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Abstract

Graph Neural Networks (GNNs) have become essential for learning from graph-structured
data. However, existing GNNs do not consider the conservation law inherent in graphs
associated with a flow of physical resources, such as electrical current in power grids or
traffic in transportation networks, which can lead to reduced model performance. To ad-
dress this, we propose flow attention, which adapts existing graph attention mechanisms to
satisfy Kirchhoff’s first law. Furthermore, we discuss how this modification influences the
expressivity and identify sets of non-isomorphic graphs that can be discriminated by flow
attention but not by standard attention. Through extensive experiments on two flow graph
datasets—electronic circuits and power grids—we demonstrate that flow attention enhances
the performance of attention-based GNNs on both graph-level classification and regression
tasks.

1 Introduction

Graph neural networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017) have emerged as a powerful
framework that extends the scope of deep learning from Euclidean to graph-structured data, which is preva-
lent across many real-world domains, such as social networks (Fan et al., 2019), recommender systems (Wu
et al., 2022), materials science (Reiser et al., 2022) or epidemiology (Liu et al., 2024). Especially attention-
based GNNs have become increasingly popular due to their ability to select relevant features adaptively
(Sun et al., 2023). As graph data becomes increasingly common, advancing GNN architectures is crucial for
improving performance in tasks such as node classification (Hamilton et al., 2017), graph regression (Gilmer
et al., 2017), or link prediction (Zhang & Chen, 2018).

In many important applications of GNNs, graphs are naturally associated with a flow of physical resources,
such as electrical current in electronic circuits (Sánchez et al., 2023) or power grids (Liao et al., 2021), traffic
in transportation networks (Jiang & Luo, 2022), water in river networks (Sun et al., 2021), or raw materials
and goods in supply chains (Kosasih & Brintrup, 2022). All nodes in these resource flow graphs, except for
source and target nodes, are subject to Kirchhoff’s first law, which states that the sum of all incoming and
outgoing flows must be zero, reflecting the conservation of resources. By contrast, informational graphs—such
as computation graphs, social networks, or citation networks—are not associated with any physical flow but
rather represent relationships or information transfer. Information can be arbitrarily duplicated in these
graphs, unlike in flow graphs, where such duplication would violate the conservation law.

As a result, two non-isomorphic graphs may be equivalent as informational graphs but non-equivalent as
flow graphs. For example, in a computational graph, the output of a sine operation can be freely duplicated.
Thus, the two non-isomorphic graph structures in Fig. 1a represent the same computation. However, the
same graph structures may also represent electronic circuits governed by Kirchhoff’s first law (see Fig. 1b). In
this case, the two circuits are different because combining or splitting resistors would change their electrical
properties.

Electronic circuits and other resource flow graphs can often be represented as directed acyclic graphs (DAGs).
However, GNNs specifically tailored to DAGs typically encode the rooted trees of the output nodes rather
than the exact graph structure. Hence, if two DAGs exhibit the same computation tree (e.g., the graphs in
Fig. 1), they cannot be distinguished, which limits the performance in many graph learning tasks. While
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Figure 1: Two non-isomorphic graphs that are equivalent as informational graphs, but different as resource
flow graphs. a The two different directed graph structures represent the same computation (example adapted
from Zhang et al. (2019)). b The same graph structures as above represent different electronic circuits.

these graph structures might be interchangeable for pure “information” tasks, a sufficiently expressive GNN
should map them to distinct representations when performing tasks where physical flows are relevant.

Main Contributions. Inspired by the conservation law in resource flow graphs, we propose flow attention
on graphs, which normalizes attention scores across outgoing neighbors instead of incoming ones. This simple
but effective modification can be applied to any attention-based GNN and allows the model to better capture
the physical flow of a graph. We discuss the expressivity of the resulting models and demonstrate that flow
attention enables the discrimination of any DAG from its computation tree. Based on this observation,
we propose FlowDAGNN, a flow-attentional GNN for DAGs. Finally, we conduct extensive experiments
on multiple datasets, including cascading failure analysis on power grids and property prediction on elec-
tronic circuits, covering undirected graphs and DAGs. Our results indicate that flow attention improves the
performance of attention-based GNNs on graph-level classification and regression tasks. 1

2 Related Work

In recent years, many new GNN models have been specifically designed for different graph types (Thomas
et al., 2023). Despite their fundamental differences, informational graphs and flow graphs are mainly treated
by the same basic message-passing layers, such as GraphSAGE (Hamilton et al., 2017), GAT (Veličković
et al., 2018) or GIN (Xu et al., 2019). In these models, messages exchanged between neighboring nodes do
not depend on the number of recipients. Instead, the information is arbitrarily duplicated and passed to
all neighbors. GCN (Kipf & Welling, 2017) applies a symmetric neighborhood normalization but exhibits
limited expressivity and performance. Attention-based GNNs, such as GAT, GATv2 (Brody et al., 2022)
or Graph Transformer (Shi et al., 2021) adaptively weight neighboring node features leading to improved
representation learning. However, the attention weights are obtained through normalization across incoming
neighbors allowing for arbitrary message duplication. Our approach normalizes across outgoing neighbors
instead, which better captures the physical flow of a graph while preserving the benefits of graph attention.

Many flow graphs, including the example graphs in Fig. 1, can be naturally expressed as DAGs, e.g., op-
erational amplifiers (Dong et al., 2023) or material flow networks (Perera et al., 2018). Before GNNs were
introduced, recursive neural networks were applied to DAGs (Sperduti & Starita, 1997; Frasconi et al., 1998)
and contextual recursive cascade correlation was proposed to overcome limitations in expressivity (Hammer
et al., 2005). However, these early works lacked the advantages of modern GNNs, which have been extended
to DAGs in recent years (Zhang et al., 2019; Thost & Chen, 2021). In directed acyclic GNNs, nodes are
typically updated sequentially following the partial order of the DAG, and the final target node represen-

1The code is available at https://anonymous.4open.science/r/FlowGNN25.
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tations are used as the graph embedding. While these sequential models outperform undirected GNNs on
DAG datasets, they still aggregate node neighborhood information similarly. Therefore, they only encode
the computation tree of the output nodes and not the exact structure of the DAG, resulting in limited
expressivity.

A possible approach to overcome the problem of indistinguishable flow graphs is to use node indices or
random features as input node features (Loukas, 2020; Sato et al., 2021), which enables the model to uniquely
identify each node. However, the resulting GNN model is no longer permutation invariant, which reduces its
generalization capability. Similar problems arise for Transformer-based models (Vaswani et al., 2017) such
as PACE (Dong et al., 2022), which incorporate the relational inductive bias (Battaglia et al., 2018) via
positional encodings. A different strategy would be to introduce Kirchhoff’s first law through an additional
physics-informed loss term (Donon et al., 2020), which considerably increases the training complexity and
is only useful if the target variable is the resource flow itself. Our approach enhances the expressivity of
attention-based GNNs on flow graphs while preserving permutation invariance and computational efficiency.

3 Preliminaries

Graph. A directed graph can be defined as a tuple G = (V, E) containing a set of nodes V ⊂ N and a set of
directed edges E ⊆ V×V. Thereby, we define e = (u, v) as the directed edge from node u to node v. An edge is
called undirected if (u, v) ∈ E whenever (v, u) ∈ E . Furthermore, we call the set Nin(v) = {u ∈ V | (u, v) ∈ E}
the incoming neighborhood of v and the set Nout(v) = {u ∈ V | (v, u) ∈ E} the outgoing neighborhood of v.

Node Multiset. For each node in a graph, the feature vectors of a set of incoming nodes can be represented
as a multiset (Xu et al., 2019). A multiset is a pair (S,m), where S is a set of distinct elements (the node
features) and m : S → N is the multiplicity of each element. We call two multisets X1 = (S,m1), X2 =
(S,m2) equally distributed if m2 = k ·m1 with k ∈ N≥1.

Directed Acyclic Graph. A directed graph without cycles is called a directed acyclic graph (DAG).
In the context of DAGs, we call the incoming neighborhood the predecessors of a node, and the outgoing
neighborhood the successors of a node. The set of all ancestors of node v contains all nodes u ∈ V such that
v is reachable from u. Similarly, the descendants are the nodes u ∈ V that are reachable from v. Finally,
the set of nodes without predecessors is called the set of start or initial nodes, denoted by I ⊂ V, and the
set of nodes without successors is called the set of end or final nodes, denoted by F ⊂ V.

Computation Tree. Let D = (V, E , r) be a rooted DAG with a unique final node called the root r. Its
computation tree γ(D) is obtained by leaving each node v with at most one successor, and for any node v
with n ≥ 2 successors, replacing v by n copies v1, . . . , vn, each connected to exactly one of v’s successors and
inheriting all of v’s incoming edges. This procedure yields a rooted tree with the same root r. See App. D
for a visualization.

Flow Graph. Let G = (V, E) be a graph and S, T ⊆ V be the sources and targets of G. A flow on G is a
mapping ψ : E → R that satisfies Kirchhoff’s first law:∑

u∈Nin(v)

ψ(u, v) =
∑

u∈Nout(v)

ψ(v, u) ∀ v ∈ V \ {S, T }. (1)

If a graph is associated with a flow ψ as defined above, we refer to it as a flow graph. In DAGs, the start
nodes are sources, and the end nodes are targets: I ⊆ S and F ⊆ T .

Graph Neural Networks. Graph Neural Networks (GNNs) transfer the concept of traditional neural
networks to graph data. Thereby, the node representations {hi ∈ Rρ | i ∈ V} with the feature dimension
ρ are updated iteratively by aggregating information from neighboring nodes via message-passing. The
updated node representations h′

i, i.e., the output of the network layer, are given by

h′
i = ϕ

hi,
⊕

j∈Nin(i)

f (hj)

 , (2)
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with a learnable message function f , an aggregator ⊕, e.g., sum or mean, and an update function ϕ. The
choice of ϕ, ⊕, and f are defining the design of a specific GNN model.

Directed Acyclic Graph Neural Networks. The main idea of GNNs for DAGs is to process and update
the nodes sequentially according to the partial order defined by the DAG. Thereby, the update of a node
representation hi is computed based on the current-layer node representations of node i’s predecessors. The
message-passing scheme of directed acyclic GNNs can therefore be expressed as

h′
i = ϕ

hi,
⊕

j∈Nin(i)

f
(
h′

j

) . (3)

The most widely used directed acyclic GNNs are D-VAE (Zhang et al., 2019) and DAGNN (Thost & Chen,
2021), which uses standard attention for aggregation. Both models utilize gated recurrent units (GRU) as
the update function ϕ and are briefly explained in App. B. As an alternative to sequential models, DAGs can
be encoded using Transformer-based architectures, such as PACE (Dong et al., 2022) or DAGformer (Luo
et al., 2023).

4 Attention is not all you need for Flow Graphs

In this section, we demonstrate why standard graph attention is insufficient for flow graphs. First, we show
that standard attention cannot distinguish node neighborhoods with equal distribution of node features,
which generally limits its expressivity. Next, we prove that attention-based directed acyclic GNNs cannot
discriminate between a DAG and its computation tree. As a result, they cannot distinguish non-isomorphic
DAGs that exhibit the same computation tree, e.g., the example graphs from Fig. 1.

4.1 Attentional GNNs

An attentional GNN uses a scoring function e : Rρ × Rρ → R to compute attention coefficients

eij = e (hi,hj) , (4)

indicating the importance of the features of node j to node i. The computed attention coefficients eij are
normalized across all incoming neighboring nodes j using softmax:

αij = softmaxj(eij) = exp(eij)∑
k∈Nin(i) exp(eik) . (5)

Finally, the aggregation corresponds to a weighted average of the incoming messages:

h′
att,i = ϕ

 ∑
j∈Nin(i)

αijf (hatt,j)

 . (6)

Popular attentional GNNs include GAT (Veličković et al., 2018), GATv2 (Brody et al., 2022) and Graph
Transformer (GT) (Shi et al., 2021), which mainly differ in the choice of the scoring function e (see App. C).
The graph attention mechanism is visualized in Fig. 2a.

The weighted mean aggregation limits the expressivity of attention-based GNNs. Similar to the mean
aggregator, standard attention does not capture the exact node neighborhood but the distribution of nodes
in the neighborhood.
Lemma 4.1. Assume X1 = (S,m) and X2 = (S, k·m) are multisets with the same distribution, with k ∈ N≥1.
Then h′

att(X1) = h′
att(X2), for any choice of ϕ and f .

Proofs of all Lemmas and Corollaries can be found in the Appendix A.
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Figure 2: a Standard graph attention mechanism as it is applied in attentional GNNs. The attention
weights associated with edges of the same color sum to 1. b The proposed flow attention mechanism applied
in FlowGNNs. The flow attention weights associated with edges of the same color sum to 1. c Two snapshots
during the reverse and forward pass of FlowDAGNN. Nodes marked in green have already been updated.

4.2 Attention on DAGs

The node update of an attentional directed acyclic GNN can be expressed as

h′
att,i = ϕ

hatt,i,
∑

j∈Nin(i)

αijf
(
h′

att,j

) . (7)

A directed acyclic GNN sequentially updates each node’s feature vector until it arrives at one or more final
nodes. If there are multiple final nodes, their representations can be gathered into a single virtual node.
Since all other nodes are ancestors of this final node, its representation can be used to characterize the whole
DAG. The computation history of the final node representation can be visualized as a rooted subtree, which
means that if two non-isomorphic DAGs represent the same computation, the rooted subtree structures of
their final node representations are equivalent. Therefore, since standard attention weights only depend on
incoming neighborhoods, directed acyclic GNNs with standard attention mechanisms cannot discriminate a
DAG D from its computation tree γ(D) (see Fig. 3 in App. D).
Corollary 4.2. For every DAG D ∈ ∆ and every directed acyclic GNN Aatt with a standard attention
mechanism, it holds:

Aatt(D) = Aatt(γ(D)).

As a consequence, an attentional directed acyclic GNN cannot distinguish between the two graphs in Fig. 1,
since they exhibit the same computation tree. Note that Corollary 4.2 is also valid for directed acyclic GNNs
with other aggregators that are independent of outgoing node neighborhoods, e.g., sum or mean.
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5 The Flow Attention Mechanism

In this section, we introduce the flow attention mechanism and discuss its influence on expressivity. Next,
we define flow attention on DAGs, which enables the discrimination of a DAG from its computation tree.
Finally, we propose FlowDAGNN, a directed acyclic GNN model for flow graphs.

5.1 Flow-Attentional GNNs

Standard attention mechanisms normalize attention scores across all incoming edges. Therefore, a message
does not depend on how many nodes it is forwarded to, which means it can be duplicated arbitrarily,
contradicting the resource conservation concept inherent in flow graphs. Therefore, we propose an alternative
graph attention mechanism that normalizes the attention scores across outgoing edges instead (see Fig. 2b).
We denote the resulting flow attention weights as βij to distinguish them from the standard attention weights
αij :

βij = softmaxi(eij) = exp(eij)∑
k∈Nout(j) exp(ekj) . (8)

Although the attention scores are normalized across outgoing edges, we still aggregate incoming messages in
order to update the hidden state of node i:

h′
flow,i = ϕ

 ∑
j∈Nin(i)

βijf (hflow,j)

 . (9)

However, since the messages are multiplied with the flow attention weights βij , they now also depend on the
neighborhood of the message’s sender, i.e., node j. In this way, we ensure that a message transmitted by any
node cannot be duplicated arbitrarily but instead is distributed among all outgoing neighbors. We define
a flow-attentional graph neural network (FlowGNN) as a modified version of an attentional GNN, which
utilizes the flow attention mechanism from Eq. 9 for aggregating node neighborhood information instead of
standard attention. Furthermore, we denote the corresponding FlowGNN versions of standard attentional
GNNs as FlowGAT, FlowGATv2, FlowGT, etc.

The flow attention weights determine how a node’s message is distributed among its outgoing neighbors,
i.e., βij can be seen as the relative flow from node j to node i. An absolute flow ψβ can be calculated by
iteratively multiplying subsequent flow attention weights in a graph.
Lemma 5.1. Let G = (V, E) be a graph with fixed source nodes S ⊂ V and target nodes T ⊂ V. We define
ψβ for every directed edge (j, i) ∈ E as

ψβ(j, i) =


βij

∑
k∈Nin(j)

ψβ(k, j), if j ∈ V \ {S, T }

ψ0(j, i), otherwise.

Thereby, ψ0(j, i) is the absolute outgoing flow from a source or target node. Then ψβ is a flow on G that
satisfies Kichhoff’s first law.

Since the absolute flow ψβ satisfies Kirchhoff’s first law, a FlowGNN is capable of implicitly taking into
account the underlying resource flow of a graph via the flow attention weights βij . Another advantage
of the flow attention mechanism is that the aggregation over incoming neighbors is not a weighted mean
but a weighted sum. Therefore, in contrast to standard attention, flow attention can discriminate between
multisets with the same distribution.
Lemma 5.2. Assume X1 = (S,m) and X2 = (S, k ·m) are multisets with the same distribution of elements
for some k ∈ N≥2. Furthermore, assume that all nodes s ∈ S have the same outgoing neighborhood Nout(s).
Then ∃ ϕ, f such that h′

flow(X1) ̸= h′
flow(X2).

Therefore, flow-attentional GNNs are particularly well-suited for tasks where not only statistical informa-
tion, but also the precise graph structure, plays a crucial role. This is especially true when features occur
repeatedly, e.g., in the case of multiple identical resistors in an electronic circuit.
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5.2 Flow-Attention on DAGs

We define the node update for a flow-attentional directed acyclic GNN similar to Eq. 7:

h′
flow,i = ϕ

hflow,i,
∑

j∈Nin(i)

βijf
(
h′

flow,j

) . (10)

If all nodes in a graph have only one outgoing edge, e.g., the graph is a rooted tree, then βij = 1 ∀ i, j. In this
case, the flow attention mechanism degenerates to a sum aggregation, which can be maximally expressive
for the right choice of ϕ and f (Xu et al., 2019).

Corollary 5.3. Let T ⊂ ∆ be the subset of all DAGs, where each node has at most one outgoing edge (i.e.,
the set of all rooted trees). Then, for any two rooted trees T1, T2 with T1 ̸= T2, there exists a flow-attentional
directed acyclic GNN Aflow such that:

Aflow(T1) ̸= Aflow(T2).

Furthermore, contrary to standard attention, flow-attentional directed acyclic GNNs can distinguish between
graphs and their message-passing computation trees.

Theorem 5.4. For every DAG D ∈ ∆ with D /∈ T (i.e., a true DAG) and its computation tree γ(D) there
exists a flow-attentional directed acyclic GNN Aflow such that:

Aflow(D) ̸= Aflow(γ(D)).

Proof. We take an arbitrary but fixed intermediate node i of the DAG and denote its representation under
the flow-attentional directed acyclic GNN by

hi = hD
flow,i and h̃i = h

γ(D)
flow,i,

for the graph D and its computation tree γ(D), respectively. Since D is not a tree, there is at least one node
j with more than one successor; hence there is a predecessor j for which βij < 1. We then need to show that
h′

i ̸= h̃′
i:

ϕ
(

hi,
∑

j∈Nin,i

βij f
(
h′

j

))
̸= ϕ

(
h̃i,

∑
j∈Nin,i

f
(
h̃′

j

))
.

By choosing f in the following way:

∃f : f(h̃′
j) ≥ f(h′

k) ∀j, k ∈ Nin,i, (11)

it follows due to ∃j : βij < 1:

∑
j∈Nin,i

βijf(h′
j) <

∑
j∈Nin,i

f(h′
j)

Eq. 11
≤

∑
j∈Nin,i

f(h̃′
j).

Hence, with choosing ϕ to be injective, Aflow distinguishes D from γ(D).

From Theorem 5.4 we conclude that a flow-attentional directed acyclic GNN can discriminate the example
DAGs from Fig. 1 for the right choice of ϕ and f . In practice, we can model the composition f (l) ◦ ϕ(l−1)

on the l-th GNN layer by a universal approximator, e.g., GRU (Schäfer & Zimmermann, 2006; hoon Song
et al., 2023).
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5.3 FlowDAGNN

We propose a flow-attentional version of the attention-based DAGNN (Thost & Chen, 2021). A naive
approach would be to simply replace the attention weights αij with flow attention weights βij . Due to the
sequential nature of directed acyclic GNNs, the computation of the flow attention weight βij in a DAG
only depends on the node i and all its ancestors. However, in contrast to standard attention weights, flow
attention weights are forward-directed, which means that they should also be conditioned on all descendants
of the node i. Analogously, the electrical current splitting up from one node into multiple branches depends
on the whole branch and not only on the first node in each branch. In App. E, we give a simple example of
an electronic circuit illustrating this situation.

Hence, we construct a FlowDAGNN layer from two sublayers (see Fig. 2c). In the first sublayer (we call it
the reverse pass), we invert all edges of the DAG D and apply a standard DAGNN layer to the reverse DAG
D̃. This is equivalent to performing the aggregation over all successor nodes in the original DAG D instead
of over all predecessors:

mrv
i =

∑
j∈Nout(i)

αij

(
hi,h

rv
j

)
hrv

j , (12)

αij

(
hi,h

rv
j

)
= softmax

j∈Nout(i)

(
(wrv

1 )Thi + (wrv
2 )Thrv

j

)
, (13)

h′
i = hrv

i = GRU(hi,m
rv
i ). (14)

In the second sublayer, we perform a forward pass on the original DAG G. However, this time we are applying
the flow attention mechanism described in Section 5.1 to compute flow attention weights βij :

mfw
i =

∑
j∈Nout(i)

βij

(
hrv

i ,h
fw
j

)
hfw

j , (15)

βij

(
hrv

i ,h
fw
j

)
= softmax

i∈Nout(j)

(
(wfw

1 )Thrv
i + (wfw

2 )Thfw
j

)
, (16)

hfw
i = GRU(hrv

i ,m
fw
i ). (17)

Since the hidden states hrv
i of the reverse pass contain information about all descendants of the node i,

and the hidden states hfw
j contain information about all ancestors of the node j, the computation of the

flow attention weights βij essentially takes into account information about all nodes of the graph that are
connected to the node i.

After L FlowDAGNN layers, we compute the graph-level representation from both the reverse pass repre-
sentations of the start nodes as well as the forward pass representations of the end nodes and concatenate
across layers:

hG = Max-Pool
i∈I

(
L

∥
l=0

hrv,l
i

)
∥Max-Pool

j∈F

(
L

∥
l=0

hfw,l
j

)
. (18)

6 Experiments

We perform two different experiments. First, we perform graph-level multiclass classification on undirected
flow graphs, comparing the effectiveness of our flow attention mechanism against standard attention. In the
second experiment, we perform graph regression on DAGs to compare our proposed FlowDAGNN model
with relevant directed acyclic GNN baselines.

6.1 Graph Classification on Undirected Flow Graphs

Dataset. We use the publicly available power grid data from the PowerGraph benchmark dataset (Varbella
et al., 2024), which encompasses the IEEE24, IEEE39, IEEE118, and UK transmission systems. The graphs
contained in these datasets are undirected and cyclic and represent test power systems mirroring real-world
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Table 1: Test set balanced accuracy (%, ↑) and F1-score (macro-averaged, %, ↑) for the cascading
failure analysis (multiclass classification) on four different power grid test systems from the PowerGraph
dataset. Reported results represent the average over five training runs with different random seeds along
with the standard deviation. The best result for each test system is marked in bold.

IEEE24 IEEE39 IEEE118 UK
MODEL Bal. Acc. (↑) Macro-F1 (↑) Bal. Acc. (↑) Macro-F1 (↑) Bal. Acc. (↑) Macro-F1 (↑) Bal. Acc. (↑) Macro-F1 (↑)
GCN 89.4 ± 1.0 89.7 ± 1.0 81.5 ± 5.1 81.9 ± 5.1 78.2 ± 6.0 77.7 ± 6.7 88.4 ± 1.2 86.3 ± 1.6
GraphSAGE 95.6 ± 0.2 95.4 ± 0.4 88.7 ± 4.6 89.1 ± 4.5 98.7 ± 0.1 98.4 ± 0.1 95.2 ± 0.3 95.2 ± 0.3
GIN 98.0 ± 0.8 97.3 ± 0.9 95.2 ± 1.7 94.6 ± 1.4 96.5 ± 2.5 96.3 ± 2.5 97.1 ± 0.2 96.4 ± 0.2
GAT 90.8 ± 4.1 90.6 ± 3.6 90.9 ± 2.7 90.0 ± 2.7 92.1 ± 1.5 91.2 ± 1.5 94.9 ± 1.0 94.3 ± 1.3
FlowGAT 93.3 ± 1.1 93.0 ± 1.0 94.1 ± 1.3 93.2 ± 1.3 96.2 ± 2.7 96.1 ± 2.6 94.9 ± 0.4 94.3 ± 0.4
GATv2 91.9 ± 4.0 90.0 ± 4.7 87.8 ± 2.0 86.3 ± 2.2 92.6 ± 1.6 91.7 ± 1.3 95.3 ± 0.7 94.8 ± 1.0
FlowGATv2 96.1 ± 0.9 95.6 ± 0.8 95.9 ± 0.7 95.0 ± 0.9 99.1 ± 0.1 99.0 ± 0.1 96.9 ± 0.3 96.4 ± 0.4
GT 97.3 ± 0.5 96.7 ± 0.6 90.7 ± 2.3 90.8 ± 2.0 98.7 ± 0.1 98.4 ± 0.1 96.5 ± 0.3 96.2 ± 0.2
FlowGT 98.7 ± 0.3 98.1 ± 0.3 96.0 ± 0.6 94.4 ± 0.6 98.8 ± 0.2 98.6 ± 0.2 97.1 ± 0.4 96.8 ± 0.5

power grids. The test systems differ in scale and topology, covering various relevant parameters. Further
details can be found in App. F.

Task. We perform cascading failure analysis as a graph-level multiclass classification task. Thereby, we
utilize the attributed graphs provided by the PowerGraph dataset, each representing unique pre-outage
operating conditions along with a set of outages corresponding to the removal of a single or multiple branches.
An outage may result in demand not served (DNS) by the grid, and a cascading failure may occur, meaning
that one or more additional branches trip after the initial outage. The model is supposed to predict whether
the grid is stable (DNS = 0 MW) or unstable (DNS > 0 MW) after the outage, and additionally, whether
a cascading failure occurs, resulting in four distinct categories representing the possible combinations of
stable/unstable and cascading failure yes/no.

Models and Baselines. We take three widely used attention-based GNNs (GAT, GATv2, and GraphTrans-
former (GT)) and compare them against the corresponding flow-attentional variants FlowGAT, FlowGATv2,
and FlowGT. Additionally, we compare against three popular non-attentional GNN baselines (GCN, Graph-
SAGE, and GIN). For each model, we perform a small hyperparameter optimization by varying the number
of message-passing layers (1, 2, 3) and the hidden dimension (8, 16, 32). Between subsequent message-passing
layers, we apply the ReLU activation function followed by a dropout of 10%. To obtain graph embeddings
from the node embeddings, we apply a global maximum pooling operator as the readout layer. As a final
prediction layer, we use a single linear layer or a two-layer perceptron with a LeakyReLU activation function
in between, depending on which type of prediction layer was used for the corresponding model in the original
PowerGraph benchmark.

Experimental Setting. We stick closely to the original benchmark setting in Varbella et al. (2024) by split-
ting the datasets into train/validation/test with ratios 85/5/10% and using the Adam optimizer (Kingma,
2014) with an initial learning rate of 10−3 as well as a scheduler that reduces the learning rate by a factor
of five if the validation accuracy plateaus for ten epochs. The negative log-likelihood is used as the loss
function and balanced accuracy (Brodersen et al., 2010) is used as the primary evaluation metric due to the
strong class imbalance (see App. F). We train all models with a batch size of 16 for a maximum number of
500 epochs but stop training with a patience of 20 epochs. Each training run is repeated five times with
different random seeds.

Results. The balanced accuracies and macro-F1 scores on the test set are reported for each model on each
of the four test systems in Tab. 1. We only report the results for the best model architecture from the
hyperparameter optimization. Thereby, we noticed that the accuracy mostly improves with more message-
passing layers, which has already been observed for power grid data in Ringsquandl et al. (2021). The
FlowGNNs perform better than their corresponding standard GNN version in most cases. FlowGAT shows
a higher balanced accuracy compared to GAT for the test systems IEEE24, IEEE39, and IEEE118 and
a comparable performance on the UK test system. In the case of GATv2, the FlowGNN version even

9



Under review as submission to TMLR

Table 2: Test set RMSE and Pearson’s R (%) for the prediction of three different Op-Amp properties
from the Ckt-Bench101 dataset. Reported results represent the average over ten training runs with different
random seeds along with the standard deviation. The best result for each property is marked in bold.

GAIN BANDWIDTH FoM
MODEL RMSE (↓) Pearson’s R (↑) RMSE (↓) Pearson’s R (↑) RMSE (↓) Pearson’s R (↑)
PACE 0.253 ± 0.009 97.1 ± 0.3 0.443 ± 0.014 90.9 ± 0.5 0.443 ± 0.009 90.8 ± 0.5
DAGformer (SAT) 0.234 ± 0.012 97.2 ± 0.3 0.459 ± 0.010 89.2 ± 0.4 0.450 ± 0.015 89.6 ± 0.7
D-VAE 0.229 ± 0.004 97.3 ± 0.1 0.430 ± 0.008 90.6 ± 0.3 0.421 ± 0.011 91.0 ± 0.4
DAGNN 0.215 ± 0.002 97.6 ± 0.0 0.396 ± 0.008 92.1 ± 0.3 0.396 ± 0.005 92.0 ± 0.2
FlowDAGNN 0.209 ± 0.007 97.8 ± 0.1 0.371 ± 0.008 93.1 ± 0.3 0.366 ± 0.008 93.3 ± 0.3

outperforms its standard counterpart on all test systems, while for the transformers, FlowGT performs
better than GT on all test systems except for IEEE118, where it shows a comparable performance. On all
test systems, the best-performing model among the tested ones is a flow-attentional GNN. Overall, these
results indicate that the flow attention mechanism, which is the only applied change to the corresponding
baselines, can enhance the performance of attention-based GNNs on undirected flow graph data.

6.2 Graph Regression on Directed Acyclic Flow Graphs

Dataset. We utilize the Ckt-Bench101 dataset from the publicly available Open Circuit Benchmark (OCB)
(Dong et al., 2023), which was developed to evaluate methods for electronic design automation. The dataset
contains 10,000 operational amplifiers (Op-Amps) represented as DAGs and provides circuit specifications
(e.g., gain and bandwidth) obtained from simulations. Details can be found in App. F.

Task. We perform graph-level regression to predict the properties of the Op-Amps. For this purpose, we
train three separate instances of each model for the prediction of gain, bandwidth, and figure of merit (FoM),
respectively. The FoM is a measure of the circuit’s overall performance and depends on gain, bandwidth,
and phase margin.

Models and Baselines. We compare our proposed model FlowDAGNN against widely used baseline models
from the literature, including GNN- and Transformer-based models tailored to DAGs: D-VAE, DAGNN,
DAGformer (building upon the Structure-Aware Transformer (SAT, Chen et al. (2022))) and PACE. Thereby,
we use the default parameters from Dong et al. (2023) where applicable, and from the original publications
elsewhere, as well as the model-specific readout layers. For FlowDAGNN, we use two layers as described
in Sec. 5.3 (each comprising one reverse and one forward pass) and adopt all other model parameters from
DAGNN. The final prediction is done using a two-layer perceptron with a ReLU activation in between. Right
before these final layers, we apply a dropout of 50% for regularization.

Experimental setting. We split the dataset into train/validation/test with ratios 80/10/10% and select
the same test set as in Dong et al. (2023). Furthermore, we use the AdamW optimizer (Loshchilov, 2017)
with an initial learning rate of 10−4 and train each model using the mean squared error (MSE) as the loss
function with a batch size of 64 for a maximum of 500 epochs but apply early stopping with a patience of
20 epochs. Each training run is repeated ten times with different random seeds.

Results. The RMSEs on the test set for all models and all OpAmp target properties are presented in
Tab. 2. Among all tested models, FlowDAGNN shows the best performance on all target properties. Espe-
cially, it performs better than DAGNN, the standard attentional model it is originally based on. Thereby,
FlowDAGNN performs slightly better in predicting the gain property and significantly better in the other
two properties.

7 Conclusion

In this paper, we proposed the flow attention mechanism, which adapts existing standard attention mecha-
nisms to be more suitable for learning tasks on flow graph datasets, where the flow of physical resources (e.g.,
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electricity) plays an important role. Inspired by Kirchhoff’s first law, the mechanism normalizes attention
scores across outgoing edges instead of incoming ones, which ensures that messages can not be duplicated
unrestricted anymore and better captures the underlying physical flow of the graph. We discussed the in-
fluence of this architectural change on the model expressivity and showed that flow-attentional GNNs, in
contrast to GNNs using standard attention, can distinguish node neighborhoods with the same distribution.
Since the proposed modification of the standard graph attention is simple and minimal, it can be easily
implemented in practice and does not significantly increase the computational effort (see App. G for more
details on computational efficiency).

Since many flow graphs can be naturally expressed as directed acylcic graphs (DAGs), we also extended the
flow attention mechanism to DAGs and proposed a specific model, namely FlowDAGNN. We proved that this
model can distinguish non-isomorphic directed acyclic graphs which were so far indistinguishable for existing
GNNs tailored to DAGs. We validated our theoretical findings with extensive experiments on power grids
and electronic circuit datasets, including undirected graphs and DAGs, respectively. Our results indicate
that the flow attention mechanism considerably improves the performance of their standard counterparts on
graph-level regression and classification tasks.

In the future, we want to analyze how the proposed models scale to larger circuits and power grids. Another
interesting direction will be to investigate the performance on node- and edge-level tasks, as well as on other
flow graph data, such as traffic networks or supply chains.
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A Proofs

Proof of Lemma 4.1. We are given the node update of an attentional GNN from Equation 6, adapted to the
multiset X = (S,m) as input:

h′
att = ϕ

(∑
s∈S

α1sm(s)f (hatt,s)
)
,

with α1s being the softmax over the edge importance scores:

α1s = exp(e1s)∑
s′∈S exp(e1s′) .

For the two given multisets X1,X2, h′
att,i gets the same result for any choice of ϕ and f :

h′
att(X1) = ϕ

(∑
s∈S m(s) exp(e1s)f(hatt,s)∑

s′∈S m(s′) exp(e1s′)

)
= ϕ

(∑
s∈S k ·m(s)s exp(e1s)f(hatt,s)∑

s′∈S k ·m(s′) exp(e1s′)

)
= h′

att(X2).

Proof of Corollary 4.2. This follows from the definition of a computation tree: Each node in γ(D) gets the
same representation as the corresponding node in D, as the aggregation is carried out over the same multiset
of node features and does not take into account the outgoing neighborhoods of the nodes contained in the
multiset. Hence, the representation of the (virtual) output node is the same in both cases, leading to equal
DAG representations.

Proof of Lemma 5.1. We recall the definition of ψβ from Lemma 5.1:

ψβ(j, i) =


βij

∑
k∈Nin(j)

ψβ(k, j), if j ∈ V \ {S, T }

ψ0(j, i), otherwise.
(19)

Since the flow attention weights correspond to the attention scores normalized across outgoing edges, it holds
that ∑

i∈Nout(j)

βij = 1.

Multiplying on both sides with the sum of Ψβ across all incoming edges of node j gives:

∑
i∈Nout(j)

βij

 ∑
k∈Nin(j)

ψβ(k, j)

 =
∑

k∈Nin(j)

ψβ(k, j).

Using the definition of ψβ from Eq. 19, we arrive at Kirchhoff’s first law:∑
i∈Nout(j)

ψβ(j, i) =
∑

k∈Nin(j)

ψβ(k, j) ∀ j ∈ V \ {S, T }.
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Proof of Lemma 5.2. We are given the node update of a flow-attentional GNN from Equation 9, adapted to
the multiset X = (S,m) as input:

h′
flow = ϕ

(∑
s∈S

β1sm(s)f (hflow,s)
)
.

Since the elements of S have the same features and outgoing neighborhoods in X1 and X2, the flow attention
weights are the same in both cases. Therefore, if ϕ is injective, h′

flow,i gets different results:

h′
flow(X1) = ϕ

(∑
s∈X1

β1sm(s)f(hflow,s)
)

k≥2,f ̸=0
̸= ϕ

(∑
s∈X1

kβ1sm(s)f(hflow,s)
)

= h′
flow(X2).

Proof of Corollary 5.3. We are given the node update of a flow-attentional GNN from Equation 9, adapted
to the multisets Xi = (Si,mi), i ∈ {1, 2} as input:

h′
att = ϕ

(∑
s∈Si

β1smi(s)f (hatt,si
)
)
,

with β1s being equal to 1, as all nodes have at most one outgoing edge in a rooted tree. Then, we fulfill the
prerequisites of Lemma 5 from Xu et al. (2019), which states that for the right choice of f and ϕ, any two
different multisets can be distinguished. Thus, Aflow can distinguish the trees T1 and T2.

B Directed Acyclic GNN Baselines

In the encoder of the D-VAE model (Zhang et al., 2019), the aggregation corresponds to a gated sum using
a mapping network m and a gating network g, and the update function ϕ is a gated recurrent unit (GRU)
(Cho et al., 2014):

m′
i =

∑
j∈Nin(i)

g(h′
j) ⊙m(h′

j), (20)

h′
i = GRU(hi,m

′
i). (21)

Another popular model is the DAGNN (Thost & Chen, 2021), which also uses a GRU for the update function
but the message function is an attention mechanism with model parameters w1 and w2:

m′
i =

∑
j∈Nin(i)

αij

(
hi,h

′
j

)
h′

j , (22)

αij = softmax
j∈Nin(i)

(
wT

1 hi + wT
2 h′

j

)
. (23)

Since the embeddings of the (possibly multiple) end nodes contain information on the whole DAG, they are
typically used for computing the graph-level representations. After L layers, the graph-level embedding can
be obtained by concatenating the end node representations from all layers followed by a max-pooling across
all end nodes:

hG = Max-Pool
i∈F

(
L

∥
l=0

hl
i

)
. (24)
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As DAGs are treated as sequences by the above models, they can also be processed in reversed order by
inverting the edges. Therefore, directed acyclic GNNs are also capable of bidirectional processing. Using
the tilde notation to denote node representations in the reverse DAG, the readout function for bidirectional
processing can then be expressed as:

hG = FC
(

Max-Pool
i∈I

(
L

∥
l=0

h̃l
i) ∥ Max-Pool

j∈F
(

L

∥
l=0

hl
j)
)
. (25)

Note that the representations of the forward and reverse processing are computed independently, which is
different from the reverse and forward pass in FlowDAGNN. In all our experiments, we use bidirectional
processing for D-VAE and DAGNN.

C Scoring Functions of Attentional GNN Baselines

In GAT (Veličković et al., 2018), the scoring function is defined as

eGAT (hi,hj) = LeakyReLU
(
aT · [W hi ∥ W hj ]

)
. (26)

Thereby, the linear layers a and W are applied consecutively, making it possible to collapse them into a
single linear layer.

In GATv2 (Brody et al., 2022), a strictly more expressive attention mechanism is proposed, in which the
second linear layer a is applied after the nonlinearity:

eGATv2 (hi,hj) = aT LeakyReLU (W · [hi ∥ hj ]) . (27)

Thus, GATv2 is effectively using a multi-layer perceptron (MLP) to compute the attention scores, allowing
for dynamic attention compared to the static attention performed by GAT.

Finally, Graph Transformer (Shi et al., 2021) is transferring the attention mechanism of the Transformer
model (Vaswani et al., 2017) to graph learning:

qi = Wqhi + bq, (28)
kj = Wkhj + bk, (29)

eGT (hi,hj) = qT
i · kj√
d

, (30)

where qi ∈ Rd is the query vector, kj ∈ Rd is the key vector and Wq,Wk, bq, bk are trainable parameters.

All of the above scoring functions can be extended to multi-head attention and can incorporate edge features
as well. Furthermore, it is possible to include self-loops. These characteristics are naturally inherited by the
corresponding FlowGNNs.

D DAGs and Computation Trees

Fig. 3 again shows the two different DAG structures from the examples in Fig. 1 together with their corre-
sponding computation trees as defined in Section 3. Although the two DAGs are different, they have the same
computation tree. Since standard attention weights are computed by normalizing over incoming neighbors,
they are the same for both DAGs. However, the flow attention weights are obtained by normalizing across
outgoing neighbors. Since the grey and blue nodes (colors represent distinct node features) exhibit different
outgoing neighborhoods in the two DAGs, the flow attention weights are different. Thus, a flow-attentional
directed acyclic GNN can distinguish the two DAGs while a standard attentional one cannot.

E Example Circuit Motivating the Reverse Pass in FlowDAGNN

Fig. 4 shows an example for an electronic circuit modeled as a DAG, which motivates the necessity for the
reverse pass in FlowDAGNN. If FlowDAGNN would only compute node representations via the forward
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Figure 3: Two non-isomorphic DAGs together with their corresponding computation trees, which are
equivalent. Distinct node features are visualized by different colors. The middle and right columns show
some example standard and flow attention weights. While the standard attention weights are always the
same for both DAGs, the flow attention weights are different.

pass, the flow attention weight βij would only depend on all ancestors of node i. This means that the edge
from In to R1 in the upper branch would receive the same flow attention weight as the edge from In to R1
in the lower branch. However, since R1 ≪ R2, the electrical current in the upper branch would be much
smaller than the current in the lower branch. Therefore, FlowDAGNN would not be capable of modeling the
electrical current flow via the flow attention weights. Only if the reverse pass is applied before the forward
pass, the flow attention weights can also be conditioned on the descendants of node i.

Figure 4: A simple example circuit described as a DAG, which explains why the reverse pass is necessary
in FlowDAGNN. Without the reverse pass, the flow attention weights from the input node to the R1 nodes
would be identical, whereas the electrical current flow is different due to R1 ≪ R2.

F Details on PowerGraph and Ckt-Bench101

PowerGraph. The PowerGraph dataset (Varbella et al., 2024) contains four different test systems (IEEE24,
IEEE39, IEEE118, UK) with unique graph structures. For the cascading failure analysis, each test system

17



Under review as submission to TMLR

was simulated for different power grid loading conditions together with a specific initial outage, resulting in
a large number of graph samples. The number of nodes and edges in each test system as well as the number
of graph samples are reported in Tab. 3.

Table 3: Number of nodes and edges for each test system as well as the number of corresponding graph
samples contained in the PowerGraph dataset (see Varbella et al. (2024)).

Test system No. Nodes No. Edges No. Graphs
IEEE24 24 38 21500
IEEE39 39 46 28000
IEEE118 118 186 122500
UK 29 99 64000

Tab. 4 shows how the classification labels are distributed in the PowerGraph dataset for each test system.
For multiclass classification, models are trained to distinguish all available categories, while for binary clas-
sification, the models only have to predict whether DNS > 0 MW (categories A and B) or DNS = 0 MW
(categories C and D), where DNS is the demand not served. Due to the strong class imbalance, the balanced
accuracy BA is used as the evaluation metric (Brodersen et al., 2010), which is defined as the mean of
sensitivity and specificity:

BA = 1
2

(
TP

TP + FN + TN
TN + FP

)
. (31)

Here, TP/FP/TN/FN represent true/false positive/negative predictions.

CktBench-101. The CktBench-101 dataset from the Open Circuit Benchmark Dong et al. (2023) contains
10,000 artificially generated operational amplifiers represented as DAGs. Fig. 5 shows the distribution of the
number of nodes and the number of edges among all graphs in the dataset. The average number of nodes
is 9.6 with a standard deviation of 2.1. The average number of edges is 14.5 with a standard deviation of
5.3. We are using the most recent update of the CktBench-101 dataset, which does not contain any failed
simulations anymore.

Figure 5: Distribution of the number of nodes (left) and number of edges (right) within the Ckt-Bench101
dataset (Dong et al., 2023).

G Efficiency Comparison

Undirected Graphs. We compare the average training and inference times of the considered models for
processing the training set of the IEEE24 dataset from the PowerGraph benchmark using a batch size of
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Table 4: Distribution of the classification labels for each test system in the PowerGraph dataset (see Varbella
et al. (2024)). DNS stands for "demand not served" and c. f. stands for "cascading failure", corresponding
to at least one more tripping branch after the initial outage.

Category A Category B Category C Category D
DNS > 0 MW DNS > 0 MW DNS = 0 MW DNS = 0 MW

Test system c. f. no c. f. c. f. no c. f.
IEEE24 15.8% 4.3% 0.1% 79.7%
IEEE39 0.55% 8.4% 0.45% 90.6%
IEEE118 >0.1% 5.0% 0.9% 93.9%
UK 3.5% 0% 3.8% 92.7%

Figure 6: The training and inference times for processing the training set of the IEEE24 dataset from the
PowerGraph benchmark averaged over 10 runs.

64 (see Fig. 6). We do not observe significant differences in computational efficiency between any flow-
attentional GNN and its standard-attentional counterpart.

DAGs. We compare the average training and inference times of the considered directed acyclic GNN models
for processing the training set of the CktBench-101 dataset using a batch size of 64 (see Fig. 7). Thereby,
we compare our implementation of FlowDAGNN against the original implementations from the authors of
the baseline models. While PACE is the most efficient model, FlowDAGNN only shows a slightly higher
training time. DAGNN and D-VAE (using bidirectional processing, see App. B) appear to be slightly less
efficient than FlowDAGNN. Note that these differences could be caused not only by architectural but also
by implementation differences.

All efficiency experiments were carried out on NVIDA V100 GPUs.
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Figure 7: The training and inference times for processing the training set of the CktBench-101 dataset from
the Open Circuit Benchmark averaged over 10 runs.
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