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ABSTRACT

Temporal Difference (TD) algorithms are the most widely employed methods in
Reinforcement Learning. Notably, previous theoretical analysis on these algo-
rithms consider the sampling time as fixed a priori, while it has been shown that the
temporal resolution can impact data efficiency (Burns et al., 2023). In this work,
we provide an analysis of the performance of mean-path semi-gradient TD(0) for
offline value estimation, emphasizing the dependence on the temporal resolution,
a factor that indeed proves to be of crucial importance. In particular, by consider-
ing the continuous-time stochastic linear quadratic dynamical systems with a fixed
data-budget, the behaviour of the Mean Squared Error on value estimation shows
an optimal non-trivial value for the time discretization, and that the latter impacts
the reliability of the algorithm. We also show that this behavior differs from that
of the Monte Carlo algorithm (Zhang et al., 2023). We verify the theoretical char-
acterization in numerical experiments in linear quadratic system instances.

1 INTRODUCTION

Temporal Difference (TD) is a fundamental idea in Reinforcement Learning (RL) based on boot-
strapping value estimates from sampled rewards and current predictions, and it has nowadays be-
come the core method for model-free reinforcement learning algorithms. In RL, samples typically
come from a sampling procedure which follows discrete time intervals, where the temporal resolu-
tion is fixed a-priori for each application. Previous studies have shown that temporal resolution is an
important factor in data efficiency (Burns et al., 2023; Zhang et al., 2023) but is often overlooked in
RL research. While the convergence and statistical properties of TD have been studied extensively
in the literature (Sutton, 1988; Jaakkola et al., 1993; Tsitsiklis & Van Roy, 1997; Bhandari et al.,
2018; Lakshminarayanan & Szepesvari, 2018; Asadi et al., 2024), little is known about the effect of
temporal discretization on the TD algorithm from both theoretical and applied perspectives.

In this paper, we study the impact of temporal resolution in value estimation using TD. In particular,
we look into a specific class of systems, a continuous-time linear stochastic dynamical system with
quadratic instantaneous reward (see e.g. Zhang et al. (2023)):

⇢
dx(t) = ax(t)dt+ �dw(t)
V (x(⌧)) = �E[

R1
⌧ �t�⌧qx2(t)dt]

(1)

where w(t) is a Wiener process. The drift coefficient a is unknown, while the diffusion coefficient �,
the reward weight q and the discount factor � 2 (0, 1) are assumed to be known. The value function
V (·) is defined as the expected cumulative discounted reward. Estimating the infinite-horizon value
V (x(⌧)) corresponds to policy evaluation for a fixed linear policy in the continuous-time Linear
Quadratic Regulator (LQR) (Lindquist, 1990; Zhang et al., 2023). Note that the optimal policy
for this problem is indeed linear in the state. We analyze the Mean-Squared Error (MSE) of the
value estimate from a widely used TD algorithm, semi-gradient TD(0) (Sutton & Barto, 2018), in
the offline setting, in order to understand how finite-sample properties change with respect to the
temporal resolution. By leveraging the fact that for this specific type of system, we can compute
the n-th moment of the state in closed form, for any n, we provide a characterization of the MSE
and identify a trade-off modulated by temporal resolution. Fig. 1 illustrates the trade-off through
a numerical experiment, where we plot the learning curve of an offline mean-path semi-gradient
TD(0) algorithm (Bhandari et al., 2018), under two different initializations (see Appendix A.1). The
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Figure 1: Learning curves of TD(0) show different behavior with respect to temporal resolution h.

result shows that the best MSE is achieved at an intermediate temporal resolution h, highlighting the
existence of a non-trivial optimal discretization.

The contributions of our work are as follows. First, we develop a framework for analyzing and
understanding the impact of temporal resolution in the offline value estimation accuracy of TD
learning. Second, we derive an approximate expression of MSE for the Offline Mean-Path Semi-
gradient TD(0), which shows a trade-off with respect to the length of the sampling intervals. We
then obtain the expression of the optimal temporal resolution h⇤ that shows how it scales with the
data budget B. These theoretical results allow us to better understand the behavior of TD algorithms
with respect to temporal resolution h and data budget B. Lastly, we contrast the trade-off with that
of Monte Carlo methods and offer suggestions for choosing temporal resolution in practice. We also
conduct numerical experiments to validate the theoretical findings. To our best knowledge, this work
represents a first step toward understanding the impact of the temporal resolution in TD methods.

2 RELATED WORKS

Temporal discretization It is well known that the choice of temporal discretization can affect the
performance of various RL algorithms. This literature fall into two main categories. The first one
studies temporal abstraction, built on top of a base discretization. Sutton et al. (1999) formalized
this in the options framework. Numerous variants have shown improved performance, particularly
in video games (Sharma et al., 2017; Lakshminarayanan et al., 2017; Machado et al., 2018; Metelli
et al., 2020; Dabney et al., 2021). The other line of work is concerned with the base-level discretiza-
tion rather than building abstractions (Huang et al., 2019; Huang & Zhu, 2020; Park et al., 2021;
Lutter et al., 2022; Farrahi & Mahmood, 2023).

The work with the most relevant problem setting to ours is a recent study by Zhang et al. (2023)
which analyzed the impact of temporal discretization on the value estimation performance of Monte
Carlo methods. Similar to our setting, their work focused on linear quadratic systems and provided
analytical results for both finite horizon and infinite horizon settings. However, Monte Carlo meth-
ods operate in a fundamentally different way from temporal difference. It remains an open question
whether the trade-off observed in their setting extends to TD learning for continuous-time systems.

Continuous-time RL Our work focuses on continuous-time dynamical systems. Although RL
typically assumes a discrete-time framework, several works have applied RL to continuous-time
systems (Baird, 1994; Bradtke & Duff, 1994; Doya, 2000; Wang et al., 2020; Basei et al., 2022;
Jia & Zhou, 2022b). Jia & Zhou (2022a) provides a unified continuous-time formulation of vari-
ous TD methods, and proved that the time-discretized version of these algorithms converge to the
continuous-time counterpart in the limit of the discretization. However, the behavior and estima-
tion error of the discretized TD algorithms with a non-zero discretization h, over a continuous state
space, have yet to be characterized.
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Theoretical analysis of TD Theoretical properties of TD methods have been extensively studied
in the literature, as mentioned in Section 1. However, we do not revisit them here, since our focus
is on understanding how TD value estimation is affected by temporal resolution. Readers interested
in a recent overview of TD theory are referred to the related work sections in Tu & Recht (2018) for
Least-squares based methods and in Patil et al. (2024) for stochastic-gradient based methods.

In this work, we focus on a specific algorithm of TD known as the mean-path semi-gradient TD(0), in
the offline setting. Semi-gradient TD(0), a standard member of the TD family, updates parameters by
following the semi-gradient of the squared TD-error with respect to the parameter (Sutton & Barto,
2018). The mean-path version, introduced by Bhandari et al. (2018), instead follows the mean
negative semi-gradient under the stationary distribution. Their finite-sample analysis for mean-path
TD did not account for time discretization, nor provided closed-form expressions for estimation
quality — both of which are crucial for trade-off analysis. However, this algorithm serves as a
good starting point for our analysis. Relatedly, Xiao et al. (2021) analyzed the fixed-point of offline
semi-gradient TD(0), under finite state space and overparameterized function approximation, which
differs from our setting. And they did not consider time discretization.

3 PROBLEM SETTING

In this section, we describe the setting where the analysis will be performed, namely, the system, the
data, the algorithm, and the objective.

3.1 CONTINUOUS-TIME STOCHASTIC LINEAR QUADRATIC SYSTEM

As discussed in Section 1, the dynamics and the return of the system are given by Eq.1. Without loss
of generality, we set the weight of the reward q = 1 and assume that the process starts at x(0) = 0
(Abbasi-Yadkori et al., 2011; Dean et al., 2020; Zhang et al., 2023). To ensure the value V 2 R is
finite, we assume a < 0. Using Lemma A.1 from (Zhang et al., 2023), we can derive the closed-form
expression for the value V at x(0):

V := V (x(0)) =

Z 1

0

�t�2

2a

�
1� e2at

�
dt =

��2

(ln �)(ln � + 2a)
(2)

We consider a linear function approximation of the value function parameterized by ✓: V✓ (x) =
� (x) ✓, where the value is linear in the feature � (x). We follow Tu & Recht (2018) and choose
the feature as �(x) := x2

�
�2

ln � . Since the value function of a linear quadratic system is quadratic
in the state x, it lies exactly in the span of the features. In particular, at the initial state, we have
V✓(0) = �(0)✓ = �

�2

ln � ✓. Equating with Equation 2 gives the true parameter: ✓⇤ = 1
ln �+2a .

3.2 OFFLINE DATASET SAMPLED AT TIME INTERVAL h

We work with offline data sampled from the continuous-time dynamics described by Equation 1
at discrete time. The dynamics are sampled N times per trajectory, under a finite data budget B.
The data collection procedure is identical to the one in Zhang et al. (2023), where data are sampled
through a uniform discretization of the interval [0, T ], with T < 1 being the estimation horizon,
with time increment h. This results in the collection of N = T/h points (which for simplicity is
assumed to be an integer) over a single trajectory, at times tk := kh, for k = 0, . . . , N � 1. Given
the data budget B, it is therefore possible to sample from M = B/N different trajectories. At each
time instant tk of each trajectory i, the state xi(tk) is observed and the approximate reward incurred
in the interval [tk, tk + h] is computed as ri(tk) = �hx2

i (tk). The offline dataset is gathered as
D = {(xi(tk), ri(tk), xi(tk+1)) | i = 1, 2, . . . ,M and k = 0, 1, . . . , N � 2}.

3.3 MEAN-PATH SEMI-GRADIENT TD(0) ON OFFLINE DATA

The semi-gradient TD(0) algorithm starts with an initial parameter estimate ✓0, which gets up-
dated iteratively toward the true parameter ✓⇤. At iteration t, it updates the current estimate
✓t according to the sampled triplet containing current state, reward and next state (x, r, x0), by
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✓t+1 = ✓t + ↵gt(✓t) where ↵ is the learning rate, and gt(✓t) is the negative semi-gradient at it-
eration t: gt(✓t) =

�
r +

�
�h�(x0)� �(x)

�
✓t
�
�(x), where �h is the effective discount factor in

the discretized system. In this work, we consider instead an offline version of the mean-path TD
introduced by Bhandari et al. (2018), whose update rule involves the mean negative semi-gradient
over some distribution rather than the stochastic gradient. In the offline setting, the mean negative
semi-gradient is computed over the empirical distribution induced by the whole dataset D, collected
according to the procedure described in Section 3.2. The update rule is hence

✓t+1 = ✓t + ↵ḡ(✓t), (3)

where the mean of the negative semi-gradient is

ḡ(✓t) = �r + �(�h�0 � �)✓t

=
1

M(N � 1)

MX

i=1

N�2X

k=0

� (xi(tk))
⇣
ri(tk) +

�
�h� (xi(tk+1))� � (xi(tk))

�
✓t
⌘
, (4)

where �r and �(�h�0 � �)✓t are shorthands denoting taking the mean over the triplet (�, r,�0) in
the dataset.

3.4 OBJECTIVE: MEAN-SQUARED ERROR OF VALUE ESTIMATION

We characterize the Mean-Squared Error of the value estimate from the offline mean-path semi-
gradient TD(0) algorithm described above. It is a function of the parameter estimate ✓t after t
updates: MSEt = E

⇥
(V✓t � V )2

⇤
where V✓t and V are the infinite-horizon value estimate after t-

step updates and the true value, respectively. V✓t is determined by the parameters h,B, T,�,↵, ✓0, t.

4 THEORETICAL RESULTS ON OFFLINE MEAN-PATH TD

The main goal of this section is to gather insights on the behaviour of the MSE with respect to the
temporal resolution parameter h, through the analysis of the evolution of the parameter ✓t. Recall
that the ground truth value is V = �

�2

(ln �)(ln �+2a) . With t step update with the semi-gradient, we
have the value estimate V✓t = �

1
ln ��

2✓t. The corresponding MSE can be expressed as follows:

MSEt = E
⇥
(V✓t � V )2

⇤
=

�4

(ln �)2

 
E[✓2t ]�

2E[✓t]
ln � + 2a

+

✓
1

ln � + 2a

◆2
!
, (5)

where the expectation is taken w.r.t. the distribution of the data generated by the process x(·).

4.1 MSE FOR OFFLINE MEAN-PATH SEMI-GRADIENT TD(0)

The following theorem provides the characterization of the MSE for Offline Mean-Path Semi-
gradient TD(0) after t updates, provided the discretization step-size is small: h 2 (0, 1).

Theorem 4.1 (Mean Squared Error). After t updates, the mean squared error is

MSEt =
�4

(ln �)2

(
⇥
t2↵2

I3 + 2t↵✓0 (I1 + (2t� 1)↵I5) + ✓20
�
1 + 2t↵I2 + t(3t� 2)↵2

I4

�⇤

�
2

ln � + 2a


✓0 + t↵(I1 + I2✓0) +

t(t� 1)

2
↵2 (I5 + I4✓0)

�
+

✓
1

ln � + 2a

◆2
)

+O(h3) (6)

where I1, · · · , I5 are auxiliary terms dependent on h but not t,↵, introduced in Appendix A.2.

Importantly, the MSE can be expressed as:

MSEt = C0 + C1h+ C2h
2 +O(h3) (7)
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where C0 � 0, C1  0, C2 � 0 are constants with respect to h, given by:

C0 =
�4

(ln �)2

✓
✓0 �

1

ln � + 2a

◆2

,

C1 =
t↵�4

(ln �)2

✓
✓0 �

1

ln � + 2a

◆2
"
�2 (2a+ ln �)C11 +

↵(2t� 1) (2a+ ln �)2 C31

B

#
,

C2 =
t↵�4

(ln �)2

✓
✓0 �

1

ln � + 2a

◆2 
2C23 � 2(2a+ ln �)C12+

(C2
11 +

C320

B
)(2a+ ln �)2(2t� 1)↵

�
.

The constants C11 < 0, C12 > 0, C23 > 0, C31 < 0, C320 > 0 depend only on a, T, ln �,�4
, and

their precise forms are given in Appendix A.2.

The theorem presents the expression for the t-step MSE in Equation 6. In order to clearly exhibit the
order of h in the MSE, we derive another approximate form of t-step MSE in Equation 7, offering
more interpretable insights. For small h, the MSE approximately follows a quadratic relation in h,
and the minimum is attained when h is strictly positive, i.e., h⇤ > 0. It confirms the existence of a
trade-off in the temporal resolution parameter for the offline mean-path semi-gradient TD(0).

4.2 OPTIMAL TEMPORAL RESOLUTION h⇤

The optimal discretization step-size h⇤ represents the time interval at which we would ideally sample
our dynamical system in order to have the best estimation of the value in term of the MSE. A precise
form for this optimal parameter can be found by exploiting the approximate expression of the MSE
in Equation 7, as shown in the next corollary.

Corollary 4.2 (Optimal Discretization). The optimal h⇤
based on the approximation Equation 7

after t updates is

h⇤
⇡ �

C1

2C2
= �

�2 (2a+ ln �)C11 +
↵(2t�1)(2a+ln �)2C31

B

2
⇥
2C23 � 2(2a+ ln �)C12 + (C2

11 +
C320
B )(2a+ ln �)2(2t� 1)↵

⇤ , (8)

and the minimum MSE is

MSE⇤
t ⇡

�4
⇣
✓0 �

1
ln �+2a

⌘2

(ln �)2
2

641�
4ta↵

⇣
�2 (2a+ ln �)C11 +

↵(2t�1)(2a+ln �)2C31

B

⌘2

2C23 � 2(2a+ ln �)C12 + (C2
11 +

C320
B )(2a+ ln �)2(2t� 1)↵

3

75 . (9)

The expression in Equation 8 is clearly dependent on the specific dynamical system or environment
at hand. Therefore setting the time discretization to the optimal value would be impossible without
full knowledge of the dynamics. Although it is possible to empirically find the optimal temporal
resolution by sweeping over different discretization intervals, it would be impractical to sample the
dataset at different frequencies just to maintain the one that has proved the most effective in terms
of the MSE for the value estimation. On the other hand, if the 1/B terms are relatively small, the
resulting optimal h would be insensitive to the change in B. We will show empirically in Section 5
that it is indeed the case.

For large enough data budgets B, we can show that the optimal time discretization h⇤ is independent
from the data budget, and further simplify the expressions, shown in the next corollary.

5
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Corollary 4.3 (Asymptotic Optimal Discretization). (i) If the budget B is large while the horizon T
is fixed and finite, one can obtain

MSEt =
�
1 + t↵

⇥
�2 (2a+ ln �) (C11h+ C12h

2) + 2C23h
2 + C2

11h
2(2a+ ln �)2(2t� 1)↵

⇤ 

⇤
�4

(ln �)2

✓
✓0 �

1

ln � + 2a

◆2

+O(
1

B
) +O(h3).

h⇤
⇡ �

�2 (2a+ ln �)C11

2 [2C23 � 2(2a+ ln �)C12 + C2
11(2a+ ln �)2(2t� 1)↵]

.

(ii) If the horizon T is large (and thus B is also large, since B = TM
h ), we have

MSEt =
�4

(ln �)2

✓
✓0 �

1

ln � + 2a

◆2⇢
1 + t↵


�4(2a+ ln �)(2a+ 3 ln �)

2a2 ln �
h

+ (2a+ ln �)2
✓
3�4

4a2
+

�8(2a+ 3 ln �)2(2t� 1)↵

16a4(ln �)2

◆
h2

��
+O(

1

T
) +O(h3).

h⇤
⇡ �

4a2 ln �(2a+ 3 ln �)

(2a+ ln �) (12a2(ln �)2 + �4(2a+ 3 ln �)2(2t� 1)↵)

Remark 4.4. The two cases in Corollary 4.3 are consistent: letting T be large in (i) recovers the
expression in (ii).

How to choose temporal resolution for TD The fact that h⇤ is insensitive to the data budget B
has important practical implications. An optimal h⇤ can be efficiently determined by performing a
grid search on h using a baseline data budget B0. Concretely, we can consider an initial “burn-in”
phase: collect a dataset of size B0, estimate the value V via Monte Carlo as in Zhang et al. (2023),
and perform a grid search over h based on the empirical MSE, by sub-sampling this dataset. Then
increasing B can verify if h⇤ remains stable. If so, the same h can be reused for larger data budgets,
thereby reducing hyperparameter search costs while maintaining accurate value estimation.

4.3 COMPARISON WITH MONTE CARLO

Recent work by Zhang et al. (2023) established that Monte Carlo (MC) estimation exhibits a trade-
off in MSE w.r.t. h, under the same problem setting as ours. They derived the exact MSE expression
(Theorem 3.6 in Zhang et al. (2023)) and showed that MSEMC = O( 1

hB + h). They further demon-
strated that the optimal h scales polynomially with B, namely: h⇤

MC ⇡ B�1/2. In contrast, our
analysis indicates that for TD learning, the optimal step-size h⇤ behaves differently – it remains
largely constant w.r.t. B.

To build intuition, consider how variance reacts to the changes in the data budget B. TD implicitly
performs a maximum-likelihood fit of the value-function parameters within its chosen model (Sutton
& Barto, 2018). Once sufficient data are available to obtain a stable parameter estimate, additional
samples yield little further variance reduction. This explains why the trade-off and hence h⇤ is
largely insensitive to B. In contrast, the Monte-Carlo estimator in Zhang et al. (2023) directly
averages returns. Increasing B continues to reduce trajectory variance, hence affecting the trade-off.

In the next section, we present numerical experiments that illustrate and confirm these theoretical
differences between TD and MC estimation.

5 NUMERICAL EXPERIMENTS

To empirically validate our theoretical analysis in the previous section, we conduct simulations on
continuous-time stochastic linear quadratic systems. While our theoretical framework characterizes
the trade-off in Langevin dynamics, we investigate whether these insights hold for TD in practice,
especially for multi-step updates. By systematically varying temporal resolution, data budget, and
system parameters, we quantify how the discretization choices impact the MSE of the value estima-
tion of TD. We also perform a comparison between TD and Monte Carlo methods.

6
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Figure 2: Trajectory of the parameter ✓t as it converges to the fixed point ✓LSTD

5.1 OFFLINE TD ON LINEAR QUADRATIC SYSTEMS

In our experiments, we perform 50 independent runs to approximate the expectation in the MSE
computation. In each run, we generate a new dataset by simulating the Langevin process of Sec-
tion 3.1 with a unique random seed, following the procedure outlined in Section 3.2. We then apply
the offline mean-path semi-gradient TD(0) algorithm, as described in Section 3.3, to obtain an es-
timate and compute the squared error relative to the true value. The lines in the plots represent the
mean squared error averaged over the 50 runs, while the shaded regions indicate the standard error.
We fix the parameter � = 1 throughout the experiments. The values of h is chosen from this grid:
h 2

�
{2�15, 2�14, · · · , 2�2

}
�
T .

Trajectory and convergence of the iterates: In order to understand the evolution over updates of
the parameter ✓t, when following the gradient dynamics in equation 3, we can start by looking at
the fixed points of the latter. If ✓̄ is a fixed point of the gradient dynamics, then from equation 3 we
have that ✓̄ must satisfy ḡ(✓̄) = 0. From equation 4 we then derive:

✓̄ = �

⇣
�(�h�0 � �)

⌘�1
�r

= �

 
MX

i=1

N�2X

k=0

� (xi(tk))
⇥
�h� (xi(tk+1))� � (xi(tk))

⇤
!�1 MX

i=1

N�2X

k=0

� (xi(tk)) ri(tk), (10)

which represents the unique fixed point, and it coincide with the LSTD estimate ✓LSTD.
Convergence to the LSTD estimate is empirically shown in Figure 2, where the evolution of the
parameter ✓t converges to the unique fixed point, and indeed the average gradient converges to 0.
From Figure 2 one can note that ✓t converges to the LSTD estimate even if it starts closer to the true
parameter ✓⇤, as is the case in top right plot, while convergence to the optimal parameter is achieved
only if the latter coincide with ✓LSTD, as shown in bottom right plot.
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Figure 4: MSE under varying B and a, respectively

Figure 5: Empirical MSE as a function of h as number of steps increase

Figure 3: Asymptotic MSE

Asymptotic MSE vs h: In Figure 3, we illustrate how
the asymptotic MSE varies with h, under the parameters
a = �8, T = 8, � = 0.9. For each h, the learning rate
is optimized from {0.1,1.0,10.0} and TD is run until con-
vergence. The plot shows the MSE for three different ini-
tializations of ✓0. In all cases, the iterates converge to the
LSTD estimate, consistent with the earlier discussion on
convergence.

Dependence of MSE and h⇤
on the data budget B:

We plot the asymptotic MSE of TD as a function of B
while keeping other parameters fixed to a = �8, T =
8, � = 0.9, ✓0 = 0. As shown in Figure 4 (left), increas-
ing B generally reduces the MSE, since more data yields
more accurate estimates. However, varying B has negligible effect on the optimal step size h⇤.
It aligns with the trend in Figure 10 for one-step TD (Appendix), where h⇤ remain stable across
different B.

MSE under varying dynamics parameter a: Figure 4 (right) illustrates the asymptotic MSE
when we vary system dynamics parameter a over {�1,�2,�4,�6,�8,�16}. The other parame-
ters are fixed to T = 8, B = 4096, � = 0.9, ✓0 = 0. As |a| increases, the MSE across all step sizes
h decreases as the system decays faster.

MSE at various number of updates t: Figure 5 illustrates how the MSE evolves w.r.t h over
update steps, under two different algorithm parameter settings while keeping the system parameters
fixed at a = �8, T = 8, B = 16384, � = 0.9. In both plots, the algorithm is run for 100 update
steps for each fixed h, with learning rate ↵ = 0.1. The left plot starts from ✓0 = 0, while the
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Figure 6: MSE of TD compared with MC

right plot starts from ✓0 = 0.4. In both cases, the MSE decreases with the number of updates and
converges quickly. However, the trade-off in MSE w.r.t h persists as the updates progress. Notably,
the optimal step size h⇤ appears to remain stable once the number of updates t is sufficiently large.

5.2 COMPARING THE VALUE ESTIMATION ACCURACY OF TD AND MONTE-CARLO

To gain more insights into the value estimation accuracy of TD and MC, we evaluate the MSE of
TD with multi-step updates, and compare it against both MC with the same T and the theoretically
optimal MSE⇤ that MC could achieve, in Figure 6. The optimal MC performance is obtained by
optimizing the expression of its MSE w.r.t both T and h, which occurs at T ⇡ 52. The results show
TD outperforms the optimal MC performance. This demonstrates that, when appropriately tuned,
TD is a highly effective method for value estimation.

6 LIMITATIONS AND FUTURE WORK

While our work provides a framework for understanding the impact of temporal resolution in TD,
it has a limited scope. Our analysis is confined to a specific class of systems and algorithms. In
particular, we focus on one-dimensional Langevin systems and study the offline mean-path semi-
gradient TD(0) algorithm. As a result, the extent to which our findings generalize to more complex
dynamical systems and alternative TD algorithms remains an open question. Exploring how value
estimation responds to temporal resolution in broader settings, including higher-dimensional, non-
linear environments and different learning paradigms, is an important direction for future work.

7 CONCLUSION

In this work, we provided a theoretical and empirical investigation into the impact of temporal
resolution on offline Temporal Difference value estimation. By analyzing the Mean-Squared Er-
ror of the mean-path semi-gradient TD(0) algorithm in continuous-time stochastic linear quadratic
systems, we demonstrated the existence of a non-trivial trade-off in step size h where an optimal
discretization improves estimation accuracy. Our analysis further revealed that unlike Monte Carlo
estimation, where the optimal h scales polynomially with the data budget B (Zhang et al., 2023), the
optimal h for TD remains largely invariant to B. This provides practical guidance: one can select
an appropriate temporal resolution under small data budgets without re-tuning for larger data.

Through extensive numerical experiments, we verified our theoretical predictions and explored the
behavior of TD estimation across different system parameters. Additionally, we compared TD with
MC and showed that TD can outperform MC under the same data budget.

This work establishes a framework for analyzing the role of temporal resolution in TD methods,
contributing to a deeper understanding of how step size influences learning dynamics. Future direc-
tions include extending this analysis to more complex environments, higher-dimensional systems,
and alternative TD formulations.
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REPRODUCIBILITY STATEMENT

The assumptions underlying our theoretical results are stated in the main text, and complete proofs
are provided in the Appendix. The supplementary materials contain the Mathematica scripts and
data used for symbolic computations supporting our analysis of one-step and multi-step MSE. To
illustrate the complexity of the expressions, we also provide the exact formula for the one-step MSE.
In addition, we include the Python code used to conduct the offline TD numerical experiments.
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