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Abstract

Spurious correlations allow flexible models to predict well during training but
poorly on related test populations. Recent work has shown that models that satisfy
particular independencies involving correlation-inducing nuisance variables have
guarantees on their test performance. Enforcing such independencies requires nui-
sances to be observed during training. However, nuisances, such as demographics
or image background labels, are often missing. Enforcing independence on just
the observed data does not imply independence on the entire population. Here we
derive MMD estimators used for invariance objectives under missing nuisances.
On simulations and clinical data, optimizing through these estimates achieves test
performance similar to using estimators that make use of the full data.

1 Introduction

Spurious correlations allow models that predict well on training data to have worse than chance
performance on related populations at test time [9, 27, 35, 22, 13, 32]. For example, diabetes is
associated with high body mass index (BMI) in the United States. However, in India and Taiwan,
diabetes also frequently co-occurs with low and average BMI [37]. Due to their shifting relationship
with the label, nuisance variables (e.g., BMI) can cause models to exploit correlations in training data,
leading them to generalize poorly on test sets of interest.

Invariant prediction methods are designed to improve performance on a range of test distributions
when training data exhibits spurious correlations [26, 3]. We focus on methods that enforce in-
dependencies between the model and nuisance given some assumed causal structure [22, 35, 27].
These methods require the nuisance to be specified explicitly and observed. However, in large health
datasets, nuisances are often missing. For example, not all people who report diabetes status report
other correlated conditions (e.g., hypertension, depression) or demographics (e.g., gender).

To improve generalization on a range of test distributions, it is necessary to handle missingness
appropriately. However, extending invariant prediction methods to handle missing data is not
straightforward. This difficulty stems from the invariant method’s optimization objective, which
usually includes a measure of dependence — e.g., Maximum Mean Discrepancy (MMD) or Mutual
Information (MI) — that requires a sample from the fully-observed data to estimate consistently.

We propose MMD estimators for measuring nuisance-model dependence under missingness. First, we
show that enforcing independence on only the nuisance-observed data does not imply independence
on the full data, and vice versa. Next, we derive three estimators, including one that is doubly-robust:
it is consistent when either the nuisance or missingness can be consistently modeled [4]. Using
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(a) Anti-Causal (b) Causal

Figure 1: Generative processes
we consider in this work. The
Y → Z edge is dashed to empha-
size that the Z|Y may change at
test time. ∆ determines missing-
ness of Z and in general depends
on both X and Y .

simulations, a semi-simulation using textured MNIST and clinical data from MIMIC, we show that the
estimators perform close to ground-truth estimation with no missingness and that they improve test
accuracy relative to MMD computation using only the data with nuisances observed.

2 Notation and background
Notation. LetX denote features. Let Y be a label such as disease status. Let Z denote the nuisance,
e.g., another disease correlated with Y , demographics, or image backgrounds. Denote the nuisance
missingness indicator as ∆. Instead of (X,Y, Z), we observe (X,Y,∆, Z̃ = ∆Z), where Z̃ = Z
when ∆ = 1 and Z is unobserved otherwise. We write functions as fX = f(X) to avoid excess
parentheses. Let hX = h(X) denote a model to predict Y . Let Y ∼ B(p) denote Y ∼ Bernoulli(p).

Assumptions and scope. The estimators require ignorability, Z |= ∆|X,Y [15]. Some distributions
that satisfy this are shown in Figure 1. We require positivity 0 < ε ≤ P (∆ = 1|X,Y ) to observe Z
appropriately. While we focus on the graph in Figure 1(a) with binary Z, the presented method can
extend to continuous Z and to other graphs (e.g., Figure 1(b)).

Modeling under spurious correlations. Nuisance-based prediction arises in training data when Z
is predictive of Y and associated with X , causing models to use information about Z in X to predict
Y . This is a problem when the test distribution is expected to have a different (Y,Z) relationship
from the training distribution. For example, define a family of distributions, indexed by D, that varies
along P (Z | Y ):

F = {PD(X,Y, Z) = P (Y )PD(Z|Y )P (X|Y,Z)}.
When Ptest(Z|Y ) 6= Ptrain(Z|Y ), in general Ptrain(Y | X) 6= Ptest(Y |X) and a model built on
Ptrain can generalize poorly (Appendix C). When it is possible to anticipate and observe nuisances
during training, enforcing certain independence constraints [22, 35, 27] helps guarantee performance
regardless of the nuisance-label relationship. For example, for this choice of F , maximum likelihood
estimation for Y |hX while enforcing the constraint hX |= Z | Y = y for y ∈ {0, 1} implies equal
performance on all members, and better than chance on all members (Appendix D).

Missingness. When Z is subject to missingness, two parts of the data distribution help estimate
functionals like E[Z]: the missingness process GX , E[∆ | X,Y ] and conditional expectation
mX , E[Z | X,Y ]. We review estimators that use either GX [16, 5, 29] or mX [30, 33] in
Appendix H. The doubly-robust (DR) estimator [28, 4, 18] combines both by noting the equality:

E[Z] = E
[∆Z̃

GX
− ∆−GX

GX
mX

]
. (1)

Replacing GX or mX with models, Monte Carlo estimates of the right side of Equation (1) are
consistent for E[Z] when, for all X , either GX or mX are consistently estimated (Appendix I).

3 Invariant representations with missing data

In the anti-causal setting, [35] enforce hX |= Z|Y = y for y ∈ {0, 1} by minimizing the MMD:

max
h

log p(y|hX)− λ ·
∑

y∈{0,1}

MMD (p(hX |Z = 1, Y = y) , p(hX |Z = 0, Y = y)) . (2)
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First, we demonstrate what can go wrong when enforcing this MMD penalty only on samples where
Z is observed. We then derive estimators of the full-data MMD under missingness.

3.1 Failures of restricting to observed data

Restricting computation to data with non-missing Z enforces hX |= Z|Y = y,∆ = 1 instead of
hX |= Z|Y = y. We show that these conditions do not imply each other.
Proposition 1. There exist distributions on (X,Y,∆, Z) such that

∃h?X s.t. h?X |= Z|Y = y, but h?X 6|= Z|Y = y,∆ = 1

and there exist distributions on (X,Y,∆, Z) such that

∃h?X s.t. h?X |= Z|Y = y,∆ = 1 but h?X 6|= Z|Y = y

The proof is in Appendix G. This implies that (1) optimizing the observed-only MMD can discard a
solution to the full-data MMD, and (2) using the observed-only data may lead one to believe a model
is invariant when it is not. This means one must enforce independence on the full data.

3.2 MMD estimation under missingness

We present estimators of the full-data unconditional MMD. One can compute the MMD conditional on
Y = y simply by restricting samples to those with Y = y. For a kernel k and kXX′ , k(hX , hX′),

MMD
(
p(hX |Z = 1), p(hX |Z = 0)

)
= E

X|Z=1
X′|Z′=1

kXX′ + E
X|Z=0
X′|Z′=0

kXX′ − 2 E
X|Z=1
X′|Z′=0

kXX′ . (3)

Estimation is challenging due to missingness in the conditioning set. For b ∈ {0, 1}, let N(b, b′) =

P (Z = b)P (Z ′ = b′) and let Z1 , Z and Z0 , 1− Z. The dependence on Z can be re-written:

E
X|Z=b

X′|Z′=b′

kXX′ =
1

N(b, b′)
E
[
kXX′ · Zb · Zb′

]
. (4)

Under no missingness, each expectation could be estimated with Monte Carlo. We now develop three
MMD estimators. We derive simpler GX -based and mX -based estimators in Equations (10) and (11)
(Appendix J). Here we combine them. Let mX1 , mX , mX0 , 1−mX , and GXX′ , GXGX′ .
Proposition 2. (DR estimator). Assume positivity, ignorability, and ∀X , GX = E[∆|X,Y ] or
mX = E[Z|X,Y ]. Then,

E
X|Z=b

X′|Z′=b′

[
kXX′

]
=

1

N(b, b′)
E
[(∆∆′Z̃bZ̃ ′b′

GXX′
− ∆∆′ −GXX′

GXX′
·mXb ·mX′b′

)
kXX′

]
. (5)

The proof is in Appendix J. We can use any of Equations (5), (10) and (11) to estimate the terms in
eq. (3). Each of Equations (5), (10) and (11) is a ratio of two expectations: the normalization constant
N(b, b′) depends on E[Z] and must itself be estimated under missingness (e.g., with Equation (1)).
The ratio of consistent estimates of these quantities is consistent by Weak Law of Large Numbers
and Slutsky’s theorem. We discuss estimation in practice, trade-offs among the three estimators, and
variance in Appendix E. We review recent related work in Appendix A.

4 Experiments

We compare accuracy and MMD minimization using different estimators: NONE (MLE only, no MMD),
FULL (MLE and MMD using data with Z fully-observed), OBS (MLE and observed-only MMD), DR
(MLE and DR estimator, called DR+ when using true GX ), IP (MLE and re-weighted estimator, called
IP+ when using true GX ), and REG (MLE and regression estimator).

We first compare these algorithms in a simulation study. We then use textured MNIST to show the
utility of the proposed estimators on high-dimensional data. In quantitative tables, we show mean ±
standard deviation over three seeds. We then predict hospital length of stay in the MIMIC dataset,
and compare performance when demographic nuisances are subject to missingness. For the Y |X
predictive loss, we use negative Bernoulli log likelihood with logit equal to hX .
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Table 1: Simulation. λ = 1. NONE has highest MMD and lowest test accuracy. OBS improves over
this. The DR and REG methods are able to bring the MMD close to 0.0 and attain best test accuracy.

NONE OBS FULL DR DR+ REG

TR MMD 0.21± 0.04 0.05± 0.04 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.01± 0.00
TR ACC 0.89± 0.00 0.87± 0.00 0.86± 0.01 0.85± 0.01 0.84± 0.02 0.86± 0.00
TE ACC 0.67± 0.02 0.77± 0.02 0.80± 0.01 0.81± 0.02 0.81± 0.01 0.79± 0.02

Figure 2: Textured MNIST with digits
0,1 on two textures from the Brodatz
dataset.

Comparing MMDs. In all tables, the training set MMD for each method is computed using the
ground-truth full-data MMD estimation method (see eq. (4)). This is also what the FULL model
optimizes. True Z’s are available in both simulated and real data as missingness is simulated.
However, each model trains and validates the log p(Y |X) + MMD loss using its own estimation
method.

4.1 Experiment 1: Simulation.

We set up strong (Y,Z) correlation. With Y = 1− Y , the training and validation sets are drawn:

Y ∼ B(0.5), Z ∼ B(.9Y + .1Y ), X ∼ [N (Y − Z, σ2
X),N (Y + Z, σ2

X)] . (6)

The test set has the opposite relationship Z ∼ B(.1Y + .9Y ). Here h?X = (X1 + X2)/2 predicts
Y with smallest MSE among representations satisfying independence. We construct ∆ to show the
failure of computing MMD on the observed-only subset. For this, we use Ẑ , −(X1−X2)/2, which
is correlated with Z. We draw ∆ conditional on h?X and Ẑ (both are functions of X):

Q = 1 [h?X > 0.6] · 1
[
Ẑ < 0.6

]
, ∆ ∼ B(Q+ 0.2Q) .

This example construction leads to h?X |= Z|Y but h?X 6|= Z|Y,∆ = 1. For h,GX and mX we use
small feed-forward neural networks (Appendix L.1).

Results. In Table 1, the DR estimators achieve indistinguishable performance to the full-data MMD,
both in MMD and accuracy, and better than NONE and OBS. We include more results in Appendix F.

4.2 Experiment 2: Textured MNIST.

Following [11]2, we correlate MNIST digits 0 and 1 with two textures from the Brodatz dataset
(Figure 2). The missingness is based on the average pixel intensity of X and its class. For h,GX and
mX we use small convolutional networks. We include more details in Appendix L.2.

Results. In Table 2, NONE and OBS perform poorly on test. In contrast, the DR estimators —
including the one with a learned GX ,mX — achieve close to FULL’s performance.

4.3 Experiment 3: Predicting length of stay in the ICU

We predict length of stay in the intensive care unit (ICU) in MIMIC [17]3 using demographics and first
day labs/vitals among patients that stay at least one day. The prediction task is whether the stay is
more than 2.5 days. To demonstrate that spurious correlations cause issues at deployment, we choose

2We adapt this repository (linked) to construct textured MNIST and will make our code available.
3The MIMIC critical-care database is available on Physionet [10].
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Table 2: MNIST λ = 1. DR and REG estimators achieve close to full performance as measured by
full MMD= 0 and high test accuracy. NONE and OBS perform poorly on test. OBS is notably high
variance.

NONE OBS FULL DR DR+ REG

TR MMD 2.05± 0.18 0.02± 0.04 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.00± 0.01
TR ACC 0.90± 0.01 0.74± 0.03 0.76± 0.01 0.77± 0.0 0.76± 0.01 0.76± 0.01
TE ACC 0.13± 0.01 0.63± 0.17 0.74± 0.01 0.72± 0.04 0.73± 0.01 0.73± 0.01

Table 3: MIMIC λ = 1. REG estimator matches FULL’s performance and improves upon OBS while
DR does not, due to high objective variance during training (not shown in table).

NONE OBS FULL DR REG

TR MMD 0.017± 0.02 0.002± 0.01 0.00± 0.00 0.009± 0.01 0.00± 0.00
TR ACC 0.71± 0.02 0.68± 0.01 0.70± 0.01 0.70± 0.01 0.71± 0.00
TE ACC 0.64± 0.00 0.64± 0.00 0.66± 0.00 0.62± 0.00 0.66± 0.01

Z = 1 to indicate the patient is recorded as white. While race may be correlated with health outcomes
(e.g., due to unobserved socioeconomic factors [24]), it may not always be appropriate for a model to
use this information [6]. The test set represents a new population with different outcome-demographic
structure: we split the data so that the training/validation set has mostly samples with Y 6= Z while
the test set has mostly samples with Y = Z. We set non-male patients to have Z observed with
probability 0.2. We include more details in Appendix M.

Results. In this real data setting with strong (Y, Z) correlation, the full-data MMD estimator reported
in the table for all methods may have high variance. We focus on the attained accuracies. The REG
estimator matches the ground-truth FULL estimator and performs better than OBS and DR. This is not
unexpected, since it is possible for the REG estimator to be lower variance than DR when the true GX

is small or GX is not modeled well [8], especially under strong (Y, Z) correlation (Appendix E).

5 Conclusion

We present estimators for the MMD that extend recent invariant prediction methods to missing data.
Unlike prior estimators that only leverage data with nuisances observed, or consider worst-case
estimation (see related work in Appendix A), the presented estimators of the full data objective are
consistent when either auxiliary model can be learned. As we show in proposition 1, estimation of the
full data objective is necessary to preserve the theoretical properties of invariant prediction methods.
In the experiments, the DR and REG estimators are able to match full-data MMD performance and
improve test accuracy relative to the OBS estimator. In practice, we recommend exploring the two
simpler proposed estimators (REG and IP) in addition to the DR estimator and selecting the model
based on the validation metric.

Moving forward, one limitation is that the full-data estimator — used as ground-truth MMD evaluation
for the experiments — may itself have high variance on small datasets with strong nuisance-label
correlation. Variance reduction is an important avenue both for optimizing and evaluating with the
MMD using smaller batch sizes (in our experiments, batch sizes 1500 for MNIST and 4000 for MIMIC
are large). Beyond variance reduction, it is a promising direction to apply the methodology in this
work to the mutual information objective in [27], which sidesteps the choice of kernel and may be
better suited for continuous and high dimensional nuisances.
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A Related work

We focus on recent work in fairness and invariant prediction on missing group/environment labels.
Motivated by fairness, [36] study a related problem of optimizing invariance-inducing objectives
when the protected group label (analogous to our nuisance variables) is noisy. Given bounds on the
level of label noise, this work proposes optimizing an objective based on the distributionally robust
optimization framework [23]. Additionally, if given a small amount of true labels the authors suggest
fitting a model to de-noise the noisy group labels and re-weight examples in the objective, which is
similar in spirit to our work. In our approach, however, we exploit structural assumptions about the
missingness process to build a doubly-robust estimator of the MMD penalty used during optimization.

[19] optimize worst-case-over-groups performance without known group labels. They rely on the
assumption that groups are computationally-identifiable (i.e. that there exists some function on the
data that labels their protected group membership) [14] and use a model to identify groups on which
performance is worst. They pose an adversarial optimization between the group-labeling model —
which searches for groups with poor performance — and the primary predictive model. Inspired by
this work, [7] find worst-case group assignments based on an empirical risk minimization (ERM)
model that maximizes invariance penalties and [1] illustrate that this objective performs well on a
wide range of benchmarks. Relatedly, [21] run usual ERM training and then a second iteration of ERM
that upweights the loss for datapoints on which the model performs badly. This identifies groups
with bad model performance without explicit group labels. In both of these works, the groups could
be seen either as a nuisance variable or as a confounder that correlates the label and some nuisance
variable. However, in our setting (and in that of [22, 35, 27]), in exchange for being willing to make
assumptions on the test distribution family, we do not need to observe samples with poor model
performance at training time (and may not see any) to prevent sudden decreases in performance on
held-out data at test time.

[2] too consider invariant learning with partial/missing group labels. They maximize over unknown
group assignments to get worst-case (over group assignments) versions of invariance objectives.
As opposed to the DR estimator presented here, in their work the objective still depends on the
missingness distribution: the objective value can take values closer or further from 0 for the same
model but different missingness distributions.

B Measuring dependence with MMDs

To enforce independencies it is necessary to measure dependence, i.e., to measure the distance
between a joint distribution and the product of its marginals. The general Integral Probability Metrics
(IPMs) class defines a metric on distributions. A special case, the kernel-based MMD [12], has a
closed form. Let X1 ∼ P,X2 ∼ Q. Let X ′j be an independent sample identically distributed as Xj .
For kernel k,

MMD(X1, X2) = E[k(X1, X
′
1)] + E[k(X2, X

′
2)]− 2E[k(X1, X2)] . (7)

MMDs can measure dependence between X,Z by computing MMD(p(X,Z), p(X)p(Z)).

C Out-of-Distribution example

Example. Let Y = 1− Y and define Ptrain by:

Y ∼ B(0.5), Z ∼ B(0.9Y + 0.1Y ), X ∼ [N (Y, 10),N (Z, 1)]

X1 directly contains Y and X2 contains information about Y through Z. The MLE solution to
predicting Y fromX on Ptrain is a linear classifier with a higher weight onX2 because of the smaller
variance. However, if for a ∈ {0, 1} we have Ptest(Z = a | Y = a) = 0.9(1 − a) + 0.1a, then
unlike in Ptrain, higher values correspond to label Y = 1.
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D Invariant predictor

There are at least two distinct usages of the word invariance in the literature. For one usage, invariance
to the nuisance usually implies independence of model and nuisance, potentially conditional on label.
For the other usage, invariance refers to invariant risk, i.e., the risk is the same for all test distributions
in some family. In some distribution families and for some independence constraints, these can imply
each other. Here, we show that the particular conditional independence involving the nuisance studied
in this work and originally from [22, 35, 27] implies invariant risk.

Satisfying independence hX |= Z | Y means Ptrain(hX |Y,Z) = Ptrain(hX |Y ) and the graphical as-
sumptions on the anti-causal family mean Ptrain(hX |Y, Z) = P (hX |Y,Z) in any member of the fam-
ily. Combined this means Ptrain(hX |Y,Z) = P (hX |Y ) in any member of the family when the model
Ptrain(Y |hX) satisfies hX |= Z|Y . Consider test set performance EPtest(Y,X)[logPtrain(Y |hX)].
By the assumption on the family, by Bayes, and by satisfying the independence constraint:

E
Ptest(Y,X)

[logPtrain(Y |hX)] = E
Ptest(Y,X)

[
log

Ptrain(hX |Y )P (Y )

Ptrain(hX)

]
= E

Ptest(Y,X,Z)

[
log

Ptrain(hX |Y,Z)P (Y )

EP (Y )

[
Ptrain(hX |Y,Z)

]]
= E

Ptest(Y,hX ,Z)

[
log

Ptrain(hX |Y,Z)P (Y )

EP (Y )

[
Ptrain(hX |Y,Z)

]]
= E

Ptest(Y,hX ,Z)

[
log

P (hX |Y,Z)P (Y )

EP (Y )

[
P (hX |Y,Z)

]]
= E

Ptest(Y,hX ,Z)

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

Ptest(Y,hX)

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

Ptest(hX |Y )Ptest(Y )

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

P (hX |Y )P (Y )

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

P (hX ,Y )

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]

The last quantity does not depend on any specific PD(Z|Y ). This means that performance of the
Ptrain(Y |hX) model, when the independence is satisfied, is the same on all Ptest in F .

E Estimation in practice

E.1 Splitting samples

For a given batch, we use 1/4 of the samples for the normalization term and 3/4 for the main
term, though this number may be changed. Further, the main term of any of the three estimators
is defined on a pair of independent samples, i.e. it is a U-statistic. There are two ways to estimate
such expectations. One option is to further break the samples left for the main term in half into two
batches S1 and S2 and then compute on all pairs i ∈ S1, j ∈ S2. The alternative, which has slightly
higher sampler efficiency and is the method we use, is to compute on all pairs of samples and then
leave out any diagonal terms k(Xi, Xi) from the average.
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Figure 3: Figure 3(a): Mean of 100 MMD estimates at each batch size. Figure 3(b): Standard
Deviation of 100 MMD estimates at each batch size

E.2 Trade-offs among the 3 proposed estimators

For large samples, DR estimates with correct GX and correct mX are lower variance than the
regression with correct mX , and lower variance than re-weighting with correct GX . Even when mX

is mis-specified but GX is correct, the DR estimator may still be lower variance than the re-weighting
estimator with correct GX alone. However, the DR estimator with correct mX but mis-specified GX

may be higher variance than the regression estimator with correct mX [8]. For this reason, when the
missingness model GX is wrong, the regression estimator may out-perform the DR estimator even in
large sample sizes.

The variance of the DR and re-weighting estimators comes from two distinct places. One is general
to missingness: small observation probabilities GX in the denominator. The other reason is general
Monte Carlo error: we need individual samples of Z̃ in the numerator. This is especially a problem
in the spurious correlation setting: Y and Z are possibly strongly correlated. We need to compute
the MMD conditional on Y = y which involves, for each Y = y, expectations using samples where
Z = 1 and where Z = 0, but we may have very few samples for one of these Z values. This second
source of variance also applies to estimates of the full-data MMD under no missingness (eq. (4)). We
compare the mean and variance of these estimators empirically in Appendix E.3.

E.3 Empirical investigation of variance

As discussed, when E[∆|X] small, or (Y, Z) highly correlated, or both, all estimators will be high
variance. We train a model on the experiment 1 simulation using the NONE method and then study
the mean and variance of DR, DR+ (to study the effect of using the true GX ), REG (since it yielded
better performance on MIMIC) and FULL (since this method is used to report the MMDs in the tables).
In this simulation, we are free to generate as many large batches of samples as needed. Keeping the
model fixed, for each batch size between 1000 and 10, 000 incrementing by 250 we draw 100 new
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batches of that size and estimate the MMD using each method. For each method, we report the mean
(fig. 3(a)) and standard deviation (fig. 3(b)) of these estimates.

Notably, we cannot compute an actual ground-truth for the MMD of this model, but we could take
the mean of the FULL estimate (no missingness) at the largest sample size of 10, 000 samples. This
is about 0.2. We see that the regression estimator stays closer to this number for all sample sizes
relative to the DR methods. Interesting, for standard deviation, we see that the DR estimator is
more well-behaved than the DR+ estimator that uses the true GX . This has also been observed for
learned versus true propensity scores in treatment effect estimation and usually results from models
learning less extreme probabilities than the true ones, trading some bias. In this case, there is not a
substantial difference in estimated weights or in bias, but there is a large difference in variance. More
investigation is required.

The main take-away from both plots is that the regression method seems more stable than DR and
that GX may be the part of the DR estimator that is not being learned well. On the other hand the
DR estimator may possibly be safer when it is unknown if it is easier to estimate GX or mX . We
recommend using all 3 of the proposed estimators and comparing validation objectives.

F Full experiments

Table 4: Simulation. λ = 1.
NONE OBS FULL DR DR+ REG IP IP+

TR MMD 0.21± 0.04 0.05± 0.04 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.01± 0.00 0.00± 0.00 0.00± 0.01
TR ACC 0.89± 0.00 0.87± 0.00 0.86± 0.01 0.85± 0.01 0.84± 0.02 0.86± 0.00 0.84± 0.01 0.84± 0.01
TE ACC 0.67± 0.02 0.77± 0.02 0.80± 0.01 0.81± 0.02 0.81± 0.01 0.79± 0.02 0.82± 0.02 0.81± 0.00

Table 5: Simulation. λ = 5.
NONE OBS FULL DR DR+ REG IP IP+

TR MMD 0.21± 0.04 0.03± 0.02 0.00± 0.01 0.00± 0.00 0.00± 0.0 0.00± 0.01 0.00± 0.0 0.00± 0.0
TR ACC 0.89± 0.0 0.85± 0.02 0.84± 0.01 0.82± 0.01 0.78± 0.06 0.84± 0.00 0.81± 0.02 0.81± 0.03
TE ACC 0.67± 0.02 0.78± 0.02 0.83± 0.01 0.82± 0.02 0.77± 0.04 0.82± 0.01 0.81± 0.02 0.80± 0.01

Table 6: MNIST λ = 1.
NONE OBS FULL DR DR+ REG IP IP+

TR MMD 2.05± 0.18 0.02± 0.04 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.07± 0.12. 0.03± 0.06
TR ACC 0.90± 0.01 0.74± 0.03 0.76± 0.01 0.77± 0.00 0.76± 0.01 0.76± 0.01 0.67± 0.16 0.68± 0.15
TE ACC 0.13± 0.01 0.63± 0.17 0.74± 0.01 0.72± 0.04 0.73± 0.01 0.73± 0.01 0.64± 0.14 0.61± 0.11

Table 7: MNIST λ = 5.
NONE OBS FULL DR DR+ REG IP IP+

TR MMD 2.05± 0.18 0.01± 0.02 0.00± 0.00 0.00± 0.00 0.00± 0.01 0.00± 0.01 0.01± 0.01 0.01± 0.02
TR ACC 0.9± 0.01 0.66± 0.15 0.75± 0.01 0.65± 0.14 0.65± 0.13 0.75± 0.01 0.71± 0.08 0.60± 0.12
TE ACC 0.13± 0.01 0.65± 0.15 0.75± 0.01 0.73± 0.02 0.70± 0.09 0.75± 0.01 0.55± 0.3 0.60± 0.12
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G Failures of restricting to observed data

Proposition. There exist distributions on (X,Y,∆, Z) such that

∃h?X s.t. h?X |= Z|Y = y, but h?X 6|= Z|Y = y,∆ = 1

and there exist distributions on (X,Y,∆, Z) such that

∃h?X s.t. h?X |= Z|Y = y,∆ = 1 but h?X 6|= Z|Y = y

First direction. There exist distributions on (X,Y,∆, Z) such that

∃h?X s.t. h?X |= Z|Y = y, but h?X 6|= Z|Y = y,∆ = 1

It suffices to illustrate this even when Z, Y are not correlated. Consider

Y ∼ N (0, 1), Z ∼ N (0, σ2
Z), εX ∼ N (0, σ2

X), X = [Y − Z + εX , Y + Z]

For h?X = (X1 +X2), we first show h?X |= Z|Y = y. We have

h?X |Y ∼ N (2Y, σ2
X)

and in particular h?X = 2Y + εX . Given Y = y, the only randomness in h?X is due εX . But εX is
independent of the joint variable (Z, Y ) meaning εX |= Z|Y = y and therefore h?X |= Z|Y = y.

We now construct ∆|(X,Y ) such that h?X 6|= Z|Y = y,∆ = 1. Let

∆ = OR
(
1 [X1 +X2 < 0] ,1 [X2 − Y < 0]

)
.

Checking the condition

h?X 6|= Z|Y = y,∆ = 1

(using definition of h?X ) is equivalent to checking

(X1 +X2) 6|= Z|Y = y,∆ = 1

(using definition of ∆) is equivalent to checking

(X1 +X2) 6|= Z|Y = y,OR
(
1 [X1 +X2 < 0] ,1 [X2 − Y < 0]

)
= 1

(using defintion of X2) is equivalent to checking

(X1 +X2) 6|= Z|Y = y,OR
(
1 [X1 +X2 < 0] ,1 [Z < 0]

)
= 1

To check that, we need to check if the distribution of (X1 + X2)|Y = y,∆ = 1 changes when
conditioning on different events involving the random variable Z. For example, 1 [Z < 0] and
1 [Z ≥ 0]:

1. (X1 +X2) | Y = y,OR
(
1 [X1 +X2 < 0] ,1 [Z < 0]

)
= 1,1 [Z < 0] = 1

2. (X1 +X2) | Y = y,OR
(
1 [X1 +X2 < 0] ,1 [Z < 0]

)
= 1,1 [Z ≥ 0] = 1.

We can show these two conditional variables differ in distribution simply by showing they differ in
support. The first conditional variable can be full support because the event 1 [Z < 0] satisfies one
of the OR conditions leaving the other condition 1 [X1 +X2 < 0] = 1 [h?X < 0] free to take either
value. However, the second conditional variable needs X1 + X2 = h?X < 0 because 1 [Z < 0] is
not satisfied (since we condition on 1 [Z ≥ 0] = 1) but the OR has to be 1. These different supports
imply the distributions differ. That the variables differ on two non-measure zero sets is enough to
show dependence. Then (X1 +X2) 6|= Z|Y = y,∆ = 1 which means h?X 6|= Z|Y = y,∆ = 1.

12



Second direction. There exist distributions on (X,Y,∆, Z) such that

∃h?X s.t. h?X |= Z|Y = y,∆ = 1 but h?X 6|= Z|Y = y

Let the data be drawn as

Y ∼ N (0, 1), Z ∼ B(0.5), X = [Y − Z, Y + Z]

Let h?X = 1 [X1 ≥ 0]. We first show h?X 6|= Z|Y = y. We have

h?X = 1 [X1 ≥ 0]

= 1 [Y − Z ≥ 0]

Given Y = y, we ask if the random variable 1 [y − Z ≥ 0] is independent of Z. To show dependence,
we show that the random variable 1 [y − Z ≥ 0] changes in distribution when Z takes on its two
values:

1. 1 [y − Z ≥ 0] |Y = y, Z = 0

2. 1 [y − Z ≥ 0] |Y = y, Z = 1

Suppose y ∈ (0, 1). When Z = 0 we have that 1 [y − Z ≥ 0] = 1 with probability one. When
Z = 1, we have 1 [y − Z ≥ 0] = 0 with probability one. Therefore the variables are dependent.

We now let ∆ = 1 [X1 ≥ 0] = 1 [Y − Z ≥ 0] and show h?X |= Z|Y = y,∆ = 1. Note that
∆(X,Y ) = h?X . We ask whether

1 [Y − Z ≥ 0] |= Z|Y = y,1 [Y − Z ≥ 0]

The conditioning set fully determines the variable 1 [Y − Z ≥ 0] meaning it is a constant and is
therefore independent of Z. Therefore h?X |= Z|Y = y,∆ = 1 as desired.

H IP and outcome estimators

We review estimation of E[Z] under missingness. Two pieces of the data generation process can help,
the missingness process GX and the conditional expectation mX of the missing variable:

GX , E[∆ | X,Y ], mX , E[Z | X,Y ]

Inverse-weighting estimators use GX [16, 5, 29, 34, 15]

E[Z] = E
X

E
Z|X

[Z]

= E
X

E
Z|X

[E[∆|X]

E[∆|X]
Z
]

= E
X

E
Z|X

E
∆|X

[ ∆Z

E[∆|X]

]
= E

XZ∆

[ ∆Z

E[∆|X]

]
= E

X∆Z

[∆Z

GX

]
= E

X∆Z

[∆Z̃

GX

]

(8)

This means we can estimate E[Z] provided that (1) ignorability and positivity hold and (2) GX is
known. GX can be estimated by regressing ∆ on X . Alternatively, standardization estimators use
mX [30, 33, 31, 25, 20, 15]:

E[Z] = E
X

[
E[Z|X]

]
= E

X

[
E[Z|X,∆ = 1]

]
= E

X
[mX ] (9)

mX can be estimated by regressing Z̃ on X where ∆ = 1 (by ignorability).
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I DR estimator of mean of Z

The inverse weighting and regression estimators can be combined. Equation (1) defines the DR
estimator of E[Z] by

E[Z] = E
[∆Z̃

GX
− ∆−GX

GX
mX

]
Let us re-write this expectation until we see it equals E[Z] when G or m are correct.

E
[∆Z̃

GX
− ∆−GX

GX
mX

]
= E

[∆Z

GX
− ∆−GX

GX
mX

]
= E

[
Z +

∆Z

GX
− Z − ∆−GX

GX
mX

]
= E

[
Z +

∆Z

GX
− GX

GX
Z − ∆−GX

GX
mX

]
= E

[
Z +

∆−GX

GX
Z − ∆−GX

GX
mX

]
= E

[
Z +

∆−GX

GX
(Z −mX)

]
= E

[
Z
]

+ E
[∆−GX

GX
(Z −mX)

]
The first term is what we want, so we just have to check if the second term is 0 when either G or m
are correct. If G is correct (regardless of m) then:

E
[∆−GX

GX
(Z −mX)

]
= E

[
E
[∆−GX

GX
(Z −mX)

∣∣∣X,Z]]

= E

[
E[∆|X,Z]−GX

GX
(Z −mX)

]

= E

[
E[∆|X]−GX

GX
(Z −mX)

]

= E

[
GX −GX

GX
(Z −mX)

]
= 0

When m is correct (regardless of G):

E
[∆−GX

GX
(Z −mX)

]
= E

[
E
[∆−GX

GX
(Z −mX)

∣∣∣X,∆]]

= E

[
∆−GX

GX
(E[Z|X,∆]−mX)

∣∣∣X,∆]

= E

[
∆−GX

GX
(E[Z|X,∆]− E[Z|X,∆ = 1])

∣∣∣X,∆]

= E

[
∆−GX

GX
(E[Z|X]− E[Z|X])

∣∣∣X,∆] = 0
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J MMD estimators under missingness

J.1 Statement of Gx and mx based estimators of the MMD

Proposition. (GX -based re-weighted estimator) Assume positivity, ignorability, and, for each X ,
GX = E[∆|X,Y ]. Then,

E
X|Z=b

X′|Z′=b′

[
kXX′

]
=

1

N(b, b′)
E
[∆∆′Z̃bZ̃ ′b′

GXX′
kXX′

]
. (10)

Proposition. (mX -based regression estimator) Assume ignorability, and, for each X , mX =
E[Z|X,Y ]. Then,

E
X|Z=b

X′|Z′=b′

[
kXX′

]
=

1

N(b, b′)
E
[
mXb ·mX′b′ · kXX′

]
. (11)

J.2 Deriving the GX -based re-weighted estimator

Here we start at the target quantity and derive the estimator. We give the derivation for Z = 1, Z ′ = 1.
The other cases are analogous.

E
P (X|Z=1)P (X′|Z′=1)

[
kXX′

]
=

∫
X,X′

kP (X|Z = 1)P (X ′|Z ′ = 1)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1|X)P (Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kE(Z = 1|X)E(Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,Z
X′,Z′

[
k · Z · Z ′

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,Z
X′,Z′

[E[∆|X]E[∆′|X ′]
E[∆|X]E[∆′|X ′]

k · Z · Z ′
]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[ ∆∆′

GXGX′
k · Z · Z ′

]
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J.3 Deriving the mX -based standardization estimator

Here we start at the target quantity and derive the estimator. We give the derivation for Z = 1, Z ′ = 1.
The other cases are analogous.

E
P (X|Z=1)P (X′|Z′=1)

[
kXX′

]
=

∫
X,X′

kP (X|Z = 1)P (X ′|Z ′ = 1)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1|X)P (Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kE(Z = 1|X)E(Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,X′

[
mX ·mX′ · k

]

J.4 Deriving the DR estimator

Here we start at the estimator and derive the target quantity. We give the derivation for Z = 1, Z ′ = 1.
The other cases are analogous.

1

P (Z = 1)

1

P (Z ′ = 1)

1

N(N − 1)

∑
i6=j

[∆ijZ̃ij

Gij
kij −

∆ij −Gij

Gij
mijkij

]
≈ 1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[∆∆′Z̃Z̃ ′

GXGX′
k − ∆∆′ −GXGX′

GXGX′
mXmX′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[∆∆′ZZ ′

GXGX′
k − ∆∆′ −GXGX′

GXGX′
mXmX′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′

GXGX′
ZZ ′k − ZZ ′k − ∆∆′ −GXGX′

GXGX′
mXmX′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′

GXGX′
ZZ ′k − GXGX′

GXGX′
ZZ ′k − ∆∆′ −GXGX′

GXGX′
mXmX′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′ −GXGX′

GXGX′
ZZ ′k − ∆∆′ −GXGX′

GXGX′
mXmX′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′ −GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k

]
+

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[∆∆′ −GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]
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Our estimator equals two terms. We first show that the first term equals the desired quantity, and then
show the second term equals 0 when either auxiliary model is correct.

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k

]
=

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,X′

[
kE[Z,Z ′|X,X ′]

]
=

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,X′

[
kP (Z = 1, Z ′ = 1|X,X ′)

]
=

1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, Z ′ = 1|X,X ′)P (X,X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1|X)P (Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=

∫
X,X′

kP (X|Z = 1)P (X ′|Z ′ = 1)dXdX ′

= E
P (X|Z=1)P (X′|Z′=1)

[
k
]

That’s the expectation we want missing just the P (Z = 1) constants, so now we should show the
next term is 0 when either m or G are correct. When G correct:

E
X,∆,Z

X′,∆′,Z′

[∆∆′ −GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]

= E
X,Z
X′,Z′

[E[∆∆′|X,X ′, Y, Z ′]−GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]

= E
X,Z
X′,Z′

[E[∆∆′|X,X ′]−GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]

= E
X,Z
X′,Z′

[E[∆|X]E[∆′|X ′]−GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]

= E
X,Z
X′,Z′

[GXGX′ −GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]

= 0

Likewise, when m correct:

E
X,∆,Z

X′,∆′,Z′

[∆∆′ −GXGX′

GXGX′

(
ZZ ′ −mXmX′

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GXGX′

GXGX′

(
E[ZZ ′|X,X ′,∆,∆′]−mXmX′

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GXGX′

GXGX′

(
E[Z|X,∆]E[Z ′|X ′,∆′]−mXmX′

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GXGX′

GXGX′

(
E[Z|X,∆]E[Z ′|X ′,∆′]− E[Z|X,∆ = 1]E[Z ′|X ′,∆′ = 1]

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GXGX′

GXGX′

(
E[Z|X]E[Z ′|X ′]− E[Z|X]E[Z ′|X ′]

)
k
]

= 0

The proof for the other two terms is analogous but with using Z = (1 − Z) instead of Z and
m = 1−m when conditioning on Z = 0.
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K kernel mmd between joint and product of marginals

Continuous nuisances. In this work we study binary nuisance. We can instead measure the MMD
between joint p(hX , Z) and product of marginals p(hX)P (Z), which allows for continuous nuisance.

The above formulation of MMD between hX |Z = 1 and hX |Z = 0 relied on optimizing with respect
to h only: P (Z) is constant in the optimization so the distance between conditionals specifies the
distance between the product of marginals and joint and thus the dependence. However, considering
the more general case of MMD between P (hX , Z) and P (hX)P (Z) has the advantage that is not
necessary to consider a finite set of conditioning values for Z. That means the MMD can be extended
to continuous nuisance Z. Let X :: Z denote the concatenation of X and Z. The more general
formulation is:

E (X,Z)∼P (X,Z)
(X′,Z′)∼P (X,Z)

[
k
(
X::Z,X ′::Z ′

)]
+ E (X,Z)∼P (X)P (Z)

(X′,Z′)∼P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]

− 2E (X,Z)∼P (X,Z)
(X′,Z′)∼P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]
This leads to the following estimator:

E P (X,Z)
P (X′,Z′)

[
k
(
X::Z,X ′::Z ′

)]
= E

[
∆∆′k(X::Z,X ′::Z ′)

GXX′
− ∆∆′ −GXX′

GXX′
E[k|X,X ′]

]
and

E P (X)P (Z)
P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]

= EP (X1)P (X2,Z2)
P (X3)P (X4,Z4)

[
k
(
X1::Z2, X3::Z4

)]

= E

[
∆∆′k(X1::Z2, X3::Z4)

GX1X3

− ∆∆′ −GX1X3

GX1X3

E[k(X1::Z2, X3::Z4)|X1, X3]

]
and

E P (X,Z)
P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]

= E P (X1,Z1)
P (X2)P (X3,Z3)

[
k
(
X1::Z1, X2::Z3

)]

= E

[
∆∆′k(X1::Z1, X2::Z3)

GX1X3

− ∆∆′ −GX1X3

GX1X3

E[k(X1::Z1, X2::Z3)|X1, X3]

]
The challenging part of applying this estimator is that now instead of one function mX we have three
functions, each of which estimates the mean of k under a different sampling distribution. Moreover,
these conditional expectations depend on the current representation hX . This means they must be
updated each time h changes.
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L Experimental Details

L.1 Simulation details

for h we use a small feed-forward neural network

class SmallNet(nn.Module):
def __init__(self, D_in,D_hid,D_out):

super(SmallNet, self).__init__()
self.fc1 = nn.Linear(D_in,D_hid)
self.fc2 = nn.Linear(D_hid,D_hid)
self.fc3 = nn.Linear(D_hid,D_out)

def forward(self,h):
h = RELU(self.fc1(h))
h = RELU(self.fc2(h))
return self.fc3(h)

We use D_hid = 128. For GX and mX we use a similar model but that also takes y as input:

class SmallAuxNet(nn.Module):
def __init__(self, D_in,D_hid,D_out):

super(SmallAuxNet, self).__init__()
self.fc1 = nn.Linear(D_in+1,D_hid)
self.fc2 = nn.Linear(D_hid,D_out)

def forward(self,x,y):
h = torch.cat([x,y.unsqueeze(-1)],dim=-1)
h = RELU(self.fc1(h))
return self.fc2(h)

L.2 MNIST details

Data details. Following [11]4, we correlate MNIST digits 0 and 1 with two textures from the
Brodatz dataset (Figure 2). This is an example of invariance to image backgrounds when not all
background labels are available. We follow a similar setup to colored MNIST [3]: because Y |X is
essentially deterministic, even strong spurious correlations may be ignored by a model on MNIST. To
push Y |X closer to what may be expected in noisier real data, we flip the label with 25% chance.
Letting X only predict Y with 75% chance means a strong spurious correlation with better predictive
power can be used (a color or in this case a background). The missingness is based on the average
pixel intensity of X and its class. Let µX be the mean pixel value of a 28x28 MNIST image. We set

Q = 1 [Y = 1] · 1 [µX < 0.3] , ∆ ∼ B(Q+ .2Q).

The choice of Q is correlated with Z through whether the image is light or dark grey. Similar to
proposition 1 and experiment 1, this means subsetting on ∆ = 1 may not imply independence on the
full population and may throw away solutions that do.

Model details. For h we use a small convolutional neural network

class MNISTNet(nn.Module):
def __init__(self,args):

super(MNISTNet,self).__init__()
self.args = args
self.conv1 = nn.Conv2d(1,6,5)
self.conv2 = nn.Conv2d(6,16,5)
self.pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(256,64)
self.fc2 = nn.Linear(64,64)
self.fc3 = nn.Linear(64,1)

def forward(self,x):

4We adapt this repository (linked) to construct textured MNIST and will make our code available.
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h = self.pool(self.conv1(x).relu())
h = self.pool(self.conv2(h).relu())
h = torch.flatten(h,1)
h = self.fc1(h).relu()
h = self.fc2(h).relu()
return self.fc3(h)

ForGX andmX we use a similar model but that also take y as input. We include y in the computation
after the convolutions.

class NumAuxNet(nn.Module):
def __init__(self,args):

super(NumAuxNet,self).__init__()
self.args = args
self.conv1 = nn.Conv2d(1,6,5)
self.conv2 = nn.Conv2d(6,16,5)
self.pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(256+1,64)
self.fc2 = nn.Linear(64,64)
self.fc3 = nn.Linear(64,1)

def forward(self,x,y):
h = self.pool(self.conv1(x).relu())
h = self.pool(self.conv2(h).relu())
h = torch.flatten(h,1)
h = torch.cat([h,y.unsqueeze(-1)],dim=-1)
h = self.fc1(h).relu()
h = self.fc2(h).relu()
return self.fc3(h)

M MIMIC Data Details

We use the following SQL script to extract the dataset from the MIMIC-IV dataset following the
instructions on Physionet for querying on Google Big-Query. This could also be done in a local
MIMIC-IV database. We are grateful to the MIMIC team especially for creating the MIMIC-
DERIVED tables which include aggregated vitals/labs measured during the first day of ICU stay.

SELECT
-- ids
pat.subject_id as subject_id, adm.hadm_id as hadm_id,icu.stay_id as stay_id,
-- demographics
CASE WHEN pat.gender="M" THEN 1 ELSE 0 END as is_male,
CASE WHEN adm.ethnicity="WHITE" THEN 1 ELSE 0 END as is_white,
icu_detail.admission_age as age,
-- weight height
fdw.weight , fdh.height ,
-- LOS
icu.los as los_icu_days,
-- death
adm.hospital_expire_flag as expire_flag,
-- vitals labs min max mean over first day
vitals.*, labs.*, sofa.*, bg.*,
FROM ‘physionet-data.mimic_core.patients‘ pat
INNER JOIN

‘physionet-data.mimic_core.admissions‘ adm
on pat.subject_id=adm.subject_id

INNER JOIN
‘physionet-data.mimic_icu.icustays‘ icu

on adm.subject_id=icu.subject_id
and
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adm.hadm_id=icu.hadm_id
INNER JOIN

‘physionet-data.mimic_derived.first_day_height‘ fdh
on
adm.subject_id = fdh.subject_id and icu.stay_id = fdh.stay_id

INNER JOIN
‘physionet-data.mimic_derived.first_day_weight‘ fdw

on
adm.subject_id = fdw.subject_id and icu.stay_id = fdw.stay_id

INNER JOIN
‘physionet-data.mimic_derived.icustay_detail‘ icu_detail

on
adm.subject_id=icu_detail.subject_id
and
adm.hadm_id=icu_detail.hadm_id
and
icu.stay_id=icu_detail.stay_id

INNER JOIN
‘physionet-data.mimic_derived.first_day_bg‘ bg
on
adm.subject_id=bg.subject_id

and
icu.stay_id = bg.stay_id

INNER JOIN
‘physionet-data.mimic_derived.first_day_sofa‘ sofa
on

adm.subject_id=sofa.subject_id
and
adm.hadm_id=sofa.hadm_id
and
icu.stay_id=sofa.stay_id

INNER JOIN
‘physionet-data.mimic_derived.first_day_vitalsign‘ vitals
on

adm.subject_id=vitals.subject_id
and
icu.stay_id=vitals.stay_id

INNER JOIN
‘physionet-data.mimic_derived.first_day_lab‘ labs

on
adm.subject_id=labs.subject_id
and
icu.stay_id=labs.stay_id

where icu_detail.los_icu > 1
and pat.gender is not null
and adm.ethnicity is not null
and adm.ethnicity != "UNABLE TO OBTAIN"
and adm.ethnicity != "UNKNOWN"
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