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Abstract

Transformer-based LLMs demonstrate strong performance on graph reasoning
tasks, yet their internal mechanisms remain underexplored. To uncover these
reasoning process mechanisms in a fundamental and unified view, we set the basic
decoder-only transformers and explain them using the circuit-tracer framework.
Through this lens, we visualize reasoning traces and identify two core mechanisms
in graph reasoning: token merging and structural memorization , which underlie
both path reasoning and substructure extraction tasks. We further quantify these
behaviors and analyze how they are influenced by graph density and model size.
Our study provides a unified interpretability framework for understanding structural
reasoning in decoder-only Transformers.

1 Introduction

Recent studies suggest that LLMs possess strong structural reasoning abilities [1, 12]. To investi-
gate the underlying reasons of this phenomenon, existing work has provided both theoretical and
empirical insights within simplified graph reasoning settings [3, 4, 5], where the reasoning process
is studied using decoder-only Transformers trained from scratch on graphs represented solely by
node IDs. However, existing analyses remain case-specific, as different graph reasoning tasks often
require distinct analytical methods. These studies still do not provide a unified understanding of the
underlying mechanisms by which models perform reasoning over explicit graph structures. There-
fore, understanding how decoder-only Transformers solve graph reasoning tasks requires continued
investigation into their unified mechanisms.

Specifically, for graph reasoning tasks, the mechanisms underlying transformers’ performance in
path reasoning and pattern extraction have been attributed to edge memorization [4]] and progressive
filtration across layers [S]]. Since both tasks demonstrate that decoder-only transformers possess
a fundamental capacity for structural understanding, it is reasonable to expect that a consistent
underlying mechanism governs their reasoning over explicit graph-like structures encoded in textual
sequences. This motivates the need for a unified interpretability framework capable of revealing shared
mechanisms across diverse graph reasoning tasks. Concurrently, the circuit-tracing interpretation
framework [|6] has been successfully applied to various language tasks . This framework analyzes how
information flows through a Transformer by identifying the specific neurons and layer interactions
that contribute to a model’s predictions, uncovering latent reasoning structures that contribute to
model performance. Due to the inherent irregularity of language tokens, examining the relationship
between implicit structures and explicit structural representations offers valuable insight into how
transformers process structured information.

Building on these insights, we apply the circuit-tracing interpretation framework to graph reasoning
tasks to investigate whether decoder-only Transformers exhibit consistent interpretability across such
tasks. Specifically, we conduct case studies using circuit-tracer analyses to examine how these models
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Table 1: Examples of graph samples in textual format across different tasks

Path Reasoning Attributed Graph Reasoning Substructure Extraction
e &6 © 00
Graph<EL> Node index list: 1212 3|13 112 4 Node index with attributes: 1A 1BI1B 2AI2A 2B Node index list: 1 212 313 112 4
Prompt Start and end nodes: S 1, E 4 Start and end nodes: S 1B, E 2B Substructure (Triangle): T
Answer Nodes in the shortest path: 124 Nodes in the shortest path: 1B 2A 2B Nodes in substructure: 12 3
Descripti Given a graph and Given an attributed graph and Given a graph and a substructure symbol,
escription target nodes, predict the path target nodes, predict the path predict all matching substructures

reason over explicit structures in tasks such as path reasoning, pattern extraction, and attributed
graph reasoning. Through visualization-based analyses, we identify layer-wise token merging and
structure memorization as the primary mechanisms underlying the models’ reasoning behavior.
Specifically, token merging indicates that Transformers progressively combine tokens to construct
substructures relevant to the prediction task. In parallel, structure memorization reveals that the
model’s predictions also rely on patterns learned from the training data, suggesting a form of retrieval
or recall from previously seen structures. To further support this, we perform quantitative analyses
to measure the prevalence of these phenomena across different graph reasoning tasks, considering
variations in graph density and the hidden dimension size of the underlying Transformer backbone.
In summary, our contributions are as follows:

1. We apply circuit-tracing methods to graph reasoning tasks to obtain a unified interpretation of how
and why decoder-only Transformers are able to solve them.

2. We provide both visualization and statistical analyses to interpret the underlying mechanisms of
token merging and structural memorization for decoder-only transformers in graph reasoning tasks.

3. We further analyze the effects of graph density on token merging and the influence of Transformer
hidden size on structural memorization.

2 Experiments

2.1 Experiment setting

First, following previous work [4. [5], we generate synthetic graph datasets to train the transformers.
Specifically, we construct a graph G with | V| nodes. Then, we sample the subgraphs G’ from
the generated graph to construct the training samples, each containing |[N’| < |N| nodes. We
focus on three fundamental graph reasoning tasks: path reasoning, attributed graph reasoning, and
pattern extraction. For each training sample, the input is formatted as a sequence of the form
"<Graph(EL)><Question><Answer>" following the definition in [S]where the question and answer
components vary depending on the task. Examples of task-specific prompts are provided in Table|T]
We adopt the GPT-2 model and train transcoders across multiple layers according to [[6]. The data
and training details are in Appendix [A]

2.2 Visualized tracers in graph reasoning tasks

To reveal the internal reasoning structures of Transformers, we first visualize circuit traces across three
representative graph reasoning tasks—path reasoning, attributed graph reasoning, and pattern
extraction, as shown in Figure[I] Figure 2] and Appendix [C|Figure[9] respectively.

The visualizations reveal token merging as a core mechanism in the reasoning process across various
graph tasks. For example, in the path reasoning task (Figure[I)), given a graph and a query specifying
start node 4 and end node 7, the expected path is 4 — 5 — 7. The model is tasked with predicting
the next token node 5. Circuit tracing shows that the Transformer merges the edges (4, 5) and (5, 7),
enabling it to correctly identify node 5 as the next step toward the target. Similarly, in the attributed
path reasoning task shown in Figure[2] we observe that the relevant edges are also merged, with their
associated attributes included in the merged representations. For instance, the target edge (5C, 8C) is
clearly highlighted, indicating its role in guiding the model’s prediction. In the pattern extraction task
shown in Appendix [C|Figure[9] token merging is also observed at higher layers. For example, when
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the predicted pattern is (27, 23, 40), the tokens corresponding to nodes 23 and 40 are merged into
token 27, a process that becomes more prominent in the upper layers of the model.

In addition to token merging, we observe that Transformers progressively memorize structural
information during training them to solve path reasoning tasks, as detailed in Appendix [B| After
training on path reasoning tasks, we prompt the Transformer with a single node ID and assess whether
it can predict the next token, modeling the probability of its 1-hop neighbors. To further interpret this
memorization, we analyze the circuit tracer results and examine how multiple layers contribute to
preserving neighborhood information, as visualized in Figure[I0} In the large-graph path reasoning
setting, Transformers are capable of recalling neighbor nodes when the prompt is a central node.
Importantly, different layers contribute differently to this memorization. For example, node 1381
is already recalled in the embedding and first layers.while node 1203 requires additional support
from every layer. This layer-wise contribution reflects how structural information is distributed and
retrieved during inference.

2.3 Quantified evaluations

From the visualizations, we observe that the circuit tracers reveal the reasoning process on a case-by-
case basis. In this section, we present quantitative evaluations to demonstrate that token merging and
structure memorization are consistent behaviors at the dataset level. Furthermore, we analyze how
these two mechanisms are affected by varying graph densities and model sizes.

Token Merging The token merging mechanism consistently emerges across various graph reasoning
tasks, serving to summarize substructures relevant to the model’s predictions, such as edge pairs in
path reasoning and candidate patterns in substructure extraction tasks. To evaluate this behavior, we



measure the alignment between the selected and expected tokens using the metric Sy = %, where

pred

Nprea denotes the number of the tokens are extracted by the circuit tracer, and Nejec; Tepresents the
number of the tokens that exactly can provide the evidences for the predictions. For example, these
include triangle patterns in pattern extraction, attributed nodes and edges merged in attributed graph
reasoning, and edges gathered in the path reasoning task. The corresponding results are shown in
Appendix [C] Appendix [C| Figure 8] and Table[3] Appendix [C]Figure[d] respectively, where the layers
at which token merging occurs vary across tasks and token types.

Appendix [C|Figure [§] illustrates the pattern extraction task. We observe that token merging occurs
progressively across layers, with multiple merging operations taking place in the shallow layers.
During this stage, the number of included nodes increases significantly, but the SE score remains
stable as the selected node ratio increases from 0.7 to 0.9.In attributed graph reasoning, shown in
Appendix [C] Table 3] tokens corresponding to start nodes, end nodes, and edge attributes are typically
merged around layer 3. Meanwhile, path reasoning tasks in Figure [ reveal a density-dependent
pattern: for graphs with low degree (e.g., density 0.4), many relevant edges are detected in early
layers (layer 1 or 2), whereas in denser graphs (e.g., density 0.6), the model relies more heavily on
deeper processing, particularly at layer 3. In conclusion, token merging is consistently observed
across various tasks, and as graph density increases, the merging tends to occur at higher layers of the
Transformer.

Structure Memorization The structure memorization mechanism suggests that next-token predic-
tions are influenced by structural patterns learned from the training data. We observe that Transformers
are capable of memorizing graph structures, as evidenced by their ability to recall potential neighbor
nodes during inference. Therefore, we apply Precision and Recall to discuss whether the transformers
memorize the correct neighbors and cover all of the neighbors, respectively. Notably, the memo-
rization spans multiple layers, indicating that structural information is preserved and propagated
throughout the model rather than being localized to a specific layer. To evaluate this behavior, we
assess whether the neighbors predicted by the model correspond to those in the original graph. Given
that hidden size is often a critical factor in neural network memorization capacity, we compare
models with different hidden dimensions, specifically 96 and 192, as shown in Appendix [C|Figure[I0]
and Figure[5] In both settings, the precision is consistently high, indicating that Transformers can
accurately memorize 1-hop neighbors across multiple layers. However, the recall patterns differ.
Although the overall recall scores are similar, the distribution of memorized neighbors across layers
varies. In models with smaller hidden dimensions, memorization tends to be more evenly distributed
across layers. In contrast, models with larger hidden dimensions exhibit strong memorization even in
shallow layers; notably, the embedding layer alone is capable of capturing all 1-hop neighbors. This
suggests that higher-dimensional embeddings are sufficient to encode local structural information
without requiring deeper processing. In summary, Transformers are capable of memorizing graph
structures, and larger hidden sizes encourage this neighbor memorization to be concentrated in the
lower layers of the model.

3 Related work and Background

Mechanism of graph structure understanding Recent studies suggest that large language models
(LLMs) possess the capability to understand graph structures [[1,[7]. To investigate the underlying
reasons for this ability, current research often focuses on simplified graph data and decoder-only
transformers, aiming to uncover the mechanisms behind such capabilities [8} 9]]. For instance, [4} 3]
suggest that LLMs perform path reasoning by effectively searching for relevant edges, while [3]]
argues that LLMs can extract substructures from the input. Despite these varying perspectives, it
remains unclear whether there exists a unified framework for understanding the mechanisms by which
LLMs process graph structures.

Interpretation of LLMs Understanding the internal mechanisms of Transformer models has
long been a focus of interpretability research [10l [11]. Early interpretability studies on BERT
revealed that different layers capture distinct linguistic properties: lower layers attend to local
syntax, while higher layers progressively aggregate global semantics [12} [13]. Probing classifiers and
attention-based analyses further demonstrated how information is organized hierarchically across
depth [14]. In decoder-only Transformers, this line of work evolved into circuit tracing methods such
as Transcoder [15,|16], which recover token-level causal paths to explain autoregressive reasoning.



Building on this, recent approaches introduce attributed graphs to represent token interactions across
layers, capturing both semantic roles and attention dynamics [6]. Our work extends this direction by
constructing attributed graphs from circuit traces to interpret graph reasoning tasks, revealing token
merging and structure memorization dynamics in graph reasoning tasks.

4 Conclusion

We provide a unified perspective on how decoder-only Transformers solve graph reasoning tasks,
revealing token merging and structure memorization as core mechanisms. These behaviors vary with
task complexity and model scale, offering a compact framework for interpreting structural reasoning
in Transformers.
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A Appendices in Experiments

In this section, we provide additional details of our experimental setup. The graph datasets vary
across tasks, and for each task, the graph configurations, Transformer architectures, and transcoder
training procedures are customized accordingly. We adopt the GPT-2 model with ROPE positional
embeddings as the backbone. While transformers are capable of achieving high accuracy, we employ
a lightweight variant of the GPT-2 architecture consisting of only 5 layers. After training the
transformers on the specified tasks, we train cross-layer transcoders at each layer. These transcoders
are then merged to construct an attribution graph according to [6], which is used to reveal the implicit
internal structures of the transformer for interpretability. Additionally, we report the parameters used
in our visualizations. The summary of these experimental settings is presented in Table[2] All of the
experiments are run on a single RTX A6000.

B Structure memorization in training

We find that Transformers tend to memorize structural patterns during pretraining. To investigate this,
we construct training data by extracting subgraphs from backbone graphs with varying densities (0.2
and 0.4). Each sampled subgraph contains at most 10 nodes, and we focus on path reasoning tasks
to evaluate whether Transformers can memorize edge combinations during training. We evaluate
accuracy on the test set using three criteria: 1. Local Accuracy: The predicted path’s edges are fully
contained within the given subgraph; 2. Exist Accuracy: The predicted path’s edges exist somewhere
in the original backbone graph; 3. Global Accuracy: Given only a start node and an end node, the
model must predict a correct path in the backbone graph without explicit subgraph context. The
maximum path length is also recorded to assess the length of the predicted path.

First, we evaluate the case where the backbone graph contains 10 nodes, and we randomly drop
40% or 60% of its edges. We measure both Global Accuracy and Local Accuracy during training,
shown in Figure [f] We observe that Transformers initially memorize the full backbone graph,
reaching 100% Global Accuracy at early training stages. In contrast, Local Accuracy improves more
gradually, suggesting that Transformers first memorize the global structure before adapting to the
local subgraphs. Additionally, a lower edge dropout ratio leads to faster learning, indicating that
denser graphs facilitate structural memorization.

Next, we increase the backbone graph size to 50 nodes and evaluate the setting where subgraphs
are sampled by selecting nodes only—without dropping any edges among the selected nodes. The
results are presented in Figure[/| As the graph size increases, memorizing the full backbone structure
becomes more challenging, and we observe that Global Accuracy improves more slowly compared
to the 10-node case, while Local Accuracy increases more quickly. Interestingly, Exist Accuracy
exceeds Local Accuracy, suggesting that the model continues to rely on memorized global edges
even in local contexts. Moreover, despite training only on short paths (3—5 hops), the model is
capable of predicting accurate paths exceeding 10 hops, implying that Transformers may prioritize
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Table 2: Summarization of Experiment settings

Module Parameter g‘fith reasoning Attributed reasoning ~ Substructure extraction
iny Large
Density 0.4 0.002 0.2 0.1
Graph Node num 50 3000 30 100
Max node number in subgraph | 10 10 5 5
Hidden size 96 96 96 96
Transformer =~ Max length 256 96 96 96
Basic Acc 0.99 0.96 0.94 0.92
L1 coefficent 0.0005 0.0005 0.0005 0.0005
Transcoder Dead nueron num 50 50 50 50
Hidden size 192 192 192 192
Node threshold 0.86 0.8 0.8 0.8
Vis parameter ~ Edge ratio 0.48 0.9 0.99 0.9
Edge threshold 0.1 0.2 0.1 0.4

high-probability paths rather than strictly the shortest ones—even when trained under shortest-path
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10 S I s ittt EE =ttt
101+t erom s || B e e
) 10
0.8 . %
08 (YA S 8 §
[ SR F=
0.6 =]
>06 § | . v 0. 0.0.0.6 6 &
o 3 Y B - 9090000000900 o
3 Loa i Global (0.4) b
S o4 i ’ L) Exist (0.4) 4 G
< ; =
; H - Local (0.4) [
i 02 ik Global (0.2) é
0.2 ,‘ Global (ratio=0.6) i ) E:':a“(‘oozz" 23
I" --=- Local (ratio.=0.6) -~ Max Path Length (0.4)
i Global (ratio=0.4) 001 ¢ - Max Path Length (0.2) 10
0.0 3 -- Local (ratio=0.4)
0 2000 4000 6000 8000 10000
0 2000 4000 6000 8000 10000 Steps
Steps
. Figure 7: Local Acc, Exist Acc, Global Acc
Figure 6: Local Acc and Global Acc change & ’ > A
. L and Max Path Length change with training
with training steps steps

C Additional Figures
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Layer1
Layer 2 o
Layer 3 Ptag

Layer 4 -

Layer 5 -
SE score

= e
s R
x
A

©
SE score

Average Included Node Count (per Layer)

0.2 03 0.4 05 0.6 0.7 0.8 09

Selected Node Ratio
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layers. The token merging never shows in layer 4 and
layer Output.

Table 3: Token merged in attributed
graph reasoning. Sg is 0.94 with
the selected node ratio of 0.9. Start,
End, and Edge denote attributes
merged from the start node, end
node, and full edge, respectively.

Start End Edge
L1 0 6 3
L2 39 40 39
L3 225 218 222
L4-Out O 0 0
Overall 264 264 264
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patterns are (27, 23, 40) and (97, 87, 7).
D Limitation
Our analysis is limited to decoder-only Transformers trained from scratch, and a gap remains between

these models and real-world large language models. Additionally, a more thorough investigation into
the effects and limitations of circuit tracing should be included in future work.

E Boarder Impact

We uncover the core mechanisms behind how decoder-only Transformers perform graph reasoning.
Given that graph reasoning is a specialized form of structured reasoning, these insights may extend to
general reasoning tasks in large language models



	Introduction
	Experiments
	Experiment setting
	Visualized tracers in graph reasoning tasks
	Quantified evaluations

	Related work and Background
	Conclusion
	Appendices in Experiments
	Structure memorization in training
	Additional Figures
	Limitation
	Boarder Impact

