
Medical Imaging with Deep Learning – Under Review 2022 Short Paper – MIDL 2022 submission

Efficient Transfer Learning for Cardiac landmark
Localization Using Rotational Entropy

Samira Masoudi∗1,2 SMasoudi@ucsd.edu

Kevin Blansit∗3 kevin.blansit@gmail.com

Naeim Bahrami4 naeim.bahrami@gmail.com

Albert Hsiao1,2 a3hsiao@ucsd.edu

∗these authors contributed equally to this work
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Abstract

Transfer learning is a common technique to address model generalization among dif-
ferent sources, which requires additional annotated data. Herein, we proposed a novel
strategy to select new data to be annotated for transfer learning of a landmark localization
model, minimizing the time and effort for annotation and thus model generalization. A
CNN model was initially trained using 1.5T images to localize the apex and mitral valve
on the long axis cardiac MR images. Model performance on 3T images was reported poor,
necessitating transfer learning to 3T images. Rotational entropy, was introduced not only
as a surrogate of model performance but as a metric which could be used to prioritize the
most informative cases for transfer learning.
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1. Introduction

Cardiac MR, essential for cardiovascular function assessment, is usually acquired at 1.5T
field strength. However, there is a growing interest to use 3T scanners for this purpose.
Inspired by (Payer et al., 2020), a cardiac landmark localization model called LAXLoc-Net
was trained to localize the apex and mitral valve in long axis MR images. The ground truth
for ith landmark was established by a target pseudoprobability map, Pi defined as a circular
Gaussian function centered at the expert-defined ground truth coordinate vector X∗

i and
a fixed standard deviation vector Σi (Blansit et al., 2019).

Pi(X) = e
− (X−X∗

i)
2

2Σi
2 (1)

With the training-time shift, zoom, and rotational augmentation, LAXLoc-Net was opti-
mized through minimization of the L2 loss computed between the ground truth (Pi) and
predicted (P̂i) pseudoprobability maps. The peak point of P̂i was then extracted as the
predicted landmark coordinate vector X̂i. Having the model initially trained with 1.5T
images, caused it to make erroneous predictions on the majority of the 3T images. To
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address the model’s undertraining in case of 3T images, we adopted transfer learning which
involves fine-tuning the model with more annotated images acquired at 3T. Having an
efficient strategy to sample from a pool of 3T images to be included in the step 2 of train-
ing, can minimize the time and effort required for the annotation. For this, we saught to
find a metric to be calculated per image, where we hypothesized that unstable response to
rotational disturbances could be a sign of model’s insufficiency.

2. Materials and Methods

A schematic for rotational entropy is depicted by Figure 1-A. Given the test-time augmented
image Iθj , rotated by θj about the center of the input image I, model’s prediction of

psudoparability map would be P̂
θj
i for landmark i. We then define the rotational entropy

Ei across the rotational range of {θ1, θ2, ..., θM} as follows:

Ei =
1

M
ΣM
j=1|P̂i − (P̂

θj
i )

−θj | (2)

where P̂i represents the ith heatmap prediction from image I and (P̂
θj
i )−θj stands for re-

oriented prediction of the oriented image, Iθj . The larger spatial spread of the rotational
entropy indicates lower model stability. To translate rotational entropy into a single score
measure, we used the spatial variance of Ei.

si =

√
(
M2,0,i

M0,0,i
− (

M1,0,i

M0,0,i
)2)2 + (

M0,2,i

M0,0,i
− (
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M0,0,i
)2)2, Mk,t,i =

∑
k

∑
t

xkytEi(x, y) (3)

With HIPPA compliance and IRB approval, we retrospectively collected 405 cardiac MRI
studies at our institution, 285 of which were collected at 1.5T and the remaining 120 images
were collected at 3T. An expert radiologist located apex and mitral valve coordinates on
long axis MR images to be used for ground truth.

We trained our initial LAXLoc-Net using 1.5T long axis images. A 2D U-net was
modified for heatmap localization by setting the activation function at the final layer to be
linear and having L2-error loss for training.

Transfer Learning was then used to adapt LAXLoc-Net from 1.5T to 3T. In an exper-
iment, we used incremental number of 3T training cases for transfer learning. These cases
were selected using 3 strategies: 1) descending si, 2) Ascending si, and 3) random (with
20 repetitions). We also used five-fold cross validation where each fold was independently
trained using 60% of the 3T transfer learning images and validated on 40% of the remaining
images.

3. Results and Discussion

To assess the performance of our landmark localization model, we measured the localization
error in terms of the distance between the predicted X̂i and ground truth X∗

i . The initial
LaxLocNet errors of 9.64 and 7.18 mm for localizing the apex and mitral valve in 1.5T images
grew worse in 3T images (29.79 mm (p < 0.01) for apex and 15.44 mm (p < 0.01) for mitral
valve). Our analysis of localization error in this study indicated that si could be utilized as a
surrogate for model performance. Illustrated by Figure 1-B,& 1-C, lower spatial variance in
rotational entropy, si, was associated with low localization error for either apex and mitral
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valve. These observations imply the potential to use si as a proxy for model uncertainty.
We furthur compared the results of transfer learning using 3 sampling strategies from 3T
images. While the näıve strategy-3 resulted in a decremental error for apex localization,
using strategy-1 required less data to achieve the same level of performance. Using strategy-
2 had worse transfer effect than choosing images at random (Figure 1-D). Our experiment
demonstrates the potential use of si as model uncertainty for efficient transfer learning.

Figure 1: A) Shematic for rotational entropy, B and C) relation between si and localization
errors, D) Comparison of 3 sampling strategies for transfer learning.
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