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Abstract

Unlicensed 6 GHz is becoming a primary workhorse for high-capacity access, with
Wi-Fi and 5G NR-U competing for the same channels under listen-before-talk
(LBT) rules. Operating in this regime requires decisions that jointly trade through-
put, energy, and service-level objectives while remaining safe and auditable. We
present an agentic controller that separates policy from execution. At the start
of each scheduling epoch the agent summarizes telemetry (per-channel busy and
baseline LBT failure; per-user CQI, backlog, latency, battery, priority, and power
mode) and invokes a large language model (LLM) to propose a small set of inter-
pretable knobs: a fairness index «, per-channel duty-cycle caps for Wi-Fi/NR-U,
and class weights. A deterministic optimizer then enforces feasibility and computes
an o-fair allocation that internalizes LBT losses and energy cost; malformed or
unsafe policies are clamped and fall back to a rule baseline. In a 6 GHz simulator
with two 160 MHz channels and mixed Wi-Fi/NR-U users, LLM-assisted policies
consistently improve energy efficiency while keeping throughput competitive with a
strong rule baseline. One LLM lowers total energy by 35.3% at modest throughput
loss, and another attains the best overall trade-off, finishing with higher total bits
(4+3.5%) and higher bits/J (+12.2%) than the baseline. We release code, per-epoch
logs, and plotting utilities to reproduce all figures and numbers, illustrating how
transparent, policy-level LLM guidance can safely improve wireless coexistence.

1 Introduction

Unlicensed 6 GHz spectrum is rapidly becoming a workhorse for high-capacity wireless access, with
Wi-Fi 6E/7 and 5G NR-U expected to coexist in the same channels [Wang et al.|[2022]. The resulting
environment is shaped by LBT rules, bursty traffic, heterogeneous device batteries and priorities,
and tight latency targets for interactive and safety-critical applications. Conventional schedulers are
typically crafted around a fixed objective, such as sum-rate maximization or proportional fairness,
and rely on static heuristics to avoid collisions. While effective in specific regimes, these designs
struggle to adapt when operating conditions drift, and they provide limited knobs to navigate the
three-way tension between throughput, energy, and service-level objectives|Liu et al.| [2025]].

State-of-the-art solutions for managing spectrum coexistence between technologies like Wi-Fi and
NR-U predominantly fall into two categories: static rule-based schedulers and complex learning-
based systems like deep reinforcement learning (DRL) [Kalahe-Wattege and Beltran| [2024]]Zhang
et al.|[2023b]]. Rule-based schedulers are reliable and predictable but are fundamentally brittle; they
are designed with fixed priorities, such as maximizing overall throughput, and struggle to dynamically
adapt when network conditions and objectives change Kalahe-Wattege and Beltran| [2024]. For
example, they cannot easily pivot to prioritize energy efficiency or meet a specific user’s urgent
latency demand when the network becomes congested . On the other hand, while DRL agents can
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learn sophisticated policies to manage these trade-offs, they often operate as "black boxes," making
their decisions difficult to interpret, audit, or trust in a production network [Zhang et al.[[[2023b] .
Furthermore, DRL systems require extensive, often impractical, online training cycles to converge on
an effective policy.

Our paper solves this critical gap by introducing an agentic controller that separates high-level
reasoning from low-level execution. It leverages a LLM to interpret the complex, multi-faceted
network state and propose a simple, human-understandable set of policy "knobs"—such as the fairness
level and duty-cycle caps|Hao et al.|[2024]] Wang et al.|[2024]. This approach avoids the rigidity of
fixed rules and the opacity of DRL, providing a solution that is simultaneously adaptive, auditable,
and capable of intelligently balancing the conflicting objectives of throughput, energy efficiency, and
service level agreements (SLA) on a dynamic, per-epoch basis.

At the start of each scheduling epoch, the agent encodes the observable state—per-channel busy
levels and baseline LBT failure probabilities for both Wi-Fi and NR-U, together with per-user CQI,
backlog, latency target, battery state, task priority, and power mode—into a compact JSON summary.
A high-level policy then chooses a small set of interpretable knobs: a fairness index, per-channel duty-
cycle caps for each stack, and priority weights across traffic classes. This policy can be instantiated
either as a deterministic rule or as a LLM prompted to reason about energy-aware, latency-aware
spectrum sharing.

We evaluate the agent in a 6 GHz simulator with two 160 MHz channels and mixed Wi-Fi/NR-U
populations. Across moderate and high offered loads, LLM-assisted policies consistently reduce
cumulative energy and improve energy efficiency (bits/J) relative to a strong rule baseline, while
maintaining competitive or superior cumulative throughput. In a representative scenario, one LLM
variant lowers total energy by more than a third while the other achieves the best overall trade-off,
finishing with higher total bits and the highest bits/J.

The remainder of this paper is structured as follows. In Section II, we detail the system model and
formulate the multi-objective resource allocation problem. Section III presents the design of the
LLM-assisted agentic controller. We describe our simulation environment and the baseline rule-based
scheduler used for comparison in Section IV. In Section V, we present a comprehensive evaluation of
our proposed system, analyzing its performance across key metrics of network throughput, energy
efficiency, and SLA satisfaction against the baseline. Finally, we conclude the paper in Section VI.

2 System Model and Problem Formulation

2.1 System Model

We consider a 6 GHz unlicensed band shared by Wi-Fi and 5G NR-U. Time is slotted into fixed
scheduling epochs of length A seconds (default A = 0.1), and all control decisions are recomputed
once perepocht = 1,2, ... The system comprises a finite set of channels C (two 160 MHz channels in
the default configuration) and two coexisting technology stacks 7" = {Wi-Fi, NR-U}. Each channel
¢ € C has bandwidth B, and is characterized by exogenous LBT conditions that vary slowly over
time. Specifically, for each stack ¢ € T and channel ¢, we track a sensed busy fraction b, .(t) € [0, 1]
and a baseline LBT failure probability f; .(t) € [0, 1], both subjected to small random jitter between
epochs to emulate environmental dynamics. These quantities are taken as inputs to the scheduler and
are observable before each decision.

Users are partitioned by stack, U = Uyyi.pi UUnr-u. A user ¢ € U is described at epoch ¢ by a channel
quality indicator ¢;(t) € {0,..., 15}, a battery state B;(t) € [0, 1], a queue backlog Q;(¢) in bits, a
latency target D; in milliseconds, a task priority class k; € {emergency, high, normal, bulk}, and a
discrete power mode p; € {low, med, high}. New traffic arrivals A;(t) are injected into the queue
each epoch according to a truncated Gaussian process with a configurable mean; the queue dynamics
obey

Qi(t+1) = max{0, Q;(t) + A;(t) — Si(t) }, 1)

where S;(t) denotes the number of bits served to user ¢ during epoch ¢ Wang et al.| [2020]. The
simulation exposes these elements as first-class state variables that are evolved by a lightweight
environment model prior to each scheduling step.
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Physical-layer throughput is modeled via a CQI-to-spectral-efficiency mapping. For user ¢ on channel
¢, the spectral efficiency (bits/s/Hz) is

sic(t) = SE(qi(t)) - mp,, 2)

where SE(-) is a standard 16-level table and 7, scales the efficiency under the user’s power mode. If
Tic(t) € [0, 1] is the airtime fraction allotted to 7 on ¢ during epoch ¢, then the pre-LBT raw rate is

Ti,c(t) = Si,c(t) Bc Ti,c(t)- (3)

Shared-channel contention and regulatory LBT constraints induce a stack—channel loss that we
capture with a smooth proxy. Let 7 .(t) = >, Ti.c(t) be the aggregate airtime of stack ¢ on

channel c in epoch ¢. The loss fraction applied uniformly to all users of (¢, ¢) is

lo(t) = minf 0.95, fo(t) + 0.67,0(1) bre(t) + 0.2 () +bre() = 1), |, @)

with (2)+ = max{x,0}. The post-LBT goodput for user i on ¢ is then

Gie(t) = ric(t) (1=Lle, (1)),  Si(t) = A gio(t). 5)

ceC

Energy is modeled through a per-bit cost that depends on the power mode and the achieved spectral
efficiency. Writing P(p;) for the mode-dependent transmit power and e; .(¢t) = P(p;)/s;..(t) for
joules per bit, the per-epoch energy is

Ei(t) = > eio(t) Si(t). (©6)
ceC

The above link, loss, and energy models mirror the implementation used by our simulator, where (@)
is realized as a differentiable proxy to capture LBT-driven collisions/backoff at the stack—channel
granularity.

Service-level latency is expressed as an instantaneous rate requirement. Given backlog Q;(t) and
latency target D;, the minimum rate that avoids deadline slippage within epoch ¢ is

pi(t) = min{ QiA(t)ﬂ D?/il(é)()o}’ O

and an SLA hit is registered whenever > __ g; .(t) > p;(t). The policy layer that precedes optimization
provides three high-level knobs per epoch: a fairness index « € {0, 1,2}, per-channel duty-cycle
caps uY ' ulRU € [0, 1], and priority weights {wy, } e {emergency,high normal bulk} - Caps are constrained
by sensed load through a headroom rule of the form u’, < 1 — ~b; .(t) with v € (0,1), ensuring
that aggregate scheduled airtime remains feasible under exogenous activity. These quantities are
produced either by a deterministic rule or by a LLM from a compact JSON state summary, and are

clamped to safe ranges before optimization.

2.2 Problem Formulation

Let z; .(t) € {0,1} indicate whether user ¢ is scheduled on channel ¢ during epoch ¢. Each user
is bound to at most one channel per epoch, > z;.(t) < 1, and receives a nonnegative airtime
Ti,e(t) € [0,1] that is consistent with the assignment via 7; .(t) < x;.(t). Per-stack duty caps
provided by the policy enforce

Z Tie(t) < uZVi'Fi, Z Tic(t) < uN®Y VYeed, 8)

1€EUW;Fi 1EUNRU

and interact with LBT through (@)—(3). The per-user post-LBT rate in epoch t is z;(¢) = > g .(t),
and the per-epoch energy is E;(¢) in (). A standard weighted o-fair utility is adopted Wang and
Zhou! [2019]],
logz, a=1,
Uy(z) = l—a x>0, 9
AU N, ©
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and each user 7 is endowed with a base weight §; = ———————— that increases with priority and
g 0.5+ B(B;) prionty
penalizes low battery via a monotone function 3(-). The single-epoch allocation problem can then be

stated as

max ) Zez Ua (Zgi,c(t)) - /\ZEz(t) (10)

e el i ceC ieUd
s.t. link and LBT coupling in (3)-(3),

capsin (), 7;..(t) €[0,1], x;.(¢t) € {0,1}, in,c(t) <1.

Here )\ > 0 trades off energy against throughput in the objective; in our implementation the energy
term is effectively captured by the interaction of (6)) with the weights 6; and per-duty utility densities
used during channel selection, while the reported a-fair utility remains the primary figure of merit.
Hard per-epoch latency guarantees may be included as >, g; o(t) > p;(t) for selected flows, but
we favor a pragmatic approach in which minimum “urgent” grants are applied procedurally before
the proportional a-fair split on the remaining budget—an approach that preserves tractability while
honoring latency-sensitive traffic.

Problem is solved independently at each epoch using policy-provided knobs (v, {u’}, {wy}),
yielding the airtime variables {7; .(¢)}, post-LBT rates {g; .(¢)}, and per-epoch metrics (throughput,
energy, and SLA hit rate) that feed back into the next epoch via (I). This separation between a
high-level, possibly LLM-driven policy and a verifiable optimizer enables safe orchestration: policy
outputs are clamped to feasible ranges, and the optimizer enforces hard constraints at execution time.

3 Method: Agent Architecture

This work adopts an agentic architecture that separates high-level spectrum policy from low-level
optimization. The policy layer proposes a fairness index «, per-channel duty-cycle caps for Wi-Fi
and NR-U, and task-class priority weights from observable telemetry; the optimizer then enforces
feasibility and computes an «a-fair allocation while accounting for LBT losses, energy, and latency.
The separation ensures that the intelligence responsible for strategic trade-offs is modular and
replaceable (rule-based or LLM-driven), whereas the executor is verifiable and deterministic. The
implementation follows this design in a single-epoch loop with environmental evolution between
epochs.

3.1 Telemetry encoding and policy interface

At the beginning of each epoch of length A, the environment exposes a compact JSON state
containing channel descriptors (bandwidth B,, sensed busy b; ., and baseline LBT failure f; . for
each stack ¢ on channel ¢) and user descriptors (CQI ¢;, battery level B;, backlog @);, latency target
D, task priority k;, and power mode p;). The function build_state_json produces this state
and adds lightweight hints such as candidate « values. A policy consumes this JSON and returns
three objects: an o € {0, 1, 2}; duty caps {uXV"F yNB-Ul: and priority weights {wy,} for classes
emergency/high/normal/bulk. The project ships two variants of the policy interface: a rule
baseline that biases caps toward the busier stack while reserving headroom, and an LLM policy
that emits a JSON policy either via a chat completion in JSON mode or via a Responses API call
constrained by a JSON Schema; in both cases the returned values are coerced to safe ranges prior to
optimization.

3.2 Safety, feasibility, and fallbacks

The fairness index is restricted to {0, 1,2}; duty caps are clipped to [0, 1] and to a busy-aware
headroom u! <1 — b, . (withy € (0,1) implemented as 0.5 in the code); and priority weights are
confined to a bounded interval [0.1, 10]. If the LLM call fails or returns malformed JSON, the system
falls back to the deterministic rule policy, ensuring that every epoch yields a feasible control. Optional
textual rationales from the LLM are preserved for auditability but do not affect the optimizer.
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3.3 Epoch solver: two-stage optimization

Given the policy knobs, the optimizer solves the epoch using a two-stage scheme tailored to coexis-
tence with shared LBT losses.

The first stage assigns each user to one channel by maximizing a utility density computed under
a small probe airtime 7, which approximates the value per unit of duty cycle while internalizing
energy and latency costs. For user 7 on channel c, the pre-loss rate is ; . = s; .B.7o, where s; . is
the CQI- and power-mode—dependent spectral efficiency. The stack-channel loss is modeled by a
smooth proxy:

Et,c = mln{095, ft,c + 0.6 Tt,c bt,c + 0.2 (Tt,c + bt,c — 1)+} N (] ])
with 7 . being the aggregate duty of stack ¢ on channel c¢. The probe goodput is g; . = 7 (1 — 44, ¢),
probe

and the corresponding energy consumed during the probe is £; .. The assignment score reflects a
direct trade-off between this goodput and the energy cost, defined as:

’ T0 i 106

Reward: Weighted Goodput (Mbps) Cost: Battery-Scaled Energy

1 -
Bio = — | wp - I (D))~ BB BT, (12)
—_———

where wy, is the user’s priority weight, wy, (D;) is a multiplier that increases the reward for latency-
sensitive users (e.g., those with D; < 50 ms), and 5(B;) is a penalty factor that increases as battery
level B; decreases. The channel with the maximal score ®; . is chosen for user . This stage has
complexity O(|U||C|) and captures the primary cross-channel trade-offs.

The second stage performs within-channel allocation under the duty caps provided by the policy. For
each channel and stack, the available duty budget < ! is split in two passes. A first pass grants urgent
minimums to latency-critical or high-priority users, allocating the minimal duty required to meet their
instantaneous rate requirement p; = min{Q;/A, Q;/(D;/1000)}. A second pass distributes the
residual budget via a weighted a-fair rule, where user ¢ receives a portion of the airtime proportional
to:
Wi, -«

w; = (O5—f—ﬂ(_82)> . (Servedi + E) . (13)
Here, served; is the service a user has already received within the epoch (from the urgent grant) and
€ > 0is a small constant to ensure stability. After all duties are provisionally assigned, the final
aggregate duties are used to recompute the stack-channel losses ¢; ., from which the final per-user
goodput and energy consumption are determined.

3.4 SLA evaluation, queue update, and logging

Following allocation, the achieved per-user rate ) . g; . is compared against p; to determine SLA
hits in the current epoch. The served bits are subtracted from backlogs to update @); for the next
epoch, ensuring tight coupling between control and traffic dynamics. In multi-epoch mode, the driver
run_multi_epoch evolves channels and baselines with small Gaussian jitters, injects arrivals with a
configurable mean, repeatedly invokes the epoch solver.

3.5 LLM-Assisted Decision Making

At the beginning of each epoch, the agent summarizes the observable telemetry into a compact JSON
state that includes per-channel descriptors (bandwidth, sensed busy fractions, and baseline LBT
failure rates for each stack) and per-user descriptors (CQI, battery level, backlog, latency target,
task priority, and power mode). This serialization, produced by build_state_json, is passed
to a large language model that proposes high-level control knobs: a fairness index « € {0, 1,2},
per-channel duty-cycle caps for Wi-Fi and NR-U, and task-class priority weights. We implement
two invocation modes to ensure robustness: a chat-completions call constrained to JSON output, and
a Responses-API call that enforces a JSON Schema with strict types and bounds. In both modes
the model is prompted as a spectrum policy orchestrator and asked to trade off latency, energy, and
fairness while avoiding per-user micromanagement. The LLM may return brief rationales, which are
logged for audit but are not used downstream in optimization.
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The raw policy is never executed directly. Instead, coerce_policy_from_11m enforces feasibility
and safety by clamping « to {0, 1, 2}, projecting duty caps to [0, 1] and to a busy-aware headroom of
the form u’, < 1 — b (with y € (0, 1)), and restricting priority weights to a bounded interval that
prevents extreme allocations. Any parsing failure, schema violation, or out-of-range proposal triggers
a deterministic rule fallback that biases caps toward the empirically busier stack while reserving
headroom, guaranteeing that every epoch yields a valid policy even under LLM faults.

Given the sanitized knobs («, {u’}. ¢, {wy }1), the optimizer solves the epoch in two stages. First,
it assigns each user to a single channel by maximizing a probe-time utility density that internalizes
post-LBT goodput, energy cost, deadline pressure, and priority/battery weights. Second, within each
channel and stack, it grants minimal duties to satisfy urgent latency targets and then allocates the
remaining budget according to a weighted a-fair rule. After duties are finalized, stack—channel LBT
losses are realized and per-user goodputs and energies are computed. The selected « and per-epoch
metrics (throughput, energy, SLA hit rate) are recorded, and the agent advances to the next epoch
with updated queues. This integration makes the LLM responsible only for transparent, high-level
decisions, while a verifiable executor enforces hard constraints at run time.

The core of the interaction between the agent and the LLM is a structured JSON object that serves as
the complete state representation provided at the start of each scheduling epoch. The JSON object is
organized into two primary keys: channels and users. channels: An array of objects detailing
the physical state and contention level of each frequency channel. For each channel, we provide
its bandwidth (bw_mhz), the measured busy-time contributed by Wi-Fi and NR-U (busy_wifi,
busy_nru), and the baseline LBT failure probability. users: An array of objects representing the
state of each active user. For each user, the prompt specifies their technology (tech), channel quality
indicator (cqi), data backlog in bits (backlog_bits), remaining time to meet their SLA deadline
(deadline_s), battery percentage (battery_pct), and assigned service priority class (priority).

4 Experimental Setup and Results

4.1 Experimental Setup

We evaluate the agent in a simulated 6 GHz unlicensed band with two 160 MHz channels shared
by Wi-Fi and NR-U. Each experiment spans 7T'=100 scheduling epochs of length A=0.1s (total
horizon 10 s) |Ghosh|[2023]]. The default user population includes 16 Wi-Fi and 12 NR-U stations
with heterogeneous channel quality indicators (CQI), battery levels, queue backlogs, latency targets,
task priorities, and power modes. Channel descriptors include sensed busy fractions and baseline
LBT failure probabilities for both stacks, all subject to small Gaussian jitter between epochs to
emulate environmental dynamics. Traffic arrivals are injected every epoch as truncated Gaussians,
and queue evolution follows the standard Lindley recursion. The simulator exposes these elements as
first-class state variables (User, Channel, Env) and advances them via step_env before each decision;
the single-epoch solver is called from one_epoch_allocate, and multi-epoch orchestration from
run_multi_epoch. The code also logs per-epoch throughput (served bits), energy (J), SLA hit rate,
and the fairness index «. The code is available at: https://github.com/claudwq/LLM-Assisted-Alpha-
Fairness-for-6-GHz-Wi-Fi-NR-U-Coexistence.git

The policy layer is either rule-based or LLM-driven. The rule baseline computes per-channel
duty-cycle caps for the two stacks, reserving headroom as a function of sensed busy, and then chooses
the best-throughput o€ {0, 1, 2} each epoch (“benevolent” baseline). The LLM policy sees the same
telemetry as a compact JSON, selects a single «, per-channel caps, and class weights, and is then
clamped by coerce_policy_from_11m for safety before the optimizer is invoked. The optimizer
itself is deterministic: it assigns a single channel per user via a utility-density score that internalizes
post-LBT goodput, energy cost, and deadline pressure, and then performs a within-channel weighted
a-fair split under the cap constraints, realizing LBT loss and energy using the final aggregate duties.
The complete path and data schema are implemented in 11m_spectrum_agent_fairness.py and
its LLM interface variant.

We compare three methods: RuleBased (no LLM, benevolent «), GPT40-Mini (LLM-assisted
policy), and GPT5-Mini (LLM-assisted policy) Zhang et al.| [2023a]]. All experiments use seed 2025
and the default arrival and jitter settings in the code unless otherwise noted.
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Figure 1: Moderate load (40 Mb/s) results.

5 Results Analysis

We report results for three policies—RuleBased (benevolent o€ {0, 1,2} chosen per epoch), GPT4o-
Mini, and GPT5-Mini—over T=100 epochs with A=0.1s. Metrics are computed directly from the
simulator logs: per-epoch served bits, energy (J), and SLA hit rate; we plot cumulative throughput
(Gb), cumulative energy (J), and cumulative energy efficiency (bits/J).

5.1 Moderate Offered Load (40 Mb/s)

Under the moderate arrival rate, camulative throughput rises rapidly during the first 20-30 epochs as
the scheduler drains initial backlogs, then transitions to an arrival-limited regime in which curves
flatten. In this setting, GPT5-Mini ultimately surpasses the baseline in total delivered bits while
spending less energy, whereas GPT40-Mini attains the lowest energy but at the cost of reduced
throughput. The cumulative energy plots show that RuleBased expends the most energy across
the horizon; this aligns with its tendency to choose a=0 and to push higher duties into collision-
prone regions. The cumulative energy-efficiency trajectories confirm the advantage of LLM-assisted
control: both LLM policies maintain higher bits/J than the rule baseline for most of the horizon, with
GPT5-Mini finishing highest. Intuitively, the LLMs propose headroom-aware caps and a fairness
regime closer to a=1, which lowers collision losses without starving progress, yielding better energy
efficiency at comparable or higher cumulative bits.

5.2 High Offered Load (150 Mb/s)

With higher offered traffic the system remains service-limited for longer, and the differences between
policies become more pronounced. The throughput curves indicate that GPT5-Mini sustains the
fastest cumulative growth and finishes with the highest total bits, while GPT40-Mini again trades
some throughput for substantial energy savings. Total energy consumption is highest for the rule
baseline across the entire horizon, reflecting aggressive duty usage that amplifies LBT loss; both
LLM policies keep cumulative energy lower, and GPT5-Mini delivers a favorable balance of bits
and joules. The energy-efficiency curves mirror these trends: LLLM-assisted control dominates the
baseline throughout most of the run, with GPT5-Mini providing the strongest long-horizon bits/J and
GPT4o0-Mini offering the best energy containment when energy is the primary objective.

5.3 Interpretation and Takeaways

Across both load regimes, LLM-assisted policies consistently lower cumulative energy and improve
bits/J relative to the rule baseline, while GPT5-Mini achieves the best overall trade-off by pairing
strong throughput with reduced energy. The qualitative shape of the curves is consistent with the
agent’s design: LLM-proposed duty caps, combined with a fairness choice nearer to proportional
fairness, keep the system away from congestion-dominated operating points where additional duty
yields little goodput but incurs substantial energy. In the moderate-load setting, backlogs drain by
mid-horizon and per-epoch throughput approaches zero for all methods; the cumulative differences
observed up to that point therefore reflect more judicious early-phase decisions by the LLM policies.
In the high-load setting, where the system remains busy, the LLM advantage persists throughout the
horizon, indicating better long-run operating points under sustained traffic.
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Figure 2: High offered load (150 Mb/s) over 100 epochs. From left to right: cumulative throughput,

cumulative energy, and cumulative energy efficiency.

6 Conclusion

This paper introduced an LLM-assisted spectrum agent for Wi-Fi/NR-U coexistence in the 6 GHz
band. The core design cleanly separates high-level reasoning from verifiable execution: the policy
layer—instantiated by a rule or by an LLM—chooses an a-fairness regime, per-channel duty caps,
and class weights from compact telemetry, while a deterministic optimizer enforces hard constraints
and realizes post-LBT goodput and energy. This interface makes the role of the LLM transparent
and auditable and guarantees safe control through clamping and rule fallback. Across moderate and
high offered loads, experiments show that LLM-assisted policies reduce cumulative energy and raise
energy efficiency (bits/J) relative to a benevolent rule baseline, while maintaining competitive or
superior cumulative throughput. The gains are most pronounced in the early and mid horizon, where
headroom-aware caps and fairness choices near proportional fairness keep the system away from
collision-dominated operating points. In a representative 100-epoch scenario, one LLM reduces total
energy by more than a third, and another achieves the best overall trade-off with higher total bits and
the highest bits/J among all methods.
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Responsible AI Statement

This work adheres to the NeurIPS Code of Ethics. The agent is explicitly designed so that generative
components never execute free-form actions: the large language model (LLM) proposes only a small
set of interpretable, bounded policy knobs (fairness index «, per—channel duty caps, and priority
weights) from a compact, non-personal telemetry summary. All proposals are validated against a
JSON schema and then clamped to safety ranges, including busy-aware headroom on duty caps;
malformed or out-of-range outputs trigger a deterministic rule fallback. Execution is handled by
a verifiable optimizer that enforces constraints at run time and records decisions for audit. The
simulator contains no personally identifiable information; it uses synthetic traffic and environment
jitter. Potential negative impacts include unsafe spectrum use, unfair service to specific traffic classes,
or excessive energy consumption if the policy is misconfigured. To mitigate these risks, we (i) restrict
the LLM’s authority to high-level proposals with hard constraints; (ii) log every epoch’s knobs and
outcomes for traceability; (iii) provide conservative defaults and seed control; (iv) discuss limits
of our LBT-loss proxy and fairness settings; and (v) refrain from any real-world transmission or
device control in this study. Any future deployment must include regulatory compliance checks (e.g.,
LBT requirements), site-specific validation, and monitoring for distribution shift, with the rule policy
available as a safe fallback.

Reproducibility Statement

We provide an anonymized artifact containing code, configuration files, and scripts to re-
generate every figure and table. The simulator exposes fixed seeds and prints the ex-
act run configuration; the optimizer is deterministic given inputs. For the main results,
we include per-epoch CSV logs (served_bits, energy, sla_hit_rate, alpha_used) pro-
duced by 1lm_spectrum_agent_fairness.py in multi-epoch mode, and a plotting script
(plot_three_runs_overlay.py) that creates all figures and a summary CSV. The artifact doc-
uments the Python version and library hashes, lists command lines to reproduce the 40 Mb/s and
150 Mb/s experiments, and specifies default hyperparameters (epoch length, number of epochs, user
counts, arrival process, jitter magnitudes, seeds, and model identifiers masked for double-blind
review). Because the LLM only emits bounded numeric knobs and the executor is deterministic,
results are stable across runs with the same seed; for completeness we also report partial cumulatives
(25/50 epochs) and provide the raw CSVs used to render each plot.

AI Contribution Disclosure Checklist

AI Contribution Disclosure

This work uses large language models (LLMs) as policy planners and as assistants for writing and
code refactoring. Model identities are anonymized as LLM-A and LLM-B for double-blind review.
The execution engine that applies spectrum decisions is deterministic and constraint-enforcing; it
does not depend on generative outputs beyond a small set of bounded numeric knobs.

Roles across the research lifecycle. Problem framing, system modeling, and the design of the
policy—optimizer split were led by the authors. LLMs assisted ideation by suggesting alternative
fairness/energy/latency trade-offs and by helping refine prose and notation. Simulator and optimizer
implementations were authored by the researchers; LLMs were used to draft code skeletons, to
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propose interface shapes (e.g., JSON fields for policy knobs), and to streamline plotting and CSV
post-processing. For spectrum control itself, the LL.Ms served as policy planners: given a compact
telemetry summary, they proposed a fairness index «, per-channel duty caps for Wi-Fi/NR-U, and
traffic-class weights. Authors retained authority over safety and feasibility: proposals were parsed
under a strict schema, clamped to allowable ranges, and replaced by a rule policy upon any violation
or parsing failure. Experiments, ablations, and quantitative analysis were specified and verified by
the authors; LLMs assisted with script creation and draft figure captions. The manuscript’s first drafts
for several sections were produced with LLM assistance and then edited for technical accuracy and
clarity by the authors.

Safeguards and limits on AI authority. Generative models do not issue low-level commands
or modify the executor. Their authority is restricted to high-level, interpretable knobs: a discrete
a € {0,1,2}, duty-cycle caps projected to [0,1] and further limited by busy-aware headroom
ul <1 — b, and bounded priority weights. Any malformed JSON, schema mismatch, or out-of-
range value triggers an automatic fallback to a deterministic rule policy. At run time, a verifiable
optimizer enforces constraints, realizes LBT losses from the final aggregate duties, and computes
energy from mode-dependent per-bit costs. The system logs the chosen knobs and resulting metrics
every epoch, ensuring traceability and audit.

Data, privacy, and safety considerations. All experiments are simulation-based with synthetic
traffic; no personal data are used. The work does not transmit over real radios or control physical
infrastructure. Potential risks include unfair service to certain traffic classes or excessive energy usage
if policy knobs were mis-set; these are mitigated by hard clamping, conservative defaults, per-epoch
logging, and a safe rule fallback. Any future deployment would require regulatory compliance checks
(e.g., LBT rules), site-specific validation, monitoring for distribution shift, and human oversight.

Transparency and artifacts. We provide an anonymized artifact with source code, prompts, schema
definitions, exact commands, seeds, per-epoch CSV logs, and plotting scripts. All figures and
numbers in the paper are generated programmatically from these logs; LLMs did not fabricate results.
The division of responsibilities between Al systems and humans is thus transparent, auditable, and
reproducible.
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