1 +

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥
)
‖fm,λ − fρ‖K .

(14)

Combining Eq.(11) and Eq.(14), we finish this proof.

Lemma 2. We have

‖fm,D,λ − fm,λ‖K ≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DWDȳD − S∗mWDfρ)

∥∥∥∥∥+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDfρ − S∗m,DWDfρ)

∥∥∥∥∥
)

+

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥+

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2


∗ ‖fm,λ − fρ‖K .

Proof. Note that

‖fm,D,λ − fm,λ‖K ≤
∥∥fm,D,λ − f�m,D,λ∥∥K +

∥∥f�m,D,λ − fm,λ∥∥K .
According to fm,D,λ − f�m,D,λ = Sm

(
gm,D,λ − g�m,D,λ

)
, by Eq.(10), we have

fm,D,λ − f�m,D,λ = Sm
(
gm,D,λ − g�m,D,λ

)
=Sm

(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2

∗
(
S∗mSm +

λ

2
I

)1/2(
S∗mSm +

λ

2
I

)−1/2 (
Φm,DWDȳD − S∗mWDfρ + S∗mWDfρ − S∗m,DWDfρ

)
.

(15)

Note that∥∥∥∥∥Sm
(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥ =

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗mSm

(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

1/2

=

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗mSm

(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

1/2

≤ 1.

So, by Eq.(15) we have

∥∥fm,D,λ − f�m,D,λ∥∥K ≤
∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DWDȳD − S∗mWDfρ)

∥∥∥∥∥
+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDfρ − S∗m,DWDfρ)

∥∥∥∥∥
)
.

(16)

15
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Similarly, according to Eq.(12), we have

f�m,D,λ − fm,λ = Sm
(
g�m,D,λ − gm,λ

)
≤Sm

(
Φm,DWDΦT

m,D +
λ

2
I

)−1

S∗m,D [fρ − fm,λ] + Sm

(
Φm,DWDΦT

m,D +
λ

2
I

)−1

S∗m [fm,λ − fρ]

=Sm

(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2

∗ S∗m,D [fρ − fm,λ] + Sm

(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2

∗
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
S∗mSm +

λ

2
I

)−1/2

S∗m [fm,λ − fρ] .

Note that
∥∥∥Sm (S∗mSm + λ

2 I
)−1/2

∥∥∥ =
∥∥∥(S∗mSm + λ

2 I
)−1/2

S∗mSm
(
S∗mSm + λ

2 I
)−1/2

∥∥∥1/2

≤ 1,

so we have ∥∥f�m,D,λ − fm,λ∥∥K
≤

(∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

+

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2
 ‖fm,λ − fρ‖K .

(17)

Combining Eq.(16) and Eq.(17), we finish this proof.

Lemma 3. For δ ∈ (0, 1], with probability at least 1− δ, we have∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DWDȳD − S∗mWDfρ)

∥∥∥∥∥ = O

((
1√
λ|D|

+

√
Nm(λ)

|D|

)
log

1

δ

)
,

where Nm(λ) = Tr
((
Lm + λ

2 I
)−1

Lm

)
, Lm is the integral operator associated with the approx-

imate kernel function Km, (Lmf) (x) =
∫
X Km (x,x′) f (x′) dρX (x′).

Proof. We have∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DWDȳD − S∗mWDfρ)

∥∥∥∥∥ ≤
∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DȳD − S∗mfρ)

∥∥∥∥∥ .
According to Lemma 6 in Rudi & Rosasco (2017), we know, with probability at least 1− δ,∥∥∥∥∥

(
S∗mSm +

λ

2
I

)−1/2

(Φm,DȳD − S∗mfρ)

∥∥∥∥∥ = O

((
1√
λ|D|

+

√
Nm(λ)

|D|

)
log

1

δ

)
.

where Nm(λ) = Tr
((
Lm + λ

2 I
)−1

Lm

)
, Lm is the integral operator associated with the approx-

imate kernel function Km, (Lmf) (x) =
∫
X Km (x,x′) f (x′) dρX (x′). Thus, we complete this

proof.

Lemma 4. For δ ∈ (0, 1], with probability at least 1− δ, we have∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDfρ − S∗m,DWDfρ)

∥∥∥∥∥ ≤ τζ log 1
δ

|D|
√
λ

+ 2ζ

√
Nm(λ)

|D|
,

where Nm(λ) = Tr
((
Lm + λ

2 I
)−1

Lm

)
.

16
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Proof. We have∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDfρ − S∗m,DWDfρ)

∥∥∥∥∥ ≤
∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mfρ − S∗m,Dfρ

)∥∥∥∥∥ .
According to Proposition 5 in Liu et al. (2021), with probability at least 1− δ, we have∥∥∥∥∥

(
S∗mSm +

λ

2
I

)−1/2 (
S∗mfρ − S∗m,Dfρ

)∥∥∥∥∥ ≤ τζ log 1
δ

|D|
√
λ

+ 2ζ

√
Nm(λ)

|D|
,

where Nm(λ) = Tr
((
Lm + λ

2 I
)−1

Lm

)
. Combining them, we complete this proof.

Lemma 5. For any δ > 0, with probability at least 1− δ, we have

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1 (
S∗mSm −Φm,DWDΦT

m,D

)∥∥∥∥∥
=

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

≤
2 log2(2/δ)

(
2τ2λ−1 + 1

)
|D|

+

√
2 log(2/δ) (2τ2λ−1 + 1)

|D|
.

Proof. Since S∗mSm is self-adjoint operator, so we have∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1 (
S∗mSm −Φm,DWDΦT

m,D

)∥∥∥∥∥
=

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥ .

According to Proposition 1 with ζi = φm (xi), we can obtain∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1 (
S∗mSm −Φm,DWDΦT

m,D

)∥∥∥∥∥ ≤ 2 log2(2/δ) (N∞(λ) + 1)

|D|
+

√
2 log(2/δ) (N∞(λ) + 1)

|D|
,

where

N∞(λ) = sup
ω∈Ω

∥∥∥∥∥
(
L̃K +

λ

2
I

)−1/2

ψ(·,ω)

∥∥∥∥∥
2

K

≤ 2τ2λ−1,

L̃Kf =
∫
X K(x, ·)f(x)dρX (Rudi & Rosasco, 2017), c1 and c2 are two constants.

Therefore, we have∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1 (
S∗mSm −Φm,DWDΦT

m,D

)∥∥∥∥∥ ≤ 2 log2(2/δ)
(
2τ2λ−1 + 1

)
|D|

+

√
2 log(2/δ) (2τ2λ−1 + 1)

|D|
.

17
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Lemma 6. We have∥∥ḡ0
m,D,λ − gm,D,λ

∥∥
≤

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗
∥∥gm,Dj ,λ − gm,λ

∥∥ .

(18)

Proof. Note that gm,D,λ = (Φm,DWDΦT
m,D + λ

2 I)−1Φm,DWDȳD. Thus we have

ḡ0
m,D,λ − gm,D,λ

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(Φm,DjWDjΦ
T
m,Dj

+
λ

2
I)−1Φm,DjWDj ȳDj

− (Φm,DWDΦT
m,D +

λ

2
I)−1Φm,DWDȳD

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

((
Φm,DjWDjΦ

T
m,Dj

+
λ

2
I

)−1

−
(

Φm,DWDΦT
m,D +

λ

2
I

)−1
)

Φm,DjWDj ȳDj

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDΦT

m,D −Φm,Dj
WDj

ΦT
m,Dj

)
∗
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1

Φm,Dj
WDj

ȳDj

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDΦT

m,D −Φm,DjWDjΦ
T
m,Dj

)
gm,Dj ,λ

(19)

By introducing S∗mSm term, we can convert the above formula into

ḡ0
m,D,λ − gm,D,λ

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDΦT

m,D − S∗mSm
)
gm,Dj ,λ

+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)
gm,Dj ,λ

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDΦT

m,D − S∗mSm
) (

gm,Dj ,λ − gm,λ
)

+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDΦT

m,D − S∗mSm
)
gm,λ

+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)
gm,Dj ,λ.

(20)
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So we have

ḡ0
m,D,λ − gm,D,λ

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDΦT

m,D − S∗mSm
) (

gm,Dj ,λ − gm,λ
)

︸ ︷︷ ︸
Term-A

+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

) (
gm,Dj ,λ − gm,λ

)
︸ ︷︷ ︸

Term-B

.

(21)

Note that

Term-A =

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1(
S∗mSm +

λ

2
I

)(
S∗mSm +

λ

2
I

)−1

∗
(
Φm,DWDΦT

m,D − S∗mSm
) (

gm,Dj ,λ − gm,λ
)

and

Term-B =

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DWDΦT

m,D +
λ

2
I

)−1(
S∗mSm +

λ

2
I

)

∗
(
S∗mSm +

λ

2
I

)−1 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

) (
gm,Dj ,λ − gm,λ

)
.

Substituting the above equations into Eq.(21), we have

∥∥ḡ0
m,D,λ − gm,D,λ

∥∥
≤

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗
∥∥gm,Dj ,λ − gm,λ

∥∥ .
Here, we complete this proof.

Lemma 7. We have∥∥f̄0
m,D,λ − fm,D,λ

∥∥
≤

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗
(∥∥fm,Dj ,λ − fm,λ

∥∥
K

+
√
λ
∥∥gm,Dj ,λ − gm,λ

∥∥) .

(22)
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Proof. Note that Sm
(
ḡ0
m,D,λ− gm,D,λ) = f̄0

m,D,λ − fm,D,λ.

According to Eq.(21), we have

f̄0
m,D,λ − fm,D,λ

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

Sm

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
Φm,DWDΦT

m,D − S∗mSm
) (

gm,Dj ,λ − gm,λ
)

︸ ︷︷ ︸
Term-A

+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

Sm

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

) (
gm,Dj ,λ − gm,λ

)
︸ ︷︷ ︸

Term-B

.

(23)

Note that

Term-A

=Sm

(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2

∗
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2

∗
(
S∗mSm +

λ

2
I

)−1/2 (
Φm,DWDΦT

m,D − S∗mSm
)(

S∗mSm +
λ

2
I

)−1/2

∗
(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)(
gm,Dj ,λ − gm,λ

)
.

So, we have

‖Term-A‖K

≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥Sm
(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)(
gm,Dj ,λ − gm,λ

)∥∥∥∥∥
≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)(
gm,Dj ,λ − gm,λ

)∥∥∥∥∥ .

Since
∥∥∥Sm (S∗mSm + λ

2 I
)−1/2

∥∥∥ =
∥∥∥(S∗mSm + λ

2 I
)−1/2

S∗mSm
(
S∗mSm + λ

2 I
)−1/2

∥∥∥1/2

≤ 1.
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So, we have
‖Term-A‖K

≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)(
gm,Dj ,λ − gm,λ

)∥∥∥∥∥
=

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)(
gm,Dj ,λ − gm,λ

)∥∥∥∥∥
≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗mSm
(
gm,Dj ,λ − gm,λ

)∥∥∥∥∥+
λ

2

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
gm,Dj ,λ − gm,λ

)∥∥∥∥∥
≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗m

∥∥∥∥∥∥∥fm,Dj ,λ − fm,D,λ
∥∥
K

+
√
λ

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗
∥∥(gm,Dj ,λ − gm,λ

)∥∥
≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗
(∥∥fm,Dj ,λ − fm,D,λ

∥∥
K

+
√
λ
∥∥gm,Dj ,λ − gm,λ

∥∥) ,
(24)
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the last inequality uses the fact that∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗m

∥∥∥∥∥ =

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗mSm

(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

1/2

≤ 1.

Similar as the above process, we can obtain that

‖Term-B‖K

≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗
(∥∥fm,Dj ,λ − fm,D,λ

∥∥
K
−
√
λ
∥∥gm,Dj ,λ − gm,λ

∥∥) .
(25)

Combining Eq.(23), Eq.(24), and Eq.(25), we obtain this result.

Lemma 8. For δ ∈ (0, 1] and λ > 0, when

m = Ω

(
λ−2r ∨ λ−1 log

1

λδ

)
,

with probability at least 1− δ, we have

‖fm,λ − fλ‖K ≤ cλ
r,

where c is a constant.

Proof. Note that fm,λ = Smgm,λ and gm,λ =
(
S∗mWDSm + λ

2 I
)−1

S∗mWDfρ.

We have ‖fm,λ − fλ‖K =
∥∥∥Sm (S∗mWDSm + λ

2 I
)−1

S∗mWDfρ − fλ
∥∥∥
K

≤∥∥∥Sm (S∗mSm + λ
2 I
)−1

S∗mfρ − f̃λ
∥∥∥
K
, where f̃λ = arg minf∈HK

{
∫
X (f(x) − fρ(x))2dρX (x) +

λ‖f‖2K}. According to Lemma 2 in Liu et al. (2021) (can be also seen in Li et al. (2019) and Rudi
& Rosasco (2017)), one has, when m = Ω

(
λ−2r ∨ λ−1 log 1

λδ

)
, with probability at least 1− δ,∥∥∥∥∥Sm

(
S∗mSm +

λ

2
I

)−1

S∗mfρ − f̃λ

∥∥∥∥∥
K

≤ cλr.

Combining the above, we complete this proof.

B.2 PROOF OF THEOREM 1

Proof. We have∥∥f̄0
m,D,λ − fρ

∥∥
K

=
∥∥f̄0
m,D,λ − fm,D,λ + fm,D,λ − fm,λ + fm,λ − fλ + fλ − fρ

∥∥
K

≤
∥∥f̄0
m,D,λ − fm,D,λ

∥∥
K

+ ‖fm,D,λ − fm,λ‖K + ‖fm,λ − fλ‖K + ‖fλ − f‖K .
(26)

Combining Lemma 1, Lemma 2, and Lemma 7, we have
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∥∥f̄0
m,D,λ − fm,D,λ

∥∥
K

≤
p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2

SS
1/2
λ

∥∥∥∥∥
2

∗

(∥∥∥∥∥SS−1/2
λ

(
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥SS−1/2
λ

(
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗

√2

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2

SS
1/2
λ

∥∥∥∥∥+

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2

SS
1/2
λ

∥∥∥∥∥
2


∗

(∥∥∥SS−1/2
λ

(
Φm,Dj

WDj
ȳDj
− S∗mWDj

fρ
)∥∥∥+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDj
fρ − S∗m,Dj

WDj
fρ)

∥∥∥∥∥
)

+

2

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2

SS
1/2
λ

∥∥∥∥∥+

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2

SS
1/2
λ

∥∥∥∥∥
2

+ 1


∗ ‖fm,λ − fρ‖K

)
,

where SSλ =
(
S∗mSm + λ

2 I
)
.

From Lemma 5, we know that if |D| ≥ 32 log(2/δ)
(
1 + 2τ2λ−1

)
,∥∥∥∥∥

(
S∗mSm +

λ

2
I

)−1/2 (
Φm,DWDΦT

m,D − S∗mSm
)(

S∗mSm +
λ

2

)−1/2
∥∥∥∥∥ ≤ 1

2
.

Combining the above inequality and Proposition 2, for any δ > 0, with probability at least 1− δ, we
can obtain, ∥∥∥∥∥

(
Φm,DWDΦT

m,D +
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥ ≤ √2. (27)

From Lemma 2, we have

‖fm,D,λ − fm,λ‖K

≤

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(Φm,DWDȳD − S∗mWDfρ)

∥∥∥∥∥+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

(S∗mWDfρ − S∗m,DWDfρ)

∥∥∥∥∥
)

+

(∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

+

∥∥∥∥∥
(

Φm,DWDΦT
m,D +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2
 ‖fm,λ − fρ‖K .

From Proposition 3, Lemma 3, Lemma 4, and Eq.(27), we know that if |D| ≥ Ω
(
τ2λ−1

)
, we have

‖fm,D,λ − fm,λ‖K = O
(

Υm,D,λ log
1

δ
+ ‖fm,λ − fλ‖K + ‖fλ − fρ‖K

)
, (28)
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where

Υm,D,λ = O

(
1√
λ|D|

)
. (29)

Note that ∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

≤

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥ .

According to Proposition 4 and Lemma 8, we have∥∥f̄0
m,D,λ − fm,D,λ

∥∥
K

=O

 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥Υm,Dj ,λ log

1

δ

+λr

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)
.

(30)

Combining Eq.(26), Eq.(28), Eq.(30), Proposition 4, and Lemma 8, one can obtain, if m =
Ω
(
λ−2r ∨ λ−1 log 1

λδ

)
, with probability 1− δ, we have∥∥f̄0

m,D,λ − fρ
∥∥
K

=O

 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥Υm,Dj ,λ log

1

δ

+Υm,D,λ log
1

δ
+ λr

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥+ λr

)
.

(31)

According to Lemma 5, we have∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

≤
2 log2(2/δ)

(
2τ2λ−1 + 1

)
|D|

+

√
2 log(2/δ) (2τ2λ−1 + 1)

|D|
.

(32)

Set λ = O
((∑p

j=1
|Dj |∑p

k=1|Dk|2

) 1
1+r

)
, we have the number of random features

m = Ω


 p∑
j=1

|Dj |∑p
k=1 |Dk|2


−2r
1+r

 .

Combining Eq.(31), Eq.(29), and Eq.(32), we have

∥∥f̄0
m,D,λ − fρ

∥∥
K

= O


 p∑
j=1

|Dj |∑p
k=1 |Dk|2

 r
1+r

log
1

δ

 .

We complete this proof.
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C PROOF OF THEOREM 2

C.1 BOUND TERMS

Lemma 9. We have

∥∥f̄ lm,D,λ − fm,D,λ∥∥K ≤
 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

Jm

l (∥∥f̄0
m,D,λ − fm,D,λ

∥∥
K

+
√
λ
∥∥ḡ0

m,D,λ − gm,D,λ
∥∥) ,

where

Jm =2

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+ 2

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥ .

Proof. Note that

gm,D,λ =ḡl−1
m,D,λ −

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 [(
Φm,DWDΦT

m,D +
λ

2
I

)
ḡl−1
m,D,λ −Φm,DWDȳD

]
,

and

ḡlm,D,λ

=ḡl−1
m,D,λ −

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,Dj

WDj
ΦT
m,Dj

+
λ

2
I

)−1 [(
Φm,DWDΦT

m,D +
λ

2
I

)
ḡl−1
m,D,λ −Φm,DWDȳD

]
.

Thus, we have

gm,D,λ − ḡlm,D,λ

=ḡl−1
m,D,λ −

(
Φm,DWDΦT

m,D +
λ

2
I

)−1 [(
Φm,DWDΦT

m,D +
λ

2
I

)
ḡl−1
m,D,λ −Φm,DWDȳD

]
− ḡl−1

m,D,λ +

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,Dj

WDj
ΦT
m,Dj

+
λ

2
I

)−1

∗
[(

Φm,DWDΦT
m,D +

λ

2
I

)
ḡl−1
m,D,λ −Φm,DWDȳD

]
=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

[(
Φm,Dj

WDj
ΦT
m,Dj

+
λ

2
I

)−1

−
(

Φm,DWDΦT
m,D +

λ

2
I

)−1
]

∗
[(

Φm,DWDΦT
m,D +

λ

2
I

)
ḡl−1
m,D,λ −Φm,DWDȳD

]
.

(33)

25



Under review as a conference paper at ICLR 2023

The above can be convert into

gm,D,λ − ḡlm,D,λ

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DjWDjΦ

T
m,Dj

+
λ

2
I

)−1 [
Φm,DWDΦT

m,D −Φm,DjWDjΦ
T
m,Dj

]
∗
(

Φm,DWDΦT
m,D +

λ

2
I

)−1 [(
Φm,DWDΦT

m,D +
λ

2
I

)
ḡl−1
m,D,λ −Φm,DWDȳD

]
=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,Dj

WDj
ΦT
m,Dj

+
λ

2
I

)−1 [
Φm,DWDΦT

m,D −Φm,Dj
WDj

ΦT
m,Dj

]
∗
[
ḡl−1
m,D,λ − gm,D,λ

]
=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DjWDjΦ

T
m,Dj

+
λ

2
I

)−1 [
Φm,DWDΦT

m,D − S∗mSm
] [

ḡl−1
m,D,λ − gm,D,λ

]
︸ ︷︷ ︸

Term-A

+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,Dj

WDj
ΦT
m,Dj

+
λ

2
I

)−1 [
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

] [
ḡl−1
m,D,λ − gm,D,λ

]
︸ ︷︷ ︸

Term-B

.

(34)

Note that

Sm ∗ Term-A

=Sm

(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
Φm,DjWDjΦ

T
m,Dj

+
λ

2
I

)−1/2

∗
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2(
S∗mSm +

λ

2
I

)−1/2

∗
[
Φm,DWDΦT

m,D − S∗mSm
](

S∗mSm +
λ

2
I

)−1/2

∗
(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)(
ḡl−1
m,D,λ − gm,D,λ

)
.

Note that
∥∥∥Sm (S∗mSm + λ

2 I
)−1/2

∥∥∥ =
∥∥∥(S∗mSm + λ

2 I
)−1/2

S∗mSm
(
S∗mSm + λ

2 I
)−1/2

∥∥∥1/2

≤ 1,
so, we have

‖Sm ∗ Term-A‖K

≤

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)(
ḡl−1
m,D,λ − gm,D,λ

)∥∥∥∥∥ .
(35)

Note that

S∗mSm

(
ḡl−1
m,D,λ − gm,D,λ

)
= S∗m

(
f̄ l−1
m,D,λ − fm,D,λ

)
.
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Substituting the above into Eq.(35), we have

‖Sm ∗ Term-A‖K

≤

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗m

(
f̄ l−1
m,D,λ − fm,D,λ

)∥∥∥∥∥
+
λ

2

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
ḡl−1
m,D,λ − gm,D,λ

)∥∥∥∥∥
≤

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗
(∥∥∥f̄ l−1

m,D,λ − fm,D,λ
∥∥∥
K

+
√
λ
∥∥∥ḡl−1

m,D,λ − gm,D,λ

∥∥∥) ,

the last inequality use the fact that

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗m

∥∥∥∥∥ =

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2

S∗mSm (S∗mSm + λI)
−1/2

∥∥∥∥∥
1/2

≤ 1.

Using the same process, we can obtain that

‖Sm ∗ Term-B‖K

≤

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

∗
(∥∥∥f̄ l−1

m,D,λ − fm,D,λ
∥∥∥
K

+
√
λ
∥∥∥ḡl−1

m,D,λ − gm,D,λ

∥∥∥) .
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Thus, we have∥∥fm,D,λ − f̄ lm,D,λ∥∥K
=
∥∥Sm (gm,D,λ − ḡlm,D,λ

)∥∥
K

≤
p∑
j=1

|Dj |2∑p
k=1 |Dk|2

‖Sm ∗ Term-A‖K + ‖Sm ∗ Term-B‖K

≤
p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗
(∥∥∥f̄ l−1

m,D,λ − fm,D,λ
∥∥∥
K

+
√
λ
∥∥∥ḡl−1

m,D,λ − gm,D,λ

∥∥∥) .

(36)

According to Eq.(34), we know that

gm,D,λ − ḡlm,D,λ

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(Term-A + Term-B)

=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DjWDjΦ

T
m,Dj

+
λ

2
I

)−1 [
Φm,DWDΦT

m,D − S∗mSm
] [

ḡl−1
m,D,λ − gm,D,λ

]
+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,Dj

WDj
ΦT
m,Dj

+
λ

2
I

)−1 [
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

] [
ḡl−1
m,D,λ − gm,D,λ

]
=

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,Dj

WDj
ΦT
m,Dj

+
λ

2
I

)−1(
S∗mSm +

λ

2
I

)(
S∗mSm +

λ

2
I

)−1

∗
[
Φm,DWDΦT

m,D − S∗mSm
] [

ḡl−1
m,D,λ − gm,D,λ

]
+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Φm,DjWDjΦ

T
m,Dj

+
λ

2
I

)−1(
S∗mSm +

λ

2
I

)(
S∗mSm +

λ

2
I

)−1

∗
[
S∗mSm −Φm,DjWDjΦ

T
m,Dj

] [
ḡl−1
m,D,λ − gm,D,λ

]
.

Thus, we obtain that∥∥gm,D,λ − ḡlm,D,λ
∥∥

≤
p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗
∥∥∥ḡl−1

m,D,λ − gm,D,λ

∥∥∥ .

(37)
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Combining Eq.(36) and Eq.(37), we have∥∥fm,D,λ − f̄ lm,D,λ∥∥K +
√
λ
∥∥gm,D,λ − ḡlm,D,λ

∥∥
≤

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗
(∥∥∥f̄ l−1

m,D,λ − fm,D,λ
∥∥∥
K

+
√
λ
∥∥∥ḡl−1

m,D,λ − gm,D,λ

∥∥∥)
+

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

(∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)
√
λ
∥∥∥ḡl−1

m,D,λ − gm,D,λ

∥∥∥
≤

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

2

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+2

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)

∗
(∥∥∥f̄ l−1

m,D,λ − fm,D,λ
∥∥∥
K

+
√
λ
∥∥∥ḡl−1

m,D,λ − gm,D,λ

∥∥∥)
≤

2

p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥∥∥
(

Φm,DjWDjΦ
T
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥
(
S∗mSm +

λ

2
I

)−1/2 (
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥

+

∥∥∥∥∥
(

Φm,Dj
WDj

ΦT
m,Dj

+
λ

2
I

)−1/2(
S∗mSm +

λ

2
I

)1/2
∥∥∥∥∥

2

∗

∥∥∥∥∥SS−1/2
λ

(
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥
)l

∗
(∥∥f̄0

m,D,λ − fm,D,λ
∥∥
K

+
√
λ
∥∥ḡ0

m,D,λ − gm,D,λ
∥∥) .
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C.2 PROOF OF THEOREM 2

Proof. Note that∥∥f̄ lm,D,λ − fρ∥∥K =
∥∥f̄ lm,D,λ − fm,D,λ + fm,D,λ − fm,λ + fm,λ − fλ + fλ − fρ

∥∥
K

≤
∥∥f̄ lm,D,λ − fm,D,λ‖K+

∥∥ fm,D,λ − fm,λ ‖K+‖ fm,λ − fλ ‖K+‖ fλ − f‖K .
(38)

Substituting Lemma 1, Lemma 2, Lemma 3, Lemma 4, Eq.(27), and Eq.(28) into Lemma 6 and
Lemma 7, we have∥∥f̄0

m,D,λ − fm,D,λ
∥∥
K

+
√
λ
∥∥ḡ0

D,λ − gm,D,λ
∥∥

2

=O

 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Km,D +Km,Dj

)
∗
(∥∥∥SS−1/2

λ (Φm,DWDȳD − S∗mWDfρ)
∥∥∥+

∥∥∥SS−1/2
λ (S∗mWDfρ − S∗m,DWDfρ)

∥∥∥+ ‖fm,λ − fρ‖K
))

=O

 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

(
Km,Dj

+Km,Dj

)
Qm

 ,

where SSλ =
(
S∗mSm + λ

2 I
)
,Km,D =

∥∥∥(S∗mSm + λ
2 I
)−1/2 (

S∗mSm −Φm,DWDΦT
m,D

) (
S∗mSm + λ

2 I
)−1/2

∥∥∥,

and Qm =
(
Υm,Dj ,λ + ‖fm,λ − fλ‖+ ‖fλ − fρ‖K

)
.

Combining the above inequality and Lemma 9, and note that∥∥∥∥∥SS−1/2
λ

(
S∗mSm −Φm,DWDΦT

m,D

)(
S∗mSm +

λ

2
I

)−1/2
∥∥∥∥∥ ≤ ∥∥∥SS−1/2

λ

(
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)
SS
−1/2
λ

∥∥∥ ,
we can obtain that∥∥f̄ lm,D,λ − fm,D,λ∥∥K

=O


 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥SS−1/2
λ

(
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)
SS
−1/2
λ

∥∥∥
l

∗

 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥SS−1/2
λ

(
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)
SS
−1/2
λ

∥∥∥Qm
 .

(39)

Combining Eq.(38), Eq.(39), Proposition 4, and Lemma 8, one can obtain, if m =
Ω
(
λ−2r ∨ λ−1 log 1

λδ

)
, with probability 1− δ, we have∥∥f̄ lm,D,λ − fρ∥∥K

=O


 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥SS−1/2
λ

(
S∗mSm −Φm,DjWDjΦ

T
m,Dj

)
SS
−1/2
λ

∥∥∥
l

∗

 p∑
j=1

|Dj |2∑p
k=1 |Dk|2

∥∥∥SS−1/2
λ

(
S∗mSm −Φm,Dj

WDj
ΦT
m,Dj

)
SS
−1/2
λ

∥∥∥ (Υm,Dj ,λ + λr
)

+Υm,D,λ log
1

δ
+ λr

)
.

Set λ = O(|D|−
1

1+r ), |D1| = . . . = |Dp| = |D|
p , and the number of random features m =

Ω
(
|D|

2r
1+r

)
, we have ∥∥f̄Mm,D,λ − fρ∥∥K = O

((
p

1
2 |D|−

r
2(1+r)

)M+2
)
, (40)
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where M = l. We complete this proof.

D PROPOSITIONS

Proposition 1 ((Liu et al., 2021)). Let ζ1, . . . , ζn with n ≥ 1, be i.i.d random vectors on a separable
Hilbert spaces H such that H = Eζ ⊗ ζ is a trace class, and for any λ there exists N∞(λ) < ∞
such that

〈
ζ, (H + λ

2 I)−1ζ
〉
≤ N∞(λ). Denote Hn as 1

n

∑n
i=1 ζi ⊗ ζi. Then for any δ ≥ 0, with

probability at least 1− 2δ, the following holds∥∥∥∥(H +
λ

2
I)−1/2 (H −Hn) (H +

λ

2
I)−1/2

∥∥∥∥ ≤ 2 log2(2/δ) (N∞(λ) + 1)

n
+

√
2 log(2/δ) (N∞(λ) + 1)

n
.

Proposition 2 ((Blanchard & Krämer, 2010)). For any self-adjoint and positive semidefinite opera-
tors A and B, if there exists η > 0 such that the following inequality holds∥∥∥∥(A+

λ

2
I)−1/2(B −A)(A+

λ

2
I)−1/2

∥∥∥∥ ≤ 1− η,

then ∥∥∥∥(A+
λ

2
I)1/2(B +

λ

2
I)−1/2

∥∥∥∥ ≤ 1
√
η
.

Proposition 3 (Proposition 10 in Rudi & Rosasco (2017)). For any δ ∈ (0, 1],m ≥
Ω
(
2τ2λ−1 log 1

λδ

)
then with probability at least 1− δ,

|Nm(λ)−N (λ)| ≤ 1.55N (λ),

where Nm(λ) = Tr
((
Lm + λ

2 I
)−1

Lm

)
.

Proposition 4 (Eq.(9) in Chen et al. (2021), Chen (2012)). Assume that L−rK fρ ∈ HK with 0 < r ≤
1, where LrK is the r-th power of LK , we have ‖fλ − fρ‖K = O(λr).

Here we prove the gradient of the empirical risk of 1
|Dj |2

∑(
yi − yk − (gTφm(xi)− gTφm(xk))

)2
+

λ‖g‖2 on g is 4Gm,Dj ,λ(g) for all (xi, yi), (xk, yk) ∈ Dj .

Proof. We have

∂ 1
|Dj |2

∑(
yi − yk − (gTφm(xi)− gTφm(xk))

)2
+ λ‖g‖2

∂g

=
4

|Dj |2
∑(

yiφm(xk)− yiφm(xi) + gTφm(xi)φm(xi)− gTφm(xi)φm(xk)
)

+ 2λg

=4

(
(Φm,DjWDjΦ

T
m,Dj

+
λ

2
I)g −Φm,DjWDj ȳDj

)
.

So, we have the results.

E SUPPLEMENTARY EXPERIMENTS

We add the experiments on the dataset Jester Joke. Jester Joke is publicly available from the fol-
lowing URL: http://www.grouplens.org/taxonomy/term/14 and contains over 4.1 million continuous
anonymous ratings (−10.00 to + 10.00) of 100 jokes from 73,421 users. We group the reviewers
according to the number of jokes they have reviewed. The grouping is 40-60 jokes. For a given test
reviewer, 300 reference reviewers are chosen at random from the group and their rating are used to
form the input vectors. 70 percent of the test reviewer’s joke ratings are used for training and the
rest for testing. Missing review values in the input features are populated with the median review
score of the given reference reviewer. Here, we add the comparison with MPRank algorithm (Cortes
et al., 2007). It is not a distributed algorithm related to this paper, but it is a representative algorithm
in the field of least square ranking, so it is compared here.
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Table 3: Comparison of the average testing error (standard deviation) and training time (in seconds) on Jester
Joke dataset, with partitions p = 2 and 4 and random features m = 30 and 50. 2, 8, and 16 are the number of
communications.

Algorithm (m=30) p=2 p=4
Error Time Error Time

LSRank 0.411± 0.002 0.301 0.411± 0.002 0.301
MPRank 0.418± 0.006 0.285 0.418± 0.006 0.285
DRank 0.419± 0.002 0.194 0.421± 0.003 0.105
DRank-C #2 0.415± 0.002 0.211 0.418± 0.002 0.155
DRank-C #8 0.414± 0.001 0.252 0.415± 0.005 0.198
DRank-RF 0.420± 0.001 0.022 0.421± 0.002 0.010
DRank-RF-C #2 0.417± 0.002 0.027 0.419± 0.007 0.014
DRank-RF-C #8 0.415± 0.003 0.031 0.416± 0.002 0.017
DRank-RF-C #16 0.413± 0.003 0.040 0.415± 0.004 0.021

Algorithm (m=50) p=2 p=4
Error Time Error Time

LSRank 0.411± 0.002 0.301 0.411± 0.002 0.301
MPRank 0.418± 0.006 0.285 0.418± 0.006 0.285
DRank 0.419± 0.002 0.194 0.421± 0.003 0.105
DRank-C #2 0.415± 0.002 0.211 0.418± 0.002 0.155
DRank-C #8 0.414± 0.001 0.252 0.415± 0.005 0.198
DRank-RF 0.419± 0.002 0.025 0.420± 0.001 0.013
DRank-RF-C #2 0.416± 0.004 0.029 0.418± 0.001 0.016
DRank-RF-C #8 0.414± 0.001 0.034 0.415± 0.002 0.020
DRank-RF-C #16 0.413± 0.002 0.047 0.414± 0.002 0.026

Table 4: Comparison of the average testing error and training time (in seconds) on simulated and real datasets
under the same conditions as (Chen et al., 2021).

Algorithm Simulated Data Real Data
Error Time Error Time

LSRank 0.0206 2.5643 0.4902 4.0127
DRank 0.0216 0.0089 0.4913 0.0179
DRank-C #8 0.0206 0.0213 0.4910 0.0454
DRank-RF 0.0217 0.0003 0.4914 0.0021
DRank-RF-C #8 0.0207 0.0021 0.4910 0.0087

The empirical evaluations are given in Table 3 where the number of random features is m = 30
and 50 and the number of partitions is p = 2 and 4. In Table 3, we can find that the experimental
results are similar to those on the simulated data and MovieLens dataset. The average testing errors
of our methods, the exact method, MPRank, and DRank remain at the same level, which verify the
effectiveness of our methods on the real dataset. The testing error of DRank-RF-C decreases with
the increase of the number of communications, which demonstrates the effectiveness of the com-
munication strategy on the real dataset. The proposed DRank-RF and Drank-RF-C have significant
advantages over LSRank, MPRank, DRank, and DRank-C in the training time. These are consistent
with the theoretical analysis.

We add the experiments under the same experiments setting as (Chen et al., 2021) on the datasets
mentioned in the main paper. Table 4 shows the experimental results with partitions p = 60, di-
mension q = 3, and random features m = 150 on simulated dataset with the same data generating
distribution as (Chen et al., 2021), and p = 60 and m = 150 on MovieLens dataset. Our algorithm
DRank-RF has a significant advantage over DRank and LSRank in the training time. Under the
same conditions, the testing errors of the proposed DRank-RF and DRank-RF-C are similar to those
of DRank and DRank-C.
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