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Abstract—Though CLIP-based prompt tuning significantly
enhances pre-trained Vision-Language Models, existing research
focuses on reconstructing the model architecture, e.g., additional
loss calculation and meta-networks. These approaches gener-
ally lead to increased complexity and extended training cost.
To maintain the efficiency of the tuning process, we propose
plug-and-play Model-Agnostic Optimization (MAO) for prompt
tuning. Without altering any components of the prompt tuning
backbone, we introduce a Data-Driven Enhancement framework
to optimize the distribution of the initial data, and incorporate an
Alterable Regularization module to boost the task-specific feature
processing pipeline, thereby improving overall performance while
maintaining low computational cost. Extensive experiments on
MAO demonstrate its outstanding performance and efficiency.

Index Terms—Prompt tuning, Vision-language model, Multi-
modal learning

I. INTRODUCTION

Vision-Language Models (VLMs) have revealed remarkable
capabilities in cross-modal alignment and fusion [1], [2]. Rep-
resented by CLIP [3], by pre-training on hyper-scale image-
text pairs, VLMs achieve robust open-domain representation
and multi-modal understanding (e.g., zero-shot recognition).
To further explore the potential of CLIP, Prompt Tuning
is proposed as a Parameter-Efficient Fine-Tuning (PEFT)
method [4]. Freezing all parameters in foundation CLIP, this
approach introduces a lightweight, learnable prompt vector to
supersede the original textual or visual input, guiding CLIP’s
output to fit the distribution of target task.

The objectives of Prompt Tuning can be summarized as:
(1) enhancing performance on target tasks (base classes)
through PEFT, and (2) maintaining generalization capacity
when inferring on unknown images in other out-of-distribution
categories (new classes). To reach these visions, numerous
prompt learners are proposed, containing additional loss func-
tions as constraints [5]–[7], extra meta-net layers for cross-
modal alignment [8]–[10], and the incorporation of external
knowledge [11], [12]. Unfortunately, though the performance
is practically improved, these models also exhibit raised com-
plexity and computational cost. Compared to native CoOp [4],
the learnable parameters expand from tens of thousands to
millions, and GPU memory usage also increases exponentially.
The increase in computational demands limits the flexibility
for efficient fine-tuning and elastic deployment.
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Fig. 1. Architecture comparison between (a) existing prompt tuning back-
bones and (b) our Model-Agnostic Optimization (MAO) framework that
introduces Data-Driven Enhancement and Alterable Regularization Module.

To address this issue, herein, we propose a Model-Agnostic
Optimization (MAO), an efficient plug-and-play prompt tuning
method with almost no appended computational overhead.
Overall, we observe that existing approaches focus primarily
on ameliorating the structure of prompt learners, while ignor-
ing the optimization of the workflow in data and feature pro-
cessing. Thus, outside the fine-tuning framework of backbone
models, we introduce Data-Driven Enhancement to improve
the quality of data distribution and an Alterable Regularization
strategy to optimize feature representation, which are devised
separately for base or new tasks without additional parameters.

For base-class tasks, the purpose of MAO is to constrain the
tuning process to further fit the distribution of base classes.
As Data-Driven Enhancement, we introduce a pre-trained
Hard Negative Sampler based on semantic similarity, replacing
the random sampling strategy of backbones. This approach
enhances the representation of data distribution of base classes
by building a denser set with hard negatives. Subsequently, we
integrate Alterable Regularization into the flow of feature rep-
resentation, restricting the model to dynamically learn internal
feature relationships of hard negatives for better fitting, while
improving generalization through the introduced randomness.

In new-class tasks, as extant prompt tuning backbones rely
on paired image-text for training, it is tough to effectually



exploit unlabeled images. Recent studies [13] explore apply-
ing knowledge distillation to learn from unimodal images.
However, this type of approach assumes the existence of a
larger pre-tuned teacher prompt model. Moreover, the data
requirements and computational overhead are dramatically
risen. As a concise and effective alternative, we introduce a
rapid pseudo-labeling strategy as Data-Driven Enhancement.
Resorting to the outstanding zero-shot capabilities of founda-
tion CLIP, MAO assigns pseudo-labels inferred by CLIP Top-1
to the few-shot unlabeled images for constructing image-text
pairs. Additionally, Alterable Regularization is employed to
focus on the feature distribution of the pseudo-labels. Without
increasing computational cost, this approach efficiently learns
new-class features and enhances generalization capacity.

As a model-agnostic optimizer, our MAO can be plug-
and-play adapted to most prompt tuning backbones. Exten-
sive experiments verify that compared to the backbones,
MAO achieves remarkable integral performance improvements,
while maintaining almost unchanged computational cost and
inference efficiency. Compared to more progressive models
with similar performance, MAO demands less fine-tuning time
and only about 30% of the GPU memory.

Our main contributions can be concluded as follows:
1) We propose Model-Agnostic Optimization (MAO), which

efficiently optimizes prompt tuning backbones at data
and feature level in a plug-and-play manner, consuming
almost no additional computational resources.

2) We introduce task-related Data-Driven Enhancement
to MAO, improving the data distribution of base and
new classes through hard negative sampling and rapid
pseudo-label allocation, respectively.

3) We incorporate Alterable Regularization into the pro-
cedure of feature processing, constraining the model to
dynamically focus more on the features of updated data
to enhance performance and generalization.

The code and Supplementary Material are available at:
https://github.com/JREion/M.A.O.

II. RELATED WORK

CLIP-based VLMs. Vision-Language Models (VLMs) have
gained comprehensive attention due to the cross-modal rep-
resentation capacities [3], [14]. As a representative work of
VLMs, CLIP utilizes ∼ 400M image-text pairs (with text in
the form of “A photo of a [CLASS] ” as hard prompt) to train
ViT-based [15] image and text encoders, achieving deep-seated
alignment between visual and textual modalities through con-
trastive learning. The large-scale pre-training endows CLIP
with prominent zero-shot multi-modal understanding ability.

In this paper, we adhere to the backbone settings to perform
prompt tuning based on frozen CLIP. Additionally, aided by
the zero-shot capability of CLIP, we assign pseudo-labels
to few-shot unlabeled images in new-class tasks, efficiently
enhancing the generalization performance of MAO.
Prompt Tuning. Due to the deep network layers and param-
eters, full fine-tuning on VLMs is commonly challenging. In
contrast, prompt tuning is proposed as a Parameter-Efficient

Fine-Tuning (PEFT) strategy, allowing CLIP to rapidly adapt
to target tasks [4]. Instead of using hard prompts in the
foundation CLIP, it applies a set of learnable lightweight
vectors as prompts of the frozen CLIP backbone, which are
continuously fine-tuned on particular tasks, acting as queries.

Taking CoOp [4] as origination, comprehensive research
is conducted, aiming at reinforcing base-class performance
while maintaining generalization to new classes. Proposed
approaches cover introducing visual [16] or joint prompt vec-
tors [17], appending more robust constraints (e.g., consistency
loss [5], [6]), further cross-modal alignment via auxiliary
meta-networks [8]–[10], or fine-tuning guided by external
knowledge (e.g., Large Language Models [11]). Obviously,
due to the stacking of new learnable modules, while the per-
formance is improved, there is also an expansion in parameters
and computational cost of these prompt learners. In contrast,
our MAO focuses on model-agnostic optimization strategies by
enhancing data and feature processing, thereby achieving per-
formance gains with minimal additional computational cost.

III. PROPOSED METHOD

The framework of MAO is illustrated in Fig. 2. As a plug-
and-play optimization approach, for an obtained prompt tuning
backbone (e.g., CoOp [4]), MAO employs a two-step tuning
strategy, performing prompt tuning separately by using image-
text pairs on base tasks and unlabeled images on new tasks.
Both tasks incorporate targeted Data-Driven Enhancement and
Alterable Regularization. Details of MAO are as follows.

A. Preliminaries

Inheriting the settings of extant prompt tuning backbones,
MAO introduces a frozen CLIP as foundation model, consisting
of ViT-B/16 [15] image and text encoder, which are utilized for
mapping image I and text T to embeddings with dimension
d, denoted as f(·) and g(·).

The flow of mainstream prompt tuning is displayed in Fig.
1(a). Learnable prompt vector is normally organized as a set
of tensors with length L for textual or optional visual input:

P = [θ]1[θ]2 . . . [θ]L (1)

The textual prompt P t concatenates P with the [CLASS]
tokens containing all candidate classes C = {Ti}ni=1. In
contrast, visual prompt is typically integrated as the prefix of
image patch tokens (P v, I). During fine-tuning phase, prompt
tuning applies cross-entropy loss to update the parameters of
the learnable prompts:

LCE = −
∑
i

ci log p (y | I) (2)

p(y | I) =
exp

(
⟨g(P ty), f(P v, I)⟩/τ

)∑n
i=1 exp (⟨g(P ti), f(P v, I)⟩/τ)

(3)

where ci is the one-hot label of the i-th candidate in C, and
⟨·, ·⟩ represents cosine similarity. τ is a temperature coefficient
defined by CLIP.
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Fig. 2. Framework of proposed MAO. MAO builds a two-step fine-tuning structure without altering components of prompt tuning backbones. In (a) base tasks,
MAO introduces a hard negative sampler as Data-Driven Enhancement (DDE), and an Alterable Regularization (reg-B) that guides the model in learning the
feature distribution of hard negatives and keeps generalization. Then in (b) new tasks, rapid pseudo-labeling is performed on unlabeled images as DDE using
shared-parameter CLIP, followed by reg-N to constrain the fine-tuning on new classes. The inference process follows the settings of the original backbones.

B. Model-Agnostic Optimization on Base-Class Task
To enable prompt tuning to adapt to feature distributions

of both base and new tasks without increasing computational
cost, MAO’s two-step fine-tuning flow evenly splits the original
total epoch of the backbone prompt learners. The first half is
utilized for fine-tuning on the base-class tasks, while the latter
half is dedicated to generalization enhancement by adapting
unlabeled images to new-class tasks. To achieve equivalent
base-class performance in fewer epochs, MAO introduces Data-
Driven Enhancement and Alterable Regularization as below.
Data-Driven Enhancement. In base-class tasks, this process
aims to construct a denser data distribution, enabling efficient
learning of base-class features. Herein, MAO proposes a Hard
Negative Sampler to guide prompt tuning in learning recon-
structed image-text pairs that are tough to classify precisely,
thereby achieving further fitting to the base class.

Specifically, as the Hard Negative Sampler, a pre-trained
MiniLM [18] with semantic similarity metric is introduced,
which is a compressed Transformer-based model, demon-
strating remarkable performance in real-time inference on
classification tasks. For each image-text pair (ib, t) in base
tasks passed by the original prompt tuning backbone, cosine
similarity is utilized to filter the Top-K categories from the set
of base classes Cb that possess the closet semantic distance to
the embedding et tokenized from t, thereby constructing hard
negatives T ′

b:

T ′
b = topKci∈Cb

(
⟨et, eci⟩
∥et∥ ∥eci∥

)
, ∀ci ∈ Cb (4)

Afterwards, objects in T ′
b are utilized as indices to randomly

sample matching images from the pre-constructed training set,
organized as a set of hard negative image-text pairs (T ′

b, I
′
b).

The effectiveness is verified in Supplementary Material.
Alterable Regularization. In prompt tuning backbones, cross-
entropy loss LCE is typically measured over entire base-class

candidates Cb, making it tough to specifically generalize the
features of hard negatives. As an improvement, MAO introduces
an online dynamic cross-entropy as Alterable Regularization
(reg-B in Fig. 2), constraining the model by focusing on
the feature distribution of hard negatives, while avoiding
overfitting by importing randomness of dynamic perturbations.

For the mini-batch consisting of hard negatives (T ′
b, I

′
b),

MAO extracts all the contained classes and deletes duplicates
to organize a candidate set C̃

′
b ⊂ T ′

b specific to the hard
negatives. Since duplicates are excluded, it possesses a dy-
namic length H ≤ b · topK, b signifies batch size. Under the
constraint of C̃

′
b, MAO obtains corresponding textual features

g(C̃
′
b) ∈ RH×d through prompt tuning backbone, followed by

L2 normalization to scale cross-modal feature distribution:

ĝ(C̃
′
b) =

g(C̃
′
b)

∥g(C̃
′
b)∥2

∈ RH×d (5)

Next, based on image-text features, an improved cross-
entropy loss is proposed with only C̃

′
b as candidates:

Lbase
CE = −

H∑
i=1

ci log p (y | Ib) , Ib ∈ I ′
b, ci ∈ C̃ ′

b (6)

Beyond that, other possible loss functions in the prompt
tuning backbones are maintained unchanged.

Since hard negatives are obtained online, they introduce
dynamic prior constraints to the model, as well as a degree of
perturbation for randomness. Overall, the above procedure can
be considered as a type of implicit regularization. Theoretical
explanation is visible in Supplementary Material. Experiments
in Section IV-B verify its beneficial effect on generalization.

C. Model-Agnostic Optimization on New-Class Task

Inheriting the results on base tasks, in the latter half of the
two-step fine-tuning, MAO exerts optimization on new classes



TABLE I
BASE-TO-NEW GENERALIZATION PERFORMANCE (%) OF 3 BACKBONE MODELS W/ OR W/O OUR MAO ON 11 DATASETS.

Model Average of all ImageNet Caltech101 OxfordPets StanfordCars Flowers102
Base New H Base New H Base New H Base New H Base New H Base New H

CoOp [4] 81.98 68.84 74.84 76.41 68.85 72.43 97.55 94.65 96.08 95.06 97.60 96.31 75.69 70.14 72.81 96.96 68.37 80.19
+MAO 82.48 74.12 78.08 76.53 68.82 72.47 98.06 94.20 96.09 95.53 98.32 96.90 77.24 75.32 76.27 96.77 77.38 86.00

MaPLe [9] 83.52 73.31 78.08 76.91 67.96 72.16 97.98 94.50 96.21 95.23 97.67 96.44 77.63 71.21 74.28 97.03 72.67 83.10
+MAO 84.17 74.68 79.14 76.79 68.72 72.53 98.13 94.47 96.27 95.85 97.54 96.69 79.90 75.12 77.43 97.06 77.47 86.17

PromptSRC [6] 83.45 74.78 78.87 77.28 70.72 73.85 97.93 94.21 96.03 95.41 97.30 96.34 76.34 74.98 75.65 97.06 73.19 83.45
+MAO 84.53 75.38 79.69 76.51 72.53 74.47 98.13 94.12 96.08 95.59 96.92 96.25 80.91 76.01 78.38 95.54 77.94 85.85

Method Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101
Base New H Base New H Base New H Base New H Base New H Base New H

CoOp [4] 90.49 91.47 90.98 37.33 24.24 29.39 80.99 74.10 77.39 80.09 49.88 61.47 87.60 51.62 64.96 83.66 66.31 73.98
+MAO 91.03 91.63 91.33 39.56 31.79 35.25 80.73 76.29 78.45 80.44 59.66 68.51 87.12 67.74 76.22 84.28 74.20 78.92

MaPLe [9] 89.85 90.47 90.16 40.82 34.01 37.11 81.54 75.93 78.63 82.18 55.63 66.35 94.96 72.19 82.02 84.55 74.15 79.01
+MAO 91.14 91.23 91.18 41.88 32.45 36.57 81.43 76.78 79.04 83.14 62.02 71.04 95.65 70.87 81.42 84.89 74.83 79.54

PromptSRC [6] 90.83 91.58 91.20 39.20 35.33 37.16 82.28 78.08 80.13 83.45 54.31 65.80 92.84 74.73 82.80 85.28 78.13 81.55
+MAO 90.79 91.23 91.01 45.32 33.29 38.38 81.51 77.42 79.41 84.26 64.25 72.91 94.88 70.10 80.63 86.40 75.39 80.52

TABLE II
CROSS-DATASET GENERALIZATION OF 3 BACKBONE MODELS W/ OR W/O OUR MAO ON IMAGENET AS SOURCE AND OTHER 10 DATASETS AS TARGETS.

Model Source Target
ImageNet Avg. Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101

CoOp 71.25 64.98 93.91 89.97 65.56 67.88 85.86 22.11 66.92 42.55 47.77 67.30
+MAO 71.33 65.54 93.75 90.73 65.03 69.96 85.88 23.01 66.14 45.92 46.78 68.20

MaPLe 70.11 64.79 93.67 89.72 63.90 69.63 85.79 21.24 67.05 44.92 44.84 67.17
+MAO 71.86 64.95 93.35 90.49 64.42 71.01 85.44 24.96 65.82 45.21 43.37 65.45

PromptSRC 70.65 65.64 93.43 89.92 65.95 71.05 86.21 24.03 67.63 46.22 42.59 69.39
+MAO 70.97 65.68 93.35 89.02 66.20 67.93 86.02 25.23 67.08 47.10 46.51 68.33

through continual learning, exploiting unlabeled images from
new classes. To sustain efficiency, MAO continues to apply
the identical few-shot setup to sample unimodal images In
in new classes (instead of loading entire dataset as in knowl-
edge distillation-based methods [13]). Similarly, Data-Driven
Enhancement and Alterable Regularization are introduced.
Data-Driven Enhancement. To exploit out-of-distribution
unlabeled images from new classes without modifying any
backbone components, MAO proposes a rapid pseudo-labeling
strategy. With no attached parameters or additional losses, this
approach reuses the foundation CLIP to sample pseudo-labels
for few-shot unlabeled images as supervision signals, thus
integrating them into fine-tuning.

Sharing image encoder f(·) and text encoder g(·) with
prompt learner backbones, MAO performs zero-shot inference
on unlabeled images in supervised by all new-class candidates
Cn, picking Top-1 with the highest confidence score as its
pseudo-label t̂n. The calculation is executed by a similar
approach as Eqn. 3:

t̂n = argmax
c∈Cn

exp (⟨f(in), g(c)⟩/τ)∑
c′∈Cn

exp (⟨f(in), g (c′)⟩/τ)
(7)

Resorting to the zero-shot ability of CLIP, this process
constructs pseudo image-text pairs (In, T̂ n) with acceptable
quality, boosting generalization by increasing data diversity.

Alterable Regularization. Feature optimization for new
classes (reg-N in Fig. 2) is approximate to base tasks. The
discrepancy is that during fine-tuning on new, MAO supersedes
base-class objects with all new-class candidate Cn, achieving
implicit regularization by altering prior constraints of data dis-
tribution. Since the tokenization and normalization are already
handled by Data-Driven Enhancement, the computational load
can be further reduced. Analogously, the cross-entropy loss for
new classes is formulated as:

Lnew
CE = −

N∑
i=1

ci log p
(
y = t̂n | In

)
, In ∈ In, ci ∈ Cn (8)

Overall, through pseudo-label allocation and transformation
of feature distribution, MAO organizes a tuning task that
focuses on learning latent new-class representation without
augmenting computational overhead. Such a design encour-
ages prompt tuning backbone to benefit from new-class data,
thereby effectually enhancing generalization capacity.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. Following CoOp’s benchmark [4], we apply 11
recognition-related datasets with various data distributions to



Fig. 3. Average HM performance of base-to-new generalization tasks of 3
backbones with plug-and-play methods, DePT [10] and our MAO.

TABLE III
COMPUTATION COST OF MAINSTREAM PROMPT TUNING BACKBONES AND

OUR MAO ON FLOWERS102 DATASET.

Model Learnable
Params

Memory
(MB)

Tuning Time
Per Epoch

Inference
FPS

HM
Acc.

CoOp 8K 1103.7 22.0s (0.69x) 767.7 80.19
+MAO 8K 1176.9 31.9s (1x) 772.0 86.00

MaPLe 3.55M 3288.5 37.1s (1.16x) 765.6 83.10
CoPrompt 4.74M 3697.6 46.5s (1.46x) 768.1 85.71

make sufficient evaluation. These datasets are listed in Tab. I
and Tab. II, containing generic and fine-grained objects.
Baselines. For comparison, 3 widely-recognized prompt learn-
ers, containing CoOp [4], MaPLe [9] and PromptSRC [6],
are employed as baselines and backbone models for our
MAO. Another leading plug-and-play module DePT [10] is
also imported to validate MAO’s adaptability. Additionally, we
introduce CoPrompt [11] to contrast computational cost.
Implementation Details. As a model-agnostic approach, MAO
thoroughly applies the initial parameter settings of the back-
bone models. For a fair comparison, all 3 original backbones
are uniformly fine-tuned with epoch = 20 and batch size
b = 32. In contrast, following the proposed two-step tuning
strategy (Section III) , MAO assigns 10 epochs for base and new
class optimization, respectively, and regulates the learning rate
to lr = 0.0035. More details are in Supplementary Material.

B. Experimental Results

Base-to-New Generalization. Abided by the baselines’ de-
sign, categories in each dataset are equally divided into base
and new classes. MAO performs fine-tuning utilizing image-
text pairs from base classes and unlabeled images from new
classes, followed by accuracy evaluations on both test sets.
The Harmonic Mean (HM) of base and new tasks is also cal-
culated. As exhibited in Tab. I, MAO surpasses all 3 backbones
in overall performance, with the most significant enhance-
ment in new-class generalization compared to CoOp. Results
demonstrate that without modification of model architecture,
prompt tuning can be optimized by simply ameliorating the
distribution of data and features.
Cross-Dataset Generalization. Using ImageNet tuned on all
classes as source, in Tab. II, we conduct zero-shot inference
on remaining 10 datasets to evaluate the transferability across
diverse distributions. While source accuracy improves, MAO
also attains higher accuracy on multiple target datasets. Re-

TABLE IV
ABLATION OF THE COMPONENTS IN MAO WITH PROMPTSRC BASELINE

ON BASE-TO-NEW TASKS OVER 11 DATASETS. DDE: DATA-DRIVEN
ENHANCEMENT. AR: ALTERABLE REGULARIZATION.

Base New Average Acc.
∆DDE+AR DDE AR Base New H

83.45 74.78 78.87
(a) ✓ 84.53 74.95 79.45 +0.58
(b) ✓ ✓ 83.45 75.05 79.03 +0.16
(c) ✓ ✓ 84.53 75.02 79.49 +0.62
(d) ✓ ✓ ✓ 84.53 75.38 79.69 +0.82

TABLE V
ABLATION OF THE PSEUDO-LABEL SAMPLER IN MAO WITH PROMPTSRC.

Model Pseudo-Label Sampler HM Acc. ∆

PromptSRC - 78.87
+MAO Foundation CLIP 79.69 +0.82
+MAO Fine-tuned prompt 79.31 +0.44

markably, this is achieved without any target-task fine-tuning.
We attribute this to MAO’s Alterable Regularization design,
which mitigates overfitting to the ImageNet source, thus guar-
anteeing favorable generalization to out-of-distribution data.
Comparison with Plug-and-play Baseline. We contrast MAO
with another progressive plug-and-play model, DePT [10]. As
illustrated in Fig. 3, MAO consistently surpasses DePT in HM
accuracy, revealing better optimization level.

C. Computational Cost

To confirm the efficiency of MAO, we employ multiple
metrics to quantify the differences of computational cost
between MAO, the associated backbone, and other prompt
tuning approaches. As revealed in Table III, taking Flowers102
dataset as a paradigm, we contrast CoOp-based MAO with
CoOp backbone, as well as MaPLe [9] and CoPrompt [11],
which possess approximate HM accuracy.

Clearly, due to the model-agnostic characteristic of MAO, the
quantity of learnable parameters sustains identical to CoOp,
much less than MaPLe and CoPrompt. Meanwhile, GPU
memory and inference speed of MAO are basically the same as
CoOp. This implies that the hardware resource demand of MAO
does not expand, supporting flexible deployment of prompt
learners. Moreover, compared to CoPrompt, CoOp-based MAO
acquires an equivalent level of performance while expending
only 68.6% of fine-tuning time and 31.8% of GPU memory.
More analyses are detailed in ablation study (Section IV-D).

D. Ablation Study

Validity of Proposed Components. Effect of components in
MAO is examined in Table IV. Since Data-Driven Enhancement
(DDE) and Alterable Regularization (AR) are bound together
in base tasks, only their combination is considered. Compared
with PromptSRC backbone, (a) importing base-class optimiza-
tion improves base accuracy, and the introduction of Alterable
Regularization also enhances the zero-shot generalization on
new tasks to a certain extent (detailed analysis and verification



81.98

Fig. 4. The impact of (Left) the number of Top-K in Data-Driven Enhance-
ment for base-class tasks and (Right) shots of unlabeled images for new-class
tasks on accuracy and computational cost of CoOp-based MAO.

are available in Supplementary Material). Additionally, the
absence of base-class optimization in (b) and AR module in
(c) prevents the model from reaching optimal performance.
Among them, the gap between (b) and (d) proves that prompt
vector fine-tuned on the base class can serve as an effective
supervision for generalization in new-class fine-tuning. In
contrast, (d) with full setting performs the best, demonstrating
the necessity of each component in MAO.
Pseudo-Label Sampler. We consider applying foundation
CLIP or the prompt learner backbone tuned on base classes
for pseudo-label sampling in new-class fine-tuning. It can be
observed in Tab. V that the former performs better. We believe
this is because that the tuned prompt learner backbone tends
to fit the base classes, thereby weakening randomness and
generalization on new-class sampling. In contrast, resorting
to better global generalization, the foundation CLIP assigns
pseudo-labels to unlabeled images with preferable quality.
Effect of Top-K in Hard Negative Sampler. As revealed
in the left plot of Fig. 4, the base-class performance of MAO
improves with the increase of K. Therefore, it is a priority
to set a larger K for fine-tuning, while guaranteeing that the
length of mini-batch H remains smaller than the total amount
of base classes (otherwise, Alterable Regularization for base
tasks would be invalidated). Herein, we set K = 8.
Impact of Shots. The right plot of Fig. 4 indicates that though
the trend of growth gradually moderates, an increased shot
of unlabeled images S brings a reinforcement in the HM
performance of MAO. We believe that this can be attributed to
the introduction of more diversified data in the process of new-
class fine-tuning. Meanwhile, this leads to a corresponding
increase in computational cost, with its trend approximating
the gain in performance. Considering the marginal effect of
performance enhancement, we recommend 8 ≤ S ≤ 32 to
equilibrate performance and computational cost.

V. CONCLUSION

We propose Model-Agnostic Optimization (MAO) for
prompt tuning, improving performance by optimizing data
distribution and feature representation without further com-
putational cost. In fine-tuning on both base and new tasks, we
introduce hard negative sampling and rapid pseudo-labeling
as task-related Data-Driven Enhancement, constructing a dy-
namic dense data distribution for the model, and exploit-

ing unlabeled images that original backbones cannot utilize.
Subsequently, Alterable Regularization is applied to append
implicit constraints during feature processing stage. Exper-
iments reveal that MAO prominently enhances performance
without demanding more computational resources. Overall,
MAO provides an important reference and a novel solution for
maintaining the lightweight and flexibility of prompt learners.

ACKNOWLEDGEMENTS

This work is supported by the China Scholarship Council
(CSC), the UTS Top-Up Scholarship, and the Shanghai Insti-
tute of Intelligent Science and Technology, Tongji University.
Computational facilities are provided by the UTS eResearch
High Performance Compute Facilities and the Shanghai Tech-
nical Service Computing Center of Science and Engineering,
Shanghai University.

REFERENCES

[1] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” in ICML. PMLR, 2023, pp. 19730–19742.

[2] J. Zhang, J. Huang, S. Jin, and S. Lu, “Vision-language models for
vision tasks: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

[3] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
et al., “Learning transferable visual models from natural language
supervision,” in ICML. PMLR, 2021, pp. 8748–8763.

[4] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” International Journal of Computer Vision, vol. 130,
no. 9, pp. 2337–2348, 2022.

[5] H. Yao, R. Zhang, and C. Xu, “Visual-language prompt tuning with
knowledge-guided context optimization,” in CVPR, 2023, pp. 6757–
6767.

[6] M. U. Khattak, S. T. Wasim, M. Naseer, S. Khan, M. Yang, and F. S.
Khan, “Self-regulating prompts: Foundational model adaptation without
forgetting,” in ICCV, 2023, pp. 15190–15200.

[7] H. Li, L. Wang, C. Wang, J. Jiang, Y. Peng, and G. Long, “Dpc: Dual-
prompt collaboration for tuning vision-language models,” arXiv preprint
arXiv:2503.13443, 2025.

[8] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Conditional prompt learning
for vision-language models,” in CVPR, 2022, pp. 16816–16825.

[9] M. U. Khattak, H. Rasheed, M. Maaz, S. Khan, and F. S. Khan, “Maple:
Multi-modal prompt learning,” in CVPR, 2023, pp. 19113–19122.

[10] Ji Zhang, Shihan Wu, Lianli Gao, Heng Tao Shen, and Jingkuan Song,
“Dept: Decoupled prompt tuning,” in CVPR, 2024, pp. 12924–12933.

[11] S. Roy and A. Etemad, “Consistency-guided prompt learning for vision-
language models,” in ICLR, 2024.

[12] K. Cai, K. Song, Y. Pan, and H. Lai, “Malip: Improving few-shot image
classification with multimodal fusion enhancement,” in ICME. IEEE,
2024, pp. 1–6.

[13] Z. Li, X. Li, X. Fu, X. Zhang, W. Wang, S. Chen, and J. Yang, “Promp-
tkd: Unsupervised prompt distillation for vision-language models,” in
CVPR, 2024, pp. 26617–26626.

[14] C. Jia, Y. Yang, Y. Xia, Y. Chen, Z. Parekh, H. Pham, Le, et al., “Scaling
up visual and vision-language representation learning with noisy text
supervision,” in ICML. PMLR, 2021, pp. 4904–4916.

[15] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[16] M. Jia, L. Tang, B. Chen, C. Cardie, S. Belongie, B. Hariharan, and
S. Lim, “Visual prompt tuning,” in ECCV. Springer, 2022, pp. 709–
727.

[17] Y. Zang, W. Li, K. Zhou, C. Huang, and C. Loy, “Unified vision and
language prompt learning,” arXiv preprint arXiv:2210.07225, 2022.

[18] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm:
Deep self-attention distillation for task-agnostic compression of pre-
trained transformers,” Advances in Neural Information Processing
Systems, vol. 33, pp. 5776–5788, 2020.


