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Abstract

Unlicensed 6 GHz is becoming a primary workhorse for high-capacity access, with1

Wi-Fi and 5G NR-U competing for the same channels under listen-before-talk2

(LBT) rules. Operating in this regime requires decisions that jointly trade through-3

put, energy, and service-level objectives while remaining safe and auditable. We4

present an agentic controller that separates policy from execution. At the start5

of each scheduling epoch the agent summarizes telemetry (per-channel busy and6

baseline LBT failure; per-user CQI, backlog, latency, battery, priority, and power7

mode) and invokes a large language model (LLM) to propose a small set of inter-8

pretable knobs: a fairness index α, per-channel duty-cycle caps for Wi-Fi/NR-U,9

and class weights. A deterministic optimizer then enforces feasibility and computes10

an α-fair allocation that internalizes LBT losses and energy cost; malformed or11

unsafe policies are clamped and fall back to a rule baseline. In a 6 GHz simulator12

with two 160 MHz channels and mixed Wi-Fi/NR-U users, LLM-assisted policies13

consistently improve energy efficiency while keeping throughput competitive with a14

strong rule baseline. One LLM lowers total energy by 35.3% at modest throughput15

loss, and another attains the best overall trade-off, finishing with higher total bits16

(+3.5%) and higher bits/J (+12.2%) than the baseline. We release code, per-epoch17

logs, and plotting utilities to reproduce all figures and numbers, illustrating how18

transparent, policy-level LLM guidance can safely improve wireless coexistence.19

1 Introduction20

Unlicensed 6 GHz spectrum is rapidly becoming a workhorse for high-capacity wireless access, with21

Wi-Fi 6E/7 and 5G NR-U expected to coexist in the same channels Wang et al. [2022]. The resulting22

environment is shaped by LBT rules, bursty traffic, heterogeneous device batteries and priorities,23

and tight latency targets for interactive and safety-critical applications. Conventional schedulers are24

typically crafted around a fixed objective, such as sum-rate maximization or proportional fairness,25

and rely on static heuristics to avoid collisions. While effective in specific regimes, these designs26

struggle to adapt when operating conditions drift, and they provide limited knobs to navigate the27

three-way tension between throughput, energy, and service-level objectives Liu et al. [2025].28

State-of-the-art solutions for managing spectrum coexistence between technologies like Wi-Fi and29

NR-U predominantly fall into two categories: static rule-based schedulers and complex learning-30

based systems like deep reinforcement learning (DRL) Kalahe-Wattege and Beltran [2024]Zhang31

et al. [2023b]. Rule-based schedulers are reliable and predictable but are fundamentally brittle; they32

are designed with fixed priorities, such as maximizing overall throughput, and struggle to dynamically33

adapt when network conditions and objectives change Kalahe-Wattege and Beltran [2024]. For34

example, they cannot easily pivot to prioritize energy efficiency or meet a specific user’s urgent35

latency demand when the network becomes congested . On the other hand, while DRL agents can36
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learn sophisticated policies to manage these trade-offs, they often operate as "black boxes," making37

their decisions difficult to interpret, audit, or trust in a production network Zhang et al. [2023b] .38

Furthermore, DRL systems require extensive, often impractical, online training cycles to converge on39

an effective policy.40

Our paper solves this critical gap by introducing an agentic controller that separates high-level41

reasoning from low-level execution. It leverages a LLM to interpret the complex, multi-faceted42

network state and propose a simple, human-understandable set of policy "knobs"—such as the fairness43

level and duty-cycle caps Hao et al. [2024] Wang et al. [2024]. This approach avoids the rigidity of44

fixed rules and the opacity of DRL, providing a solution that is simultaneously adaptive, auditable,45

and capable of intelligently balancing the conflicting objectives of throughput, energy efficiency, and46

service level agreements (SLA) on a dynamic, per-epoch basis.47

At the start of each scheduling epoch, the agent encodes the observable state—per-channel busy48

levels and baseline LBT failure probabilities for both Wi-Fi and NR-U, together with per-user CQI,49

backlog, latency target, battery state, task priority, and power mode—into a compact JSON summary.50

A high-level policy then chooses a small set of interpretable knobs: a fairness index, per-channel duty-51

cycle caps for each stack, and priority weights across traffic classes. This policy can be instantiated52

either as a deterministic rule or as a LLM prompted to reason about energy-aware, latency-aware53

spectrum sharing.54

We evaluate the agent in a 6 GHz simulator with two 160 MHz channels and mixed Wi-Fi/NR-U55

populations. Across moderate and high offered loads, LLM-assisted policies consistently reduce56

cumulative energy and improve energy efficiency (bits/J) relative to a strong rule baseline, while57

maintaining competitive or superior cumulative throughput. In a representative scenario, one LLM58

variant lowers total energy by more than a third while the other achieves the best overall trade-off,59

finishing with higher total bits and the highest bits/J.60

The remainder of this paper is structured as follows. In Section II, we detail the system model and61

formulate the multi-objective resource allocation problem. Section III presents the design of the62

LLM-assisted agentic controller. We describe our simulation environment and the baseline rule-based63

scheduler used for comparison in Section IV. In Section V, we present a comprehensive evaluation of64

our proposed system, analyzing its performance across key metrics of network throughput, energy65

efficiency, and SLA satisfaction against the baseline. Finally, we conclude the paper in Section VI.66

2 System Model and Problem Formulation67

2.1 System Model68

We consider a 6 GHz unlicensed band shared by Wi-Fi and 5G NR-U. Time is slotted into fixed69

scheduling epochs of length ∆ seconds (default ∆ = 0.1), and all control decisions are recomputed70

once per epoch t = 1, 2, . . . The system comprises a finite set of channels C (two 160 MHz channels in71

the default configuration) and two coexisting technology stacks T = {Wi-Fi,NR-U}. Each channel72

c ∈ C has bandwidth Bc and is characterized by exogenous LBT conditions that vary slowly over73

time. Specifically, for each stack t ∈ T and channel c, we track a sensed busy fraction bt,c(t) ∈ [0, 1]74

and a baseline LBT failure probability ft,c(t) ∈ [0, 1], both subjected to small random jitter between75

epochs to emulate environmental dynamics. These quantities are taken as inputs to the scheduler and76

are observable before each decision.77

Users are partitioned by stack, U = UWi-Fi ∪UNR-U. A user i ∈ U is described at epoch t by a channel78

quality indicator qi(t) ∈ {0, . . . , 15}, a battery state Bi(t) ∈ [0, 1], a queue backlog Qi(t) in bits, a79

latency target Di in milliseconds, a task priority class ki ∈ {emergency, high, normal, bulk}, and a80

discrete power mode pi ∈ {low, med, high}. New traffic arrivals Ai(t) are injected into the queue81

each epoch according to a truncated Gaussian process with a configurable mean; the queue dynamics82

obey83

Qi(t+1) = max
{
0, Qi(t) +Ai(t)− Si(t)

}
, (1)

where Si(t) denotes the number of bits served to user i during epoch t Wang et al. [2020]. The84

simulation exposes these elements as first-class state variables that are evolved by a lightweight85

environment model prior to each scheduling step.86
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Physical-layer throughput is modeled via a CQI-to-spectral-efficiency mapping. For user i on channel87

c, the spectral efficiency (bits/s/Hz) is88

si,c(t) = SE
(
qi(t)

)
· ηpi

, (2)

where SE(·) is a standard 16-level table and ηpi
scales the efficiency under the user’s power mode. If89

τi,c(t) ∈ [0, 1] is the airtime fraction allotted to i on c during epoch t, then the pre-LBT raw rate is90

ri,c(t) = si,c(t)Bc τi,c(t). (3)

Shared-channel contention and regulatory LBT constraints induce a stack–channel loss that we91

capture with a smooth proxy. Let τt,c(t) =
∑

i∈Ut
τi,c(t) be the aggregate airtime of stack t on92

channel c in epoch t. The loss fraction applied uniformly to all users of (t, c) is93

ℓt,c(t) = min
{
0.95, ft,c(t) + 0.6 τt,c(t) bt,c(t) + 0.2

(
τt,c(t) + bt,c(t)− 1

)
+

}
, (4)

with (x)+ = max{x, 0}. The post-LBT goodput for user i on c is then94

gi,c(t) = ri,c(t)
(
1− ℓti,c(t)

)
, Si(t) = ∆

∑
c∈C

gi,c(t). (5)

Energy is modeled through a per-bit cost that depends on the power mode and the achieved spectral95

efficiency. Writing P (pi) for the mode-dependent transmit power and ei,c(t) = P (pi)/si,c(t) for96

joules per bit, the per-epoch energy is97

Ei(t) =
∑
c∈C

ei,c(t)Si(t). (6)

The above link, loss, and energy models mirror the implementation used by our simulator, where (4)98

is realized as a differentiable proxy to capture LBT-driven collisions/backoff at the stack–channel99

granularity.100

Service-level latency is expressed as an instantaneous rate requirement. Given backlog Qi(t) and101

latency target Di, the minimum rate that avoids deadline slippage within epoch t is102

ρi(t) = min
{

Qi(t)
∆ , Qi(t)

Di/1000

}
, (7)

and an SLA hit is registered whenever
∑

c gi,c(t) ≥ ρi(t). The policy layer that precedes optimization103

provides three high-level knobs per epoch: a fairness index α ∈ {0, 1, 2}, per-channel duty-cycle104

caps uWi-Fi
c , uNR-U

c ∈ [0, 1], and priority weights {wk}k∈{emergency,high,normal,bulk}. Caps are constrained105

by sensed load through a headroom rule of the form ut
c ≤ 1 − γ bt,c(t) with γ ∈ (0, 1), ensuring106

that aggregate scheduled airtime remains feasible under exogenous activity. These quantities are107

produced either by a deterministic rule or by a LLM from a compact JSON state summary, and are108

clamped to safe ranges before optimization.109

2.2 Problem Formulation110

Let xi,c(t) ∈ {0, 1} indicate whether user i is scheduled on channel c during epoch t. Each user111

is bound to at most one channel per epoch,
∑

c xi,c(t) ≤ 1, and receives a nonnegative airtime112

τi,c(t) ∈ [0, 1] that is consistent with the assignment via τi,c(t) ≤ xi,c(t). Per-stack duty caps113

provided by the policy enforce114 ∑
i∈UWi-Fi

τi,c(t) ≤ uWi-Fi
c ,

∑
i∈UNR-U

τi,c(t) ≤ uNR-U
c , ∀c ∈ C, (8)

and interact with LBT through (4)–(5). The per-user post-LBT rate in epoch t is xi(t) =
∑

c gi,c(t),115

and the per-epoch energy is Ei(t) in (6). A standard weighted α-fair utility is adopted Wang and116

Zhou [2019],117

Uα(x) =

log x, α = 1,
x 1−α

1− α
, α ̸= 1,

x > 0, (9)
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and each user i is endowed with a base weight θi =
wki

0.5 + β(Bi)
that increases with priority and118

penalizes low battery via a monotone function β(·). The single-epoch allocation problem can then be119

stated as120

max
{xi,c, τi,c}

∑
i∈U

θi Uα

(∑
c∈C

gi,c(t)

)
− λ

∑
i∈U

Ei(t) (10)

s.t. link and LBT coupling in (3)–(5),

caps in (8), τi,c(t) ∈ [0, 1], xi,c(t) ∈ {0, 1},
∑
c

xi,c(t) ≤ 1.

Here λ ≥ 0 trades off energy against throughput in the objective; in our implementation the energy121

term is effectively captured by the interaction of (6) with the weights θi and per-duty utility densities122

used during channel selection, while the reported α-fair utility remains the primary figure of merit.123

Hard per-epoch latency guarantees may be included as
∑

c gi,c(t) ≥ ρi(t) for selected flows, but124

we favor a pragmatic approach in which minimum “urgent” grants are applied procedurally before125

the proportional α-fair split on the remaining budget—an approach that preserves tractability while126

honoring latency-sensitive traffic.127

Problem (10) is solved independently at each epoch using policy-provided knobs (α, {ut
c}, {wk}),128

yielding the airtime variables {τi,c(t)}, post-LBT rates {gi,c(t)}, and per-epoch metrics (throughput,129

energy, and SLA hit rate) that feed back into the next epoch via (1). This separation between a130

high-level, possibly LLM-driven policy and a verifiable optimizer enables safe orchestration: policy131

outputs are clamped to feasible ranges, and the optimizer enforces hard constraints at execution time.132

3 Method: Agent Architecture133

This work adopts an agentic architecture that separates high-level spectrum policy from low-level134

optimization. The policy layer proposes a fairness index α, per-channel duty-cycle caps for Wi-Fi135

and NR-U, and task-class priority weights from observable telemetry; the optimizer then enforces136

feasibility and computes an α-fair allocation while accounting for LBT losses, energy, and latency.137

The separation ensures that the intelligence responsible for strategic trade-offs is modular and138

replaceable (rule-based or LLM-driven), whereas the executor is verifiable and deterministic. The139

implementation follows this design in a single-epoch loop with environmental evolution between140

epochs.141

3.1 Telemetry encoding and policy interface142

At the beginning of each epoch of length ∆, the environment exposes a compact JSON state143

containing channel descriptors (bandwidth Bc, sensed busy bt,c, and baseline LBT failure ft,c for144

each stack t on channel c) and user descriptors (CQI qi, battery level Bi, backlog Qi, latency target145

Di, task priority ki, and power mode pi). The function build_state_json produces this state146

and adds lightweight hints such as candidate α values. A policy consumes this JSON and returns147

three objects: an α ∈ {0, 1, 2}; duty caps {uWi-Fi
c , uNR-U

c }; and priority weights {wk} for classes148

emergency/high/normal/bulk. The project ships two variants of the policy interface: a rule149

baseline that biases caps toward the busier stack while reserving headroom, and an LLM policy150

that emits a JSON policy either via a chat completion in JSON mode or via a Responses API call151

constrained by a JSON Schema; in both cases the returned values are coerced to safe ranges prior to152

optimization.153

3.2 Safety, feasibility, and fallbacks154

The fairness index is restricted to {0, 1, 2}; duty caps are clipped to [0, 1] and to a busy-aware155

headroom ut
c ≤ 1− γ bt,c (with γ ∈ (0, 1) implemented as 0.5 in the code); and priority weights are156

confined to a bounded interval [0.1, 10]. If the LLM call fails or returns malformed JSON, the system157

falls back to the deterministic rule policy, ensuring that every epoch yields a feasible control. Optional158

textual rationales from the LLM are preserved for auditability but do not affect the optimizer.159
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3.3 Epoch solver: two-stage optimization160

Given the policy knobs, the optimizer solves the epoch using a two-stage scheme tailored to coexis-161

tence with shared LBT losses.162

The first stage assigns each user to one channel by maximizing a utility density computed under163

a small probe airtime τ0, which approximates the value per unit of duty cycle while internalizing164

energy and latency costs. For user i on channel c, the pre-loss rate is ri,c = si,cBcτ0, where si,c is165

the CQI- and power-mode–dependent spectral efficiency. The stack-channel loss is modeled by a166

smooth proxy:167

ℓt,c = min{0.95, ft,c + 0.6 τt,c bt,c + 0.2 (τt,c + bt,c − 1)+} , (11)

with τt,c being the aggregate duty of stack t on channel c. The probe goodput is gi,c = ri,c(1− ℓti,c),168

and the corresponding energy consumed during the probe is Eprobe
i,c . The assignment score reflects a169

direct trade-off between this goodput and the energy cost, defined as:170

Φi,c =
1

τ0

 wki
· gi,c
106

· wlat(Di)︸ ︷︷ ︸
Reward: Weighted Goodput (Mbps)

− β(Bi) · Eprobe
i,c︸ ︷︷ ︸

Cost: Battery-Scaled Energy

 , (12)

where wki is the user’s priority weight, wlat(Di) is a multiplier that increases the reward for latency-171

sensitive users (e.g., those with Di ≤ 50 ms), and β(Bi) is a penalty factor that increases as battery172

level Bi decreases. The channel with the maximal score Φi,c is chosen for user i. This stage has173

complexity O(|U| |C|) and captures the primary cross-channel trade-offs.174

The second stage performs within-channel allocation under the duty caps provided by the policy. For175

each channel and stack, the available duty budget ≤ ut
c is split in two passes. A first pass grants urgent176

minimums to latency-critical or high-priority users, allocating the minimal duty required to meet their177

instantaneous rate requirement ρi = min{Qi/∆, Qi/(Di/1000)}. A second pass distributes the178

residual budget via a weighted α-fair rule, where user i receives a portion of the airtime proportional179

to:180

ωi =

(
wki

0.5 + β(Bi)

)
·
(
servedi + ε

)−α
. (13)

Here, servedi is the service a user has already received within the epoch (from the urgent grant) and181

ε > 0 is a small constant to ensure stability. After all duties are provisionally assigned, the final182

aggregate duties are used to recompute the stack-channel losses ℓt,c, from which the final per-user183

goodput and energy consumption are determined.184

3.4 SLA evaluation, queue update, and logging185

Following allocation, the achieved per-user rate
∑

c gi,c is compared against ρi to determine SLA186

hits in the current epoch. The served bits are subtracted from backlogs to update Qi for the next187

epoch, ensuring tight coupling between control and traffic dynamics. In multi-epoch mode, the driver188

run_multi_epoch evolves channels and baselines with small Gaussian jitters, injects arrivals with a189

configurable mean, repeatedly invokes the epoch solver.190

3.5 LLM-Assisted Decision Making191

At the beginning of each epoch, the agent summarizes the observable telemetry into a compact JSON192

state that includes per-channel descriptors (bandwidth, sensed busy fractions, and baseline LBT193

failure rates for each stack) and per-user descriptors (CQI, battery level, backlog, latency target,194

task priority, and power mode). This serialization, produced by build_state_json, is passed195

to a large language model that proposes high-level control knobs: a fairness index α ∈ {0, 1, 2},196

per-channel duty-cycle caps for Wi-Fi and NR-U, and task-class priority weights. We implement197

two invocation modes to ensure robustness: a chat-completions call constrained to JSON output, and198

a Responses-API call that enforces a JSON Schema with strict types and bounds. In both modes199

the model is prompted as a spectrum policy orchestrator and asked to trade off latency, energy, and200

fairness while avoiding per-user micromanagement. The LLM may return brief rationales, which are201

logged for audit but are not used downstream in optimization.202
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The raw policy is never executed directly. Instead, coerce_policy_from_llm enforces feasibility203

and safety by clamping α to {0, 1, 2}, projecting duty caps to [0, 1] and to a busy-aware headroom of204

the form ut
c ≤ 1− γ bt,c (with γ ∈ (0, 1)), and restricting priority weights to a bounded interval that205

prevents extreme allocations. Any parsing failure, schema violation, or out-of-range proposal triggers206

a deterministic rule fallback that biases caps toward the empirically busier stack while reserving207

headroom, guaranteeing that every epoch yields a valid policy even under LLM faults.208

Given the sanitized knobs (α, {ut
c}c,t, {wk}k), the optimizer solves the epoch in two stages. First,209

it assigns each user to a single channel by maximizing a probe-time utility density that internalizes210

post-LBT goodput, energy cost, deadline pressure, and priority/battery weights. Second, within each211

channel and stack, it grants minimal duties to satisfy urgent latency targets and then allocates the212

remaining budget according to a weighted α-fair rule. After duties are finalized, stack–channel LBT213

losses are realized and per-user goodputs and energies are computed. The selected α and per-epoch214

metrics (throughput, energy, SLA hit rate) are recorded, and the agent advances to the next epoch215

with updated queues. This integration makes the LLM responsible only for transparent, high-level216

decisions, while a verifiable executor enforces hard constraints at run time.217

The core of the interaction between the agent and the LLM is a structured JSON object that serves as218

the complete state representation provided at the start of each scheduling epoch. The JSON object is219

organized into two primary keys: channels and users. channels: An array of objects detailing220

the physical state and contention level of each frequency channel. For each channel, we provide221

its bandwidth (bw_mhz), the measured busy-time contributed by Wi-Fi and NR-U (busy_wifi,222

busy_nru), and the baseline LBT failure probability. users: An array of objects representing the223

state of each active user. For each user, the prompt specifies their technology (tech), channel quality224

indicator (cqi), data backlog in bits (backlog_bits), remaining time to meet their SLA deadline225

(deadline_s), battery percentage (battery_pct), and assigned service priority class (priority).226

4 Experimental Setup and Results227

4.1 Experimental Setup228

We evaluate the agent in a simulated 6 GHz unlicensed band with two 160 MHz channels shared229

by Wi-Fi and NR-U. Each experiment spans T=100 scheduling epochs of length ∆=0.1 s (total230

horizon 10 s) Ghosh [2023]. The default user population includes 16 Wi-Fi and 12 NR-U stations231

with heterogeneous channel quality indicators (CQI), battery levels, queue backlogs, latency targets,232

task priorities, and power modes. Channel descriptors include sensed busy fractions and baseline233

LBT failure probabilities for both stacks, all subject to small Gaussian jitter between epochs to234

emulate environmental dynamics. Traffic arrivals are injected every epoch as truncated Gaussians,235

and queue evolution follows the standard Lindley recursion. The simulator exposes these elements as236

first-class state variables (User, Channel, Env) and advances them via step_env before each decision;237

the single-epoch solver is called from one_epoch_allocate, and multi-epoch orchestration from238

run_multi_epoch. The code also logs per-epoch throughput (served bits), energy (J), SLA hit rate,239

and the fairness index α. The code is available at: https://github.com/claudwq/LLM-Assisted-Alpha-240

Fairness-for-6-GHz-Wi-Fi-NR-U-Coexistence.git241

The policy layer is either rule-based or LLM-driven. The rule baseline computes per-channel242

duty-cycle caps for the two stacks, reserving headroom as a function of sensed busy, and then chooses243

the best-throughput α∈{0, 1, 2} each epoch (“benevolent” baseline). The LLM policy sees the same244

telemetry as a compact JSON, selects a single α, per-channel caps, and class weights, and is then245

clamped by coerce_policy_from_llm for safety before the optimizer is invoked. The optimizer246

itself is deterministic: it assigns a single channel per user via a utility-density score that internalizes247

post-LBT goodput, energy cost, and deadline pressure, and then performs a within-channel weighted248

α-fair split under the cap constraints, realizing LBT loss and energy using the final aggregate duties.249

The complete path and data schema are implemented in llm_spectrum_agent_fairness.py and250

its LLM interface variant.251

We compare three methods: RuleBased (no LLM, benevolent α), GPT4o-Mini (LLM-assisted252

policy), and GPT5-Mini (LLM-assisted policy) Zhang et al. [2023a]. All experiments use seed 2025253

and the default arrival and jitter settings in the code unless otherwise noted.254
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(a) Throughput (b) Energy (c) Energy Efficiency

Figure 1: Moderate load (40 Mb/s) results.

5 Results Analysis255

We report results for three policies—RuleBased (benevolent α∈{0, 1, 2} chosen per epoch), GPT4o-256

Mini, and GPT5-Mini—over T=100 epochs with ∆=0.1 s. Metrics are computed directly from the257

simulator logs: per-epoch served bits, energy (J), and SLA hit rate; we plot cumulative throughput258

(Gb), cumulative energy (J), and cumulative energy efficiency (bits/J).259

5.1 Moderate Offered Load (40 Mb/s)260

Under the moderate arrival rate, cumulative throughput rises rapidly during the first 20–30 epochs as261

the scheduler drains initial backlogs, then transitions to an arrival-limited regime in which curves262

flatten. In this setting, GPT5-Mini ultimately surpasses the baseline in total delivered bits while263

spending less energy, whereas GPT4o-Mini attains the lowest energy but at the cost of reduced264

throughput. The cumulative energy plots show that RuleBased expends the most energy across265

the horizon; this aligns with its tendency to choose α=0 and to push higher duties into collision-266

prone regions. The cumulative energy-efficiency trajectories confirm the advantage of LLM-assisted267

control: both LLM policies maintain higher bits/J than the rule baseline for most of the horizon, with268

GPT5-Mini finishing highest. Intuitively, the LLMs propose headroom-aware caps and a fairness269

regime closer to α=1, which lowers collision losses without starving progress, yielding better energy270

efficiency at comparable or higher cumulative bits.271

5.2 High Offered Load (150 Mb/s)272

With higher offered traffic the system remains service-limited for longer, and the differences between273

policies become more pronounced. The throughput curves indicate that GPT5-Mini sustains the274

fastest cumulative growth and finishes with the highest total bits, while GPT4o-Mini again trades275

some throughput for substantial energy savings. Total energy consumption is highest for the rule276

baseline across the entire horizon, reflecting aggressive duty usage that amplifies LBT loss; both277

LLM policies keep cumulative energy lower, and GPT5-Mini delivers a favorable balance of bits278

and joules. The energy-efficiency curves mirror these trends: LLM-assisted control dominates the279

baseline throughout most of the run, with GPT5-Mini providing the strongest long-horizon bits/J and280

GPT4o-Mini offering the best energy containment when energy is the primary objective.281

5.3 Interpretation and Takeaways282

Across both load regimes, LLM-assisted policies consistently lower cumulative energy and improve283

bits/J relative to the rule baseline, while GPT5-Mini achieves the best overall trade-off by pairing284

strong throughput with reduced energy. The qualitative shape of the curves is consistent with the285

agent’s design: LLM-proposed duty caps, combined with a fairness choice nearer to proportional286

fairness, keep the system away from congestion-dominated operating points where additional duty287

yields little goodput but incurs substantial energy. In the moderate-load setting, backlogs drain by288

mid-horizon and per-epoch throughput approaches zero for all methods; the cumulative differences289

observed up to that point therefore reflect more judicious early-phase decisions by the LLM policies.290

In the high-load setting, where the system remains busy, the LLM advantage persists throughout the291

horizon, indicating better long-run operating points under sustained traffic.292

7



(a) Cumulative Throughput (Gb) (b) Cumulative Energy (J)
(c) Cumulative Energy Efficiency
(bits/J)

Figure 2: High offered load (150 Mb/s) over 100 epochs. From left to right: cumulative throughput,
cumulative energy, and cumulative energy efficiency.

6 Conclusion293

This paper introduced an LLM-assisted spectrum agent for Wi-Fi/NR-U coexistence in the 6 GHz294

band. The core design cleanly separates high-level reasoning from verifiable execution: the policy295

layer—instantiated by a rule or by an LLM—chooses an α-fairness regime, per-channel duty caps,296

and class weights from compact telemetry, while a deterministic optimizer enforces hard constraints297

and realizes post-LBT goodput and energy. This interface makes the role of the LLM transparent298

and auditable and guarantees safe control through clamping and rule fallback. Across moderate and299

high offered loads, experiments show that LLM-assisted policies reduce cumulative energy and raise300

energy efficiency (bits/J) relative to a benevolent rule baseline, while maintaining competitive or301

superior cumulative throughput. The gains are most pronounced in the early and mid horizon, where302

headroom-aware caps and fairness choices near proportional fairness keep the system away from303

collision-dominated operating points. In a representative 100-epoch scenario, one LLM reduces total304

energy by more than a third, and another achieves the best overall trade-off with higher total bits and305

the highest bits/J among all methods.306
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Responsible AI Statement339

This work adheres to the NeurIPS Code of Ethics. The agent is explicitly designed so that generative340

components never execute free-form actions: the large language model (LLM) proposes only a small341

set of interpretable, bounded policy knobs (fairness index α, per–channel duty caps, and priority342

weights) from a compact, non-personal telemetry summary. All proposals are validated against a343

JSON schema and then clamped to safety ranges, including busy-aware headroom on duty caps;344

malformed or out-of-range outputs trigger a deterministic rule fallback. Execution is handled by345

a verifiable optimizer that enforces constraints at run time and records decisions for audit. The346

simulator contains no personally identifiable information; it uses synthetic traffic and environment347

jitter. Potential negative impacts include unsafe spectrum use, unfair service to specific traffic classes,348

or excessive energy consumption if the policy is misconfigured. To mitigate these risks, we (i) restrict349

the LLM’s authority to high-level proposals with hard constraints; (ii) log every epoch’s knobs and350

outcomes for traceability; (iii) provide conservative defaults and seed control; (iv) discuss limits351

of our LBT-loss proxy and fairness settings; and (v) refrain from any real-world transmission or352

device control in this study. Any future deployment must include regulatory compliance checks (e.g.,353

LBT requirements), site-specific validation, and monitoring for distribution shift, with the rule policy354

available as a safe fallback.355

Reproducibility Statement356

We provide an anonymized artifact containing code, configuration files, and scripts to re-357

generate every figure and table. The simulator exposes fixed seeds and prints the ex-358

act run configuration; the optimizer is deterministic given inputs. For the main results,359

we include per-epoch CSV logs (served_bits, energy, sla_hit_rate, alpha_used) pro-360

duced by llm_spectrum_agent_fairness.py in multi-epoch mode, and a plotting script361

(plot_three_runs_overlay.py) that creates all figures and a summary CSV. The artifact doc-362

uments the Python version and library hashes, lists command lines to reproduce the 40 Mb/s and363

150 Mb/s experiments, and specifies default hyperparameters (epoch length, number of epochs, user364

counts, arrival process, jitter magnitudes, seeds, and model identifiers masked for double-blind365

review). Because the LLM only emits bounded numeric knobs and the executor is deterministic,366

results are stable across runs with the same seed; for completeness we also report partial cumulatives367

(25/50 epochs) and provide the raw CSVs used to render each plot.368

AI Contribution Disclosure Checklist369

AI Contribution Disclosure370

This work uses large language models (LLMs) as policy planners and as assistants for writing and371

code refactoring. Model identities are anonymized as LLM-A and LLM-B for double-blind review.372

The execution engine that applies spectrum decisions is deterministic and constraint-enforcing; it373

does not depend on generative outputs beyond a small set of bounded numeric knobs.374

Roles across the research lifecycle. Problem framing, system modeling, and the design of the375

policy–optimizer split were led by the authors. LLMs assisted ideation by suggesting alternative376

fairness/energy/latency trade-offs and by helping refine prose and notation. Simulator and optimizer377

implementations were authored by the researchers; LLMs were used to draft code skeletons, to378
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propose interface shapes (e.g., JSON fields for policy knobs), and to streamline plotting and CSV379

post-processing. For spectrum control itself, the LLMs served as policy planners: given a compact380

telemetry summary, they proposed a fairness index α, per-channel duty caps for Wi-Fi/NR-U, and381

traffic-class weights. Authors retained authority over safety and feasibility: proposals were parsed382

under a strict schema, clamped to allowable ranges, and replaced by a rule policy upon any violation383

or parsing failure. Experiments, ablations, and quantitative analysis were specified and verified by384

the authors; LLMs assisted with script creation and draft figure captions. The manuscript’s first drafts385

for several sections were produced with LLM assistance and then edited for technical accuracy and386

clarity by the authors.387

Safeguards and limits on AI authority. Generative models do not issue low-level commands388

or modify the executor. Their authority is restricted to high-level, interpretable knobs: a discrete389

α ∈ {0, 1, 2}, duty-cycle caps projected to [0, 1] and further limited by busy-aware headroom390

ut
c ≤ 1− γ bt,c, and bounded priority weights. Any malformed JSON, schema mismatch, or out-of-391

range value triggers an automatic fallback to a deterministic rule policy. At run time, a verifiable392

optimizer enforces constraints, realizes LBT losses from the final aggregate duties, and computes393

energy from mode-dependent per-bit costs. The system logs the chosen knobs and resulting metrics394

every epoch, ensuring traceability and audit.395

Data, privacy, and safety considerations. All experiments are simulation-based with synthetic396

traffic; no personal data are used. The work does not transmit over real radios or control physical397

infrastructure. Potential risks include unfair service to certain traffic classes or excessive energy usage398

if policy knobs were mis-set; these are mitigated by hard clamping, conservative defaults, per-epoch399

logging, and a safe rule fallback. Any future deployment would require regulatory compliance checks400

(e.g., LBT rules), site-specific validation, monitoring for distribution shift, and human oversight.401

Transparency and artifacts. We provide an anonymized artifact with source code, prompts, schema402

definitions, exact commands, seeds, per-epoch CSV logs, and plotting scripts. All figures and403

numbers in the paper are generated programmatically from these logs; LLMs did not fabricate results.404

The division of responsibilities between AI systems and humans is thus transparent, auditable, and405

reproducible.406
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