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Abstract

Kernel ridge regression (KRR) is a foundational tool in machine learning, with
recent work emphasizing its connections to neural networks. However, existing
theory primarily addresses the i.i.d. setting, while real-world data often exhibits
structured dependencies - particularly in applications like denoising score learning
where multiple noisy observations derive from shared underlying signals. We
present the first systematic study of KRR generalization for non-i.i.d. data with
signal-noise causal structure, where observations represent different noisy views
of common signals. By developing a novel blockwise decomposition method that
enables precise concentration analysis for dependent data, we derive excess risk
bounds for KRR that explicitly depend on: (1) the kernel spectrum, (2) causal
structure parameters, and (3) sampling mechanisms (including relative sample sizes
for signals and noises). We further apply our results to denoising score learning,
establishing generalization guarantees and providing principled guidance for sam-
pling noisy data points. This work advances KRR theory while providing practical
tools for analyzing dependent data in modern machine learning applications.

1 Introduction

Kernel ridge regression (KRR) occupies a central role in machine learning. Recently, driven by
the insight that many deep neural networks (DNNs) can be viewed as converging to specific kernel
regimes [31, 17], the research community has paid renewed attention directed toward the general-
ization behavior of KRR. A central question in KRR is to derive generalization guarantees with the
regularization parameter A > 0 under finite samples. In the special linear kernel case, Bartlett et al.
[4] and Tsigler and Bartlett [68] established nearly tight upper and lower bounds on the excess risk
for general \. Their results demonstrate that non-vacuous generalization is achievable under specific
conditions on the data covariance and global optimum. More recently, a series of works extended
this analysis to nonlinear kernels, deriving the learning curve for KRR under power-law decay
assumptions on the RKHS spectrum and mild assumptions on the target function[46, 37, 39, 11].
Their work shows that benign generalization occurs for a well-defined range of .

Despite these remarkable breakthroughs in characterizing the learning ability of KRR, a fundamental
limitation persists: existing results are largely restricted to the i.i.d. setting. Specifically, they rely
on the critical assumption that training samples are independently and identically distributed (i.i.d.)
drawn from the underlying data distribution. However, in many real-world applications, collected
data points often deviate from strict i.i.d. conditions due to inherent correlations introduced during
data generation or collection processes. For example, consider data collected in a noisy environment,
where each observation consists of an underlying signal = corrupted by environmental noise u. When
multiple samples are generated from the same signal z but with different noise realizations u;,. .., ug,
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these samples become statistically dependent and thus the i.i.d. assumption will no longer hold. This
dependency also occurs in denoising score matching [30, 69, 26], where multiple noisy versions of
each clean data point are used to learn score functions, creating an inherently non-i.i.d. training set.

To the best of our knowledge, no prior work has systematically studied KRR with such causal-
structured non-i.i.d. training samples (each i.i.d. signal is paired with k i.i.d. noise). In particular, it
remains an open question whether data dependencies benefit or hinder the generalization performance
of KRR. The key technical barriers are two-fold: (1) the inapplicability of standard i.i.d. theory,
and (2) the prevailing tendency in non-i.i.d. analysis to view data dependence unfavorably. This
fundamental limitation poses significant challenges in establishing sharp theoretical guarantees for
the causal-structured non-i.i.d. setting.

Notations. We use asymptotic notations O(-), o(-), ©(-) and ©(-), and use O(-) to suppress logarithm
terms. We also use the probability versions of the asymptotic notations such as Op(-). Moreover,
following the notations in existing work [37, 39], we denote a,, = OP°Y (b,,) if a,, = O(nPb,,) for
any p > 0, a, = QP°Y(b,,) if a, = Q(n~Pb,) for any p > 0, a,, = OP°Y(b,,) if a, = OP°¥(b,,),
and a,, = QP°Y(b,,); and we add a subscript IP for their probability versions.

1.1 Our Main Results

In this paper, we initiate the generalization study of the KRR estimator

[ for non-i.i.d. data. In particular, we consider the data model with a
causal structure: © — g < u, where g denotes the observed data point,
and x and u denote the factors from the signal source X and noise
source U respectively. Then, when generating the training samples, we
first generate i.i.d. signals x1, . .., z,, from X, then pair each x; with k Noise
i.i.d. noise realizations u;y, . . . , u;; from U, leading to nk dependent

observations { gij}?:’kl j—1 through the causal mechanism (see Section
3.1 for more details).

Signal
Observation

Figure 1: Causal structure of
our data model.

Furthermore, as conventional concentration methods are ill-suited for the causal-structured data
model, we introduce a novel methodology that systematically partitions correlated random sequences
into independent blocks through iterative decomposition. Building on this approach, we establish a
Bernstein-type concentration inequality for k-gap independent data (see definition in Section 3.1),
which uncovers the benefit of dependency and nearly matches the rates of classical i.i.d. concentration
bounds—up to logarithmic factors. Equipped with this technique, we characterize the excess risk of
KRR in the structured non-i.i.d. setting, summarized as follows:

Theorem 1. (Informal statement of Theorem 4.1) Under general assumptions, if the regularization
parameter A = €} (n‘ﬁ ) then the asymptotic rate (with respect to sample size n) of the generalization
error (excess risk) R(\) is roughly

~ . 1 (7 1-—7
R(\) < ©p (V) +520p°" ()\a (T + T)),
—_— n nk

Bias

Variance

where 3 denotes the decay rate of the kernel eigenvalues, S represents the smoothness of target
function, 52 is the population noise level and © quantifies the relevance of observations sampled from
the same underlying signal but corrupted by different noise.

Note that when k£ = 1, the setting reduces to the standard i.i.d. setting, recovering the prior results
[37]. The theoretical result reveals the interplay between the data relevance 7 and noise sample size
k, which further implies the benefit of data relevance. In particular, while increasing noise samples
enhances generalization, the improvement critically depends on the underlying signal relevance.

To further illustrate the theoretical result, we apply Theorem 1 to a single timestep of Denoising
Diffusion Probabilistic Models (DDPM) [26], where the input data is generated by the weighted
sum of the real-world observation and noise with weight ,/a; and /1 — ay, i.e., g;j = /asz; +
v/1 — ayu;;. Under certain condition, our theoretical results show that the optimal value of the optimal

noise multiplicity k depends critically on the ratio (1 — o} / %) /aP /2 where p € (0, 1] characterizes
the Holder-continuous property for kernel (see Assumption 1 and Theorem 4.4 for details). This



theoretical finding aligns well with the intuitive understanding that a larger k is more beneficial when
o 1s smaller—that is, when the noise component dominates.

Concretely, our contributions can be summarized as follows:

* We establish the first excess risk bound for KRR in structured non-i.i.d. setting (see Section 3.1
for details), characterizing the fundamental relationship between the data causal model and the
sample sizes from different sources (signal and noise sources), which provides useful guidance for
developing efficient data sampling strategies.

* We apply our framework to denoising diffusion probabilistic models (DDPMs) and derive the
optimal noise sample size k* for each data point that minimizes the excess risk bound. Specifically,
we show that the noise sampling schedule depends precisely on the time-varying noise-to-signal

ratio (1 — af/ 2) Ja /2 at a each timestep ¢. This provides new insights for improving the training
efficiency of diffusion models.

* We develop a novel Bernstein-type concentration inequality for k-gap independent data (see
definition in Section 3.1) , which explicitly quantifies the benefit of data dependency. This general-
purpose technique advances the theoretical toolkit for dependent data analysis and may find
applications beyond our current setting, which is of independent interest to the community.

2 Related Works

Theoretical Analysis of Kernel Regression. Theoretical guarantees for the generalization property
have attracted significant attention in machine learning. Seminal work by Bartlett et al. [4], Tsigler
and Bartlett [68] derived nearly tight upper and lower excess risk bounds in linear (ridge) regression
for general regularization schemes. Zou et al. [77, 76], Wu et al. [71] later extended this analysis to
SGD and established sharp excess risk bound under substantially weaker assumptions on the spectrum
of the data covariance. Their results demonstrate that benign overfitting is achievable under certain
conditions on the data covariance and global optimum. For non-linear kernel, a large number of works
[5, 56, 40, 38] studied the classical underparameterized (finite dimension) regime under specific
polynomial decay kernel spectrum and smoothness of the ground-truth function. Specifically, Li et al.
[40] proved the saturation effect that KRR fails to achieve the information theoretical lower bound
when the smoothness of the underground truth function exceeds certain level. With regards to high-
dimensional data, a line of work [42, 44, 48, 10] derived risk bounds by high-dimensional random
matrix concentration for general kernel, while another line of research [22, 72, 50, 51, 46, 49, 11, 45]
characterized the precise risk under specific conditions where the spectrum of kernel can be explicitly
accessed. In particular, Mallinar et al. [46] and Medvedev et al. [49] demonstrated that the slow
kernel eigenvalue decay and increasing dimensionality enable benign overfitting under Gaussian
design assumption.

Learning under Non-i.i.d. Data. Standard i.i.d.-based concentration inequalities [1, 12, 13] fail to
provide generalization guarantees for support vector machines (SVM) [62] or kernel methods under
non-i.i.d. setting. To address this challenge, a line of work established the consistency under processes
satisfying a law of large numbers [65], or satisfying empirical weak convergence [47]. However, the
corresponding convergence rates typically remain unclear under such strong forms of non-i.i.d.-ness.
Another line of research focused on the regression over trajectories generated by a dynamic system,
including both linear cases [75] and non-linear [58] cases. However, the reliance on surrogate
trajectory assumptions limits the applicability of these results to broader scenarios. A further body of
literature examines learning under mixing conditions which characterize dependence via measures of
correlation across time or sequence distance. Steinwart and Christmann [63], Hang and Steinwart
[25] derived high-probability concentration bounds under geometric mixing, while Yu [73], Mohri
and Rostamizadeh [53], Kuznetsov and Mohri [33] analyzed settings with algebraic mixing. Our
k-gap independent case cannot be covered by these works, as the correlation between data points will
remain high as long as they are from the same group with size k. Notably, although concentration
results under general mixing framework (assuming the asymptotic mixing property) [53] could in
principle accommodate our setting, our new results yield tighter bounds as we demonstrate the benefit
of data relevance stands in contrast to a long line of work on learning from dependent data.

Theoretical Analysis for Diffusion Model. Recent theoretical advances in diffusion models have
primarily addressed two fundamental aspects: (1) distribution estimation and (2) sampling guarantees.



For distribution estimation, seminal work by Song et al. [60] established the first statistical estimation
bounds for diffusion models. Subsequent research by Chen et al. [7] demonstrated that when the
target density lies on a low-dimensional manifold, the sample complexity scales only with the
intrinsic dimension, thus avoiding the curse of dimensionality. Further studies have characterized
the learning dynamics for specific data distributions, including Gaussian mixtures [61, 15, 57, 9, 21]
and other structured distributions [36, 23, 24, 70]. On the sampling theory front, early convergence
results required strong /., -accurate score estimates [16]. A significant advance by Lee et al. [34]
established polynomial-time convergence under more practical ¢s-accuracy assumptions, albeit
requiring log-Sobolev inequalities. Later work relaxed these requirements to either bounded moment
conditions [35, 8] or Lipschitz continuity of scores [8]. Recent developments have further improved
computational efficiency through high-order discretization schemes [28, 27, 66] and exploitation of
low-dimensional structures [29, 55, 41].

3 Theoretical Setup

3.1 Structured Non-i.i.d. Data

We consider the scenario that the same signal can differ owing to the existence of the random
environment noise, leading to different but dependent observations. As shown in Figure 1, we
formally define the data model as follows:

Data model. We consider the data model with two independent sources: signal source X — R? and
noise source U x J) = R% x RZ. Let p1x, p be a probability distribution on X', 24 x ) respectively. The
marginal distribution on I/ is denoted by 4. The data observation is formulated as a noisy realization
of the signal, denoted as g(z,u), where g : R? x R? — R? is the realization function, x € X and
u € U are independent signal and noise from their corresponding sources. Denote G := g(X,U).

Training data generation. Following the causal structure in Figure 1, n signals are first generated,
then for each signal, we generate its k noisy realizations via k i.i.d. noise, yielding the training sample

set S = {(gij, ylj)}?]k:1 !. We call a sequence of random variables (X;);>1 is k-gap independent if
any random variable X; is independent with 0/(X>; %, Xj<1vi—k). Obviously, G := {gij}Z’jil is
k-gap independent. On the technical level, we develop concentration techniques under the general
k-gap independence and apply our results on training samples G (see Section 5.1 for details).

We assume an identical number of noisy realizations for all signals to simplify our analysis. However,
our framework can be readily extended to accommodate varying numbers of realizations, though
this would require somewhat more involved calculations. To further elucidate the data model and
sampling methodology, we present two examples from real-world applications.

Example 3.1. Signal processing in communication system. The fundamental setting in signal
processing is the communication system leveraging multiple transmissions [6]. Each source signal

is transmitted k times through a noisy channel where environmental disturbances w1, . . . , uj uniquely
corrupt each transmission. This results in & distinct received signals g(x, u1), g(z, uz), ..., g(x, ux)
originating from the same source. More generally, for multiple source signals 1, g, ..., Z,, the

. . K

received signals are {g(;, ui;)}; L ;-

Example 3.2. Denoising score learning. In denoising score learning frameworks [30, 69, 26],
a common strategy involves learning score functions using multiple noisy versions of clean data
points. Specifically, for a single model at certain timestep ¢, each clean data points x;,i € {1,...,n}

is perturbed with k£ independent noises w;;, U2, .. ., u;x. This perturbation follows a predefined
function: g(x,u) = \/azx + /1 — au, yielding a noisy dataset {g(x;, um)}?le
3.2 Kernel Ridge Regression in Structural Non-i.i.d Setting

Let k(-, -) be a continuous positive definite kernel over G and H be the separable reproducing kernel
Hilbert space (RKHS) associated with &(-, -). Denote the regularization parameter A > 0, then the

'We consider the agnostic setting in this paper, i.e., we do not make any explicit assumption on the relationship
between the data g;; = g(xs,u;;) and its label y;.



kernel ridge regressor of each dimension can be represented as >

Ar (1 ¢ .
{) = argmin (kZZ yy) - gZJ>>2+A|f<>|%>,r—172,...7d.

fMeH

Denote f, *(r) ,r =1, ..., d as the population optimal solution, then the excess risk of f>\ is:

- Z [ (800 - 5:00) ansto)
L2(G,dpg)
where g is the probability measure on G. By the optimality of f, *(T)( ), it holds

E[(y(’") —f:<’">(g)) ei(g)] —0,i=12,...:r=1,....d G.1)

To bound the excess risk, we further introduce the widely-used integral operator and the embedding
index of RKHS [37, 39, 5, 43, 20]. Let G < R be compact and k(-, -) is continuous, we assume
k(-,-) is bounded [37]. Then the natural embedding S,, : H — L? is a Hilbert-Schmidt operator. Let
Sp L? — H be the adjoint operator of S, and T' := SuSh L? — L2. Then, it is easy to show
that T is an integral operator given by T'(f) = Sg k(g,-)f(g)dug(g). By the spectral theorem of
compact self-adjoint operators and the Mercer’s theorem [64]:

= Z Nilf ez, k(z,y) = Z)\iei(x)ez(y)

where {)\;};>1 is the set of positive eigenvalues of the kernel in descending order and {e; };>1 is the
corresponding eigenfunction, which forms an orthonormal basis of Ran S, = L.

Besides, for s > 0, we define 7% : L? — L? with T*(f) = >, \{ {f, €)= €;. Correspondingly,
define the interpolation space [37]

[’H]SzRanTs/Qz{Z a;\ eZ\Za <oc}cL2

€N €N

S -

with the norm HZl ar’e;

e (X, a?). ® Ttis easy to verify that [#{]® is a Hilbert space with an
H s

orthonormal basis { )\f/ 2 e;}i>1. Further, we define the embedding index g of H, which characterizes
the embedding property whether [#]® can be continuously embedded into L* (G, pug):

ao = inf {a [H® > LG, 16)] = o5 5upgeg . O Afeilg)” = Mo < OO} !
ieN
where ess sup is the essential supremum. For theoretical simplicity, we denote Vg € G:

n k
Tyf =Y Niei(@)f(@)ei, To=> Y Ty,, Ta=T+X Tor=Tg+A\

i=1j=1

3.3 Assumptions and Definitions
Assumption 1. We make the following assumptions on the data distribution and kernel function:
* Polynomial eigenvalue decay. There is some [3 and constants cg, C'z such that
cpi P <N <CpiPli=1,2,....
* Relative smoothness of the regression function. For any r = 1,2,...,d, there are some s > 1 and

a sequence (az(-r)) such that
i>1

[ee}
2 )\2 Te;, 0<c< |a§r)| < C for some constants ¢, C.

’This setting handles real—world vector-output tasks like denoising score learning where noise is assumed
independent per dimension.



* Sub-Gaussian noise. For eachr = 1,2,...,d, noise ¢ := y(") — f:(r) (9) is 02 sub-Gaussian
conditionally on g, the second moment of €) conditionally on g are bounded by o>

2
He(r) |gH < o, E[e(r) l9] < 0%, g,9 € G almost everywhere.
2

Foreachr =1, ...,d and observation g;;,

2
. - : 9
ez('j,')|gijagij’ v S Oeyas €§5)|gi1,---,gz‘k " <o, E [61(*;) |gijagij’] S oG-

2

* Holder-continuous kernel. The kernel k(-,-) is Holder-continuous with index p, that is, there exist
some p € (0,1] and L > 0 such that

k(z1,91) = k(22,92)| < L|(21,91) — (22, 92)|Raxa » YT1,91, 72,92 € G.

These assumptions are largely consistent with existing work [37, 39], making our bound clearer and
facilitating direct comparison with established results in the i.i.d. setting. The polynomial eigenvalue
decay is satisfied by well-known kernels such as the Sobolev kernel [20], Laplace kernel, and neural
tangent kernels for fully-connected multilayer neural networks. Notably, our framework is readily
extensible to general spectra from a technical standpoint and the polynomial decay is assumed for
theoretical simplicity (see Section F.1 for details).

The relative smoothness on f:,k () are also widely used [37, 39, 14, 32], showing that f;f (r) € [H]t
for any ¢ < s. In fact, our general theoretical bound still holds true under the relaxation from s > 1
to s > 0. The assumption s > 1 is used to estimate the relevance parameter for providing a concise
bound and clear insights (see Section F.2 for details). Under this assumption,

The assumption on noise are widely used in Li et al. [37, 39], Bartlett et al. [4], Tsigler and Bartlett
[68], Cheng et al. [11], all with respect to a single data point. For technical reasons to handle multiple
signal realizations, we extend this assumption to hold conditionally on dependent data points.

Following Li et al. [37, 39], we assume the Holder continuity with index p to establish uniform
concentration bounds via covering number estimates (see Section F.3 for details). This implies that

f:(r) € H is Holder-continuous with index g forr =1,...,d[19, 18]. Hence, there exists L, > 0,
such that
P
r r ] r r)| 2
El(j)_ez("j) = f;(r)(glj)_f:(r)<g’bﬁ)’gLe ffj)_gl(/j) ) ’I"=1,...7d7
where we construct g;/; = g(xg,uij),eg,rj) = Y — f:(r) (gi;) with 2/ independent of x;. We

further assume that oy = %, which is made in prior works [37, 39] and holds for numerous RKHSs.

Examples include Sobolev RKHSs, those associated with periodic translation-invariant kernels, and
those corresponding to dot-product kernels on spheres [37, 39, 74].

For detailed analysis in a structured non-i.i.d. setting, we summarize some key definitions charac-
terizing the data dependency structure and the population noise level. To be specific, we extend the
concept of population noise level o2 to structured non-i.i.d. settings by introducing the variance
bound cré conditioned on dependent data pairs. For technical reasons, we also take the smoothness

of noise into account.

Definition 3.1. Define the population noise level G = L? v 0° v o2,

The population noise level captures the strength of both noise and its smoothness.

Definition 3.2. (Data relevance) Denote g;r; = g(}, uij), 61(_/7’]_) = vij — fp () (girj) with @} is
independent of x;. We respectively define the relevance of data, the relevance over the eigenfunction
and the relevance under the integral operation :

1 24 Cov (g;p’ 957;) 2 .
CE y =) ) Te i= 5 — 5SUP Ele,(gij)er(gij)];
2> _, Var (gij ) T
ET5 K (gig,, 9)es) T k(gij, 9)es s
_ 2 ’
|75 k(g, )] ;- 5

where the expectation is over g;j, Gi'j, Gijy > Jijos €ijy > €ijo-

TT = €8S SUP g




All these parameters rg, 7., 77 € [0,1] characterize how the signal source = contribute to the
observation g(x, u). To be precise, 1y describes the correlation between g(x, u1) and g(z, us) (with
independent u; and wy), while 7. and r7 capture this correlation in the context of the eigenfunction
e; and the integral operator Ty !, respectively.

Definition 3.3. (Conditional orthogonality) The conditional orthogonality holds for r # s if
Ors 1= Ey [Ezer(9)Ezes(g)] = 0.
We call an orthogonal basis e;(-) that satisfies the conditional orthogonality if §,.; = 0, Vr # s.

There are many cases where the conditional orthogonality holds, which is discussed in Section E.
Generally, Definition 3.2 and 3.3 capture the data dependency in a structured non-i.i.d. setting, which
determines the impact of the noise sample size (see Section 4 for details).

4 Main Results

In this section, we will deliver the excess risk bound of the KRR estimator in our structured non-i.i.d.
setting. In order to better explain the result, we first present the following bias-variance decomposition
for the excess risk, which is commonly adopted in many recent works [4, 68, 59, 46, 49, 11, 37, 39]
(see details in Section A.1). Denote

2

2 d 1 n k ;
Lo Var) = 37— 3T S T k(g el

)

d
Bias?(\) = Y. [ToATa i) — f3)
r=1

1=175=1 L2
then
R(\) < 2Bias?(\) + 2Var()\).

We present our main theorem as follow.
Theorem 4.1. Under Assumption 1, if \ =n~%, 6 € (0,3),

~ . 1-—

R(\) < O (nmine2?) 4+ 5208 (we (Zj == ) ) . @.1)
| S —
BiasZ()\) Var()\)

Further, if the conditional orthogonality holds,

R()) < 6p (nmn:207) 4 520p <na°9 <T° ey U= TO)nAk(l ~Te) )) . @)
(S —

Bias?()\) Va;,()\)
Remark 4.2. Two novel concepts are introduced in our excess risk upper bound, the conditional
orthogonality condition (Definition 3.3), which captures the dependency in structured non-i.i.d.
setting and holds in many cases (Section E), and the parameters rg, ., 7, which characterize the
data correlation between g(z, u1) and g(x, us) under different conditions (Definition 3.2).

Overall, the non-vacuous generalization is attainable when 6 € (0, 3), in agreement with the asymp-
totic results of Li et al. [37]. Denote the correlation level ¥ = r. v ry. A key theoretical insight
emerges: our bound explicitly blends % and %, weighted by 7 and 1 — 7. Consequently, this result
reveals a critical trade-off between relevance and noise sample size: when the correlation level 7 is
large, i.e., the signal dominates in the observed noisy data, increasing k offers little benefits while
increasing k helps generalization when the noise component prevails.

In the regime 6 € [f3,0), a theoretical lower bound in the i.i.d. setting is provided by some
monotonicity properties with respect to A [37, 39], implying the generalization is vacuous in this case
that A is small. For the reason that the correlation of data might not be positive, we can merely derive
a lower bound for the variance term by taking conditional expectations over €;;|g;; for Var(\).

Theorem 4.3. Under Assumption 1, if \ =n~% 0 € [B,0),

2
. l —min(s 1 (2
Bias?*()\) < oL (n ( ’2)5> s By tlgi1 Beralgrs - Bennlgn [Var(A)] = Qp°Y (;) ,

where o is the lower bound of E[¢\")?|g] for g € G almost everywhere.

This lower bound for the variance term in case 0 € [/3, c0) demonstrates that the generalization will
never be benign, aligning well with the prior results [37, 39].
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Figure 2: Score estimation error (mean =+ s.d.) versus the number of noise per data, i.e., k, for four
noise levels, where lower error implies better score learning.

4.1 Implication to Denoising Score Learning

At a single timestep ¢ in denoising score learning, the goal is to minimize the loss given the training

set S = {(g¢(z4,&5), fw)}z 1,j=1 Where g:(z,§) = \/ayz + /1 — ;& applies data on noise.

n k
ik Z Z glﬂ f@ gt<-'17z>£zj)>”

Since our structured non-i.i.d. framework does not make any assumptions on the relationship between
the noisy data and its label, denoising score learning naturally fits our agnostic setting. Under the
same notations in Assumption 1, we apply Theorem 4.1 to denoising score learning as follow.

Theorem 4.4. Consider the denoising score learning at timestep t. Assuming that E[z%] < o2,
E[¢?] < 052, if A =n"% 0 ¢ (0,B) and the conditional orthogonality holds, under Assumption I 3,

R(/\) < (:)IP’ (nfmin(s,Q)H) + &2O§oly (naoe <(11§27\L/ Te + (1 — O[E)n/]; (1 — T@))) )

Theorem 4.4 can be easily derived by computing ¢ given g(z,u) = /ozx + /1 —oqu. In
practical denoising score learning, the main challenges arise from the underlying data distribution,
the properties of the true score function f;", and the spectral decay of the chosen kernel. Our
theory provides a general framework to characterize the learnability of different data distributions.
Practitioners can leverage this framework as follows: first, select a kernel appropriate to the problem
domain; second, check the decay rate of the kernel’s spectrum; and finally, apply Theorem 4.4
to rigorously determine (i) whether the distribution can be learned efficiently and (ii) the sample
complexity required for convergence.

Furthermore, building on the theoretical trade-off that increasing k helps generalization when the
noise component prevails while increasing k is useless when the signal dominates, a key inspiration
for empirical study emerges: for a fixed batch size, if signal dominates, then setting k£ = 1 is enough;
while when noise dominates, one is encouraged to increase k up to roughly (1 — «)/c;, or more

precisely, (1 — af / 2) /ol /2. This adaptive design for noise multiplicity k£ may advance the empirical
study for denoising score learning.

Numerical Experiments. We train a three-layer ReLU MLP (100 neurons each) to learn the score
of a two-component MoG (1 = [—5,5]), 0 = 0.2) at four noise levels ¢ € {0.50,0.70,0.90,0.95}
via denoising score matching loss, where the networks are trained separately. Each network is
optimized with SGD (Ir = 10~!, momentum = 0.9) and a 0.9 EMA. In each iteration, we consider
a fixed batch size nk = 128, with a varying number of noises paired with each data, i.e., k, from O
to 64. The results are displayed in Figure 2 over 100 independent runs. More experiments on real
image diffusion training and experiments using kernel ridge regressor rather than neural network are
detailed in Section G.1 and Section G.2.

From the experimental results, we demonstrate an important relationship between the noise level
t and the optimal noise-sample ratio k. For lower noise levels (¢ = 0.5,0.7), we find that pairing
each data point with a single noise sample (k¥ = 1) yields optimal score learning performance.

3We present a general theoretical framework on denoising score learning under mild Assumption 1 here,
while deferring derivations for specific data distribution and kernel to future work.



Conversely, at higher noise levels (t = 0.9, 0.95), better results are achieved by increasing k. These
empirical findings directly support our theoretical analysis in Theorem 4.4, which shows that the
optimal % should scale with the noise level ¢ (or equivalently, inversely with ;). The results provide
practical insights for optimizing the training efficiency of diffusion models, suggesting that adaptive
noise-sample pairing strategies may offer significant computational benefits.

5 Proof Details

In this section, we outline the proof and present our key techniques, focusing particularly on the novel
blockwise decomposition method developed to establish a Bernstein-type high-probability bound.

Proof roadmap for Theorem 4.1. For Bias(\), standard concentration techniques—which rely heav-
ily on the i.i.d. assumption—face significant challenges when applied to dependent data. Motivated
by Banna et al. [3], we develop a novel blockwise decomposition method for k-gap independent
random sequence and derive the Bernstein-type high probability bound tailed to structured non-i.i.d.
bounded data. Overall, we adopt two-step concentration analysis using our developed technique to
characterize Bias()). For Var()), instead of conditioning on ¢ to take expectations over the noise
€ [4, 68, 46, 37, 39, 11], we perform direct concentration analysis on €, a necessity due to inherent
data dependencies that invalidate standard conditional expectation techniques. Overall, we charac-
terize Var(\) by adopting three-step concentration analysis, where the concentration arguments in
structured non-i.i.d. setting is similar as the analysis for Bias(\).

5.1 Key Proof Techniques

As outlined in the proof roadmap, classical concentration inequalities crucially depend on the i.i.d.
assumption, limiting their applicability to dependent data regimes. This dependence invalidates foun-
dational steps in traditional concentration proofs, such as the decomposition of moment-generating
functions (MGFs), where the equality E [e>: Xi| = [, E[e*¢] fails to hold under non-i.i.d. condi-
tions. We present our novel techniques in the following Lemma 5.1, which is stated under mild k-gap
independent condition 4. With this novel result Lemma 5.1, we can perform refined concentration
inequalities in structured non-i.i.d. setting.

Lemma 5.1. Consider a k-gap sequence of random variables (X;)¥, taking values of self-adjoint
Hilbert-Schmidt operators. Suppose that there exists a positive constant M such that for any i > 1,

EX;) =0 and Anax(X;) <M  almost surely.

2
Denote v?> = sup ﬁ)\max E ( > Xi> , intd = intdim (]EXQ), where
K<{1,...,nk} ieK
intdim(A) = tﬁfﬁ) is the intrinsic dimension of A. For any positive t such that tM < %@,
nk
k 169
log Etr (eXP (t; Xz) — I) < lognlog 3+ log (T;Hltd) + t2nk02m.

Key proof insight of Lemma 5.1. Lemma 5.1 is proved by iteratively partitioning the random
sequence into mutually independent blocks and incorporating the separated bounds. On high level,
we develop a different block scheme compared with current mixing techniques, enabling us to capture
the underlying data independence and fully utilize the intra-block randomness. This refined study
helps discover some benefits of data dependency.

Step 1: Partition and derive the separated bound. We firstly partition Ay := {1,...,nk} into three
fragments, delete the middle fragment to guarantee the remaining two fragments are independent;
secondly partition each of the two remaining terms into three fragments, delete the middle fragment
to guarantee the remaining two fragments are independent. After repeating this procedure ¢ times, we
denote the remaining terms as K 4,. From the partition, ) ieK Ay X can be represented as the sum

*Our novel concentration bound can extend to the case where the number of noisy realizations k; varies per
signal x;, by replacing k with kmax = max; k;. Our result can also generalize to the case where block gaps are
only approximately independent, e.g., some weakly dependent process assuming specific mixing property, by
quantifying block dependence [52, 3].



of 2¢ mutually independent random fragments. Consequently, we derive the separated bound (see
details in Proposition D.1).

Step 2: Incorporate the separated bounds. After obtaining K 4,, we can also undertake the same
partition for the remaining elements {i1,...,i4,} = {1,..., A}\Ka. Repeating L < O(logn)
times, the sum Z:fl X can be represented as the sum of L + 1 fragments which can be bounded by
the analysis in Step 1. Finally, we incorporate the separated bound by a simple incorporating lemma
and prove the Lemma 5.1 (see details in Proposition D.2).

Consider the case d = 1, Lemma 5 1 can be simplified as: There exists a constant C” such that for

any positive ¢ such that tM < Tlosn logn >

nk
C"t?*nkv?

For simplicity, we discuss our technique via the case d = 1. In particular, the novel concentration
inequality can be obtained by (5.1):

2
]Pl >e] <2exp< /2 > (5.2)

2C"nkv? + ¢ - Mklogn
Comparison to concentration bound under general mixing assumption. For simplicity, we
consider M is on constant level. Under general mixing assumption lim;_,, ¢(i) = 0 where ¢(-) is
the mixing coefficient for zero-mean random variables Wy, ..., W,, ..., previous concentration
techniques treat the data dependency as a bad effect, yielding the following concentration inequality

(Theorem 8 in [53]) "k O (L\/:{’U)) = Op (\/%) 3. In contrast, our result (5.2)

(« / ZZ) = O]p (4 / %) 6 which decreases as k increases. The

intuition is that we do not treat the data dependency a bad effect but aim to discover some benefits for
reducing the error, otherwise it would be intractable to prove the vanishing generalization error in our
setting for general k.

nk

S

i=1

nk
nk

implies |-

6 Conclusion and Limitations

In this work, we provide a refined analysis on the excess risk of kernel ridge regression in structured
non-i.i.d. setting, by deriving a novel Bernstein-type concentration inequality for k-block independent
data. Our theoretical upper bound of excess risk demonstrates that when the noise dominates in
the observed noisy data, increasing %k helps generalization. In practical denoising score learning,
empirical findings directly support our theoretical insight and further inspire adaptive noise-sample
pairing strategies for optimizing the training efficiency of diffusion models.

Our limitations are twofold: (i) we only establish the learnability of individual score function but
no fully characterization of the sampling error throughout the entire denoising process, and (ii) our
analysis is confined to structured non-i.i.d. settings, leaving a rigorous theoretical characterization of
general non-i.i.d. scenarios as an open problem.
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10



References
[1] Yasin Abbasi-Yadkori. Online learning for linearly parametrized control problems. 2013.

[2] M Eren Ahsen and M Vidyasagar. On the computation of mixing coefficients between discrete-
valued random variables. In 2013 9th Asian Control Conference (ASCC), pages 1-5. IEEE,
2013.

[3] Marwa Banna, Florence Merlevede, and Pierre Youssef. Bernstein-type inequality for a class
of dependent random matrices. Random Matrices: Theory and Applications, 5(02):1650006,
2016.

[4] Peter L Bartlett, Philip M Long, Gabor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. Proceedings of the National Academy of Sciences, 117(48):30063-30070,
2020.

[5] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7:331-368, 2007.

[6] A Bruce Carlson. communication systems: an introduction to signal noise in electrical commu-
nication. 2002.

[7] Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation
and distribution recovery of diffusion models on low-dimensional data. In International
Conference on Machine Learning, pages 4672-4712. PMLR, 2023.

[8] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2022.

[9] Sitan Chen, Vasilis Kontonis, and Kulin Shah. Learning general gaussian mixtures with efficient
score matching. arXiv preprint arXiv:2404.18893, 2024.

[10] Yihang Chen, Fanghui Liu, Taiji Suzuki, and Volkan Cevher. High-dimensional kernel methods
under covariate shift: data-dependent implicit regularization. arXiv preprint arXiv:2406.03171,
2024.

[11] Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios, and David Belius. Characterizing overfit-
ting in kernel ridgeless regression through the eigenspectrum. arXiv preprint arXiv:2402.01297,
2024.

[12] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844-853. PMLR, 2017.

[13] Sayak Ray Chowdhury and Aditya Gopalan. No-regret algorithms for multi-task bayesian
optimization. In International Conference on Artificial Intelligence and Statistics, pages 1873—
1881. PMLR, 2021.

[14] Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborova. Generalization error rates
in kernel regression: The crossover from the noiseless to noisy regime. Advances in Neural
Information Processing Systems, 34:10131-10143, 2021.

[15] Hugo Cui, Florent Krzakala, Eric Vanden-Eijnden, and Lenka Zdeborova. Analysis of learning a
flow-based generative model from limited sample complexity. arXiv preprint arXiv:2310.03575,
2023.

[16] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrédinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695-17709, 2021.

[17] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[18] JC Ferreira and Valdir Antdnio Menegatto. Positive definiteness, reproducing kernel hilbert
spaces and beyond. Annals of Functional Analysis, 4(1), 2013.

11



[19] Christian Fiedler. Lipschitz and h\" older continuity in reproducing kernel hilbert spaces. arXiv
preprint arXiv:2310.18078, 2023.

[20] Simon Fischer and Ingo Steinwart. Sobolev norm learning rates for regularized least-squares
algorithms. Journal of Machine Learning Research, 21(205):1-38, 2020.

[21] Khashayar Gatmiry, Jonathan Kelner, and Holden Lee. Learning mixtures of gaussians using
diffusion models. arXiv preprint arXiv:2404.18869, 2024.

[22] Nikhil Ghosh, Song Mei, and Bin Yu. The three stages of learning dynamics in high-dimensional
kernel methods. arXiv preprint arXiv:2111.07167, 2021.

[23] Andi Han, Wei Huang, Yuan Cao, and Difan Zou. On the feature learning in diffusion models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=JjdU6ysnCr.

[24] Yujin Han, Andi Han, Wei Huang, Chaochao Lu, and Difan Zou. Can diffusion models
learn hidden inter-feature rules behind images?, 2025. URL https://arxiv.org/abs/2502.
04725.

[25] Hanyuan Hang and Ingo Steinwart. Fast learning from a-mixing observations. Journal of
Multivariate Analysis, 127:184-199, 2014.

[26] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

[27] Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence analysis of
probability flow ode for score-based generative models. IEEE Transactions on Information
Theory, 2025.

[28] Xunpeng Huang, Difan Zou, Hanze Dong, Zhang Zhang, Yian Ma, and Tong Zhang. Reverse
transition kernel: A flexible framework to accelerate diffusion inference. Advances in Neural
Information Processing Systems, 37:95515-95578, 2024.

[29] Zhihan Huang, Yuting Wei, and Yuxin Chen. Denoising diffusion probabilistic models are
optimally adaptive to unknown low dimensionality. arXiv preprint arXiv:2410.18784, 2024.

[30] Aapo Hyvirinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6(24):695-709, 2005. URL http://www. jmlr.org/papers/
volume6/hyvarinenO5a/hyvarinenOba. pdf.

[31] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[32] Hui Jin, Pradeep Kr Banerjee, and Guido Montiifar. Learning curves for gaussian process
regression with power-law priors and targets. arXiv preprint arXiv:2110.12231, 2021.

[33] Vitaly Kuznetsov and Mehryar Mohri. Generalization bounds for non-stationary mixing pro-
cesses. Machine Learning, 106(1):93-117, 2017.

[34] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870-22882,
2022.

[35] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. In International Conference on Algorithmic Learning Theory, pages
946-985. PMLR, 2023.

[36] Xiang Li, Yixiang Dai, and Qing Qu. Understanding generalizability of diffusion models
requires rethinking the hidden gaussian structure. Advances in neural information processing
systems, 37:57499-57538, 2024.

[37] Yicheng Li, Qian Lin, et al. On the asymptotic learning curves of kernel ridge regression under
power-law decay. Advances in Neural Information Processing Systems, 36:49341-49364, 2023.

12


https://openreview.net/forum?id=JjdU6ysnCr
https://openreview.net/forum?id=JjdU6ysnCr
https://arxiv.org/abs/2502.04725
https://arxiv.org/abs/2502.04725
http://www.jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf
http://www.jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf

[38] Yicheng Li, Weiye Gan, Zuoqiang Shi, and Qian Lin. Generalization error curves for analytic
spectral algorithms under power-law decay. arXiv preprint arXiv:2401.01599, 2024.

[39] Yicheng Li, Haobo Zhang, and Qian Lin. Kernel interpolation generalizes poorly. Biometrika,
111(2):715-722, 2024.

[40] Yicheng Li, Haobo Zhang, and Qian Lin. On the saturation effect of kernel ridge regression.
arXiv preprint arXiv:2405.09362, 2024.

[41] Jiadong Liang, Zhihan Huang, and Yuxin Chen. Low-dimensional adaptation of diffusion
models: Convergence in total variation. arXiv preprint arXiv:2501.12982, 2025.

[42] Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can
generalize. The Annals of Statistics, 48(3), June 2020. ISSN 0090-5364. doi: 10.1214/
19-a0s1849. URL http://dx.doi.org/10.1214/19-A0S1849.

[43] Junhong Lin, Alessandro Rudi, Lorenzo Rosasco, and Volkan Cevher. Optimal rates for spectral
algorithms with least-squares regression over hilbert spaces. Applied and Computational
Harmonic Analysis, 48(3):868—890, 2020.

[44] Fanghui Liu, Zhenyu Liao, and Johan Suykens. Kernel regression in high dimensions: Refined
analysis beyond double descent. In International Conference on Artificial Intelligence and
Statistics, pages 649—657. PMLR, 2021.

[45] Weihao Lu, Yicheng Li, Qian Lin, et al. On the saturation effects of spectral algorithms in large
dimensions. Advances in Neural Information Processing Systems, 37:7011-7059, 2024.

[46] Neil Mallinar, James B Simon, Amirhesam Abedsoltan, Parthe Pandit, Mikhail Belkin, and
Preetum Nakkiran. Benign, tempered, or catastrophic: A taxonomy of overfitting. arXiv preprint
arXiv:2207.06569, 2022.

[47] Pierre-Francois Massiani, Sebastian Trimpe, and Friedrich Solowjow. On the consistency of
kernel methods with dependent observations. arXiv preprint arXiv:2406.06101, 2024.

[48] Andrew D McRae, Santhosh Karnik, Mark Davenport, and Vidya K Muthukumar. Harmless in-
terpolation in regression and classification with structured features. In International Conference
on Artificial Intelligence and Statistics, pages 5853—-5875. PMLR, 2022.

[49] Marko Medvedev, Gal Vardi, and Nati Srebro. Overfitting behaviour of gaussian kernel ridgeless
regression: Varying bandwidth or dimensionality. Advances in Neural Information Processing
Systems, 37:52624-52669, 2024.

[50] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. In Conference on Learning Theory, pages 3351-3418. PMLR,
2021.

[51] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random
feature and kernel methods: hypercontractivity and kernel matrix concentration. Applied and
Computational Harmonic Analysis, 59:3-84, 2022.

[52] Florence Merlevede, Magda Peligrad, and Emmanuel Rio. Bernstein inequality and moderate
deviations under strong mixing conditions. In High dimensional probability V: the Luminy
volume, volume 5, pages 273-293. Institute of Mathematical Statistics, 2009.

[53] Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for stationary -mixing and
[B-mixing processes. Journal of Machine Learning Research, 11(2), 2010.

[54] Tosif F Pinelis and Aleksandr Ivanovich Sakhanenko. Remarks on inequalities for large deviation
probabilities. Theory of Probability & Its Applications, 30(1):143—-148, 1986.

[55] Peter Potaptchik, Iskander Azangulov, and George Deligiannidis. Linear convergence of
diffusion models under the manifold hypothesis. arXiv preprint arXiv:2410.09046, 2024.

13


http://dx.doi.org/10.1214/19-AOS1849

[56] Abhishake Rastogi and Sivananthan Sampath. Optimal rates for the regularized learning
algorithms under general source condition. Frontiers in Applied Mathematics and Statistics, 3:
3,2017.

[57] Kulin Shah, Sitan Chen, and Adam Klivans. Learning mixtures of gaussians using the ddpm
objective. Advances in Neural Information Processing Systems, 36:19636-19649, 2023.

[58] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning
without mixing: Towards a sharp analysis of linear system identification. In Conference On
Learning Theory, pages 439-473. PMLR, 2018.

[59] James B Simon, Madeline Dickens, Dhruva Karkada, and Michael R DeWeese. The eigen-
learning framework: A conservation law perspective on kernel ridge regression and wide neural
networks. Transactions on Machine Learning Research, 2023.

[60] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in artificial intelligence, pages
574-584. PMLR, 2020.

[61] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical
imaging with score-based generative models. arXiv preprint arXiv:2111.08005, 2021.

[62] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business
Media, 2008.

[63] Ingo Steinwart and Andreas Christmann. Fast learning from non-iid observations. Advances in
neural information processing systems, 22, 2009.

[64] Ingo Steinwart and Clint Scovel. Mercer’s theorem on general domains: On the interaction
between measures, kernels, and rkhss. Constructive Approximation, 35:363-417, 2012.

[65] Ingo Steinwart, Don Hush, and Clint Scovel. Learning from dependent observations. Journal of
Multivariate Analysis, 100(1):175-194, 2009.

[66] Mahsa Taheri and Johannes Lederer. Regularization can make diffusion models more efficient.
arXiv preprint arXiv:2502.09151, 2025.

[67] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and
Trends® in Machine Learning, 8(1-2):1-230, 2015.

[68] Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. Journal of
Machine Learning Research, 24(123):1-76, 2023.

[69] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 23(7):1661-1674, 2011. doi: 10.1162/NECO_a_00142.

[70] Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion models
learn low-dimensional distributions via subspace clustering. arXiv preprint arXiv:2409.02426,
2024.

[71] Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last it-
erate risk bounds of sgd with decaying stepsize for overparameterized linear regression. In
International conference on machine learning, pages 24280-24314. PMLR, 2022.

[72] Lechao Xiao, Hong Hu, Theodor Misiakiewicz, Yue Lu, and Jeffrey Pennington. Precise
learning curves and higher-order scalings for dot-product kernel regression. Advances in Neural
Information Processing Systems, 35:4558-4570, 2022.

[73] Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences. The
Annals of Probability, pages 94—116, 1994.

[74] Haobo Zhang, Yicheng Li, and Qian Lin. On the optimality of misspecified spectral algorithms.
Journal of Machine Learning Research, 25(188):1-50, 2024.

14



[75] Ingvar Ziemann and Stephen Tu. Learning with little mixing. Advances in Neural Information
Processing Systems, 35:4626-4637, 2022.

[76] Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P Foster, and Sham Kakade.
The benefits of implicit regularization from sgd in least squares problems. Advances in neural
information processing systems, 34:5456-5468, 2021.

[77] Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign
overfitting of constant-stepsize sgd for linear regression. In Conference on Learning Theory,
pages 4633-4635. PMLR, 2021.

15



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
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made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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Justification: This paper made the following assumptions:
* Assumption 1 is in Section 3.3.
For each theoretical result:

* The proof of Theorem 4.1 is in Section A.
* The proof of Theorem 4.3 is in Section A.
* The proof of Theorem 4.4 is in Section A.
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* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
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* If the paper includes experiments, a No answer to this question will not be perceived
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: See Section G.3.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section G.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Section G.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section G.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors have reviewed and confirmed that the research conducted in the
paper conforms, in every respect, with the NeurIPS Code of Ethics.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include the broader impacts discussion in Section H.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper cites the original paper that produced the code package or dataset.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We provide detailed proofs for Theorem 4.1, Theorem 4.3 and Theorem 4.4 in Section A. In particular,
we develop novel Bernstein-type concentration techniques in Section D and apply this to establish
concentration lemmas in Section B. These concentration lemmas are essential for the derivation
of our theory. In Section E, we provide two specific examples to illustrate when the conditional
orthogonality holds. We further provide comprehensive discussion on our assumptions in Section F.
To supplement our numerical experiments, we perform experiments on image diffusion and kernel
ridge regressor in Section G.

The following proof dependency graph visually encapsulates the logical structure and organi-
zational architecture of the theoretical results in our paper. This graph serves as a map for
navigating the paper’s proofs, allowing readers to quickly grasp the global structure, identify
core technical components, and understand the interrelationships that underpin our main find-
ings. In particular, the arrow from element X to element Y means the proof of Y relies on X.

Theorem 4.1 Theorem 4.3 Theorem 4.4

Theorem A.1] [Theorem A.2] >~['i'heorem A.S] [Theorem A.4] »[Theor‘em A.5] [Théorem A.6

[Lemma B.1] [Lemma B.Z] [Lemma B.B] ‘[Lemma B.4] [Corollary B.S] [Lemma B.6

™y

\ [Lemma B.7] [Lemma B.S] [Lemma B.Q]

Proposition D.2 »[P\roposition D.S] [Lemma B.1 1]
£ Zl *

Proposition D.1 Corollary C:2 [Lemma C.e] [Lemma C.12]
Lemma C.16

[Lemma C.S] [Lemma C.4] [Lemrﬁa C.Q] [Lemma C.10] [Lemma C.17]

[Lemma C.14] [Lemma CA ] [Lemma C.S] [Lemn;é C.7] [Lemma C.S]

[LemmaC.15] [LemmaC.18] [LemmaC.13] [LemmaC.ﬁ]
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A Detailed Proofs

In this section, we present detailed proofs for our main results. To be specific, we prove Theorem
4.1 in Section A.2, Theorem 4.3 in Section A.3 and Theorem 4.4 in Section A.4. For simplicity,
we denote § = min(s, 2). Before presenting the detailed proofs, we firstly perform bias-variance
decomposition.

A.1 Bias-Variance Decomposition

We first undertake bias-variance decomposition, which is commonly used in analyzing excess risk
[4, 68, 59, 46, 49, 11, 37, 39]. By the definition of the integral operator, we express the kernel ridge
regressor as

n k
2(r) 1 T
f,\ (ij'—"_A 7]{22 gl]7'y£j)7r:1727"'7d'
We denote the conditional kernel ridge regressor
B =B f1G] = (Mo + N Tafz®, r=1,....d

where we use (3.1). Hence, the excess risk

2
A(”') r
1 Hf’\ B f;’k( : L2

2

2
n k
- ; 1 B ,
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1 i=1j5=1 L2
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77 =550+ |5 2T+ 0 bl e
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Foreachr = 1,...,d, we define

- |77 - 520 (1)

A.2 Large Regularization Induces Non-vacuous Generalization

In this section, we prove Theorem 4.1. In particular, we derive upper bounds for bias and variance
respectively in Section A.2.1 and Section A.2.2.

A.2.1 Bounds for the Bias Term
Theorem A.1. Under Assumption 1, if \ =n=?% 60 € (0, 3), then
B,(\) < & (mmin(sﬁ)@ﬂ) L or=1,....d
Proof. We analyze bounds in each dimension. For simplicity, we ignore script . We decompose the
bias term by introducing the expectation of fy = (T + \) ' T I

o= (T+ N TfE

then

S A

A PR R

_ L F g
L2<B(A)7Hf)‘ T L2 2’
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We first compute the term | fy — f¥| . Apply Lemma C.4 and take v = 0 we have

|2

Hf)\ - f: ||L2 = é (n— min(s,2)9/2> .

Secondly, with regards to H f N — HLZ, the key is to perform concentration analysis. To this end,

we decompose H f,\ — f,\H , into two components related to G and analyze each component by
L
concentration.

Hf:,\*f,\‘

74 (A -1)],
= |T2T5} (Tafy _TG/\f/\)HH

1 1 1
| TRTGTY H ' HT,\ > (Tafy - TGAf)\)HH
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where the last inequality utilizes the fact that:
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By Lemma B.1, for o > « being sufficiently close, with high probability,
- A
<O — | = op(1).

HTQ% [(Taff —Tof) — (TfF — TfA)]HH <op (x) ,

_1 _1
HTA (T — Te)Ty,

By Lemma B.2, with high probability,

Hence,

fo\—f,\‘

< op (x)
L2

Therefore,
B(\) = Op (n‘ min(s,2)9/2> _

A.2.2 Bounds for the Variance Term

Theorem A.2. Under Assumption I, if \ =n=% 0 € (0, B), then

1_
VT(A)<&20H1§°IY(n%9(TT+ TT)), r=1,....d.

n nk
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Proof. By definition,
2
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For simplicity, we first ignore script r in €;; ™) The proof for upper bounding V() undertakes several
steps of concentration. We first separate TG by interpolating its expectation 7', and then analyze the
discrepancy between T and 71" and the remaining term respectively.
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Intuitively, V' is consist of the covariance between sampled observations, which can be categorized
by the expectation value into the covariance of an individual observation itself, the covariance across
noises per signal and the covariance across signals. We further perform decomposition according to
these intuition:

k k
Z Z T 1k gu]lag)T k(glzjzvg)[ehjleuh]
1=1j2=1

i5

(75 k91, 9)eis |

_

Va

n2k2 Z Z Z Z T 1k gzl]l’g)T k(g742]27.g)611j1622j27

i1=11i2=1,i27#41 j1=1ja=1

V3

where V) characterizes the covariance of observation, V5 captures the covariance across noises per
signal and V3 reflects the covariance across signals. We first bound V;. By Lemma B.3, for o > g
being sufficiently close, for g € G almost everywhere,
- Ao
o (A—a ) |
n

1 n k
%Z Z 1k gz]» ] HT 1k gv' ||L2

By Lemma B.7, for a > «g being sufficiently close, for g € G almost everywhere,

1 & o 1 & o - A—a
ok 2 23 [ ko )]’ = 2 33 DI ko o)) Bl < O (A )
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Jointly, for & > o being sufficiently close, with high probability, for g € G almost everywhere,

n k
2
11 & & , i =
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= T (11 kg ) + 50 (37

g
= 7200 (|15 k(e )
where the last equality results from Corollary C.2 that
HT 1k ga :

HLZ MZAX™*=0(A"%).

We then bound V5. By Lemma B.38, for o > o being sufficiently close, with high probability, for
g € G almost everywhere,

k k
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Therefore, togeter with Corollary C.2, we have, with high probability, for g € G almost everywhere,
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We at last bound V5. By Lemma B.9, with high probability, for g € G almost everywhere,
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Here we complete the analysis for V. For AG,
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We first apply Corollary B.5 to deal with (# >y 25:1 Taik(gij,g)eij)

(ﬁ P Z?:l T)\_lk(gij,g)eij). For o« > ag being sufficiently close, with high probabil-
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ity, for g € G almost everywhere,
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we then separate it to several components related to GG as in the proof of Theorem A.1 to perform
concentration.

1 _ _
‘TCQJ (TGA Ty 1) k(g, ')‘H>

1
Igﬂﬁ(ﬂ;—TXK4k@wﬂH>
7@7@}7&%1%7;§CH;ZWT&éTxéﬂgwﬂH>

2
Ik
n
2
Ik
n
2
g 1 1
k 2 2
\ 5, | TéTex

By Lemma B.1, for o > « being sufficiently close, with high probability,
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By Corollary C.2,
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Note that
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we have for a > «q being sufficiently close, with high probability, for g € G almost everywhere,
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Secondly, regarding (ﬁ i1 21 Tonk(gij, g)eij> + (ﬁ e 21 T Yk (g4, g)ei]) , we in-
tend to handle this term by Equation (A.3). For o > «g being sufficiently close, with high probability,
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for g € G almost everywhere,
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where the last inequality results from Lemma B.4 and Equation (A.3).
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Therefore, for o > « being sufficiently close, with high probability, for g € G almost everywhere,
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Combining the bounds for V' and AG, with high probability, for g € G almost everywhere,
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A.2.3 Excess Risk Bounds under Conditional Orthogonality Condition

Theorem A.3. Under Assumption I and the conditional orthogonality, if \ =n~% 0 € (0, B),

R()\) < é]}» (ni min(s,2)9> +(3_20§01}’ <na09 <7“0 vV Te + (1 - TO)nAk(]- - 7’6))) )
—_—

n

Bias?(\) Var(\)

Proof. This can be directly proved by applying Lemma B.11 to Theorem A.l and Theorem A.2. [

A.3 Small Regularization Induces Vacuous Generalization

In this section, we prove Theorem 4.3. To be specific, we derive upper bounds for bias and variance
under small regularization respectively in Section A.3.1 and Section A.3.2.

A.3.1 Bounds for the Bias term
Theorem A.4. Under Assumption 1, if \ =n=%, 0 € [3,0), then

B, (A) < OFW (nmnC:2072) -y — 1, .
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Proof. Similar to [37], the bias term can also be written as
B,(A) = [MTe + A) 7 £ 2.

For simplicity, we first ignore script r. Similar to [37], we assume that f = T g for some g € L?

with ||g||2 < C, and restrict further that ¢ < 2. Let A = n~" for [ € (0, 8). Using the notations of
Lemma C.12, denote ¢ = A(Tg + A) ™1, by the definition of B()), we have

N = [eafi] e = T2 12|
Utilizing Lemma C.12,
e A
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where the third inequality uses Lemma C.12, the last equality uses the definition of ¢ and the last
inequality uses Lemma C.6. Finally, by Lemma B.1, with high probability,
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Since ¢t < min(s,2) and I < 3 can be arbitrarily close,

B(\) = Op (5\t/2) — OpoY <n7min(s,2)6/2) .

A.3.2 Bounds for the Variance term

Theorem A.5. Under Assumption 1, if A =n=%, 6 € [, 0),

2
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where a2 is the lower bound of E[e(")2|g] for g € G almost everywhere.

Proof. The proof is similar to the proof of lower bound in [37]. Note that V,.()A) is monotonically
decreasing with respect to A, it holds

V,.(\) =V, (n %), r=1,...,d
Following the notations in Section A.2.2 and ignoring the script r, we have

1 n k 2
V(A) = L 212 lZ Z Teak(gij, 9)eis | dug(g).

i=1j=1

By the optimality (3.1), if we further assume as Li et al. [37, 39],

Elelg] =0, g€ G almost everywhere,
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then, for a > « being sufficiently close, with high probability,

2
n k
1 -1
E61,1\91,1E61,2|g1,2 .- 'Een,k\gn,k n2k2 (Z Z TG)\k(gij7g)6ij>

[ k
1 _ 2
:E61,1\91,1E61,2|g1,2 . 'Een,k\gn,k n2k2 Z Z (TG;k(giﬁg)eii) ]

1 n k . 9
:E61,1\91,1]E61,2|91,2 .- 'Eén,k\gn,k n2k2 Z Z (TGAk(gij’g)€ij)

llkii Texk(gij,9 )2]’

where we use Lemma B.7. By Lemma B.10, for « > « being sufficiently close, with high probability,

iz, - [tz o] | <00 (20 ) oo

By Lemma B.3, for a > «g being sufficiently close, with high probability, for ¢ € G almost

everywhere,
~ A«
G (Aa ) |
n

1 n k
%ZZTkw] T k(g5 <

3> (k)

1 2
- |1aTakG. )|,

1 2 1 2 1 2
= Tk~ |TETT k)|, + T T kG, )|

31 11 L ] 2
~[raith. o) ([7atatrto ], + 12000, ) + 747060

~—

$—1
= ([ratait

31 31 ?
By (R + 2|41 kg )| ) + [T T ko)

n k n k
=— R R1+2\ nkZZ (T3 E(g:5, 9)] +$ZZ[T;1k(gij,g)]2

i=1j=1 i=1j=1

.

20 (|75 k(9.7 ) -

Therefore, with high probability, by Corollary C.2,

_ 2 y (P 1 U%
E E En,klgn,kEEijlgijV(n B) = ULQIIP)’OY < nk = ngy )

.E

61,1|g1,1 61,2|91,2 .

A.4 Excess Risk Bounds in Denoising Score Learning

We prove Theorem 4.4 in this section. We rewrite it as the theorem as follow.

Theorem A.6. Consider the denoising score learning at timestep t. Assuming that

E[z*] <07, E[¢*] <o,

x?
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then if \ = n=% 0 € (0, B) and the conditional orthogonality holds, under Assumption 1, the excess
risk satisfies

R()\) < (:)]P’ (nf min(s,2)9) _’_5_20]{;01)’ <na09 (atrz;l/ Te + (1 — O[E)n/]; (1 — Te))) )

7
Bias?(\)

Var(X)

Proof. We prove by simply computing rg. In the setting of denoising score learning at timestep ¢,

i = AT + V1 — gy

Therefore,
d r g P
) () et
To= 1|35 — = ) = Oy
2 22?:1 Var (gf])) 2(1 — )0 + 20402
Hence, the proof is completed by applying Theorem 4.1. [

B Concentration Lemmas

For simplicity, we sometimes use {g; }7**, to represent {g”}l 1,j=1. Where the first k£ components

g1, --,0k represent g1 1, ..., g1 i, the second k components gi+1, - - -, go, represent 92,15 -5 92,k>
and iteratively, g(n—1)k+1,- - - » Gnk TEPrESENt g 1, . - ., gn k- We always ignore the script 7 in this
section.

Lemma B.1. Under Assumption 1, if \ = n=% 6 € (0, 8), such that for o > o being sufficiently
close, with high probability,
~ A
< Op < ) .
n

< Op(1).

_1 _1
HTA (T — Tg)T, ?

Further,

“ip3[* _ |pEpoigt
HTG,\ T,\ :HT,\ TG)\TA

Proof. The proof is standard in concentration inequalities, while we utilize our novel Bernstein-
type bound, 1e Proposmon D.2, to handle the k- -gap, independent random sequence Denote

Alg) = T, (T Ty)Ty 5 , E[A(g)] = 0, then T, *(T" — T¢)T), P kZ 1 A(gs). For
simplicity, we denote A; := A(gl-). As the first step, for any positive z, t,

e (80) o 0) )

where I is the identity. Then we prove by Proposition D.2. We first bound || A(g)| by Corollary C.2,

_1 _1 _1 2
lrs 75t = [t o] < e,

which implies that )
[A(g)]l < 2MaA™*.

Therefore, by Proposition D.2, for any positive ¢ such that ¢ - 2M2\~% k @’

nk
nk 169
log Etr <exp (t Z Al-) — I) log nlog 3 + log (21ntd> + 2nkov? ¢ 2 alogn’
i=1 “

where

2
2 = 1 . s . 2
ve = Kg{Slup . CordK Amax (;{A Gi ) , intd = intdim (E [A(g) ]) .
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Hence, for any positive z,

nk
P </\max (Z Az) = a:)
=1

exp (log nlog3 + log ( mtd) + t2nkv? %)

< inf
t>0:12M2 A~ <4 1o etr —tr —1
nk 3 169t2nkv?
< 1 log 3 +1 —intd f 14+ —= —t ,
P (ogn 089+ o8 ( 2 n )) £>0: tQMZI)I\I a<ils ( - x2t2) P ( S 2M§)\—°‘klogn>
where the last inequality holds by the basic inequality:
1 3
_ (1 + ) e, x>0
e —x—1
— 2 _ 2y —«a _ T 1
As the second step, we select ¢. Denote 0 = 169nkv*, ¢ = 2MiA\"“klogn and let t = s < @

then

nk
nk (20 + ¢z)? x?/2
]P) max Ai 2 < 1 1 1 —_— —_—_— — .
()\ (i;l > m) exp ( ognlog3 + log ( 5 mtd)) ( +3 o exp 201 on

If 22 > 260 + ¢ then

nk
nk 222
. 2 < _— - .
P (Amax <Z=Z]1 A1> m) 4 exp <10g nlog3 + log ( 5 1ntd>) exp ( 50 + ¢$)

Therefore,
1 nk 2/2
> nij> < 4dexp (lognlogi’) + log <21ntd)> exp (— 2;+/¢x> .

1 nk
IP(%;AZ-

By setting 6 = 4 exp (logn log 3 + log (”klntd)) exp (— 23903-/;7:) and solving

< 2log (4 exp (log nlog 3§+ log ( mtd)) > | 4010 (4 exp (10g nlog 3§+ log ( 1ntd)) ) 7

we have, with high probability,

2
, " 26 log (4 exp(log n log Z;-}—log(%kintd)) ) 40 log (4 exp(log n log Z;l—log(%’“intd)) ) 1/

R Az <

nk ; nk * n2k2

10108 ( 4 exp(loof n log 36+log( nk mtd)) >
‘We next consider the bound for —z . Note that
1 2
2
vt = su Amax | E A i
KC{I k) CardK <ZEZI( g >

< sup  CardK - Amax (E[A(9:)?])
Kc{1,...,k}

<k|E[A(g:)?]],
further note that

=LA@ To8 =iy
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increases monotonically with respect to E [A(g)2], and by Corollary C.2,
1 _1\2 1 1
E[A(9)?] < E [(TA e ] < M2ACB [T, T | = M2 Ty,

we have

nk‘,tr(]E[A(_q)2:|)
4 exp (logn log 3+10g<W

2
40108 (4exp(10g nlog 3+log("2’“intd))) 676v° log ;

0

n2k2 nk

nktr(TT;l)
4exp| lognlog3+log| ———5+~
B

—1
HEE

67602\ log

N

By Lemma C.3,

w@Tﬁ><O<,r% )_O(wﬂ+xnﬂm)<00ﬂk%y

[t T I

Therefore,

4 S e
e <O<TL)

<O~[p>< )\O‘).
n

1
|72 + 211y - H{T;”Q(TG F T2

40 IOg ( 4 exp(log nlog 3+log(”7kintd)) )

We finally obtain that for o« > v,

1nk
o A

Further, we have

ey

<(1-|rta-Tont )71
< Op(1).

Lemma B.2. Under Assumption I, if \ =n=% 0 € (0, B),

7 [(Tafy = Tafn) — (T = TH)]| < (M)

Proof. The proof is standard in concentration inequalities, while we utilize our novel Bernstein-
type bound, i.e., Proposition D.3, to handle the k-gap independent random sequence. Denote

€(9) = Ty 2 (Ty £ — Ty ), & = £(g5), then

Mﬁnkﬁ—%h%aﬁ—mmk=7;ga—mﬂ

Further let X = ¢ — K¢, X; = & — E&;, then

7 (@aty ~Tap) = @f; =T, -
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For any positive z, § we have

|

nk

Sx

i=1

]
nk

2. X

i=1

- 0
2:3) <e BJ“E[6|
H

< 2¢ %*Ecosh (9

(B.1)

H)
*)

< 2676@EH69HX1.HH — 01X

i=1

nk
<2 R[] f1¥iIn,
i=1

( nk

where (*) is the result of Lemma C.8. Then we are going to apply Proposition D.3. Similar to [37],
we separate to two cases: s > ag and s < g, where we use truncation technique to handle the more
difficult s < oy case.

Firstly, we consider the case s > . By Lemma C.7, for o > « being sufficiently close,
IX] <O (xa+%) = My.

Hence, by Proposition D.3, there exists a constant C” such that for any positive ¢ such that tMx <
1

klogn’

nk
C"2n ko2
log E exp (t;XZ) S T iMxklogn’

where

2
1
2
- E X,
° K;?p ry Card K (Z | J|H)

vvvvv jeK

Apply into (B.1) and take 6 =

|

x
2C"nkv2+z-C"Mx k log nk we have

nk
_ X,
>z ng GxE | | eGH il
H i=1

C"9*nkv?
1—0Mxklogn

nk

2. X

i=1

<2e %% exp <

96 222
= X —
P 2C"nkv? + x - Mxklogn
222
=2 —
P ( U+ xV) ’

where U = 20"nkv?,V = Mxklogn. Let § = 2exp (— ijf\/) we have

2 2
T <2Vlog % +4[2Ulog = = Op (Mxklogn + \/nkv2> .
Then with high probability,

nk _

1 Mx 1 2 ~ s AT 2

15y <0P<X0gn+ v><op<mogn+ v). ®2)
=1 H

n nk n nk

Secondly, we consider the case s < ag. For any ¢ > 0, denote Q; = {g € G : [fy(g)| <t} and
£lg) = £(9)1igen,} X = € —EE, X; = & — EE. Then similar to Lemma C.7, for o > aq being
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sufficiently close,

I1X 3 < Mo A~ %Hl{gegt}(f;" = )=
< MoA™% (| fall= + 1)
< M A2 (Mo Al ppge + 1)
<O A8 +4A7%) i= My,

where the last inequality uses Lemma C.5. Further we decompose

nk

1
— Ny,
&l P i;f {9:¢)

+ | E€L(gea,y 4, - (B.3)
H

<

1 nk 1 nk B i
— D& —EE <[> &K
i=1 H i=1 H

Regarding the first term in (B.3), we set t = n',] <1 — 0‘5“80 < %520, then, similar to (B.2), with

high probability,
72 . @ 52
<O]P)<Mxlogn+ v><0P<>\ A logn+ 1))’
" n nk n nk

_2 _ X
° Kg?lp K} CardK (Z [ HH

JEK

ol

1nkﬁ |
%EQ—M

where

To bound the second term in (B.3), we only need to consider the case g; ¢ (2;. Since the Markov’s
inequality yields

Pypg (9 ¢ Q) <t™? Hf*HLq )
where ¢ = % (referring to Lemma C.11), we have
P(gii &, 0i2¢ yoosgie & Q) <P (gi1 ¢ Q) <t77 Hf;kHiq .
Then we get
P (g: € Q0. Vi) > @—tWﬁhJ"
So the second vanishes with high probability as long as [ > E'
For the third term in (B.3),
HEf(g)l{gmt}”H < E[£(9)1gge0,lln
= & 100, (77 (0) — fr(0)) |75, ]
< Mo AR [1pg0, £ (9) — £r(9)]]
< Mo\ PE[(£3(9) - £a(9)?] [Plo # Q1%
< M A0 ()\5/2) £ 902

where the second inequality holds by Corollary C.2, and the last inequality uses Lemma C.4. If

I > 20 then
q o
[E€(9)Liggcr 5 <3 ( 2mn? ).
gEMes | \/ﬁ

Finally, the three requirements of [ are

|
l<1-%F% 4ol aa s %
2 q

where ¢ = =% It is easy to verify these three requirements hold.
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Combine the two cases, with high probability,

1 - [ A
mi:ZIXiﬂéO]p()\ - Ty ) <\/ﬁ )

? = X;
Y KC{? k} CardK Z H HH

The last thing is to handle v2. It is easy to verify that
v? < CardK - E|| X |2, < kE| X2,

N\Q

where

Note that

2 2 -3 2
E|X13, <El¢l5, = sup, | T3 *k(g, )

LELU70) = 10)*] < MR |(77(0) - £2(9)°]

then by Lemma C.4, we have

Hence,

2 < kOATON).
Therefore,
_1 - 3
137 [(Taf} —Taf) — (Tf; = TH)]|, <60 (AF).
O

Lemma B.3. Under Assumption 1, if \ = n=% 6 € (0, B), for a > g being sufficiently close, with
high probability, for g € G almost everywhere,

~ A«

Op ()\a ) .

n

n k
1 1
%ZZ (T3 k(gis» 9)]” = |Tx kg,~HL2
Proof. The proof is standard in concentration inequalities, while we use the net theory to obtain a
union high probability bound as Li et al. [37, 39] and utilize our novel Bernstein-type bound, i.e.,

Proposition D.3, to handle the k-gap independent random sequence. Denote X;; = [T; "k (gs s g)]Q,
with its expectation over each data g, ;

- 2 _
E[T5 k(gi5,9)]" = IT5 k(- 9) |22 == n.
For any positive s, e,

[ 3 Xy - T )2

i=175=1
We next prove by applying Proposition D.3. Note that by Corollary C.2,

n k
> 61 < 2e *Eexp <Sk Z Z(Xij - M)) .

i=15=1

Xl < I3 . L < MIA 2 = B,
then by Proposition D.3, forany 0 < s < %
n k
s C" s*>nkv?
Eexp | — > (X — M)) < exp < 5
(nkz a4 n2k? (1 — =-2Bklog n)
2
where v? = sup G E > (X — ) . Then by setting s = W’ékbm,
Kc{1,...,k} jeK &

1 & k B
ok Z Z Xij — Ty 1k('79>”2L2

Cse C"s*nkv?
>e| <2e *“exp
n2k?2 (1 — 2Bk logn)

< 2exp [ — e“nk
h P 4C"v2 + 4Bklogne )
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— nk .
Let § = 2exp (—WBMOW and solve ¢ we obtain

4log 2Blogn 16C"v? 2
€ < + log —.
n nk )

For the reason that we are considering the union bound for any ¢ € G, we denote Ky =
{T/\*lk;(g7 ')}geg and utilize the net theory. By Lemma C.9, we can find an e-net 7 < K, < H such

that

2d

|F| < C"(Ne)" 7,
where € = e(n) = % Then, with probability at least 1 — 6, Vf € F’

ZZ%lW%mm<

<
Lljl

4log %B logn N \/160”112 log 2| F|

n nk 0

Note that by Corollary C.2, we have

2
2 1 -1
— E E X, — < kB |Ty k(- ,
v P(C?l &y CardK <J—6K( ! M>> H HL2

which implies that

Hence with high probability, Vf € F

1 n k
IR
i=1j=

O]p <)\_a M) .
n

At last, by the definition of F, for any g € G, there exists some f € F, such that

|75 k(g ) = [l <=
which implies that
k

1 n k
TSI

1=17=1

75 k93 = 1717

< eO(A™Y).

<eO(\9),

Therefore, for o > « being sufficiently close, with high probability, Vg € G almost everywhere,

n k
1 - (e
— 2 2 Xy~ T kG, 9| < Op | X ,
RS ia n

Lemma B.4. Under Assumption 1, if \ = n=% 0 € (0, B), for o > v being sufficiently close, with
high probability, for g € G almost everywhere,
~ A @
n

1 n k
% Z Z g gz] €ij
i=1j=1
Proof. The proof is mainly based on the fact that €;;|g;; is sub-Gaussian with norm o..

O

1 n

k
P
(nk

— > 2 T kg, gig)eiglai| > ¢

i=1j=1

t2
2exp | — 3
‘ Zz 1 Z] 1 Iy lk(g gzy)ez]‘gz]

"Here ¥V f € F means Vg € G such that T}, 'k(g, -) € F.
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Hence, consider the net F constructed in Lemma B.3, with high probability, V f € F,

1 n k 5 1 n k
% Z Z 1k g gU €ij O]p % Z Z l,l{j g Gij €7J|glj
imlj=1 im=1j=1 e
- 1 n k 2
< Op % Z Z g Gij 61]|gu
\ 1=1|j= o
1 n k 2
< Op e > (Z |T)\1k(gvgij)5ij|gijw2>
=1 \y=1
1 n k 2
N —1
< Op %\ ; (j;} k(9. gij ‘ €1J|glj1p2>
- 052 1 & k 2
< Op ok Z Z T k g Gij ]

i=1j=1

Further, Vg € G, there exists f € F such that

‘T/\_lk(gvgij) - f(gij)}Loo <e=

s |-

Hence,

n k
< %ik Z > leisl-
1=17=1

k
Z 1k g7glj f(gl] €ij

LMS

1
nk :

Note that €;;]g;; is a sub- Gaussmn, then

n k 2
t
P ( E E leij| = t> < exp (_an20€2) .

i=1j=1

Hence, with high probability,

which implies that

L {030 et 11 &L 21
%;g N k(9:9i7) = f(gij)] €ij <E%ZZ‘Q’]’|<OP <.

Therefore, for o > « being sufficiently close, with high probability for g € G almost everywhere,

nkEZT k(g, gij)€ij OP('\/)\HQO'2>,

i=1j5=1
where we use Lemma B.3 and Corollary C.2. O

Corollary B.5. Under Assumption I, if \ =n=% 0 € (0, 8), then for o > o being sufficiently close,
with high probability, for g € G almost everywhere,

n k 2 n k
1 _ ~ op 1 _ _ 2
nk ; z:] TGA k(g,gw)ew Op “n nk ; g TGA ) k(gljag)]
Proof. Corollary B.5 can be easily proved by Lemma B.4 and Lemma C.10. O
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Lemma B.6. (Concentration on €2) Under Assumption 1, if \ =n~% 6 € (0, 8), with high probabil-

ity,
L i i . <o?+0 (0271_%)
nk i NG '

i=1j=1
Proof. The proof is mainly based on the sub-Gaussianity of ¢|g. Define X;; = efj l9ij — ]E[E?j |9i5]-
Hence EX;; = 0. Forany 6,t > 0,

1 n k 0 n k
P ( " ;j; Xij| = t> < 2exp(—0t) exp log E exp (nk ;EX”> .

The key part is to bound

0 n k 0 k n 0 k
log E exp (nk ;J; Xl-j) = logEHexp (MEX”> = i;logEexp (WEX”> .

i=1
Note that X;; is sub-exponential, then for < o

0 Cyot b
logEexp (nkXij> X m

By Lemma C.17,

2 462
o Cxoe =
~ .
[
1- CKO—EE

Hence, '
§ & o C3ot®
log E exp ( Z Z Xij> < 76”.
nk =S4 1—-Cko?2
_ ¢
Set0 = aogorticiorts e
1O 1 2
P(|— Xij|=t] <2exp | —z—5—
( nk z;; ) 295870 4 Cxo?l

2
Let § = 2exp (—50204‘5) then we can solve that
2712 £ -‘1-6'1(0'2L

t<Op (an’%) .

Therefore, with high probability,

= _1
< Op ((ffn 2) .

1 n k
IDIRT
i=1j=1

Note that the conditional expectation

then with high probability,
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Lemma B.7. Under Assumption 1, if \ = n=% 0 € (0, 3), for a > g being sufficiently close, with
high probability, for g € G almost everywhere,
~ A«
< Op < 02) .
n

n k n k
1 2 1 2
%22 T kg’t]? 62] _?ZZ T kglj’ ] E[€3j|gij]
Proof. The proof can be easily extended from the proof of Lemma B.6. We first focus on the finite
net constructed in Lemma B.3. Similarly, we denote ) = {T/\_lk(g, )} . By Lemma C.9, we
can find an e-net F < K, < H such that

9geg

2d

[FI < C"(Xe)" %,

where ¢ = e(n) = 1. Denote X;; = [T;lk(gij7g):|2 [efj — Ee?ﬂgij] |gij with E, 5, Xi5 = 0.
Then

n k 1 n k 1 n k
nk Z Z T k gz]a el] - 7]{ Z Z T k gljv ] [613|gu = 7]€ Z Z
i=1j=1 im1j=1 im15-1

By the fact that e \ 9ij is a sub-exponential, there exists a constant C'r;, such that for 0k < ﬁ,

0 02
log E exp <nk [E?j\gij - Ef?th’j]) 02 4n2k2'

0[Tx  k(gi5.9)]” -1

Hence, for Py Cro?’
0 [T k(9i5,9)] 02 [T k(gij, 9)]"
log E exp <[)\nk]] [€3j|gz'j - Ee?ﬂgij] < C?(U? [ )\an’z] ] )

In this sense, we get an equivalent ng ) = Cko; [T k(gw, )]2 That is, X;; is sub-exponential

with sub-exponential norm C’%j ), Hence,

) B (S o)

1 — max; Z?zl C%j)% .

n k
log E exp (:k Z Z X
i=1j=1

Denote A = —5 >, (Z C(” ) , B = Lmax; 25:1 C%j) and for any positive ¢, take

0=
t2/2
>t < 2 )
P(n J t) 26Xp< 2A+Bt)

1 n k
— 20X
i=1j=1
Setd = 2exp ( P2 ) then with probability at least 1 — 6,

2A+ Bt
2 2
t < Op (Blog (5) + 4/ Alog (5>> .

Hence, with probability at least 1 — §,Vf € F,

n k
1 7] 2|7
—kgg (Blog(6>+ Alog( 5 .
We next derive bounds for A and B. By Corollary C.2,

—2«
<020 ()\ ) .
n
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To bound A, by definition, we have

ko \2
- an Z (Z C%J))

2 n k 4
71]222 1kgglj 0?

2 1 n k
< T ko, )3 TS (15 )] o

1=17=1
< Op ()\‘“ k) .
n

M2X"°,

By Lemma B.3, with high probability, V f € F,

1 n
?Z Z T k (9ij: 9 HT 'k(g,- ||L2

By Lemma C.2,
M2, | Ty k(g

_ —3a
A< Op (/\n af) )

Jointly, with high probability for all f € F,

1 n k
kZZ 1k9wv 61] _%ZZ T kgljv 2 [5?j|9ij]

i=1j5=1 i=175=1

- [\—a
= Op (/\_a U?) .
n
Further, by the net theory, Vg € G, there exists f € F such that

)[Tflk(gij7g)]2 - f2(gij)‘ <eO(A*) =0 () ,

“o(%)
<oor (£7),

where the last inequality is the result of Lemma B.6. Jointly, with high probability, for all g € G,

k n -
%ZZ T kgzja g)€ij Zlkgz T kgzg; 2 [€?j|gij] O]P( \/70_2>.

i=1j=1 =1
O

757 k(g )0 < e <

then

Hence,

n k
2
PIDIC

i=1j5=1

ik i D ([T;lk(gij7g)]2 = f(gz‘j)Q) €

The following Lemma B.8 can be viewed as an extension from the combination of Lemma B.3 and
Lemma B.7.

Lemma B.8. Under Assumption 1, if \ = n=% 6 € (0, 3), for a > v being sufficiently close, with
high probability, for g € G almost everywhere,

YR Z Z Z Ty k(9ij,» 9)€iss T k(Gigar 9)€iss — BT5 'K (gijy» 9)eiy Ty 'K (Gigas 9)€is

i=171=1j2=1,j2#J1
~ Afa - )\704
2 —a 2 —
0—61,‘201? ()\ n) + O'GO[P <)\ n)
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Proof. We first concentrate €|g and then concentrate g. Denote

—1 -1 —1 -1
Xijije = T3 k(9iji € Tx k(Gizar 9)€iga9is > Giga—Tx  k(9igi> )TN K (Gije> 9)Eeis €52 |9igy > Gigo-
Note that €, |gij,  Gijo - €ij2|9ijr s 9ijn 1S the product of two sub-Gaussian random variables, then

€ij1|Gijr» Gijs - €ija|Gij1» Gij, 1S sub-exponential. Similar to the proof for Lemma B.7, for nk(%l) <

1
C;;jljz) ’

n (i152) 62
Zi_l (Zﬂl 12]2 1,j2#51 C o ) n2k2(k—1)2

(i5172) %) ’

0 n k k
log E exp <nk(k—1)Z Z A 2 | Xij1j2> <

i=1j1=1j2=1,j2#51 1 m 2Z]l 12]2 1,j2#51 C "k(k D)
where (i5172)
7 g
C J1J2 CKZ k(gm,g)T k( z]gag) 61 2"
Denote

n k k 2
A= n2k2 Z <Z Z ng1j2)> s B = Ina,x7 Z Z C (ij172)

Ji=1j2=1,jo2#j1 Jj1=1j2=1,52#J1

t2/2

and take 0 = we have

t
2A+Bt
1 n k k
P(nk(k—l); Z:: zjz Xijija

Set & = 2exp (— 12/2 ) then we can solve that

2A+Bt
t<Op <B10g§ +1/Alog§> .

Hence, using the net F constructed in Lemma B.7, with probability at least 1 — 4,V f € F,

WED) ZZ Z Xijiin \O<Blog(2|6]:|>+ Alog<2|5]:|)>.

i=1j1=1jo=1,j2#51
)\7204
2
B < 05112O< .

By Corollary C.2,

To bound A, note that

A= C%( y k C(ijljz) i

=1

C?{ LA & -1 N2 -1 V]2 4
<m;§ 123#1 (75 k(g 9i5:)] " [T " K(9, 9i5)] o0, ,

c2 1 & &
<15 kg, ) = 3 D (15 k9, 969)] o, -

n nk
X O~]P> ()\—Ot A_> .
n

i=17=1
By Lemma B.3, with high probability, Vf € F,
15 k() < M2, R,

1 n
3 2 (o 0)]? ~ T3 ko <

By Lemma C.2,

s < M2,
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then

N —3a
AQOP (A 0.211,2>'

J ointly, with high probability for all f € F,

Z DU TR 9T K (Gigs 9) (€ijy € _E[eiﬁeijz'gijlvgijz])’

i=171=1j2=1,j2#J1

A —a, | A 2
< O]P (}\ n061,2> .
Further, by the net theory, Vg € G, there exists f € F such that

T3 k(934 9)TX K (9ijar 9) = £(9ij2) f(93)] < €OA™) = O ()‘_a) :

n
Hence,
1 n k k
FE=T ST T k(i TS K (Gigar 9) — F9i) F(9i32)] € €3
n i=171=1j2=1,j2#J1
A 1 n k k
<O< ) ——= > > D el
n ) nk(k—1) o J1=1j42=1ja#]
AN 1 k
<O — :
( n ) nk ;;E”

where the last inequality uses Lemma B.6. Jointly, with high probability for all g € G,

n k k
YR — Z DU TR 9T k(G 9) (€igy 6o — B [€i, €4, 19451  912])

i=1j1=1jo=1,jo2#51
< Op ()\ 4/)\0212>.
n ,

As the second step, we concentrate g. This step is similar to the proof of Lemma B.3. For simplicity,
we directly deduce

n k
1 _ _ _ _
wh(E—1) > Z T3 k(s 9)T5 K (Gijar 9 [€34, €ija|Gir > ija] — B[Tx K (gijur 9)T5 "k (Gijar 9)€iy €ig |
i=1j1=1 jo=1 3271

O’éép <)\_a A~

n

Therefore, for o > ao being sufficiently close, with high probability, for g € G almost everywhere,

— 1 Z Z Z T)\_lk(gijlvg)eile)\_lk(gijzag)EijQ - ]ET,\_lk(gij17g)€ij1T)\_1k(gijzvg)€ij2

1=171=1j2= 1]2?’:]1

N
=
Ing
T\M?r

T5 ' k(gij> 9) TN " k(iga» 9) (€ijy €65y — B €3, €62l 931 » gijz])‘
1,52#71

n k k
1 _ _
MErrE) Z > Z Ty k(Gig» 9)T5 K(Gigos OB €61 €321 Gi1» 9ign ) — BTy k(Gigy» 9)€iss T k(Gijar 9)€iss ]
-

~ Ao - Ao
<O—£21,2OIP (}\a n) + UéOP (}\a n) .
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O

Lemma B.9. Under Assumption I, if \ = n=%,0 € (0, ), with high probability, for g € G almost
everywhere,

n n k k
1 _ _
n2k2 2 E 2 2 T)\ 1k(9i1j1ag)T)\ 1k(gi2jzvg)€i1j16i2j2

—1 . 2
<520 <|TA k(g, )HL2 <7"T i 1 TT)) .
n k

Proof. We prove by the truncation technique. Denote X; = Z§=1 Ty 'k(g, g:;)€i;. We truncate by
7 which will be determined later.

Xi =Xilfje,j1<rg=1,...k} T Xilgjer e 1>}
= Xil{je;;1<r j=1,..ky — E [Xi]l{|eij|s-r,j:1,...,k}] + Xiligjerk) jeij 1>y — E [Xi]l{zlje[k],kijbf}]

xM x®

x4 x®.

Therefore,
1 n n k k
32 Z Z Z Z T3 k(Girjns 9T F(Gingns 9)€in s €0
i1=1142=1,ia#%1 j1=1j2=1
1 n n
2Kz Z Z Xiy Xi
t1=112=1,105%#11
1 ¢ 1 D y® , vO @ . v@ D), v @
= n2k2 Z Z [Xil Xiz +‘Xil Xiz +Xi1 Xiz +Xi1 Xi2 ] :
11=142=1,i0%#1%]
We first bound the main term |5 37 _ 37" XU x M| Note that by Corollary C.2,
n2k i1=1 to=1,i0%#11 <11 12

xPl<o(ewr), Bx? —o,

by Proposition D.3, we have

"

which implies that

n

3 x

i=1

t2/2
2
O (A\~krlogn)t+ "  EXM

, B.4)

2t}<2exp -

2
n 2/9
P lz Xi(l)] >t2 ) <2exp [ — £/ 5
i=1 O (A\~2ktlogn)t+ >, IEXfl)

2
Setd =2exp | — t/2 B then we can solve that
O(A~%ktlogn)t+>" | EX;

—a 2 n (1)2 2
t<0<)\ leognlog(;) +0 izglEXi logg ,
and

2 < 2 2
2 <0 <>\2°‘k272 log? nlog? 6) +0 (Z IEX;U log 5) .

i=1
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Therefore, considering the net F 8 constructed in Lemma B.3, it holds with probability at least 1 — 4,
for any f € F,

2
LIy
ol
1 207227 2 2 2| F]| S @2, 2|F]
2 lO <)\ k*T%log” nlog 5 +0 ;EXZ. log—é

1
n2k2

N

N

[O <)\ **k*7%log? nlog” Q(Sk) v (ngz |75 (0, 2 (Wrr + k(1 = rp)) log QZkﬂ ’

where the last inequality uses the definition of net F and Definition 3.2. By setting 7 = n‘G with
(< 1= 0‘9 , we have with high probability, for any f € F,

2
LI ) - (DT K9] e 1—rp
[0 [eon (E  5)

2
ﬁ >y (Xi(l)) ‘ Applying Proposition D.3,

‘We then consider

t2/2

{3 ()" e (x0) |

Hence, with high probability, for any f € F,

E [(X}“)z] [ Aok [nE [(Xi(l))Q] + A2 k212 log n
2440

nk? n2k2

o (TG (1) | g (A TaveA T A
n k n2

1
:OP <~2}T k HL2 (TT-F I_TT)>.
n k

Combining these two bounds, with high probability, for any f € F, the main term

5 (21T k) 1-r
nzkzz Z Xi(ll)Xi(zl)<OP<2 PR (TT+ kT>'

i1=1142=1,i07%11

} < 2exp | — 5
O (A20k2r2logn) t + O (A\-20k272) Y| E [(X}”) ]

L o pm)2
n2k? Z;(Xi )

‘We second bound the residual terms

(1) 4 (2) (2) (1) (2) v (2)
n2k2 Z Z [Xil Xi2 +Xi1 Xi2 +Xi1 Xi2 ] .

11=112=1,00%#1%1

By Markov inequality,

k k
. Hez ” q
P{3j e [k] eij] > 7} < D P{ley| > 7} < 2 7L
j=1 =1

8Here the net F is the e-net with € = ﬁ
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then
d AN
P{ Y el <kr, Vie[Ln], VfeFp=>[1-) %
-
j=1 j=1

That said, if we set £ > % then X;I3jc(x],|e;;|>-} Vanishes for the reason that € is (conditional)
sub-Gaussian. Hence, with high probability, for any f € F

(1) x(2) (2) 5 (1) (2) v (2)
1’L2]€2 Z Z [X Xiz +Xi1 Xiz +Xi1 Xiz ]

i1

11=112=1,i0#1%1

n2k2 Z Z [ X VB [Xiljem e ory] + B [Xillgsepie>n] X +E2[X; H{aJe[k],em>T}]]‘

11=112=1,i0%#1%1
S
k2

Firstly, by Cauchy-Schwarz inequality

1
Er RO EXIP {Z leis| > ’“}
k q
< 1_TT >520(>\a)’2"‘1e” L (B.5)
kar4

() o)

? [Xilisjermfesyi=ny ]
k?

<2 |E [Xil(gjer ess 1> ]

Secondly, by Equation (B.4),
t2/2

P { } < 2exp
i=1 O —akrlognk)t+ >, EX(I)
we have with high probability, V f € F,

| 5
K3

(TT + (=rr) ;TT)

1 )O,Q}T lk:g,-

nk

< Op

i=1

. s+

Further, by Equation (B.5),

)E [XiH{Z;?ZIEnka}” < \/(TT + (l_krT))&O ()\T;> .
Therefore

L O A=rp)\ oo (A
Q‘E[Xiﬂ{zzf':nem>kf}”W;‘Xi ’g(rﬂk 7Ot )

Note that under the condition ¢ > %, it holds

AT AT ¢ AT
—_— <, and T —
T4 n nl/27r32 n

Tt _
(u o ||L2><TT+1 )
n k

Then with high probability for all f € F, the residual terms

n

11=1142=1i0%#1%1
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Jointly, if we select % < ¢ < 1299 then with high probability, for all f € F,

k
Z T)\_lk(giljug)T/\_lk(gizjzvg)eiljl Cizja

T k(g _
< 526, (’}LQGHW)),
n k

At last, for any g € G, there exists f € F, such that

T 1k g, 2
’TA_lk(giljlvg)TA_lk(gizjzﬂg) - f(gilh)f(giﬂg)‘ = HT 1k gv' HL2 =0 <}nk‘L> .

Hence,

n n k k
n2k: Z Z Z Z 1k ghjl’g)T k<gl2j27g> f(giljl)f<gi2j2)] €i1j1 Cizjo

lig=1 i275i1 Jj1=1j2=1
<0 (
< <

I\T;lk

%
n

i1=1142=1,i2#%1 j1=1 j2=1
HT lkg
b

9.5
k - ) n2k2 Z Z Z Z ‘611J1612]2|
kL2> Op (02)

n

_ HT 'k(g, - HL2
=020p (nk
|75 k(g )22

nk ’

where the second inequality utilizes Lemma B.6.

Jointly, with high probability, for g € G almost everywhere,

n2k2 Z Z Z Z T 1k gllJl’g)T k(glzjzﬂg)enhewjz

i1=11ig=1,ip7#%1 j1=1 j2=1

1
\0,20P<HT Ko, ) (m 1—w>>.
n k

O

Lemma B.10. Under Assumption 1, if \ = n=?% 0 € (0, 3), for o > v being sufficiently close, with
high probability, for g € G almost everywhere,

[rdsta],, - rim k] <o (020,
Proof.
|réTairte|, ~ |[TéT ] | < |Té@at - Tk,
— |[réTair - Ty T s, )|

1 1
2T 2
< HTGTG,\

1

ol

1 1 _ _1
A T 112 |7 Pk, )|

For the first term,
11
ITETeR <1

%af < 1 satisfies this condition.
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For the second and the third term, by Lemma B.1,

1 1
ITex TX | < Op(1),

_1 ~ Ao
T3 *(T — Ta)T; | < Os ( )

For the last term, by Corollary C.2,

1 o
HT)\ 2k(97)”7‘l < Ma T2,

Therefore

1 1 B .
TE T3k, — ITETS k(9. V| < O (A ; )

Lemma B.11. Ifthe conditional orthogonality holds, then
BTy k(9ij, > 9)€ig Ty " k(iga» 9)€ijs < 672 (re v 70) (HT k(.- “L2) '

Proof. By the optimality (3.1), we decompose:
B [T5 ' k(gijis 9)ein Ty k(Gijar 9)€is ]
=E [(T5 " k(gijus 9)€izy — Ty 'k(girg, 9)eirsy) (Tx K (Gigar 9)€ije — T kGingyr 9)€ingy )] -
where g;/;, and g;;, share the same u;;, but with independent x; and x. givj, and g;;, share the same
u;j, but with independent z; and x7, €y, := yij, — f(girj, ), €injy 1= Yij, — £ (girj,)- Further,
(T35 K(gins 9)eisy — Ty " k(girgy» 9)€irsy) (Tx "k (igas 9)€ije — Ty k(ginjsr 9)€inj,)
= (T3 ' k(girjy» 9)(€ijy — €iry) + €iy (T "k(gig> 9) — Ty "k(951,9)))
(T)le(gi"jzag)(eijz - Gi"jz) + €ij, (T)le(gijz’g) T k gl”J27g ))
=T\ " k(girjy> 9)(€ijy — €0y, Ty " K(Gimjn 9) (€ijy — €75)

A,
+ T3k (girgy s 9) €ijy — €y )eige (T K (gijar 9) — Tflk(gi"jgag)l
As
+ iy (T3 ' k(9ij,9) — Tx "k(9irj1 9)) T k(gimsys 9) (€ijy — €iny)
As
+eigy (Tx k(g 9) — Tx "K(igy, 9)) €iga (T " K(Gigar 9) — T " k(gins, 9)) -
Ay

Then we bound each term under expectation respectively. For Ay,
E[A] = E[T5 " k(girjy, 9)T5 'k (ginjar 9)(eijy — €iji)(€ije — €insa)]
1
<E [(T,\_lk(gi'j17g))2 (T,\_lk(gz'"j27g))2] “E [(eijy — €i0)*(eip — €5)°]
= T kg, )5 E [ (i — €irj2)(eiga — €ini)?]” -

Note that the kernel Holder-continuous assumption implies that f ;," € H is Holder-continuous with
index g [19, 18]. Hence, there exists L, > 0, such that

Nl

P
l€ij, — €irjy | < Le | 9ig, — 9irg|I?
then )
leij, — €y |” < L2 |lgsj, — 9o |17 -
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Therefore, .
E[Al] <E|:Hgi]1 gz]1H ]2 (HT 1k ga' HLz)

<@U%f%mH)& (I7 k(9172
< 0320 (|15 k(. )]} ) -

P
2

For A,,
E[As] = E [T} "k(gij,, 9)(€ijy — €irjy)€ige (T K(Gijer9) — Ty "k(ginjs, 9)) ]

1
<E [(Tglk(gi’j17g))2 (T;1k<gij2>g) - T)le(gi”ng))2 612j2] ’ E [(ﬁijl - 6i’j1)2]

= \/E [(T)le(gi’jlhg))Q] E [(T,(lk(gijzag) - Tilk(gmz,g))Q 6%—2]1[*3 [(Eijl - 62‘/3‘1)2]%

1
2

N=

= |75 kg, )| 1 \/E [(TA_lk(szwg) _T/\_lk(gi”jzag))zezzjz]]E [(eij, — €ir,)°]

N|=

<o |y k(g, - ”Lz \/E [(Tilk(gzjg,g) - Tflk(gi"jzvg))Q]]E [(€ijy — €irj1)?]

Similarly,

Nl

E [(eij, — €j,)?]* < /rod0(1).

We then focus on

E [(T)le(gzjzag> - T)le(gi"jzag))2]

—EphA£$X+AJMm%@&M%ﬁ—w@mm&dwﬁ—%@mﬁ]

)\2
= 2 m er(9)°E [(er(gijz) - 6r(gi~j2))2]

AsA
- er(9)es(9)E [er(gijy)es(gija) + er(ging,)es(9ig,)] -
;S(AJrA)(AJrAS) 9)es(g g g g g

If the conditional orthogonality holds, then

_ _ 2 /\72‘ 2
B[ (T (013209) = T K93 9) | = 2 5yper 0B [(entin) = enlgnia))?]
r T

By the definition of r.,
E|(er(gis2) — er(gi32))?| < e0(1).

Hence,

[A2] c O (HT 1k 97 : HL2> \/Ter()~
For A3 which is the same as A, if the conditional orthogonality holds, then

B[As] < 520 (|T5 (g, )12 viero.

For Ay,
E[A4] = E [, (Tilk(gijl,g) - Tilk(gi'jug)) €ijy (T5 ' k(9ijer 9) — T,(lk(gi'/jz,g))]

< \/E [E?ﬁ (T k(gi1-9) - Tglk(gi'ﬁ’g))g] E [6%2 (T3 " k(gijar 9) — Tilk(gi"ng)ﬂ

< UéE [(T)le(gij1ag) - Tﬁlk(gi'jlvg))2]

<%0 (HT Lk(g, - HL2).
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where the last inequality repeats the same procedure in bounding As.

Jointly, if the conditional orthogonality §,.s ~ 0, Vr, s,

ETy " k(gijy 9)€ijs Ty "k (Gijer 9)€ijs < 52 (re v 7o) (HT (g, - HL2> .

C Auxiliary Lemmas

C.1 Key Lemmas

Lemma C.1. (Lemma A.5 in [39]) Suppose H has embedding index «y. Let p,y = 0, o« > g such
that 0 < 2 — v — a < 2p then

HT Pk(g, - < M2XN272P7772 g e G almost everywhere.

H [H] =
Corollary C.2. (Corollary A.6. in [39]) Suppose H has embedding index oy and o > «vg. Then the
following holds for g € G almost everywhere

|75 k(g -
HT 11{; ga'

HLOC = Mi)‘_2a7

7. < M2Ae,

7 2,0, < MzAe

Lemma C.3. (Proposition B.2 in [39]) Under Assumption 1, if \ = n=% and 6 € (0, B), then for any
p =1, we have

tr (TT5 1) = A75.
Lemma C.4. (Lemma A.3 in [37]) Under Assumption 1, forany 0 < v < s,r = 1,...,d, we have

5 A5 s—7 <2

() *(r) _ 2 1 _ 9.
HfA -/ e Mlogy, s—7=2;
A2, s—7>2.

Lemma C.5. (Lemma A.7 in [37]) Under Assumption I, forany 0 < v < s+ 2,r=1,...,d, we
have

ATV s <y
C=qlogx, s=m

i
1, s > .

Lemma C.6. (Lemma B.6 in [37]) Let A, B be two positive semi-definite bounded linear operators
on separable Hilbert space H. Then

14°B*| 83y < |ABl3(3,), Vs € [0,1].
Lemma C.7. Denote £(g) = T;% (Tyfy —Tyfr) 10 Under Assumption 1, if s > ag, o > ayg then

I&(9) I < O (A¥3)

where § = min(s, 2).

Proof.

-

1€ I = 1T 2 K(g, ) (f; (9) = fa(9))]n

<IT5 * k(g Ml £ — fallos
< Mo A2 (5 = falne,
where the last inequality is obtained by Corollary C.2. Then the proof is completed by
155 = e < Mal £ = falpge < O (AF2),

where we use Lemma C 4. O

Here we state the lemma for any r = 1, ..., d. For simplicity, we ignore the script .
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Lemma C.8. (Theorem 3 in [54]) If X is a Hilbert space, X € X, and EX; = 0 for all j, then
j=1

Lemma C.9. (Lemma B.8 in [39]) Assuming that G = R? is bounded and k(-,-) € C®P(G x G) for
some p € (0,1]. Denote Ky = {T;lk(g, ')}geg' Then the e-covering number of K

n

x| <[]® |51 =211

E cosh A

_2d

N (Kx, |+ loos€) < C"(Xe) ™7,
where C" is a positive constant not depending on ) or €.
Lemma C.10. Assuming that G € R? is bounded and k(-,-) € CO?(G x G) for some p € (0,1].
Denote K¢ » = {(TC:; — T;l) k(g, ')}geg' Then with high probability, the e-covering number of
Kaa

Sy

_2d

N(ICG,M H ! HOO7€) < CW()“?) Py

where C" is a positive constant not depending on \ or ¢.

=

Proof. Foranya,be g,

|(Tax = T57") k() = (Tax — )k ()
Supqegl(T VT ) klasg) = (Ton = T57Y) ka, 9)|
:Supg69|(T5A Ty )k’(g,a) ( 1)k |
Note that by the properties of RKHS,
(Tat ~ T3 blg.) — (T3~ T5) kg, )
<[ (Tax = T57") kg, ), Ik(a, ) = Kb, )l
= [(Tax = T57") k(g )|, Vk(a,a) — 2k(a b) + k(b, b)
<[(Tgx = T3") k(9. )5, Vk(a,a) — k(a, b) + k(b,0) — k(a,b)
<VL|[(Tox = T7) (g, Hﬂuafbu

<VL (|73 k(g My, + T3 kg, )],) la = bl®
VL (T T T3 kg, )y, + 75 k9, ) la =01
SVIrA " Ja—b|?,

where the third inequality use the Holder-continuity assumption on kernel function, the last inequality
uses Lemma B.1

H

[Taam| = |1 *Ta | = 0s ()
and the kernel function is bounded by
suPyeg [6(g, )l < 5
Therefore, to find an e-net of /Ci » with respect to ||-||; »., we only need to find an é-net of G with

respect to the Euclidean norm, where € = (\/%{) " Hence, the covering number

N (K- loore) S N (G, [l 8) < C7(2) %
O

Lemma C.11. (Proposition A.9 in [37]) Under Assumption 1, for any 0 < s < o and o > «, we
have embedding
2c

[H]SHqu(g7dM)7 qs = O[*S.
Lemma C.12. (Proposition A.11in [37]) Let 1 = M(Tg + \) L. Suppose A1 < )o, then for any

s$p=0
|79, | = [0, 7 < 793, ] = 8,77 -
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C.2 Technical Lemmas for Concentration of k-gap Independent Data

Lemma C.13. (Lemma 4 in [3]) Let K be a finite subset of positive integers. Consider a family
(Ur)kex of d x d self-adjoint random matrices that are mutually independent. Assume that for any
ke K

E(U) =0 and Mnax(Ux) < Ba.s.,

where B is a positive constant. Then for any t > 0

tYex Uk 2 2
Etr <e ) < dexp (t 9(tB) A <k;(IE[Uk]>> ,

where g(z) = x72(e® —x — 1).
Lemma C.14. (The Intrinsic Dimension Lemma, [67]) Let ¢ be a convex function on the interval
[0, 00) with ¢(0) = 0. For any positive semi-definite matrix A:

tro(A) < intdim(A)p(||A]).

Lemma C.15. (Lieb inequality) For a fixed symmetric n x n matrix H and a n x n random matrix
Z, it holds
E[trexp (H + Z)] < trexp (H + logEe?) .

> exp <t29(tB))\max (Z E [Ui])) .
keK
Proof. Take ¢p(A) = e? —1,

Etr (etZkeK Uk _ I) =Etr (et Likex U’“) — tr(I)
<trexp ( Z log EeﬂU’“> — tr(I)
keK

<trexp (Z log (1 + t?g(tB)E [Ui])) —tr(I)

keK

We extend Lemma C.13 as follow.
Lemma C.16. Under the setting of Lemma C.13,

2, Ui

Etr (e’ Zrer U —T) < intdim (IE
keK

<trexp (Z log exp (t*g(tB)E [Uz])) —tr(I)

ke K

=trexp (tQQ(tB) Z E [Ui]) —tr(I)

keK

=tr <exp <t2g(tB) M E [Ui]) - 1)

keK

=trg <t2g(tB) D E [Ui])

keK
) exp <t29(t3)>\max <2 E [U%])) ,
keK

2, Uk
where the first inequality holds by iteratively using Lieb inequality (refer to Lemma C.15), the second

<intdim (]E
keK
inequality holds by Taylor expansion, and the last inequality uses Lemma C.14. O

Lemma C.17. (Lemma 5 in [3]) Let Uy, Uy, - - - be a sequence of d x d self-adjoint random matrices.
Assume that there exists positive constants oy, 01, ..., Op and Ko, K1, ..., Ky SUch that fori = 1,2, ...,n
and anyt € [0, 1]

log Etr (') < Cy + (03t)%/(1 — Kyt).
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Then for any t € [0, 1]
log Etr (etZZ:o U’“) < Oy + (0t)? /(1 — Kt).
where 0 = 09+ 01 + ... + o and kK = Ko + K1 + K.

We extend Lemma C.17 as follow.
Lemma C.18. Under the setting of Lemma C.17, if
log Etr (etUi — I) < Cinga + (O’it)z/(]. — Rit),
Then
log Etr (etZZ:o Uk I) < (n —1)log3 + Cinga + (01)?/(1 — kt).

Proof.
£ [tr (etU0+tU1 _ )] [tI‘ tertUl _ )]
T R R

(e
[t (e
<eXp< mtd+ 17liot

2 2 2

2
t
< exp (Cintd + (U ) > -3,

17/<£1t

1—~kt

where (*) is the result of Lemma C.17. Hence,

tUo+tU (o)
logE[tr(e" o —T)] < log3 + Cinta + 1=
- K

By iteration, we complete the proof:

log Etr (etZZ:o U I) < (n —1)log3 + Cinga + (01)?/(1 — kt).

D Bernstein-type Concentration for £-gap Independent Data

In this section, we mainly present some useful propositions for undertaking Bernstein-type concen-
tration for k-gap independent data, which are quite crucial for the concentration results in Section
B. This novel technique can also be used for other weakly dependent processes assuming specific
mixing property, i.e. structure of the a-mixing or 7-mixing coefficient decay [52, 3].

Proposition D.1. Consider a k-gap independent sequence of random variables (X;)"*, taking values
of self-adjoint Hilbert-Schmidt operators. Suppose that there exists a positive constant M such that
foranyi > 1,

E[X;] =0 and Anax(X;) < M  almost surely.

2
1
2
v = Sup  ———=Amax | E X )
Ke{l,...nky CardK (;;( )

Denote

and

intd = intdim(EX?).
Let A be a positive integer larger than 2. Then there exlsts a subset K4 of {1,..., A} with
Card(K4) = A/2, such that for any positive t such that tM < %

_ A 4 x 3.1t% Av?
log Etr [(etZiGKA X‘) — I] < log (21ntd) + %
— Mkt
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Proof. The key step is to construct K 4. As developed in [3], the set K 4 will be a finite union
of 2¢ disjoint sets of consecutive integers with same cardinality spaced according to a recursive
‘Cantor’-like construction. Let
log 2
= b:=104 = e N* .
2 IOg A’ A sup {]

Letng = Aandforj e {1,2,...,¢}, define

" {A(; 5)i

A5(1— )it
23

>2k‘>2}.

“ and dj,1 =MNj-1— 2ﬂj.

To construct K 4 we proceed as follows. At the first step, we divide the set {1... A} into three
disjoint subsets of consecutive integers: Iy 1, I, and I; ». These subsets are such that Card(/;,1) =
Card(/1,2) = ny and Card(If;) = do. At the second step, each of the sets of integers I ;, i = 1,2
is divided into three disjoint subsets of consecutive integers as follows: for any ¢ = 1,2, I;; =
12’22‘,1 U Iik,i U 12’22‘ where Card(Ig’gi,l) = Card(]z,gi) = ngy and Card(]f‘z) =d. Iterating this

procedure we have constructed after 1 < j < £4 steps, 27 sets of consecutive integers [;;, i =

1,2,...,27. The set of consecutive integers K 4 is then defined by
22
KA — U I( 1
k=1
Therefore
=1 27 =1
Card ({1,..., A}\K4) = Y| > Card (I},) = > 27d; = A—2'n,.
j=0i=1 j=0
Note that
—1 _ A
AfZan<A<lf(176)£> — A3y (1-8) <As< T,
then
A= Card(K,4) = A/2.
For simplicity, for any &’ € {1,...,¢} andany j € {1,...,2¥ =1}, we define
j2z—k’
Kk’,j = KAJc’,j = U Ig’i, S§k) = Z Xz
i=(j—1)2¢-* 41 €Ky ;
As(1—8)° 1 . ;
Then for the reason thatdy > --- > dy_1 = ot — —22= 2k, we obtain for k£’ = 0,...,¢ — 1,

forany ¢t > 0

Etr (etza LS5 )> = Etr < ZQk - +1)> .

24
Etrexp <t Z Xz) = Etrexp [ ¢ Z Sy)

iGKA

Hence, by iteration,

The rest of the proof consists of giving a suitable upper bound for Etr exp (t Z =1 ]) With this
aim, let p be a positive integer to be chosen later such that

-z | v [3]
P= 1] Y Izl
where g = ny. Let mg, = |q/(2p)], forany j € {1,...,2%}, we divide K, ; into 2m, , consecutive

intervals Z;Z 1 < i < 2my,)p, each containing p consecutive integers plus a remainder interval
41 containing r consecutive integers with r = ¢ — 2pmy , < 2p — 1. With this notation,

Mq,p
[ [
() Z Zﬂz 1T ZZEQZ
i=1

0
Zj,2mqm
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Since tr o exp is convex, we get

ot 2¢ mg p+1 2° mg,p
Etrexp | ¢ Z Sy) Etr exp | 2t Z Z dezz R Etr exp | 2t Z Z Zggi
j=1 i= j=1i=
(D.1)
Note that the gap between {Z %l 1} and {ZJ 21} is p, if
>k and ==k, D.2)

tM =
then {Z%%l} and {Zé@z} are mutually independent, respectively. For the first condition in (D.2),
we set tM < %, while for the second condition in (D.2), note that

LA A=)t
g=n = 21?4—17 ¢

> ok,

hence,
A Ad Ad(1 — 5)2_1
= =
4.9¢ 2.2¢ 2.2¢

= k.

=

N[

After undertaking the decomposition (D.1), we are going to bound Etr exp (t Z 1 ]) by bounding
each term in (D.1) using Lemma C.16. To be specific, given that

4
Amax(Z§@z 1) < 2Mp < n almost surely,

by Lemma C.16, we obtain

2¢ mgp+1 - 5
Etr | exp | 2t Z Z Zggl 1 | 1| <intdim <]E Z (Zggi_l) ]) exp(4 x 3.1 x At*v?),
i=1 i=1 i

and

2!
Etr | exp | 2¢ Z Z Zggz — 1] < intdim <]E Z (Zg@l) ]) exp(4 x 3.1 x At*v?).

Note that intdim(A + B) < intdim(A) + intdim(B) and intd = intdim(EX?), we have
2¢ mg p+1 A
Etr | exp 2tz Z Z 27 -1 < 51ntdexp(4 x 3.1 x At*v?),
and
SISt A
¢ 2,2
2t Z;% | —1]< —intd 4 x 3.1 x At*v
Etr | exp ; Z:Zl 2 21r1 exp(4 x X ).
Therefore,

ol 32) |

21/,
=Etr |exp | ¢ Z Sge)) -1
j=1

1 £ mg p+l 1 2¢ mg,p
<§Etr exp | 2t Z Z ZJ i1 | I+ gEtr exp | 2t Z Z Ay
j=1 =1 j=1i=1

A
é;intd exp(4 x 3.1 x At*v?).
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Proposition D.2. Consider a k-gap independent sequence of random variables (XZ)?jl taking values
of self-adjoint Hilbert-Schmidt operators. Suppose that there exists a positive constant M such that
foranyi > 1,

E[X;] =0 and AMnax(X;) < M almost surely.

1
2= 5 m X X;
v Kg{blup nk} CardK & (Z > ’

e K

Denote

and
intd = intdim(EX?).

Then for any positive t such that tM < k logn

nk nk 2, 7.2 169
log Etr exp t Z X’i -1 log nlog 3+ 10g ?lntd +1 nkv m

i=1

Proof. Let Ag = A =nk,and YO (i) = X;, i = 1,..., Ag. Let K 4, be the discrete Cantor type

set as defined from Proposition D.1. Let A; = Ay — Card(K 4,) and define forany j = 1,..., Ay,
Y (j) = Xi,, where {i1,...,ia,} = {1,..., A\Ka.

Now fori > 1, let K 4, be defined from {1,..., A;} exactly as K 4 is defined from {1,..., A}. Set
Aiy1 = A — Card(KA ) and {j1, ... ,]A,LH}\KA,V Fors=1,...,A;41, define

Y+ (s) = YO ().
Set L = L,, = inf{j e N*, A; < 2k}. Then the following decomposition clearly holds,

nk
LS N RO WL
=1

1=0 jeK 4,
Let
. AL
Ui= Y YO for0<i<L—landUp =Y YP()),

JEK 4,

By proposition D.1, for any positive ¢ such that tM < 2,

1_Mk:t ’

k270 4 x 3.1t2nk2 w2
intd | +
2

log Etr (exp(tU;) — I) < log (n

Note that
Amax(Ur) < M AL < 2kM,

By Lemma C.16, for any positive ¢ such that tM < %,
2kt2v?

T Mt D4

log Etr (exp(tUg) — I) < log(intdim(EU?%)) 4 2kt*v? < log(2kintd) +

At last, we aggregate Equation (D.3) and (D.4) by Lemma C.18. Let
Mk

T,ZZO,,L_]., KJL:Mk7

oi =217 20V/3.Ank,i = 0,..., L — 1; o, = vV/2k.
k> Ap_1 = 2k, we have L < logn. Then

R; =

L
(L+1
2 7+)<Mklogn,
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V3.1nkv
202\37? vV 2k < 13V nkov.
V2
11
k logn?’

Therefore, for any positive ¢ such that tM <

nk
nk 169
log Etr <exp (t Z Xz-> — I) lognlog 3 + log (21ntd) + t%kqﬂm.

=1
(D.5)
O

Proposition D.3. Consider the setting in Proposition D.2. Conswler the case d = 1. There exists a

constant C" such that for any positive t such that tM < 1y — logn

nk
C"t*nkv?
log Bexp <’521X ) S T ifklogn

where

2
1
2
v? = su D | E X,
Kg{LP,nk}CardK (Z )

e K

Proof. This result can be obtained by (D.5) in Proposition D.2, where we replace Lemma C.16 and
Lemma C.18 with Lemma C.17 and Lemma C.13, and take d = 1. O

E Conditional Orthogonality Condition
In this section, we exemplify the conditional orthogonality condition. For simplicity, we merely prove

the scalar case, that is, d = 1, where the vector case can be generalized trivially. We present some
examples as follows.

Example E.1. (Additive Gaussian distribution and Hermite polynomial)

- ()
~ N(0,02), u~ N(0,1), g = vz + /1 — azu, ei(g) = ——L,

where o3 = a0 + 1 — oy and Hy(-) is the Hermite polynomial.

Proof. Denote Z = 4=Y1-%1U thep

Vo Zlu ~ N(0,1).
Hence,
o= o (5 )]

We then focus on computing

E [H (m“ RV z) |u} — E[H; (a+b2)],

Og Og
where
V1 — z
a= Ul NIz o N(0, 1),
Og Og

By the definition of Hermite polynomial,

f

Z H (a+bZ) = etletb?) =7

Taking expectation over Z, we have

RHS =e¢
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By Taylor expansion,

at 2ol i tm 5] (b2 1) 9 n!
e > _ a” — 1)mg2m .
—nl A m!(n — 2m)!2
Hence, by matching with
a0
tn
> S Hala+b2),
n=0 """
we obtain '
[3] ' il
E[Hi(a+bZ)] = » (b*—1)"a" 2™ il 2
= ! !
Setting
A1 _p2=1— 0475‘73 _ 11—y :aj
02 +1—a; o2+ 1—ap w2’
then .
Elei(g)|u] = —=E[Hi(a + bZ)]

7!

,_
[N
—

il
ml(i — 2m)12m

(b2 _ l)mai—2m

-
i{Ng

S
—
s
—
o

i!
m!(i — 2m)12m’

Q .

_ (71)mui72m

3
I
o

Note that by the definition of Hermit

[¢)

polynomial,

L3

He) = 3} (-1 —

—

7!

= (z — 2m)!2m'
Hence, _
Bled(o)lu] = <= Hi(0)
At last, o
E. [Elei(9)|u]E[e;(9)[u]] = \C/:%Eu (H;(u)H(u)] =0

O

Example E.2. (Additive Uniform distribution on a cyclic group and discrete Fourier basis) =, u
satisfy the Uniform distribution on a cyclic group Z,, = {0,1,2,...,n — 1}, ¢ = x + u modn,
5(9) = wt w = 2T G010 — 1

Proof. Forj #0

1 wit 1’
E -k = (x4 -z - Jjr _
)] = B | 40 = L 5w o

F Discussion on Assumptions

F.1 Polynomial-decay Kernel Spectrum
The polynomial spectrum assumption makes our bound clearer and facilitates direct comparison with

established results in the i.i.d. setting (consistent with prior works [37, 39]). This makes the core
theoretical insights more accessible. While the assumption simplifies presentation, our framework
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is readily extensible to general spectra on the technical level. In particular, the key terms (e.g.
tr(TT5 )P, Hf)(\r) [H]7* and ny) — £F 1 [714]7% in Lemma C.3-C.5) can be expressed directly
in terms of individual eigenvalues (A1, Ao, . . .) rather than the decay rate 8. For instance, the norm
| f,\||?H]w is fundamentally given by a series (shown below) that depends on the full eigenvalue

N
sequence: [ fi[[#,y, = p (Aj‘—i\) i~', p = (s + 2 — 7)/2. Therefore, the polynomial decay is
primarily a tool for deriving clearer, more interpretable bounds without fundamentally limiting the
scope of our technical approach. We believe it best serves the goal of presenting our core theoretical
contributions transparently.

F.2 Relative Smoothness

In deriving our general theoretical bound (4.1), we can relax s > 1 to s > 0 and obtain exactly the
same result, as we have technically leveraged assumptions and properties of interpolation spaces for
refinements. While for the specified bounds under conditional orthogonality ((4.2) and Theorem
4.4), s > 1 is required to estimate the relevance parameter 7 (Lemma B.11) for providing a concise
bound and clear insights, where the relevance parameter is explicitly related to ;. Technically,
the smoothness on f}* enables continuity to convert the relevance in the function space into the
relevance ¢ in the data space. We consider this specific case to make our conclusion more clear and
understandable. Indeed, without the strong smoothness s > 1, we can also provide estimation (less

E[(£7* (9:) =S * (90)))°
4E[f;gr)*(9w)2]

concise expression) for r. We merely need to replace ¢ with r, :=

[0, 1], maintaining all convergence guarantees.

F.3 Holder continuity

The primary purpose of the Holder continuity assumption is to eliminate the need for the often
unrealistic sub-Gaussian design assumption in deriving our general bounds [37, 39]. Technically, it
is essential for establishing a uniform concentration bound via covering number estimates (Lemma
C.9 and C.10). Furthermore, this assumption allows us to derive concise estimates for the relevance
parameter in specific scenarios, such as when conditional orthogonality holds. We note that Holder
continuity is naturally satisfied by important kernel classes like the Laplace kernel, Sobolev kernels,
and Neural Tangent Kernels [37, 39].

G Experiment

G.1 Real Image Diffusion Training

To demonstrate the applicability of our method beyond toy examples, we conducted an ablation study
on the CIFAR-10 dataset. We trained a diffusion model using a dataset of 1024 samples for 100
epochs with a batch size of 1024, optimized using Adam with a learning rate of 2e-3. The model
architecture was a two-layer U-Net, and time conditioning was implemented by expanding the time
variable ¢ and concatenating it as an additional input channel to the image.

We report the diffusion loss on the test set with a size of 1024 at ¢ = 1.0 and ¢ = 0.1 across different
values of k£ (number of noisy realizations per data). Each configuration was evaluated over 100
parallel runs to ensure robustness.

As shown in Figure 3a, increasing k consistently improves performance at ¢ = 1, indicating better
fitting of the complex score function. However, it also leads to degradation at ¢ = 0.1, consistent
with our empirical findings on the MoG settings in the paper. Both our empirical findings on the
MoG settings and CIFAR-10 align well with our theory that when ¢ is large (i.e., noise dominates),
increasing k is beneficial to generalization.
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Figure 3: Score estimation error versus the number of noise per data, i.e., k, for two noise levels.

G.2 Kernel Ridge Regressor

To supplement, we conducted the same experiments as the Numerical Experiments in Section 4
using both NTK and RBF kernel regressor. As shown in Figure 3b and Figure 3c, the results show
consistent trends with our MLP findings.

G.3 Experiment Details

The paper fully discloses all the information, including training and testing details, needed to
reproduce the main experimental results of the paper to the extent that it affects the main conclusions
of the paper, as described in Section G.1, Section G.2 and Numerical Experiments in Section 4.
All data are either synthetically generated with detailed description or publicly open dataset. The
experimental results report statistical information including mean and standard deviation in Fig.2.
All experiments are conducted using a single 4090 GPU.

H Broader Impacts

* Our theory provides a general framework to characterize the learnability of different data distribu-
tions. Practitioners can leverage this framework as follows: first, select a kernel appropriate to the
problem domain; second, check the decay rate of the kernel’s spectrum; and finally, apply Theorem
4.4 to rigorously determine (i) whether the distribution can be learned efficiently and (ii) the sample
complexity required for convergence.

* Our results provide practical insights for optimizing the training efficiency of diffusion mod-
els, suggesting that adaptive noise-sample pairing strategies may offer significant computational
benefits.

* Our general-purpose concentration technique advances the theoretical toolkit for dependent data
analysis and may find applications beyond our current setting, which is of independent interest to
the community.
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