

000 WHY REINFORCEMENT FINE-TUNING ENABLES 001 MLLMs PRESERVE PRIOR KNOWLEDGE BETTER: 002 A DATA PERSPECTIVE

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforce-
014 ment Fine-Tuning (RFT) are widely used to adapt multimodal large language
015 models to downstream tasks. While effective at task adaptation, their impact on
016 prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as
017 a novel task absent from existing pretraining corpora and systematically study
018 the behavior of SFT and RFT on open-source multimodal model, Qwen2.5-VL
019 series. Our experiments reveal a sharp trade-off: SFT enables rapid task acqui-
020 sition but leads to catastrophic forgetting, whereas RFT learns more slowly but
021 maintains prior knowledge. We study this phenomenon through learning dynam-
022 ics by examining both the magnitude and direction of how training data influence
023 prior knowledge. Our analysis shows that RFT mainly reinforces correct samples
024 naturally aligned with the base model’s probability landscape, leading to weaker
025 interference with prior knowledge. Moreover, training on RFT-simulated roll-
026 outs, which exert a small magnitude of influence and are well aligned in direction
027 to prior knowledge, allows SFT to preserve prior knowledge better while rapidly
028 learning new tasks. These findings suggest that distribution of training data, rather
029 than algorithmic differences, plays a central role in forgetting, and highlight RFT’s
030 potential for stable continual learning in multimodal large language models.

031 1 INTRODUCTION

033 In the era of large models, two primary post-training methods, *i.e.*, Supervised Fine-Tuning
034 (SFT) (Wei et al., 2021) and Reinforcement Fine-Tuning (RFT) (DeepSeek-AI et al., 2025; Ouyang
035 et al., 2022), have emerged for enhancing model performance on domain-specific tasks. These meth-
036 ods have been pivotal in enabling multimodal large language models (MLLMs) to learn specific
037 downstream tasks, follow human instructions, and acquire reasoning capabilities, yielding impres-
038 sive results. However, current post-training practices primarily focus on performance improvement
039 for specific downstream tasks, while overlooking the potential impact of fine-tuning algorithms on
040 the model’s pre-existing knowledge. This oversight raises concerns about the model’s ability to
041 retain and apply prior knowledge.

042 To this end, this paper investigates how post-training algorithms, specifically SFT and RFT, affect
043 the retention of prior knowledge when large models are trained to learn entirely novel knowledge or
044 tasks that were absent during pretraining. In particular, we will focus our study on MLLMs, which
045 understand both vision and language. To establish a challenging and genuinely novel task for testing,
046 we introduce jigsaw puzzles as the target task for learning, as in Fig. 1. Through preliminary ex-
047 periments, we observe that existing state-of-the-art MLLMs, including GPT-4o (Hurst et al., 2024),
048 fail to solve even simple 3x3 jigsaw puzzles, indicating that this task represents a novel problem not
049 covered by current pretraining corpora. Thus, the jigsaw puzzles can serve as a fair and meaningful
050 task for evaluating the impact of post-training algorithms, *i.e.*, SFT and RFT, on prior knowledge.

051 We conduct systematic fine-tuning experiments using both standard SFT and RFT, *i.e.*, GRPO (Shao
052 et al., 2024), on open-sourced Qwen2.5-VL (Bai et al., 2025) series. Interestingly, we find that SFT
053 can master novel tasks with solely hundreds or thousands of training steps, while RFT requires
several tens of thousands of training steps to successfully solve jigsaw puzzles and achieves similar

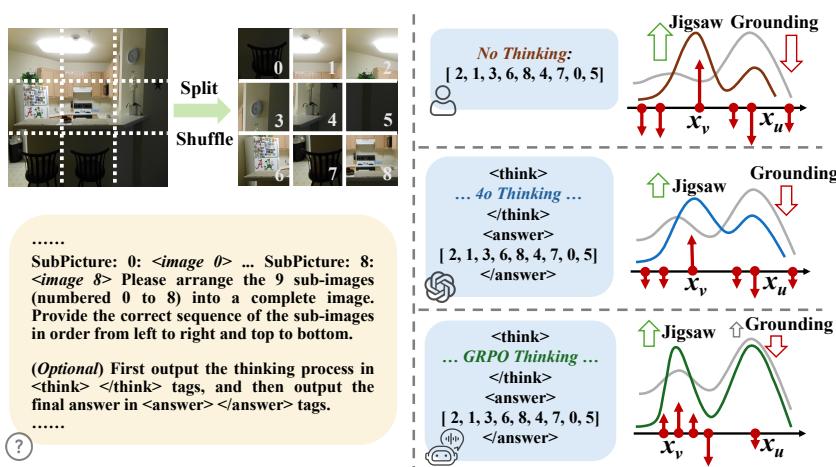


Figure 1: Overview of jigsaw puzzles in the context of MLLMs. We split the original image into 9 patches and randomly shuffle the order of the patches. During SFT, MLLMs are supervised either with Non-Reasoning data directly or GPT-4o-generated reasoning trajectories, while both incur catastrophic forgetting. In contrast, RFT generates reasoning trajectories and answers by itself, reinforces the correct outputs, and avoids severe forgetting.

accuracy as SFT. **This finding suggests that large-scale RFT can teach model to solve tasks that base model is completely unable to handle. In a sense, this shows that RFT can push the model beyond its original capability boundary.** In addition to performance on novel tasks, we observe that SFT incurs severe forgetting of previous knowledge, with substantial performance drops across diverse benchmarks, especially on tasks with similar output formats as jigsaw puzzles. In contrast, RFT, by leveraging reward-driven credit assignments for the simulated rollouts, can master the novel jigsaw puzzles while maintaining decent performance on prior tasks.

The distinct phenomenon observed between SFT and RFT naturally raises a question: *Why SFT incurs catastrophic forgetting while RFT does not?* While both algorithms increase the likelihood of correct responses, RFT adaptively reweights the likelihood of rollout with reward, whereas SFT uniformly increases the likelihood of static human annotations. Inspired by this, we collect the correct rollouts during RFT and use them as the supervised data for SFT. Surprisingly, we find that SFT trained on these correct rollouts not only acquires novel knowledge quickly but also preserves prior knowledge better. This suggests that the construction of fine-tuning data, rather than the training algorithm itself, is a key factor in knowledge forgetting.

Furthermore, we provide a new perspective based on learning dynamics (Ren & Sutherland, 2024), which links the likelihood change of prior knowledge x_v to the gradient induced by an individual training example x_u , on understanding this distinct forgetting behavior by analyzing the **magnitude** and **direction** of how training data influence prior knowledge. We first observe that SFT data without reasoning trajectories usually interfere more with prior knowledge, as verified with a much larger norm of empirical neural tangent kernel (eNTK) between SFT data and prior knowledge. While datasets with reasoning trajectories, such as reasoning trajectories generated by GPT-4o and collected during RFT, usually exhibit a smaller norm of eNTK and less forgetting of prior knowledge, implying that introducing explicit reasoning can help alleviate knowledge forgetting.

As for the direction of interference, we find that data with reasoning trajectories generated by GPT-4o typically belong to high-perplexity regions of the base model. In contrast, data collected during RFT are naturally generated from regions where the base model already assigns a moderate probability. This suggests that pretraining has already shaped certain linguistic regions by accident that are well-aligned with novel tasks, while remaining compatible with prior knowledge. Importantly, according to learning dynamics, the influence of training on one example x_u over the likelihood of another example x_v is symmetric: increasing the likelihood of x_u has the same marginal effect on x_v as increasing x_v has on x_u . Therefore, when RFT discovers and reinforces such hidden linguistic regions x_u shaped during pre-training, it degrades less the likelihood of prior knowledge x_v . Crucially, such regions are difficult to identify during the stage of dataset construction for SFT, but are accessible through RFT's active exploration within linguistic space. This highlights RFT

108 as an effective algorithm for stable novel knowledge acquisition in MLLMs without suffering from
 109 catastrophic forgetting. Formally, our contributions are three-fold:
 110

- 111 • We show that large-scale RFT can solve unseen tasks while preserving prior competencies.
 112 Moreover, SFT trained on RFT-generated rollouts can match RFT’s performance while markedly
 113 reducing catastrophic forgetting, underscoring the central role of data construction.
- 114 • We propose a learning-dynamics interpretation of forgetting that decomposes how training data
 115 influence prior knowledge into its *magnitude* and *direction*, providing a principled view of inter-
 116 ference and informing fine-tuning design.
- 117 • Building on this interpretation, we conduct extensive experiments demonstrating that RL-
 118 sampled corpora strike a favorable magnitude–direction trade-off, offering strong empirical sup-
 119 port for the stability of RL algorithms.

121 122 123 2 RELATED WORKS

124 125 **Jigsaw Puzzles.** Jigsaw puzzles has long been a popular self-supervised task in the computer vision
 126 community, aimed at learning visual representations (Noroozi & Favaro, 2016; Carlucci et al., 2019)
 127 by spatial reasoning and part-whole understanding. Recently, this task has been repurposed for
 128 probing weak spot of MLLMs: Lyu et al. (2025) shows that leading MLLMs perform far behind than
 129 human performance. The contemporary work Jigsaw-R1 (Wang et al., 2025) solves jigsaw puzzles
 130 with RFT, achieving much better performance. Collectively, these works mainly treat jigsaw puzzles
 131 as pretext task for representation learning or test benchmark for MLLMs. However, we employ
 132 jigsaw puzzles to investigate how post-training algorithms affect the forgetting behavior of MLLMs.

133 **Reinforcement Fine-Tuning in MLLMs.** Inspired by the success of RFT in large language models
 134 (DeepSeek-AI et al., 2025; Ouyang et al., 2022), recent work has applied RFT to MLLMs.
 135 Among them, Meng et al. (2025) finds that RFT can achieve better out-of-distribution generalization
 136 performance than SFT. Meanwhile, RFT is also employed for perception-centric tasks (Liu
 137 et al., 2025c; Shen et al., 2025; Liu et al., 2025b), still conferring notable gains in generalization and
 138 robustness. Concurrently, Jigsaw-R1 (Wang et al., 2025) introduced RFT to the novel task of jigsaw
 139 puzzles but achieved limited accuracy. Building on this direction, we extend RFT training to tens of
 140 thousands of steps to enable deeper exploration, yielding substantial gains on jigsaw puzzles.

141 **Catastrophic Forgetting.** Early work (McCloskey & Cohen, 1989; Ratcliff, 1990) showed that even
 142 minimal sequential training on disjoint data can cause rapid “catastrophic forgetting” (CF). Existing
 143 strategies to mitigate CF fall into three categories: (i) **Regularization-based methods** (Kirkpatrick
 144 et al., 2016; Zenke et al., 2017; Li & Hoiem, 2017) constrain updates to protect old tasks but often
 145 limit new learning. (ii) **Memory-replay strategies** (Shin et al., 2017; Rebuffi et al., 2017; Chaudhry
 146 et al., 2019) interleaves past and current data, yet pretraining data of modern open-source MLLMs
 147 is usually unavailable for post-training. (iii) Architecture-based techniques (Rusu et al., 2016; Serrà
 148 et al., 2018) assign task-specific modules, but their parameter overhead makes them impractical for
 149 large MLLMs. Fortunately, with the rise of RFT algorithms such as GRPO (Shao et al., 2024), recent
 150 studies (Liu et al., 2025b; Wang et al., 2025; Lai et al., 2025) have shown that RFT can significantly
 151 reduce CF in MLLMs, although their analysis and explanations are still limited. Recently, RL’s
 152 Razor (Shenfeld et al., 2025) argues that online RL mitigates CF because it is implicitly biased
 153 toward KL-minimal solutions. Aligning with this discovery, we further analyze why online sampling
 154 distribution inherently reduces forgetting from a data-centric perspective with learning dynamics
 155 theory. **Besides, we would like to clarify that our paper isn’t aim to design a better algorithm than**
 156 **classical methods for continuous learning.**

157 158 3 DEFINITION AND BACKGROUND

159 160 161 This section details the format of jigsaw puzzles tailored for MLLMs. For Reinforcement Fine-
 Tuning (RFT), we propose several rule-based rewards to learn jigsaw puzzles.

162 3.1 PUZZLES GENERATION
163

164 **Image Slicing.** Puzzle creation begins with a source image, which is divided into an $m \times n$ regular
165 grid; adjusting m and n directly controls the difficulty of task. If the image height is not divisible by
166 m or the width by n , the excess pixels are cropped from the bottom or right edge, respectively, so
167 that the resulting pixels are exact multiples of the grid cell size. The aligned grid is then used to slice
168 the image into $m \times n$ patches, whose order is randomly permuted to produce the puzzle instance.

169 **Index Assignment and Objective.** To uniquely identify each patch’s original position, we assign
170 row-major indices from 0 (top-left) to $m \times n - 1$ (bottom-right). The model receives this permuted
171 sequence of patches as input and must output the indices in canonical top-left to bottom-right order,
172 thereby reconstructing the image. In this study, we adopt a 3×3 configuration. Empirical results
173 show that state-of-the-art multimodal large language models perform at the chance level on this task.
174

175 3.2 RULE-BASED REWARDS AND RFT
176

177 The objective of RFT is driven by a rule-based reward R that comprises three components: the *hit*
178 reward R_{hit} , *accuracy reward* R_{acc} , and *format reward* R_{fmt} .

179 **Hit Reward.** This term measures partial correctness by computing the fraction of position indices
180 that are predicted accurately:
181

$$R_{\text{hit}} = \frac{\# \text{ correct indices}}{m \times n} \in [0, 1].$$

184 **Accuracy Reward.** A binary bonus that evaluates whether the entire configuration is correct. The
185 model receives $R_{\text{acc}} = 1$ only when every index is perfectly placed; otherwise $R_{\text{acc}} = 0$.

187 **Format Reward.** The output must satisfy formatting rules: the reasoning process is wrapped in
188 `<think> ... </think>` tags and the final answer in `<answer> ... </answer>` tags, with
189 each tag appearing exactly once and in the correct order. The final answer must be a non-repeating
190 sequence of digits 0–8 within ‘[]’. If all requirements are met, $R_{\text{fmt}} = 1$; otherwise, $R_{\text{fmt}} = 0$.

191 **RFT Algorithm.** We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our
192 RFT algorithm. Formally, we maximize the following objective:
193

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbf{E}_{q, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left[\frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t}|q, o_{i,<t})} A_{i,t} - \beta \mathbf{D}_{\text{KL}}(\pi_{\theta} || \pi_{\text{ref}}) \right], \quad (1)$$

197 where q is the problem, $\mathbf{r} = \{r_1, \dots, r_G\}$ is reward for model outputs $\{o_1, \dots, o_G\}$, $A_{i,t} =$
198 $(r_i - \text{mean}(\mathbf{r})) / \text{std}(\mathbf{r})$ is the advantage for each token. Besides, $\pi_{\theta_{\text{old}}}(\cdot) = \pi_{\theta}(\cdot)$ in our experiments,
199 so we omit the original *clip* term here for simplicity.
200

201 4 EXPERIMENTAL SETUP
202

204 **Dataset Construction.** Jigsaw puzzles are built upon COCO 2014 (Lin et al., 2014) image dataset.
205 For training, we sample around 22k images from the COCO training set to generate jigsaw puzzles.
206 For testing, we sample 100 images from the COCO test set. For the SFT dataset, we provide two data
207 formats, *i.e.*, Non-Reasoning data and Reasoning data: the first directly provides the ground-truth
208 answers without reasoning processes, while the second additionally consists of reasoning trajectories
209 generated by GPT-4o with both the question and the answer as input, dubbed as Rea-4o-Rollout.

210 **MLLMs.** We employ Qwen2.5-VL-3B (Bai et al., 2025) and Qwen2.5-VL-7B as our MLLMs due
211 to their strong performance on vision-language understanding and support of native resolution input.

212 **Evaluation.** We not only evaluate the post-trained model on novel tasks, *i.e.*, jigsaw puzzles, but
213 also on 5 representative capability axes of prior knowledge:
214

- **Grounding.** RefCOCO/+g (Kazemzadeh et al., 2014; Mao et al., 2016) test referring-expression
comprehension, requiring the model to localize objects described by the free-form text.

216 Table 1: Performance comparison across post-trained models of **Qwen2.5-VL-3B** and **Qwen2.5-VL-7B**. Numbers in parentheses denote the change w.r.t. *each scale*'s base model.

	Qwen2.5-VL-3B					Qwen2.5-VL-7B				
	Base	RFT	SFT-Non-Rea	SFT-Rea-4o-Rollout	SFT-Rea-GRPO-Rollout	Base	RFT	SFT-Non-Rea	SFT-Rea-4o-Rollout	SFT-Rea-GRPO-Rollout
<i>Jigsaw Puzzles (test)</i>										
<i>Training steps</i>	–	27,360	200	4,100	2,670	–	27,360	400	4,100	3,000
<i>3×3 puzzles</i>	0.0	66 (+66)	53.0 (+53)	70.0 (+70)	70.0 (+70)	0.0	75 (+75)	80 (+80)	78 (+78)	81 (+81)
<i>Grounding</i>										
RefCOCO _{val}	88.8	88.4 (-0.4)	6.1 (-82.8)	74.2 (-14.6)	84.6 (+4.2)	90.0	89.4 (-0.6)	32.9 (-57.2)	52.5 (-37.5)	81.4 (-8.6)
RefCOCO+ _{val}	82.0	82.2 (+0.2)	4.2 (-77.7)	68.3 (-13.6)	77.6 (+4.4)	84.7	83.6 (-1.1)	28.8 (-55.9)	47.8 (-36.9)	75.1 (-9.6)
RefCOCOg _{val}	86.0	84.1 (-1.9)	5.6 (-80.4)	71.3 (-14.7)	80.8 (+5.2)	86.4	86.3 (+0.1)	30.1 (-56.4)	48.3 (-38.1)	76.1 (-10.3)
<i>Document & OCR</i>										
DocVQA _{test}	92.8	91.5 (-1.3)	81.6 (-11.3)	90.3 (-2.5)	89.8 (+3.1)	94.4	94.4 (+0.0)	67.1 (-27.4)	92.1 (-2.3)	93.5 (-0.9)
InfoVQA _{test}	74.3	73.1 (-1.2)	62.6 (-11.7)	71.4 (-2.8)	70.7 (+3.6)	80.1	79.1 (-1.0)	44.6 (-35.5)	75.6 (-4.5)	77.3 (-2.8)
OCRbench	79.3	77.1 (-2.1)	65.9 (-13.4)	69.4 (-9.9)	74.9 (+4.4)	83.4	83.4 (+0.0)	51.7 (-31.7)	80.5 (-2.9)	81.4 (-2.0)
<i>General VQA</i>										
MMEsum	2140	2137 (-3)	1631.0 (-509)	1478.0 (-662)	2132.0 (+8.0)	2333	2325 (-8)	479.0 (-1854)	2084.0 (-249)	2207.0 (-126)
MMStar	56.2	55.8 (-0.5)	49.2 (-7.0)	51.7 (-4.5)	52.2 (+4.0)	62.8	64.4 (+1.7)	0.0 (-62.8)	59.1 (-3.7)	60.4 (-2.4)
GQA	60.1	59.5 (-0.6)	54.7 (-5.4)	50.0 (-10.1)	54.0 (+6.1)	60.4	60.3 (-0.1)	21.7 (-38.7)	53.5 (-6.9)	57.0 (-3.3)
<i>Hallucination</i>										
POPE	86.9	86.5 (-0.3)	85.9 (-1.0)	69.4 (-17.5)	85.4 (+1.4)	86.2	86.0 (-0.2)	16.3 (-69.9)	74.1 (-12.1)	83.1 (-3.1)
<i>College-level Problems</i>										
MMMU _{val}	46.9	46.3 (-0.6)	43.4 (-3.5)	43.0 (-3.9)	44.3 (+2.6)	51.3	50.0 (-1.3)	22.4 (-28.9)	46.1 (-5.2)	48.8 (-2.6)

- **OCR, chart & document understanding.** DocVQA (Mathew et al., 2021), InfoVQA (Mathew et al., 2022), and OCRBench (Liu et al., 2024) probe the ability of MLLMs to read and reason over scanned documents, forms, and scientific plots.
- **General VQA.** MME (Fu et al., 2023), MMStar (Chen et al., 2024), and GQA (Hudson & Manning, 2019) cover visual reasoning, spatial relations, and multimodal commonsense.
- **Hallucination.** POPE (Li et al., 2023) measures tendency of generation not grounded in image.
- **College-level Problems.** MMMU (Yue et al., 2024) is a college-level multimodal benchmark spanning six disciplines for knowledge-grounded visual reasoning.

Hyper-parameter setup. All experiments are conducted on $4 \times$ NVIDIA-A800 80GB GPUs. For GRPO tuning on the jigsaw puzzles, we set the number of generations $G=4$ per prompt with sampling temperature of 1.0, batch size 4, learning rate 1×10^{-6} , and KL divergence penalty coefficient $\beta=0.04$. For SFT training, we set the batch size to 16 with a learning rate of 1×10^{-5} by default.

5 RESULTS AND ANALYSIS

5.1 CAN RFT MASTER THE NOVEL JIGSAW PUZZLES?

We first test current state-of-the-art multimodal large language models (MLLMs) on our test set of jigsaw puzzles in a zero-shot manner. We find that both GPT-4o and Qwen-2.5-VL-7B obtain an accuracy of 0.0, and their hit rate of correct position indices is close to random chance 1/9, indicating that jigsaw puzzles are indeed a novel task for these models and are suitable for our research on forgetting during learning of new tasks.

We then examine whether reinforcement fine-tuning can enable the base model to learn entirely new tasks or knowledge from scratch. Specifically, we apply GRPO to Qwen-2.5-VL-3B/7B on the training set of jigsaw puzzles for 10 epochs, encouraging a comprehensive and sufficient exploration of the novel task. After convergence, the final models achieve an accuracy of 66%/75% on the held-out test set as shown in Tab. 1, dramatically outperforming the base model. Qualitative results on test examples, as in Fig. 11 of the Appendix, show that the model learns to generate meaningful reasoning processes before giving the final answers. Although prior work (Yue et al., 2025) suggests that RFT fails to induce fundamentally new reasoning patterns in base models, we show that with sufficiently long-term exploration, RFT can in fact enable the model to solve novel jigsaw puzzles from scratch.

270 5.2 FORGETTING OF PRIOR KNOWLEDGE: RFT vs. SFT
271

272 We also fine-tune Qwen-2.5-VL-3B/7B on the jigsaw puzzle training set using the standard SFT
273 approach with Non-Rea and Rea-4o-Rollout dataset. As shown in Table 1, due to the property of
274 teacher forcing, the model quickly picks up task-specific patterns under SFT, achieving performance
275 comparable to RFT after just one epoch. To assess the impact of SFT and RFT on previously
276 learned knowledge, we further evaluate both models on a set of prior benchmarks in Tab. 1. While
277 SFT achieves high accuracy with much less training time, it leads to significantly more catastrophic
278 forgetting than RFT, even though it is trained for many fewer steps. This forgetting is particularly
279 evident on the Grounding, Document & OCR, and General VQA. Besides, SFT on Non-Rea data
280 incurs much more forgetting than on Rea-4o-Rollout data across several prior benchmarks.

281 5.3 WHY DOES RFT AVOID CATASTROPHIC FORGETTING?
282

283 We start by analyzing the loss function of RFT and SFT. By carefully comparing the gradients of the
284 RFT and SFT losses (Eq. 11 and Eq. 13, derivation can be found in Appendix C), we find that both
285 losses optimize the model’s likelihood. However, the difference lies in the fact that RFT optimizes
286 on the dataset sampled by the model and uses adaptive weights for the likelihood objective, while
287 SFT uniformly improves the model’s likelihood on a pre-constructed dataset.

288 Therefore, we investigate whether the corpus sampled from the model itself enables the base model
289 to learn jigsaw puzzles while retaining its performance on previous tasks with SFT. Specifically, we
290 employ the GRPO-trained model to generate responses on the training split of jigsaw puzzles, and
291 filter the responses based on the correctness of the answer, leaving about 65% of training samples.
292 We then use this filtered corpus to fine-tune the base model under the SFT paradigm. To rule out
293 confounding factors, we adopt exactly the same hyperparameters as in previous SFT experiments.

294 As shown in Tab. 1, fine-tuning on model-generated data (SFT-Rea-GRPO-Rollout) achieves similar
295 accuracy on jigsaw puzzles, while forgetting much less than SFT-Non-Rea and SFT-Rea-4o-Rollout
296 across most benchmarks. Interestingly, we also find that training on Rea-GRPO-Rollout and Rea-4o-
297 Rollout learns much more slowly than on Non-Rea data, necessitating more training steps to achieve
298 a comparable performance on jigsaw puzzles. This may be because the long reasoning paths dilute
299 the per-token learning signal. Overall, we find that it is not the adaptive weights but the training data
300 that is the key factor why RFT does not suffer from catastrophic forgetting.

301 5.4 LEARNING DYNAMICS-BASED ANALYSIS OF DATA DISTRIBUTION
302

303 Motivated by the observation that the distinct data distributions in the post-training phase lead to
304 different forgetting behaviors, we take a learning dynamics perspective to investigate and explain
305 this phenomenon. Let’s consider the SFT loss on different datasets:
306

$$\min \mathcal{L}(\theta) = -\mathbf{E}_{(q, o, t) \sim \text{Dataset}} \log \pi_\theta(o_t | q, o_{<t}), \quad (2)$$

307 where o_t is the ground-truth next token, conditioned on the prompt q and previous completion $o_{<t}$.
308

309 Following Ren & Sutherland (2024), we employ learning dynamics to describe “how the change in
310 parameter θ induced by a step of gradient descent on single training example $\mathbf{x}_u \triangleq \{q^u, o_{<t}^u, o_t^u\}$
311 impacts the probability of another example $\mathbf{x}_v \triangleq \{q^v, o_{<t}^v, o_t^v\}$ ”. Here, we treat \mathbf{x}_u as a GRPO-
312 rollout sample or man-made SFT sample, and \mathbf{x}_v as a sample of prior knowledge. We have
313

$$\Delta \theta^t(\mathbf{x}_u) \triangleq \theta^{t+1} - \theta^t = \eta \cdot \nabla_\theta \log \pi_{\theta^t}(\mathbf{x}_u) = \eta \cdot \nabla_\theta \log \pi_{\theta^t}(o_t^u | q^u, o_{<t}^u); \quad (3)$$

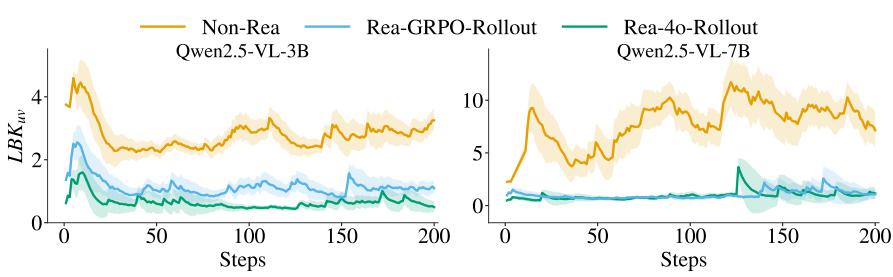
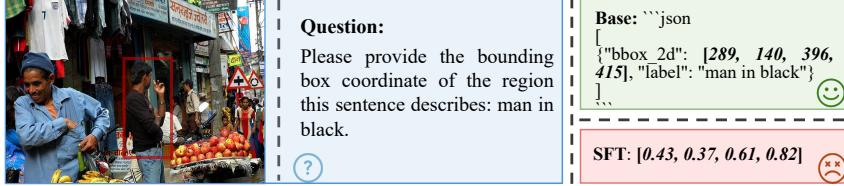
$$\Delta \log \pi^t(\mathbf{x}_v) |_{\mathbf{x}_u} \triangleq \log \pi_{\theta^{t+1}}(\mathbf{x}_v) - \log \pi_{\theta^t}(\mathbf{x}_v). \quad (4)$$

314 And we want to specify the relationship between $\Delta \theta^t(\mathbf{x}_u)$ and $\Delta \log \pi^t(\mathbf{x}_v) |_{\mathbf{x}_u}$.
315

316 **Theorem 5.1.** Let $\pi_{\theta^t}(x) = \text{Softmax}(\mathbf{z}(x))[o_t] \in [0, 1]$, where $\mathbf{z}(x) = h_{\theta^t}(q, o_{<t}) \in \mathbb{R}^V$, V is the
317 number of tokens within vocabulary. The one-step learning dynamics has the following format:
318

$$\underbrace{\Delta \log \pi^t(\mathbf{x}_v) |_{\mathbf{x}_u}}_{1 \times 1} = \eta \underbrace{\mathcal{A}^t(\mathbf{x}_v)}_{1 \times V} \underbrace{\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u)}_{V \times V} \underbrace{\mathcal{G}^t(\mathbf{x}_u)}_{V \times 1} + \mathcal{O}(\eta^2), \quad (5)$$

319 where $\mathcal{A}^t(\mathbf{x}_v) = \nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_v)$, $\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u) = (\nabla_{\theta} \mathbf{z}(\mathbf{x}_v) |_{\theta^t}) (\nabla_{\theta} \mathbf{z}(\mathbf{x}_u) |_{\theta^t})^\top$ is the empirical neu-
320 ral tangent kernel (eNTK) of the logit network \mathbf{z} , and $\mathcal{G}^t(\mathbf{x}_u) = \nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_u)$.
321

Figure 2: Evolution of LBK_{uv} during the SFT process on three different datasets.Figure 3: Qualitative result on Grounding before and after training with SFT on Non-Reasoning data. Model finetuned on Non-Reasoning data often switches its output format on Grounding, *i.e.*, from the expected JSON format containing `bbox_2d` and `label` to a list of numbers.

Proof of the theorem and more discussion can be found in Appendix D. The theorem shows that the effect of $\Delta\theta^t(\mathbf{x}_u)$ on $\Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u}$ is mainly determined by three factors: (1) the model’s sensitivity to the old and new knowledge ($\mathcal{A}^t(\mathbf{x}_v)$ and $\mathcal{G}^t(\mathbf{x}_u)$), and (2) the level of interference between them, captured by $\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u)$. Since the gradients with respect to the logits (*i.e.*, $\mathcal{A}^t(\mathbf{x}_v)$ and $\mathcal{G}^t(\mathbf{x}_u)$) are typically bounded, this implies that the relative interference is the dominant factor driving forgetting. A larger $\|\mathcal{K}^t\|_F$ means more interference between \mathbf{x}_u and \mathbf{x}_v . Besides, our analysis in this section also depends on the assumption of “the eNTK matrix \mathcal{K}^t remains roughly stable over training”, which is well-validated in Ren & Sutherland (2024) and our following experiments.

So we first measure the interference between the post-training dataset and prior knowledge during the training process of SFT. As it requires huge computation to calculate $\|\mathcal{K}^t\|_F$ directly, we estimate the Lower Bound of Kernel $\|\mathcal{K}^t\|_F$ (**LBK**) as follows:

$$\|\Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u}\|_F \leq \eta \|\mathcal{A}^t(\mathbf{x}_v)\|_F \|\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u)\|_F \|\mathcal{G}^t(\mathbf{x}_u)\|_F + \|\mathcal{O}(\eta^2)\|_F, \quad (6)$$

$$LBK_{uv}^t \triangleq \frac{\|\Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u}\|_F^2}{\|\mathcal{A}^t(\mathbf{x}_v)\|_F^2 \|\mathcal{G}^t(\mathbf{x}_u)\|_F^2} \lesssim \|\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u)\|_F^2. \quad (7)$$

Specifically, we sample responses from base models on Grounding as our prior knowledge \mathbf{x}_v , which follow a similar answer format to jigsaw puzzles (*i.e.*, with numbers enclosed within ‘[]’) and exhibit the most severe forgetting as in Tab. 1. We then conduct SFT training on three different datasets \mathbf{x}_u and record the LBK between prior knowledge and training examples. As shown in Fig. 2, the LBK quickly stabilizes after only a few dozen training steps. Besides, the Non-Reasoning data exhibit much larger LBK compared to the Reasoning data, suggesting stronger interference with prior knowledge. Appendix Fig. 10 further shows that introducing reasoning trajectories improves the model’s confidence in answers. These suggest that directly providing answers to new tasks, without linking them to the model’s existing perceptual abilities through reasoning trajectories, causes the output distribution to shift abruptly as in Fig. 3, which heavily disrupts prior knowledge and leads to catastrophic forgetting. In contrast, for Reasoning data, the LBK is smaller, meaning that interference with prior knowledge is weaker and forgetting progresses more slowly.

5.5 WHAT MAKES THE MODEL-GENERATED REASONING DATA DIFFERENT?

Next, we investigate why reasoning data generated by model itself (Rea-GRPO-Rollout) and by GPT-4o (Rea-4o-Rollout) still result in different forgetting behaviors. To do this, we use the *perplexity* (PPL) of the base model as a measure to compare how well each type of data aligns with the model’s distribution. As shown in Fig. 4, Rea-GRPO-Rollout tends to align with the lower-perplexity region of the base model’s output distribution, whereas Rea-4o-Rollout typically lies much higher than Rea-GRPO-rollout. This suggests that Rea-GRPO-Rollout is more compatible with the base model’s prior knowledge when compared to the Rea-4o-Rollout.

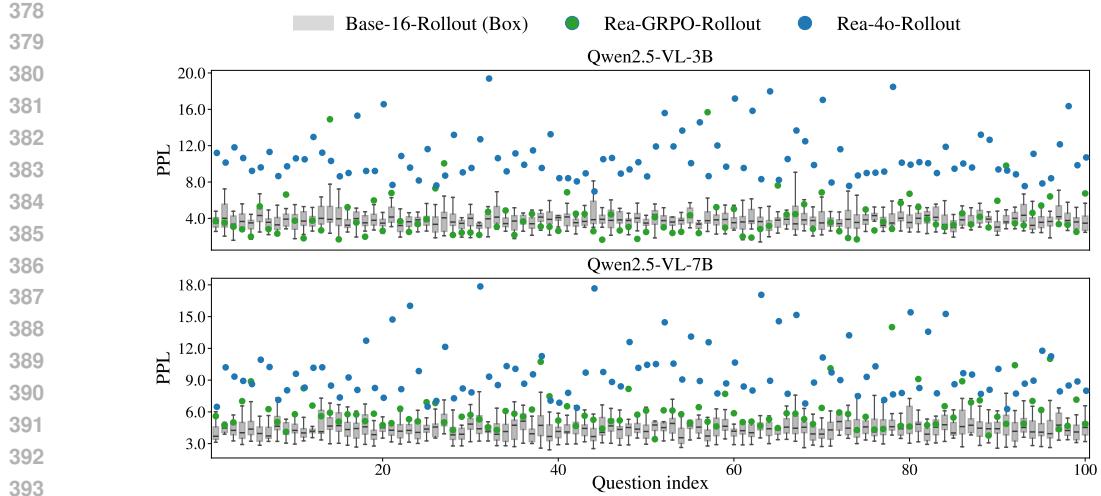


Figure 4: PPL of Rea-GRPO-Rollout and Rea-4o-Rollout under the base model. Base-16-Rollout (Box) denotes PPL range estimated from 16 rollouts generated by base model, serving as a reference.

But then, why does a post-training strategy that focuses on low-perplexity samples alleviate catastrophic forgetting of prior knowledge? Fortunately, we can answer this using the following symmetry property from learning dynamics:

Theorem 5.2. *The one-step learning dynamics has the property of symmetry:*

$$\Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u} = \Delta \log \pi^t(\mathbf{x}_u)|_{\mathbf{x}_v} + \mathcal{O}(\eta^2). \quad (8)$$

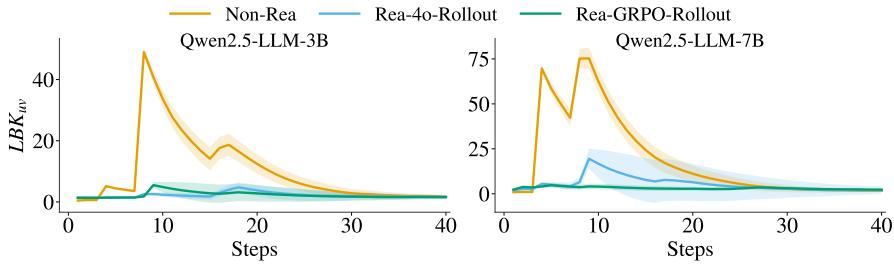
According to Theorem 5.2 (Proof in Appendix D), we find that the influence of learning \mathbf{x}_u on \mathbf{x}_v is nearly the same as the influence of learning \mathbf{x}_v on \mathbf{x}_u . Additionally, since the eNTK matrix stabilizes (Ren & Sutherland, 2024) in the later stages of pretraining, the interactions between \mathbf{x}_u and \mathbf{x}_v remain consistent across the training step t , also observed in Fig. 2. Therefore, models pretrained with prior knowledge show lower perplexity for Rea-GRPO-Rollout, indicating that training with prior knowledge enhances these samples. During post-training, further training on the Rea-GRPO-Rollout samples results in less interference with prior knowledge compared to other higher perplexity samples like Rea-4o-Rollout. As shown in Appendix Fig. 8, when training with Rea-GRPO-Rollout, perplexity of sentences representing prior knowledge continues to decrease on 3B model and remains low on 7B model. In contrast, under Rea-4o-Rollout, perplexity steadily increases. As a result, forgetting effect for Rea-GRPO-Rollout is less pronounced than for Rea-4o-Rollout. Moreover, reinforcement learning algorithms like GRPO, which naturally generate training samples through model rollouts, tend to produce samples with lower perplexity under the base model. This explains why reinforcement learning methods are less prone to catastrophic forgetting.

5.6 MORE EXPERIMENTS ON REA-GRPO-ROLLOUT AND REA-4O-ROLLOUT

We further plot the Pareto front curves of accuracy on the Grounding and jigsaw tasks during training on the two datasets. As shown in Fig. 5, the Pareto front from SFT-Rea-GRPO-Rollout is clearly better than that from SFT-Rea-4o-Rollout. Moreover, models trained with Rea-GRPO-Rollout show much smaller performance variance on the Grounding task during the SFT process, indicating that Rea-GRPO-Rollout interferes less with prior knowledge of base models. In contrast, SFT-Rea-4o-Rollout improves jigsaw performance at the cost of degrading Grounding performance. This result further highlights the importance of low-perplexity under the base model as illustrated in Sec. 5.5. Though Rea-4o-Rollout data generally has a smaller LBK on Qwen2.5-VL-3B as in Fig. 2, it still forgets more due to its property of high-perplexity.

432
433 Table 2: Performance comparison across post-trained models of **Qwen2.5-3B-Instruct** and
434 **Qwen2.5-7B-Instruct**. Numbers in parentheses denote the change w.r.t. *each scale’s* base model.
435

	Qwen2.5-3B-Instruct					Qwen2.5-7B-Instruct				
	Base	RFT	SFT-Non-Rea	SFT-Rea-4o-Rollout	SFT-Rea-GRPO-Rollout	Base	RFT	SFT-Non-Rea	SFT-Rea-4o-Rollout	SFT-Rea-GRPO-Rollout
<i>Open-Reasoner-Zero (test) (New Task)</i>										
Training steps	–	2,650	1,600	2,140	2,140	–	2,650	1,600	2,140	2,140
ORZ Test	21.3	35.0 ($\uparrow 13.7$)	23.4 ($\uparrow 2.1$)	35.4 ($\uparrow 14.0$)	37.8 ($\uparrow 16.4$)	32.1	49.3 ($\uparrow 17.2$)	30.3 ($\downarrow 1.8$)	45.0 ($\uparrow 12.9$)	53.4 ($\uparrow 21.3$)
<i>Math Reasoning (Old Tasks)</i>										
GSM8k	84.1	83.4 ($\downarrow 0.7$)	15.1 ($\downarrow 69.0$)	79.9 ($\downarrow 9.2$)	83.0 ($\downarrow 1.1$)	90.1	90.2 ($\uparrow 0.1$)	21.8 ($\downarrow 68.4$)	85.8 ($\downarrow 4.3$)	90.3 ($\uparrow 0.2$)
Math-500	42.4	55.2 ($\uparrow 12.8$)	19.4 ($\downarrow 23$)	50.8 ($\uparrow 8.4$)	54.4 ($\uparrow 12.0$)	66.6	64.8 ($\downarrow 1.8$)	26.4 ($\downarrow 40.2$)	57.2 ($\downarrow 9.4$)	66.4 ($\downarrow 0.2$)
<i>Instruction Following (Old Task)</i>										
IFEval	71.6	73.4 ($\uparrow 1.8$)	64.0 ($\downarrow 7.6$)	68.0 ($\downarrow 3.6$)	72.7 ($\uparrow 1.1$)	80.6	80.5 ($\downarrow 0.1$)	57.2 ($\downarrow 23.4$)	64.4 ($\downarrow 16.2$)	80.0 ($\downarrow 0.6$)



453 Figure 6: Evolution of LBK_{uv} during the SFT process with three different datasets on math dataset.

454 5.7 LLM EXPERIMENTS ON MATH REASONING AND SCIENCEQA

455
456 We additionally provide experiments on the LLM Qwen2.5-Instruct (Yang et al., 2024) here, showing
457 its forgetting behavior during post-training on math reasoning, along with the corresponding
458 results. We hope these extra experiments can further strengthen the generality and credibility of our
459 theoretical analysis and conclusions. More detailed experiments setup can be found in Appendix F.
460 As summarized in Tab. 2, the math reasoning experiments exhibit a forgetting pattern highly con-
461 sistent with our multimodal jigsaw setting: on both 3B and 7B scales, SFT-Non-Rea achieves the
462 largest performance drop on the old math (GSM8K, MATH-500) and instruction-following (IFEval)
463 benchmarks, while reasoning-augmented SFT with external CoT (SFT-Rea-4o-Rollout) forgets less
464 but still substantially more than SFT-Rea-GRPO-Rollout. The latter attains strong gains on the new
465 ORZ task while keeping the performance on old tasks close to the base models, indicating the same
466 hierarchy of forgetting severity, *i.e.*, Non-Rea > Rea-4o > Rea-GRPO.

467 To probe the underlying mechanism, we compute LBK between post-training samples and prior
468 math knowledge during SFT. As shown in Fig. 6, Non-Rea data consistently display much larger
469 LBK values and Rea-4o also contains occasional high-LBK outliers, providing further evidence for
470 the generality of our learning-dynamics analysis in Sec. 5.4. Moreover, Fig. 7 shows that Rea-
471 4o-Rollout is concentrated in the high-perplexity region of the base models, whereas Rea-GRPO-
472 Rollout lies closer to the low-perplexity region, mirroring our findings on jigsaw puzzles and sup-
473 porting the low-perplexity training hypothesis in Sec. 5.5 that post-training on model-aligned (low-
474 PPL) reasoning trajectories mitigates catastrophic forgetting. Besides, we also analyze the Pareto
475 front curves (Fig. 13) and Perplexity on prior knowledge (Fig. 14) of different SFT datasets in Ap-
476 pendix F, it is consistent with our theory and prior analysis on jigsaw puzzles.

477 Beyond math reasoning, we also conduct experiments on a scientific multiple-choice QA benchmark
478 to test the robustness of our conclusions. Concretely, we use the Sci-MCQ4 subset from SciKnow-
479 Eval (Feng et al., 2024); detailed settings and full results are provided in Appendix H. As shown in
480 Tab. 9 and Fig. 16, 17, we again observe the same hierarchy of forgetting severity on prior bench-
481 marks, while SFT-Rea-GRPO-Rollout achieves the best trade-off between performance gains on the
482 new Sci-MCQ4 task and retention on old tasks, further supporting the generality of our analysis.

483 5.8 ‘COOPERATION’ BETWEEN SFT AND RFT

484
485 In our previous experiments, we first generate reasoning data after RFT has achieved a high jigsaw
486 accuracy. SFT training on such data can not only achieve high accuracy on the new task, but

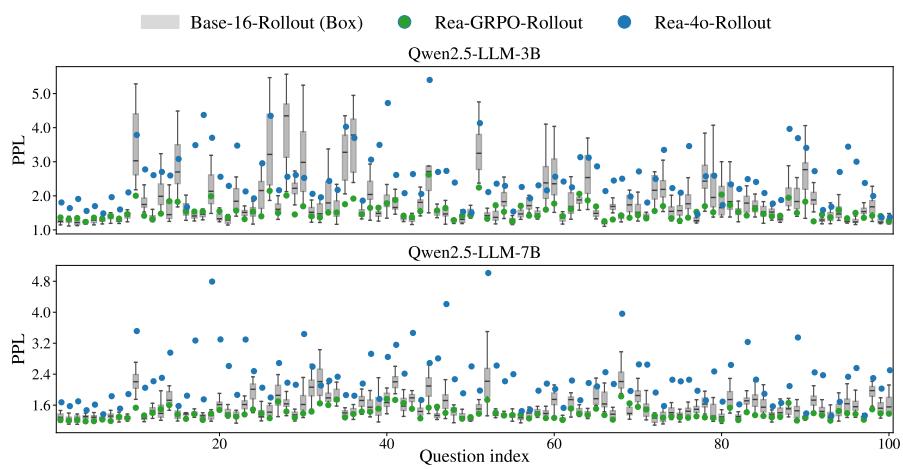


Figure 7: PPL of Rea-GRPO-Rollout and Rea-4o-Rollout math reasoning dataset under the base LLM (Qwen2.5-Instruct). Base-16-Rollout (Box) denotes PPL range estimated from 16 rollouts generated by base model, serving as a reference.

also preserve old knowledge better than Rea-4o-Rollout. This phenomenon suggests that the data distribution is a key factor that determines whether the model forgets during post-training.

To further verify this, we show that if we only want to generate data aligned with the model’s own distribution and capable of teaching the new task, it does not require running RFT to very high accuracy. As shown in Tab. 5, we run RFT for only one epoch (5,472 steps), during which the model’s jigsaw accuracy stays below 5% (see Fig. 9 (Left) in the appendix). Even so, by collecting the model’s rollout CoT and pairing it with the correct answers, we can already construct an effective SFT dataset (Rea-Self-Generated). Fine-tuning the base model on this dataset yields new-task accuracy comparable to RFT and SFT-Rea-GRPO-Rollout, while its performance on old tasks is also similar to them and much better than SFT-Rea-4o-Rollout.

6 DISCUSSION AND CONCLUSION

SFT is a widely used post-training method and is often employed as a cold-start phase for RFT (DeepSeek-AI et al., 2025), helping the model acquire basic skills that support subsequent exploration. Besides, SFT also enables the base model to master novel tasks quickly. However, manually curated SFT corpora can lead to the forgetting of prior knowledge. In this work, we show that one can instead construct more stable SFT training data from the model’s own reasoning trajectories produced by RFT. Even a short RFT phase is sufficient to generate such self-consistent data (Sec. 5.8), and a subsequent SFT update on this corpus attains new-task performance comparable to RFT while preserving prior knowledge better than SFT-Rea-4o-Rollout. Therefore, developing an efficient and reliable interplay between SFT and RFT that combines their respective advantages remains a promising problem.

This paper provides a systematic investigation into how post-training algorithms affect knowledge retention in multimodal large language models. By introducing jigsaw puzzles as a genuinely novel task, we uncover a clear contrast between SFT and RFT: while SFT enables rapid task acquisition, it suffers from severe forgetting; in contrast, RFT achieves stable learning without significantly degrading prior capabilities. Through empirical studies and theoretical analysis grounded in learning dynamics, we show that this difference arises not from the training algorithm itself, but from the distribution of training data. Specifically, introducing reasonable reasoning trajectories into the SFT process can help alleviate forgetting due to less interference with prior knowledge. Besides, RFT naturally discovers low-perplexity examples that are already partially aligned with the model’s output space, making them less disruptive to previous knowledge. Furthermore, using RFT rollouts as supervision enables SFT to forget less, underscoring the importance of fine-tuning data quality. These findings suggest that future post-training efforts should move beyond algorithmic choices and focus more on data selection.

540 ETHICS STATEMENT
541

542 From a data distribution perspective, this research employs learning dynamics to explain the ad-
543 vantages of the sampling distribution induced by RL and why RL training tends to yield reduced
544 forgetting. We firmly state that this work is intended for ethical and constructive purposes. Users of
545 this method bear the full responsibility for ensuring it is applied in a safe, fair, and harmless manner.
546 Any misuse of this method is strictly against the intent of the authors.

548 REPRODUCIBILITY STATEMENT
549

550 We have described our theory analysis and the experiment setup in Sec. 4 and Sec. 5. To support
551 reproducibility, we will open-source our code.

553 REFERENCES
554

555 Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
556 exact computation with an infinitely wide neural net. *Advances in neural information processing
557 systems*, 32, 2019.

558 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
559 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
560 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
561 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
562 *CoRR*, abs/2502.13923, 2025. doi: 10.48550/ARXIV.2502.13923. URL <https://doi.org/10.48550/arXiv.2502.13923>.

564 Fabio Maria Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi.
565 Domain generalization by solving jigsaw puzzles. In *IEEE Conference on Computer Vision and
566 Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 2229–2238.
567 Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00233. URL http://openaccess.thecvf.com/content_cvpr_2019/html/Carlucci_Domain_Generalization_by_Solving_Jigsaw_Puzzles_CVPR_2019_paper.html.

571 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
572 P Torr, and M Ranzato. Continual learning with tiny episodic memories. In *Workshop on Multi-
573 Task and Lifelong Reinforcement Learning*, 2019.

574 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,
575 Jiaqi Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for eval-
576 uating large vision-language models? In Amir Globersons, Lester Mackey, Danielle Bel-
577 grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances
578 in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
579 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
580 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/2f8ee6a3d766b426d2618e555b5aeb39-Abstract-Conference.html.

582 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
583 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
584 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL
585 <https://arxiv.org/abs/2110.14168>.

586 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
587 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
588 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
589 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
590 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
591 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
592 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
593 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,

594 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 595 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 596 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 597 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye,
 598 Shiyu Wang, Shuiping Yu, Shufeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
 599 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
 600 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

601 Kehua Feng, Keyan Ding, Weijie Wang, Xiang Zhuang, Zeyuan Wang, Ming Qin, Yu Zhao, Jianhua
 602 Yao, Qiang Zhang, and Huajun Chen. Sciknoweval: Evaluating multi-level scientific knowledge
 603 of large language models. *CoRR*, abs/2406.09098, 2024. doi: 10.48550/ARXIV.2406.09098.
 604 URL <https://doi.org/10.48550/arXiv.2406.09098>.

605 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
 606 Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. MME: A comprehensive eval-
 607 uation benchmark for multimodal large language models. *CoRR*, abs/2306.13394, 2023. doi: 10.
 608 48550/ARXIV.2306.13394. URL <https://doi.org/10.48550/arXiv.2306.13394>.

609 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
 610 Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
 611 the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), *Proceedings
 612 of the Neural Information Processing Systems Track on Datasets and Benchmarks
 613 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual*, 2021. URL
 614 [https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
 615 hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html).

616 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 617 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 618 model. *CoRR*, abs/2503.24290, 2025. doi: 10.48550/ARXIV.2503.24290. URL <https://doi.org/10.48550/arXiv.2503.24290>.

619 Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual
 620 reasoning and compositional question answering. In *IEEE Conference on Computer Vision
 621 and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 6700-
 622 6709. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00686. URL
 623 http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html.

624 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 625 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 626 arXiv:2410.21276*, 2024.

627 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 628 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

629 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara L. Berg. Referitgame: Refer-
 630 ing to objects in photographs of natural scenes. In Alessandro Moschitti, Bo Pang, and Walter
 631 Daelemans (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
 632 guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
 633 Special Interest Group of the ACL*, pp. 787-798. ACL, 2014. doi: 10.3115/V1/D14-1086. URL
 634 <https://doi.org/10.3115/v1/d14-1086>.

635 James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei
 636 A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
 637 Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
 638 getting in neural networks. *CoRR*, abs/1612.00796, 2016. URL <http://arxiv.org/abs/1612.00796>.

639 Song Lai, Haohan Zhao, Rong Feng, Changyi Ma, Wenzhuo Liu, Hongbo Zhao, Xi Lin, Dong
 640 Yi, Min Xie, Qingfu Zhang, et al. Reinforcement fine-tuning naturally mitigates forgetting in
 641 continual post-training. *arXiv preprint arXiv:2507.05386*, 2025.

648 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. In Houda Bouamor, Juan Pino,
 649 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural
 650 Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 292–305. Association
 651 for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.20. URL
 652 <https://doi.org/10.18653/v1/2023.emnlp-main.20>.
 653

654 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis
 655 and machine intelligence*, 40(12):2935–2947, 2017.
 656

657 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 658 Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In David J.
 659 Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision - ECCV 2014
 660 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V*,
 661 volume 8693 of *Lecture Notes in Computer Science*, pp. 740–755. Springer, 2014. doi: 10.1007/
 662 978-3-319-10602-1_48. URL https://doi.org/10.1007/978-3-319-10602-1_48.
 663

664 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 665 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
 666 2025a. URL <https://arxiv.org/abs/2505.24864>.
 667

668 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 669 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of OCR in large
 670 multimodal models. *Sci. China Inf. Sci.*, 67(12), 2024. doi: 10.1007/S11432-024-4235-6. URL
 671 <https://doi.org/10.1007/s11432-024-4235-6>.
 672

673 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 674 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *CoRR*, abs/2503.06520,
 675 2025b. doi: 10.48550/ARXIV.2503.06520. URL <https://doi.org/10.48550/arXiv.2503.06520>.
 676

677 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 678 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025c.
 679

680 Zesen Lyu, Dandan Zhang, Wei Ye, Fangdi Li, Zhihang Jiang, and Yao Yang. Jigsaw-puzzles:
 681 From seeing to understanding to reasoning in vision-language models, 2025. URL <https://arxiv.org/abs/2505.20728>.
 682

683 Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L. Yuille, and Kevin Mur-
 684 phy. Generation and comprehension of unambiguous object descriptions. In *2016 IEEE Con-
 685 ference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
 686 27-30, 2016*, pp. 11–20. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.9. URL
 687 <https://doi.org/10.1109/CVPR.2016.9>.
 688

689 Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for VQA on doc-
 690 ument images. In *IEEE Winter Conference on Applications of Computer Vision, WACV 2021,
 691 Waikoloa, HI, USA, January 3-8, 2021*, pp. 2199–2208. IEEE, 2021. doi: 10.1109/WACV48630.
 692 2021.00225. URL <https://doi.org/10.1109/WACV48630.2021.00225>.
 693

694 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V. Jawa-
 695 har. Infographicvqa. In *IEEE/CVF Winter Conference on Applications of Computer Vision,
 696 WACV 2022, Waikoloa, HI, USA, January 3-8, 2022*, pp. 2582–2591. IEEE, 2022. doi: 10.
 697 1109/WACV51458.2022.00264. URL <https://doi.org/10.1109/WACV51458.2022.00264>.
 698

699 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 700 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 Elsevier, 1989.

701 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian
 Shi, Wenhui Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang,

702 and Wenqi Shao. Mm-eureka: Exploring visual aha moment with rule-based large-scale rein-
 703 force learning. *CoRR*, abs/2503.07365, 2025. doi: 10.48550/ARXIV.2503.07365. URL
 704 <https://doi.org/10.48550/arXiv.2503.07365>.

705

706 Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jig-
 707 saw puzzles. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), *Computer Vi-
 708 sion - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
 709 2016, Proceedings, Part VI*, volume 9910 of *Lecture Notes in Computer Science*, pp. 69–84.
 710 Springer, 2016. doi: 10.1007/978-3-319-46466-4\5. URL https://doi.org/10.1007/978-3-319-46466-4_5.

711

712 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 713 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 714 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 715 27730–27744, 2022.

716

717 Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
 718 forgetting functions. *Psychological review*, 97(2):285, 1990.

719

720 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
 721 Incremental classifier and representation learning. In *2017 IEEE Conference on Computer Vision
 722 and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017*, pp. 5533–5542.
 723 IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.587. URL <https://doi.org/10.1109/CVPR.2017.587>.

724

725 Yi Ren and Danica J Sutherland. Learning dynamics of llm finetuning. *arXiv preprint
 arXiv:2407.10490*, 2024.

726

727 Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
 728 Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *CoRR*,
 729 abs/1606.04671, 2016. URL <http://arxiv.org/abs/1606.04671>.

730

731 Joan Serrà, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 732 forgetting with hard attention to the task. In Jennifer G. Dy and Andreas Krause (eds.), *Pro-
 733 ceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholm
 734 Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Re-
 735 search*, pp. 4555–4564. PMLR, 2018. URL <http://proceedings.mlr.press/v80/serra18a.html>.

736

737 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 738 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 739 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

740

741 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 742 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A stable
 743 and generalizable r1-style large vision-language model. *CoRR*, abs/2504.07615, 2025. doi: 10.
 48550/ARXIV.2504.07615. URL <https://doi.org/10.48550/arXiv.2504.07615>.

744

745 Idan Shenfeld, Jyothish Pari, and Pukit Agrawal. Rl's razor: Why online reinforcement learning
 746 forgets less. *arXiv preprint arXiv:2509.04259*, 2025.

747

748 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning
 749 with deep generative replay. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
 750 Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), *Ad-
 751 vances in Neural Information Processing Systems 30: Annual Conference on Neural In-
 752 formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 753 2990–2999, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/0efbe98067c6c73dba1250d2beaa81f9-Abstract.html>.

754

755 Zifu Wang, Junyi Zhu, Bo Tang, Zhiyu Li, Feiyu Xiong, Jiaqian Yu, and Matthew B. Blaschko.
 Jigsaw-r1: A study of rule-based visual reinforcement learning with jigsaw puzzles, 2025. URL
<https://arxiv.org/abs/2505.23590>.

756 Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 757 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint*
 758 *arXiv:2109.01652*, 2021.

760 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 761 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 762 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 763 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
 764 Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
 765 Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CoRR*, abs/2412.15115,
 766 2024. doi: 10.48550/ARXIV.2412.15115. URL <https://doi.org/10.48550/arXiv.2412.15115>.

768 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 769 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 770 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 771 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

773 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 774 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 775 *preprint arXiv:2504.13837*, 2025.

776 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelli-
 777 gence. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Con-
 778 ference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017*, vol-
 779 *ume 70 of Proceedings of Machine Learning Research*, pp. 3987–3995. PMLR, 2017. URL
 780 <http://proceedings.mlr.press/v70/zenke17a.html>.

782 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 783 and Le Hou. Instruction-following evaluation for large language models. *CoRR*, abs/2311.07911,
 784 2023. doi: 10.48550/ARXIV.2311.07911. URL <https://doi.org/10.48550/arXiv.2311.07911>.

788 A LLM USAGE

790 This article employs large language models solely for polishing the sentence structures to better
 791 align with standard English writing conventions.

794 B LIMITATIONS

796 Due to resource limitations, our experiments are currently restricted to the Qwen-2.5-VL-3B/7B
 797 models. In future work, we plan to extend our analysis to larger multimodal models and large lan-
 798 guage models to assess the generality of our findings. Additionally, this study currently focuses only
 799 on the jigsaw puzzle task. Investigating forgetting behaviors across a broader range of multimodal
 800 tasks is an important direction we aim to explore next.

802 C CONNECTION BETWEEN GRPO AND SFT

804 This section follows the discussion of DeepSeekMath (Shao et al., 2024) on the unified paradigm of
 805 GRPO and SFT closely. And we include the derivation here for the completeness of the paper. We
 806 will first derive the gradient of GRPO loss. Specifically, we use the following unbiased estimator as
 807 our KL divergence loss:

$$809 \mathbf{D}_{\text{KL}}(\pi_{\theta} || \pi_{\text{ref}}) = \frac{\pi_{\text{ref}}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta}(o_{i,t} | q, o_{i,<t})} - \log \frac{\pi_{\text{ref}}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta}(o_{i,t} | q, o_{i,<t})} - 1 \quad (9)$$

810 By substituting the specific form of the KL divergence into Eq. 1, we get the following function:
 811

$$\begin{aligned}
 812 \mathcal{J}_{\text{GRPO}}(\theta) &= \mathbf{E}_{q, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left[\frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t}|q, o_{i,<t})} A_{i,t} \right. \\
 813 &\quad \left. - \beta \left(\frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i,<t})} - \log \frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i,<t})} - 1 \right) \right]. \\
 814
 \end{aligned} \tag{10}$$

815 Therefore, the gradient of $\mathcal{J}_{\text{GRPO}}(\theta)$ is:
 816

$$\begin{aligned}
 817 \nabla_{\theta} \mathcal{J}_{\text{GRPO}}(\theta) &= \mathbf{E}_{q, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left[\frac{\nabla_{\theta} \pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t}|q, o_{i,<t})} A_{i,t} \right. \\
 818 &\quad \left. - \beta \nabla_{\theta} \left(\frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i,<t})} - \log \frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i,<t})} - 1 \right) \right] \\
 819 \\
 820 &= \mathbf{E}_{q, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left[A_{i,t} \nabla_{\theta} \log \pi_{\theta}(o_{i,t}|q, o_{i,<t}) \right. \\
 821 &\quad \left. + \beta \left(1 - \frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})} \right) \frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i,<t})^2} \nabla_{\theta} \pi_{\theta}(o_{i,t}|q, o_{i,<t}) \right] \\
 822 \\
 823 &= \mathbf{E}_{q, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left[A_{i,t} + \right. \\
 824 &\quad \left. \beta \left(\frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta}(o_{i,t}|q, o_{i,<t})} - 1 \right) \right] \nabla_{\theta} \log \pi_{\theta}(o_{i,t}|q, o_{i,<t}), \\
 825
 \end{aligned} \tag{11}$$

836 Here, the second equal sign comes from the fact that $\pi_{\theta_{\text{old}}}(\cdot) = \pi_{\theta}(\cdot)$ in our experiments.
 837

838 In addition, the SFT objective is to maximize the following format:
 839

$$\mathcal{J}_{\text{SFT}}(\theta) = \mathbf{E}_{q, o \sim \text{Dataset}_{\text{sft}}} \frac{1}{|o|} \sum_{t=1}^{|o|} \log \pi_{\theta}(o_t|q, o_{<t}). \tag{12}$$

840 So, the gradient of SFT objective is:
 841

$$\nabla_{\theta} \mathcal{J}_{\text{SFT}}(\theta) = \mathbf{E}_{q, o \sim \text{Dataset}_{\text{sft}}} \frac{1}{|o|} \sum_{t=1}^{|o|} \nabla_{\theta} \log \pi_{\theta}(o_t|q, o_{<t}). \tag{13}$$

842 Comparing Eq. 11 and Eq. 13, we find that both gradients try to optimize the likelihood of the model.
 843 However, they are optimized in different data sources with different gradient coefficients.
 844

D PROOF OF LEARNING DYNAMICS RELATED THEOREM

845 **Theorem 5.1.** Let $\pi_{\theta^t}(x) = \text{Softmax}(\mathbf{z}(x))[o_t] \in [0, 1]$, where $\mathbf{z}(x) = h_{\theta^t}(q, o_{<t}) \in \mathbb{R}^V$, V is the
 846 number of tokens within vocabulary. The one-step learning dynamics has the following format:
 847

$$\underbrace{\Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u}}_{1 \times 1} = \eta \underbrace{\mathcal{A}^t(\mathbf{x}_v)}_{1 \times V} \underbrace{\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u)}_{V \times V} \underbrace{\mathcal{G}^t(\mathbf{x}_u)}_{V \times 1} + \mathcal{O}(\eta^2), \tag{5}$$

848 where $\mathcal{A}^t(\mathbf{x}_v) = \nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_v)$, $\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u) = (\nabla_{\theta} \mathbf{z}(\mathbf{x}_v)|_{\theta^t})(\nabla_{\theta} \mathbf{z}(\mathbf{x}_u)|_{\theta^t})^{\top}$ is the empirical neural
 849 tangent kernel (eNTK) of the logit network \mathbf{z} , and $\mathcal{G}^t(\mathbf{x}_u) = \nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_u)$.
 850

851 *Proof.* We first apply first-order Taylor expansion to approximate $\log \pi_{\theta^{t+1}}(\mathbf{x}_v)$ within Eq. 4:
 852

$$\log \pi_{\theta^{t+1}}(\mathbf{x}_v) = \log \pi_{\theta^t}(\mathbf{x}_v) + \langle \nabla_{\theta} \log \pi_{\theta^t}(\mathbf{x}_v), \Delta \theta^t(\mathbf{x}_u) \rangle + \mathcal{O}(\|\Delta \theta^t(\mathbf{x}_u)\|^2). \tag{14}$$

864 Then, substituting the gradient descent item (Eq. 3) into the leading term and applying the chain rule
 865 of calculus, we get
 866

$$\begin{aligned}
 867 \underbrace{\langle \nabla_{\theta} \log \pi_{\theta^t}(\mathbf{x}_v), \Delta \theta^t(\mathbf{x}_u) \rangle}_{1 \times d} &= \underbrace{(\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_v) \nabla_{\theta} \mathbf{z}(\mathbf{x}_v))}_{1 \times V} \underbrace{(\eta \cdot \nabla_{\theta} \log \pi_{\theta}^t(\mathbf{x}_u))}_{V \times d}^{\top} \\
 868 &= \underbrace{\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_v)}_{1 \times V} \underbrace{\nabla_{\theta} \mathbf{z}(\mathbf{x}_v)|_{\theta^t}}_{V \times d} \underbrace{(\eta \cdot \nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_u) \nabla_{\theta} \mathbf{z}^t(\mathbf{x}_u)|_{\theta^t})}_{1 \times V}^{\top} \\
 869 &= \eta \underbrace{\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_v)}_{1 \times V} \underbrace{[\nabla_{\theta} \mathbf{z}(\mathbf{x}_v)|_{\theta^t}]}_{V \times d} \underbrace{(\nabla_{\theta} \mathbf{z}(\mathbf{x}_u)|_{\theta^t})^{\top}}_{d \times V} \underbrace{(\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_u))}_{V \times 1}^{\top} \\
 870 &= \eta \mathcal{A}^t(\mathbf{x}_v) \mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u) \mathcal{G}^t(\mathbf{x}_u), \\
 871 &875 \quad (15)
 \end{aligned}$$

876 where d is the dimension of model parameters θ .
 877

878 For the remaining second-order term, we should notice that the trick of gradient clip is usually
 879 utilized to avoid too large gradients, we have

$$880 \mathcal{O}(\|\Delta \theta^t(\mathbf{x}_u)\|^2) = \mathcal{O}(\eta^2 \|\nabla_{\theta} \log \pi_{\theta^t}(\mathbf{x}_u)\|^2) = \mathcal{O}(\eta^2). \quad (16)$$

881 Therefore, by reorganizing the terms in Eq. 14, we have
 882

$$883 \Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u} = \eta \mathcal{A}^t(\mathbf{x}_v) \mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u) \mathcal{G}^t(\mathbf{x}_u) + \mathcal{O}(\eta^2). \quad \square$$

884 The second term in this decomposition, $\mathcal{K}^t(\mathbf{x}_v, \mathbf{x}_u)$, is called the empirical neural tangent kernel and
 885 can evolve during training as the network adapts. For sufficiently wide networks initialized properly
 886 and trained with small learning rates, \mathcal{K}^t stays nearly fixed throughout training—the limiting kernel
 887 in this case is referred to as the neural tangent kernel (Arora et al., 2019; Jacot et al., 2018; Ren &
 888 Sutherland, 2024). Additionally, Ren & Sutherland (2024) also validated a relaxed assumption for
 889 LLM fine-tuning: the relative influence of learning \mathbf{x}_u on other inputs \mathbf{x}_v remains roughly stable
 890 over training. Besides, the optimization steps during post-training of MLLMs in our paper are very
 891 less compared to the steps used in pre-training. So, the relative influence between \mathbf{x}_u and \mathbf{x}_v during
 892 the post-training remains similar to the influence during pre-training is a reasonable hypothesis.
 893

894 Next, we prove the symmetry theorem of learning dynamics:

895 **Theorem 5.2.** *The one-step learning dynamics has the property of symmetry:*

$$896 \Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u} = \Delta \log \pi^t(\mathbf{x}_u)|_{\mathbf{x}_v} + \mathcal{O}(\eta^2). \quad (8)$$

897 *Proof.* Following Theorem 5.1, we have
 898

$$\begin{aligned}
 900 \underbrace{\Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u}}_{1 \times 1} &= \underbrace{(\Delta \log \pi^t(\mathbf{x}_v)|_{\mathbf{x}_u})^{\top}}_{1 \times 1} \\
 901 &= \{ \eta \underbrace{\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_v)}_{1 \times V} \underbrace{[\nabla_{\theta} \mathbf{z}(\mathbf{x}_v)|_{\theta^t}]}_{V \times d} \underbrace{(\nabla_{\theta} \mathbf{z}(\mathbf{x}_u)|_{\theta^t})^{\top}}_{d \times V} \underbrace{(\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_u))^{\top}}_{V \times 1} + \mathcal{O}(\eta^2) \}^{\top} \\
 902 &= \eta \underbrace{\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_u)}_{1 \times V} \underbrace{[\nabla_{\theta} \mathbf{z}(\mathbf{x}_u)|_{\theta^t}]}_{V \times d} \underbrace{(\nabla_{\theta} \mathbf{z}(\mathbf{x}_v)|_{\theta^t})^{\top}}_{d \times V} \underbrace{(\nabla_{\mathbf{z}} \log \pi_{\theta^t}(\mathbf{x}_v))^{\top}}_{V \times 1} + \mathcal{O}(\eta^2) \\
 903 &= \Delta \log \pi^t(\mathbf{x}_u)|_{\mathbf{x}_v} - \mathcal{O}(\eta^2) + \mathcal{O}(\eta^2) \\
 904 &= \Delta \log \pi^t(\mathbf{x}_u)|_{\mathbf{x}_v} + \mathcal{O}(\eta^2). \quad \square
 \end{aligned}$$

905 This theorem points out that the influence of training on \mathbf{x}_u over another example \mathbf{x}_v is almost
 906 similar to the influence of \mathbf{x}_v on \mathbf{x}_u .
 907

914 E MORE RESULTS OF JIGSAW PUZZLES

915 **Jigsaw Dataset Construction Details.** We construct the 3×3 jigsaw dataset upon MS COCO
 916 images with the preprocessing pipeline in Algorithm 1. For each image I , we obtain its original size
 917

918

Algorithm 1: Construction Process of the 3×3 Jigsaw Puzzle Dataset

919

Input: Image dataset \mathcal{D} (e.g., COCO-2014); grid size $m = n = 3$

920

Output: Tiles and metadata file

921

foreach $I \in \mathcal{D}$ **do**

922

```

 $(H, W) \leftarrow \text{size}(I);$ 
 $H' \leftarrow \lceil H/m \rceil \times m;$ 
 $W' \leftarrow \lceil W/n \rceil \times n;$ 
if  $(H', W') \neq (H, W)$  then
|  $I' \leftarrow \text{bicubic\_resize}(I, H', W');$ 
else
|  $I' \leftarrow I;$ 
 $(h_{\text{tile}}, w_{\text{tile}}) \leftarrow (H'/m, W'/n);$ 
// Row-major slicing into  $m \times n$  tiles
for  $r \leftarrow 0$  to  $m - 1$  do
| for  $c \leftarrow 0$  to  $n - 1$  do
| |  $k \leftarrow r \times n + c;$ 
| | // Crop Tile  $k$  from Image
| |  $T_k \leftarrow \text{crop}(I', r, c, h_{\text{tile}}, w_{\text{tile}});$ 
| |  $\text{save\_image}(T_k);$ 
| end for
| end for
// Shuffle tiles
 $\pi \leftarrow \text{uniform\_random\_permutation}(\{0, \dots, m \times n - 1\});$ 
 $\text{save\_metadata}(I, H, W, H', W', \pi);$ 

```

939

940

Table 3: Total training cost (in GPU-hours) for different model sizes and training recipes for the jigsaw puzzles (Qwen2.5-VL-3B/7B) and math reasoning (Qwen2.5-3B/7B).

943

Method	Qwen2.5-VL-3B (jigsaw)	Qwen2.5-VL-7B (jigsaw)	Qwen2.5-3B (math)	Qwen2.5-7B (math)
RFT	710	2200	72	96
SFT-Non-Rea	2.3	4	0.77	1.3
SFT-Rea-4o-Rollout	6.4	11.5	1.3	2.3
SFT-Rea-GRPO-Rollout	5.1	8.3	1.3	2.5

948

949

950

(H, W) and compute the nearest resolution (H', W') such that both H' and W' are divisible by 3, applying bicubic resizing if needed to obtain I' . We then partition I' into a 3×3 grid with tile size $(h_{\text{tile}}, w_{\text{tile}}) = (H'/3, W'/3)$ and assign row-major indices $k \in \{0, \dots, 8\}$. A **uniform random permutation** π of $\{0, \dots, 8\}$ is used to get the shuffled indices. At training time, the model receives the shuffled tiles and outputs the canonical top-left-to-bottom-right indices.

951

Training Cost. Table 3 summarizes the total GPU-hours (Number of GPU \times Training Hours) for the main experiment configurations of Jigsaw Puzzles and Math Reasoning. The largest configuration (Qwen2.5-VL-7B (jigsaw) RFT) requires about 2200 GPU-hours, while the SFT is two orders of magnitude cheaper.

952

Jigsaw Puzzles with Large Learning Rate. To better illustrate how different training corpora impact forgetting, we increase the learning rate of SFT to 2×10^{-5} to amplify the effect of forgetting. As shown in Tab. 4, finetuning on Rea-GRPO-Rollout not only masters the novel task jigsaw puzzles better and faster, but also preserves more prior knowledge than Rea-4o-Rollout. Specifically, finetuning on Rea-4o-Rollout causes severe forgetting after just 300 steps under this larger learning rate, *e.g.*, accuracy on RefCOCO_{val} drops from 88.8 to 0.16 on Qwen2.5-VL-3B, GQA drops from 60.38 to 42.74 on Qwen2.5-VL-7B. In addition, as training progresses, SFT-Rea-GRPO-Rollout shows slight improvements on some benchmarks, while SFT-Rea-4o-Rollout exhibits a consistent decline on previous benchmarks.

953

954

955

956

Perplexity on Prior knowledge during SFT. We further examine how the perplexity of sentences representing prior knowledge changes during SFT. As shown in Fig. 8, with SFT-Rea-GRPO-Rollout, perplexity decreases steadily on the 3B model and stabilizes at a low level on the 7B model (since Rea-GRPO-Rollout data have higher perplexity on 7B than on 3B). In contrast, under SFT-

972
973
974
975
976
Table 4: Performance of various models on jigsaw puzzles, grounding, document QA, and general
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
177100
177101
177102
177103
177104
177105
177106
177107
177108
177109
177110
177111
177112
177113
177114
177115
177116
177117
177118
177119
177120
177121
177122
177123
177124
177125
177126
177127
177128
177129
177130
177131
177132
177133
177134
177135
177136
177137
177138
177139
177140
177141
177142
177143
177144
177145
177146
177147
177148
177149
177150
177151
177152
177153
177154
177155
177156
177157
177158
177159
177160
177161
177162
177163
177164
177165
177166
177167
177168
177169
177170
177171
177172
177173
177174
177175
177176
177177
177178
177179
177180
177181
177182
177183
177184
177185
177186
177187
177188
177189
177190
177191
177192
177193
177194
177195
177196
177197
177198
177199
177200
177201
177202
177203
177204
177205
177206
177207
177208
177209
177210
177211
177212
177213
177214
177215
177216
177217
177218
177219
177220
177221
177222
177223
177224
177225
177226
177227
177228
177229
177230
177231
177232
177233
177234
177235
177236
177237
177238
177239
177240
177241
177242
177243
177244
177245
177246
177247
177248
177249
177250
177251
177252
177253
177254
177255
177256
177257
177258
177259
177260
177261
177262
177263
177264
177265
177266
177267
177268
177269
177270
177271
177272
177273
177274
177275
177276
177277
177278
177279
177280
177281
177282
177283
177284
177285
177286
177287
177288
177289
177290
177291
177292
177293
177294
177295
177296
177297
177298
177299
177300
177301
177302
177303
177304
177305
177306
177307
177308
177309
177310
177311
177312
177313
177314
177315
177316
177317
177318
177319
177320
177321
177322
177323
177324
177325
177326
177327
177328
177329
177330
177331
177332
177333
177334
177335
177336
177337
177338
177339
177340
177341
177342
177343
177344
177345
177346
177347
177348
177349
177350
177351
177352
177353
177354
177355
177356
177357
177358
177359
177360
177361
177362
177363
177364
177365
177366
177367
177368
177369
177370
177371
177372
177373
177374
177375
177376
177377
177378
177379
177380
177381
177382
177383
177384
177385
177386
177387
177388
177389
177390
177391
177392
177393
177394
177395
177396
177397
177398
177399
177400
177401
177402
177403
177404
177405
177406
177407
177408
177409
177410
177411
177412
177413
177414
177415
177416
177417
177418
177419
177420
177421
177422
177423
177424
177425
177426
177427
177428
177429
177430
177431
177432
177433
177434
177435
177436
177437
177438
177439
177440
177441
177442
177443
177444
177445
177446
177447
177448
177449
177450
177451
177452
177453
177454
177455
177456
177457
177458
177459
177460
177461
177462
177463
177464
177465
177466
177467
177468
177469
177470
177471
177472
177473
177474
177475
177476
177477
177478
177479
177480
177481
177482
177483
177484
177485
177486
177487
177488
177489
177490
177491
177492
177493
177494
177495
177496
177497
177498
177499
177500
177501
177502
177503
177504
177505
177506
177507
177508
177509
177510
177511
177512
177513
177514
177515
177516
177517
177518
177519
177520
177521
177522
177523
177524
177525
177526
177527
177528
177529
177530
177531
177532
177533
177534
177535
177536
177537
177538
177539
177540
177541
177542
177543
177544
177545
177546
177547
177548
177549
177550
177551
177552
177553
177554
177555
177556
177557
177558
177559
177560
177561
177562
177563
177564
177565
177566
177567
177568
177569
177570
177571
177572
177573
177574
177575
177576
177577
177578
177579
177580
177581
177582
177583
177584
177585
177586
177587
177588
177589
177590
177591
177592
177593
177594
177595
177596
177597
177598
177599
177600
177601
177602
177603
177604
177605
177606
177607
177608
177609
177610
177611
177612
177613
177614
177615
177616
177617
177618
177619
177620
177621
177622
177623
177624
177625
177626
177627
177628
177629
177630
177631
177632
177633
177634
177635
177636
177637
177638
177639
177640
177641
177642
177643
177644
177645
177646
177647
177648
177649
177650
177651
177652
177653
177654
177655
177656
177657
177658
177659
177660
177661
177662
177663
177664
177665
177666
177667
177668
177669
177670
177671
177672
177673
177674
177675
177676
177677
177678
177679
177680
177681
177682
177683
177684
177685
177686
177687
177688
177689
177690
177691
177692
177693
177694
177695
177696
177697
177698
177699
177700
177701
177702
177703
177704
177705
177706
177707
177708
177709
177710
177711
177712
177713
177714
177715
177716
177717
177718
177719
177720
177721
177722
177723
177724
177725
177726
177727
177728
177729
177730
177731
177732
177733
177734
177735
177736
177737
177738
177739
177740
177741
177742
177743
177744
177745
177746
177747
177748
177749
177750
177751
177752
177753
177754
177755
177756
177757
177758
177759
177760
177761
177762
177763
177764
177765
177766
177767
177768
177769
177770
177771
177772
177773
177774
177775
177776
177777
177778
177779
177780
177781
177782
177783
177784
177785
177786
177787
177788
177789
177790
177791
177792
177793
177794
177795
177796
177797
177798
177799
177800
177801
177802
177803
177804
177805
177806
177807
177808
177809
177810
177811
177812
177813
177814
177815
177816
177817
177818
177819
177820
177821
177822
177823
177824
177825
177826
177827
177828
177829
177830
1

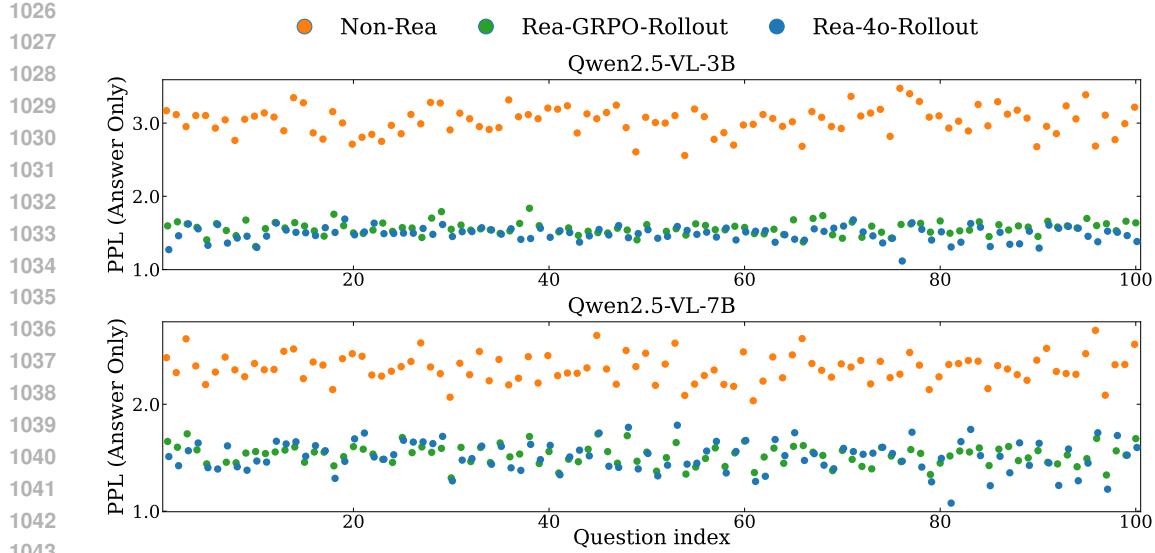


Figure 10: Answer-only perplexity of the numeric sequence (i.e., the `<answer>[...]``</answer>`) for 100 randomly sampled jigsaw items across three datasets. In the Non-Reasoning setting, we insert an empty thinking tag (`<think></think>`) immediately before the answer.

Table 5: Performance of various post-trained models on jigsaw puzzles, grounding, document QA, and general VQA benchmarks.

Model	RFT Steps	SFT Steps	Jigsaw-test	Grounding	Document & OCR	General VQA			Hallucination
	3x3 puzzles	RefCOCO _{val}	DocVQA _{test}	MME _{sum}	MMStar	GQA	POPE		
Qwen2.5-VL-3B									
Base	—	—	0	88.8	92.8	2140	56.2	60.1	86.9
RFT	27,360	0	66.0 (↑66)	88.4 (↓0.4)	91.5 (↓1.3)	2137 (↓3)	55.8 (↓0.5)	59.5 (↓0.6)	86.5 (↓0.3)
SFT-Rea-4o-Rollout	0	4,100	70.0 (↑70)	74.2 (↓14.6)	90.3 (↓2.5)	1478 (↓662)	51.7 (↓4.5)	50.0 (↓10.1)	69.4 (↓17.5)
SFT-Rea-GRPO-Rollout	27,360	2,670	70.0 (↑70)	84.6 (↓4.2)	89.8 (↓3.1)	2132 (↓8)	52.2 (↓4.0)	54.0 (↓6.1)	85.4 (↓1.4)
SFT-Rea-Self-Generated	5,472	4,100	84.0 (↑84)	84.5 (↓4.3)	90.3 (↓2.5)	2142 (↑2)	52.4 (↓3.8)	54.7 (↓5.4)	88.2 (↑1.3)
Qwen2.5-VL-7B									
Base	—	—	0.0	90.0	94.4	2333	62.8	60.4	86.2
RFT	27,360	0	75.0 (↑75)	89.4 (↓0.6)	94.4 (↓0.0)	2325 (↓8)	64.4 (↓1.7)	60.3 (↓0.1)	86.0 (↓0.2)
SFT-Rea-4o-Rollout	0	4,100	78 (↑78)	52.5 (↓37.5)	92.1 (↓2.3)	2084 (↓249)	59.1 (↓3.7)	53.5 (↓6.9)	74.1 (↓12.1)
SFT-Rea-GRPO-Rollout	27,360	3,000	81.0 (↑81)	81.4 (↓8.6)	93.5 (↓0.9)	2207 (↓126)	60.4 (↓2.4)	57.0 (↓3.3)	83.1 (↓3.1)
SFT-Rea-Self-Generated	5,472	4,100	79.0 (↑79)	86.0 (↓4.0)	93.8 (↓0.6)	2256 (↓77)	60.6 (↓2.2)	56.7 (↓3.6)	84.9 (↓1.3)

Answer-Only Perplexity with Reasoning Trajectories. For each question, we further compute token-level PPL only on the final answers (i.e., the `<answer>[...]``</answer>` part) across three datasets. As shown in Fig. 10, Non-Reasoning data forms a higher, more dispersed band, whereas Rea-GRPO-Rollout and Rea-4o-Rollout data cluster into a lower band across nearly all 100 questions, indicating reasoning trajectories help systematically reducing the uncertainty in decoding answers. Both reasoning dataset exhibit tighter vertical spread than Non-Rea data, suggesting not only lower average PPL but also smaller variance across questions. The observation on PPL across three datasets supports the claim that introducing thinking mitigates conflict from the novel jigsaw objective.

SFT with self-generated CoTs. As shown in Tab. 5, using only one epoch of RFT (5,472 steps) to self-generate CoTs and then running SFT (SFT-Rea-Self-Generated) already yields strong jigsaw performance and largely preserves old-task scores, while avoiding the severe degradation observed in SFT-Rea-4o-Rollout.

Qualitative jigsaw reconstructions. Fig. 11 showcases representative test instances solved by the RFT-trained model. The predictions display strong global coherence and semantical consistency, indicating that the model finds globally plausible layouts successfully.

GPT-4o Prompt and Response. Fig. 12 shows the prompt we use to elicit GPT-4o “thinking” for the 3×3 jigsaw task and a representative response.

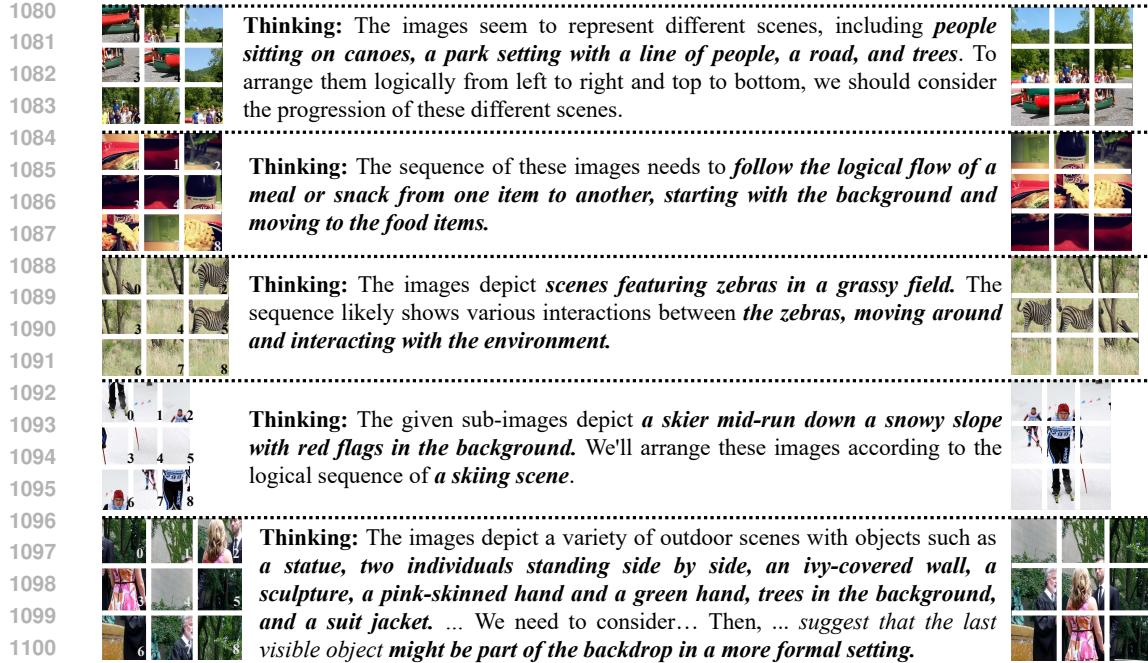


Figure 11: Qualitative Results on jigsaw puzzles (test) after training with RFT.

F MORE DETAILS OF LLM ON MATH REASONING

Math Reasoning Dataset. We use the curated math corpus released by Open-Reasoner-Zero (Hu et al., 2025) as our large-scale reasoning-oriented training data, and randomly split it into 90% training and 10% held-out test data. We refer to this held-out split as *ORZ Test*, which serves as a new target task for post-training. Each example is a competition-style math problem paired with a verifiable final answer, without any visual input.

LLMs and Evaluation. For math experiments, we use Qwen2.5-3B-Instruct (Yang et al., 2024) and Qwen2.5-7B-Instruct as base LLMs. We treat ORZ Test as a new target task and report answer accuracy on it, and use GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al., 2021), and IFEval (Zhou et al., 2023) as prior knowledge to monitor retention of prior math and instruction-following abilities, with their standard accuracy metrics.

Pareto Frontier of SFT-Rea-GRPO-Rollout and SFT-Rea-4o-Rollout. We further sweep the learning rate over $\{1 \times 10^{-6}, 5 \times 10^{-6}, 1 \times 10^{-5}, 2 \times 10^{-5}\}$ and, for each setting, plot the Pareto-optimal frontier between performance on the new ORZ task and the performance on old tasks (GSM8K, MATH-500, and IFEval) in Fig. 13. Across all learning rates and both 3B/7B scales, SFT training on Rea-GRPO-Rollout consistently achieves a strictly better Pareto frontier than on Rea-4o-Rollout, yielding either higher ORZ accuracy under a similar level of forgetting, or better retention of prior knowledge at comparable ORZ performance.

Perplexity on Prior knowledge during SFT. Fig. 14 also shows that training on Rea-GRPO-Rollout maintains the perplexity of old math corpora much more stably than Rea-4o-Rollout, these results further corroborate our low-perplexity training hypothesis in Sec. 5.5 and demonstrate that the advantages of Rea-GRPO-Rollout are robust under different optimization hyperparameters.

GRPO Training Recipe. In our initial experiments, we followed the default settings of the HuggingFace/trl framework, where *num_iterations* is set to 1 (i.e., the GRPO parameter μ). This means that, by default, $\pi_{\theta_{\text{old}}}(\cdot)$ and $\pi_{\theta}(\cdot)$ are identical during training. In Tab. 6, we report RFT results on math reasoning with different GRPO training recipes. The experiments show that using the standard GRPO recipe and using our recipe leads to only minimal differences in model performance on new or old tasks.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Prompt for generating thinking of jigsaw tasks.

You are given nine sub-images labeled 0-8 with encodings (Sub-image 0: [image] Sub-image 1: [image] Sub-image 2: [image] Sub-image 3: [image] Sub-image 4: [image] Sub-image 5: [image] Sub-image 6: [image] Sub-image 7: [image] Sub-image 8: [image]) and an optional weak reference (Reference image (total): [global_image]). Write one concise paragraph (no more than 150 words) with planning notes to help a human consider how these pieces might fit into a 3x3

grid. Focus only on visual cues such as broad scene features (e.g., color bands, horizon-like divisions, sky/ground contrasts), edge continuities (lines, textures, colors that could extend between tiles), and plausible adjacency candidates with short justifications using cautious language (e.g., "likely," "possible," "candidate"). Do not output the final grid, coordinates, or an ordered list of indices. Do not reveal or restate any hidden or original arrangement ([GROUND_TRUTH_ORDER]) or provide descriptive details of any reference image as a whole. Treat the optional reference only as a weak hint and prioritize direct, piece-to-piece edge analysis. The goal is to provide helpful assembly guidance without committing to a definitive solution. Keep your output to a single paragraph under 150 words without final ordered lists.

Example model response.

To assemble the 3x3 grid, consider visual elements such as the wooden surface, objects on top, and edge alignments. Sub-image 0 features a yellow circular edge that could possibly align with Sub-image 8, given their similar yellow features and adjacent object edges. Sub-image 3, containing onions and chili peppers, seems to share continuity with Sub-image 1 based on onion textures and pepper placements. Sub-image 7, with its mix of objects, could potentially sit near Sub-image 2 due to similarities in scattered textures. The knife-like object in Sub-image 4 might extend toward Sub-image 6, as both show dark, linear edges plausible for alignment. Sub-image 5 has minimal features but might adjoin Sub-image 4 or Sub-image 8, as their backgrounds transition smoothly. Evaluate adjacency by matching subtle overlaps between textures and objects, focusing on edges and angles that continue logically across tiles. Prioritize edge features over object-specific assumptions.

Figure 12: Details of employing GPT-4o to generate reasoning trajectories for jigsaw puzzles.

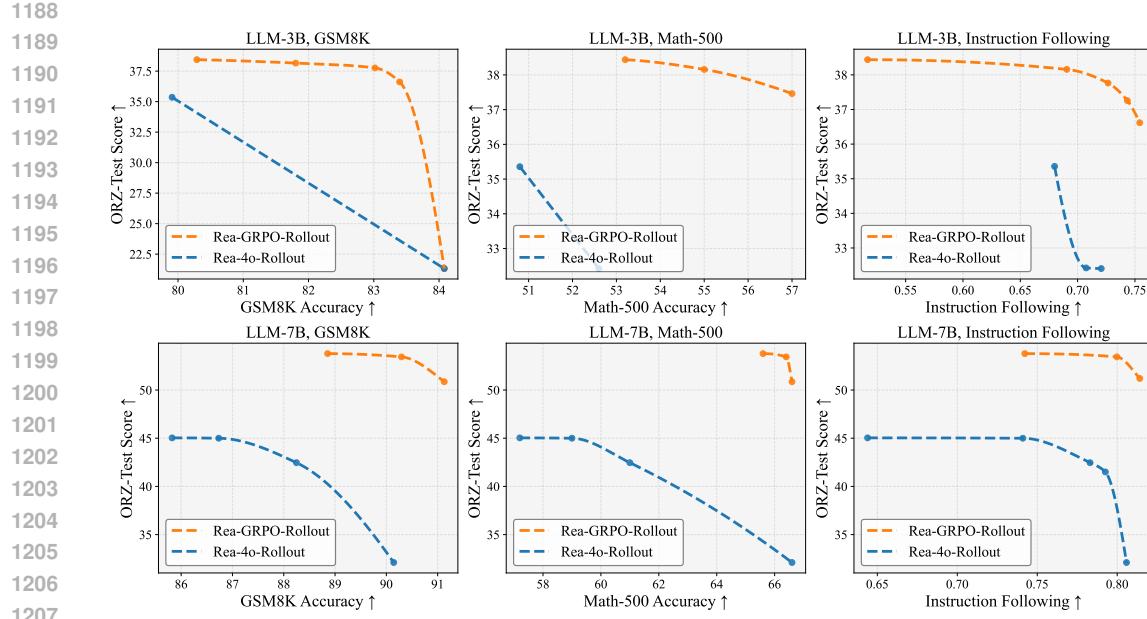


Figure 13: Pareto front curves on the ORZ-test and previous math tasks for models fine-tuned on Rea-4o-Rollout and Rea-GRPO-Rollout data.

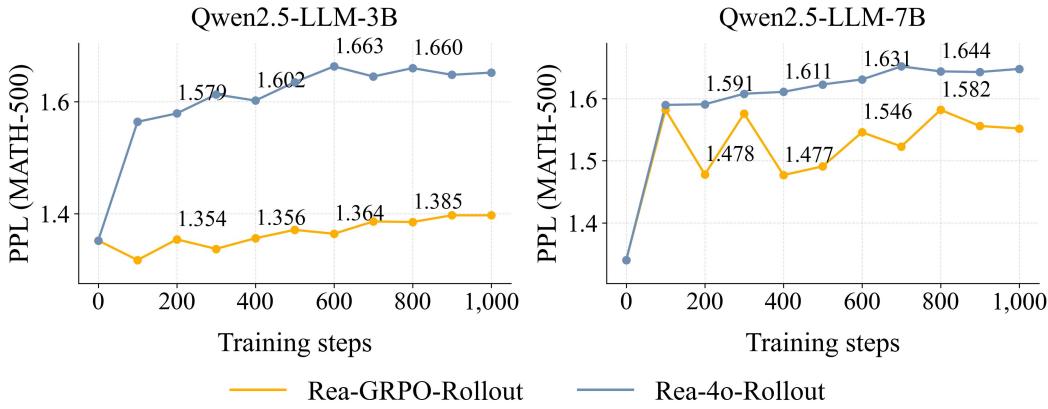


Figure 14: Perplexity versus SFT training steps for MATH-500. We collect rollouts from the base model with question from MATH-500 dataset as our prior knowledge.

Table 6: Performance comparison of different GRPO training recipe.

Qwen2.5-3B-Instruct				Qwen2.5-7B-Instruct			
Base	RFT ($\mu = 1$)	RFT ($\mu = 2$)	RFT ($\mu = 4$)	Base	RFT ($\mu = 1$)	RFT ($\mu = 2$)	RFT ($\mu = 4$)
<i>Open-Reasoner-Zero (test) (New Task)</i>							
ORZ Test	21.32	35.00	35.70	34.10	32.11	49.29	48.18
<i>Math Reasoning (Old Tasks)</i>							
GSM8k	84.08	83.40	83.02	81.27	90.14	90.22	89.69
Math-500	42.40	55.20	55.40	52.80	66.60	64.80	65.20
<i>Instruction Following (Old Task)</i>							
IFEval	71.58	73.38	74.82	73.98	80.58	80.46	81.89
							80.46

Table 7: Albation results of Rea and Non-Rea data mixture SFT on jigsaw puzzles.

Model	Training Steps	Jigsaw-test		Grounding		Document & OCR		General VQA			Hallucination
		3x3 puzzles	RefCOCO_val			DocVQA _{test}	MME _{sum}	MMStar	GQA	POPE	
Qwen2.5-VL-3B											
Base	—	0		88.8		92.8	2140	56.2	60.1		86.9
SFT-Non-Rea	200	53.0 (↑53)		6.1 (↓82.8)		81.6 (↓11.3)	1631 (↓509)	49.2 (↓7.0)	54.7 (↓5.4)		85.9 (↓1.0)
SFT-Rea-40-Rollout	4,100	70.0 (↑70)		74.2 (↓14.6)		90.3 (↓2.5)	1478 (↓662)	51.7 (↓4.5)	50.0 (↓10.1)		69.4 (↓17.5)
SFT-Rea-GRPO-Rollout	2,670	70.0 (↑70)		84.6 (↓4.2)		89.8 (↓3.1)	2132 (↓8)	52.2 (↓4.0)	54.0 (↓6.1)		85.4 (↓1.4)
SFT-Mixture	1,367	70.0 (↑70)		74.0 (↓14.8)		88.6 (↓4.2)	1557 (↓583)	46.2 (↓10.0)	46.8 (↓13.3)		70.4 (↓16.5)
Qwen2.5-VL-7B											
Base	—	0.0		90.0		94.4	2333	62.8	60.4		86.2
SFT-Non-Rea	400	80.0 (↑80)		32.9 (↓57.2)		67.1 (↓27.4)	479 (↓1854)	0.0 (↓62.8)	21.7 (↓38.7)		16.3 (↓9.9)
SFT-Rea-40-Rollout	4,100	78.0 (↑78)		52.5 (↓37.5)		92.1 (↓2.3)	2084 (↓249)	59.1 (↓3.7)	53.5 (↓6.9)		74.1 (↓12.1)
SFT-Rea-GRPO-Rollout	3,000	81.0 (↑81)		81.4 (↓8.6)		95.3 (↓0.9)	2207 (↓126)	60.4 (↓2.4)	57.0 (↓3.3)		83.1 (↓3.1)
SFT-Mixture	1,367	84.0 (↑84)		26.5 (↓63.5)		93.2 (↓1.2)	1992 (↓341)	55.7 (↓7.1)	51.4 (↓9.0)		75.4 (↓10.8)

Table 8: Albation results of Rea and Non-Rea data mixture SFT on math reasoning.

Model	Training Steps	Open-Reasoner-Zero		Math Reasoning		Instruction Following	
		ORZ Test	GSM8k	Math-500	IFEval		
Qwen2.5-3B-Instruct							
Base	–	21.32	84.08	42.4	71.58		
SFT-Non-Rea	1,600	23.40 (\uparrow 2.08)	15.09 (\downarrow 68.99)	19.4 (\downarrow 23)	64.03 (\downarrow 7.55)		
SFT-Rea-4o-Rollout	2,140	35.36 (\uparrow 14.04)	79.91 (\downarrow 9.17)	50.8 (\uparrow 8.4)	67.99 (\downarrow 3.59)		
SFT-Rea-GRPO-Rollout	2,140	37.76 (\uparrow 16.44)	83.02 (\downarrow 1.06)	54.4 (\uparrow 12.0)	72.66 (\uparrow 1.08)		
SFT-Mixture	2,140	32.33 (\uparrow 11.01)	77.86 (\downarrow 6.22)	50.6 (\uparrow 8.2)	72.78 (\uparrow 1.2)		
Qwen2.5-7B-Instruct							
Base	–	32.11	90.14	66.6	80.58		
SFT-Non-Rea	1,600	30.32 (\downarrow 1.79)	21.76 (\downarrow 68.38)	26.4 (\downarrow 40.2)	57.19 (\downarrow 23.39)		
SFT-Rea-4o-Rollout	2,140	45.04 (\uparrow 12.93)	85.82 (\downarrow 4.32)	57.2 (\downarrow 9.4)	64.39 (\downarrow 16.19)		
SFT-Rea-GRPO-Rollout	2,140	53.44 (\uparrow 21.33)	90.30 (\downarrow 0.16)	66.4 (\downarrow 0.2)	79.98 (\downarrow 0.6)		
SFT-Mixture	1,070	40.55 (\uparrow 8.44)	72.71 (\downarrow 17.43)	54.2 (\downarrow 12.4)	73.26 (\downarrow 7.32)		

GPT-4o Math Prompt and Response. Fig. 15 shows the prompt we use to elicit GPT-4o “thinking” for single-step math problems and a representative response.

G MIXTURE OF REA AND NON-REA DATA FOR SFT

We have experimented with mixing data of different styles for SFT. Specifically, we combine reasoning and non-reasoning data in equal proportion and apply a unified prompt template: non-reasoning samples produce an empty CoT followed by the answer, while reasoning samples output a CoT first and then the answer. We run this experiment on both the Jigsaw Puzzles and Math Reasoning datasets. The mixed-data fine-tuning method is denoted as **SFT-Mixture** in the Tab. 7 and Tab. 8. The results show that SFT-Mixture performs between SFT-Non-Rea and SFT-Rea-4o-Rollout, but remains far worse than SFT using model-generated rollout data (SFT-Rea-GRPO-Rollout), even though the latter uses only a single fixed reasoning format. This indicates that simply increasing the stylistic diversity of SFT data does not effectively mitigate catastrophic forgetting. The key is to obtain data that better matches the model’s own distribution.

H LLM EXPERIMENTS ON SCIENTIFIC MULTIPLE-CHOICE QA

Scientific MCQ Dataset. We further investigate catastrophic forgetting on scientific multiple-choice questions using the Sci-MCQ4 subset from SciKnowEval (Feng et al., 2024). From the original corpus, we randomly sample 8,500 examples and split them into 90% training and 10% held-out test data. Each instance is a four-choice science question together with its correct option, covering multi-level scientific knowledge such as physics, chemistry, and biology. We refer to this held-out split as *Sci-MCQ4 Test*, which serves as a target task for post-training.

LLM and Evaluation. For scientific QA experiments, we reuse Qwen2.5-3B-Instruct as the base LLM. We treat Sci-MCQ4 Test as the new target task and report answer accuracy on it, and we reuse GSM8K, MATH-500, and IFEval as old tasks with their standard accuracy metrics to monitor retention of prior math and instruction-following abilities.

1296
1297
1298
1299
1300
1301

1302 **Prompt for generating thinking of math tasks.**

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314

You will be given a single math problem and the correct final answer.

Problem:
{PROBLEM}

Correct answer:
{ANSWER}

Write one compact reasoning sketch (no more than 300 words) that shows a plausible path from the problem statement to

that answer. Focus on the main ideas: pattern spotting, substitutions, identifying recurrences/monotonicity, modular reductions, or comparing forms until the result becomes forced. Use cautious language (''we can see,'' ''it suggests,'' ''this leads to'') and keep the tone technical. Do NOT say that the answer was given to you, do NOT restate the answer at the end, and do NOT list alternative answers. The goal is to provide hidden working notes that make the final answer unsurprising.

1323

1324
1325

Example model response.

1326

We consider the nested expression

1327
1328
1329
1330

$$f(x) = \sqrt{1 + x \sqrt{1 + (x + 1) \sqrt{1 + (x + 2) \sqrt{1 + (x + 3) \sqrt{\dots}}}}}$$

1331
1332

This suggests defining a recursive form $f(x) = \sqrt{1 + xf(x+1)}$, so that

1333
1334
1335

$$f(x)^2 = 1 + xf(x+1).$$

1336

We can test a simple polynomial candidate $f(x) = x + 1$. Then

1337
1338

$$f(x)^2 = (x + 1)^2 = x^2 + 2x + 1, \quad 1 + xf(x+1) = 1 + x(x + 2) = x^2 + 2x + 1.$$

1339
1340
1341

The expressions agree, which indicates that $f(x) = x + 1$ is consistent with the recurrence for all positive integers x . Since the nested radical is increasing and all terms are positive, this closed form is the stable solution of the recursion. Evaluating at $x = 2008$ gives $f(2008) = 2009$.

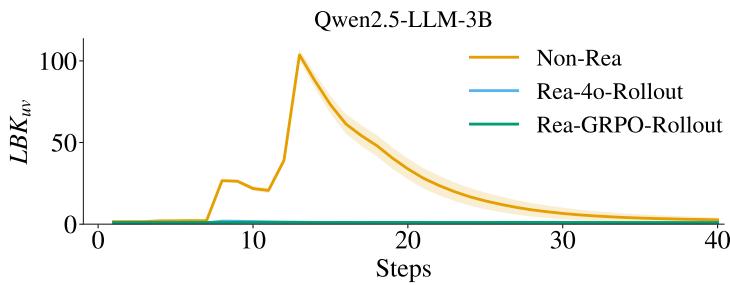
1342

1343 Figure 15: Details of employing GPT-4o to generate hidden chain-of-thought reasoning trajectories
1344 for math problems.

1345
1346
1347
1348
1349

1350
1351 **Table 9: Performance comparison across post-trained models of Qwen2.5-3B-Instruct on the sci-
1352 entific multiple-choice dataset **Sci-MCQ4**.** Numbers in parentheses denote the change w.r.t. the base
1353 model.

	Steps	Sci-MCQ4	GSM8K	MATH-500	IFEval
Base	–	65.1	84.1	42.4	71.6
RFT	960	70.8 ($\uparrow 5.7$)	82.9 ($\downarrow 1.1$)	45.2 ($\uparrow 2.8$)	71.8 ($\uparrow 0.2$)
SFT-Non-Rea	240	69.3 ($\uparrow 4.2$)	69.4 ($\downarrow 14.6$)	43.2 ($\uparrow 0.8$)	70.3 ($\downarrow 1.3$)
SFT-Rea-4o-Rollout	214	67.0 ($\uparrow 1.9$)	74.1 ($\downarrow 9.9$)	40.2 ($\downarrow 2.2$)	73.9 ($\uparrow 2.3$)
SFT-Rea-GRPO-Rollout	214	71.7 ($\uparrow 6.6$)	81.3 ($\downarrow 2.7$)	40.8 ($\downarrow 1.6$)	74.5 ($\uparrow 2.9$)

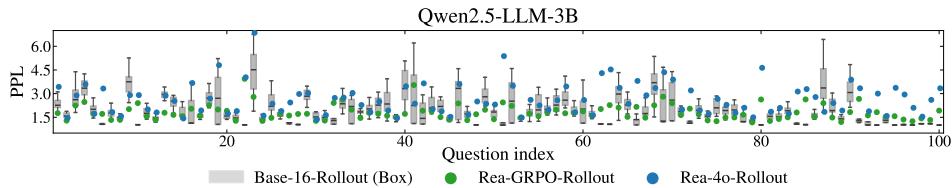


1371 **Figure 16: Evolution of LBK_{uv} during the SFT process with three different datasets on the Sci-
1372 MCQ4 scientific QA dataset.**

1373
1374 **Results.** As summarized in Tab. 9, all post-training methods improve performance on the new Sci-
1375 MCQ4 task compared to the base model, with SFT-Rea-GRPO-Rollout obtaining the largest gain
1376 (+6.6 points). However, the methods exhibit different degrees of forgetting on old tasks: SFT-Non-
1377 Rea suffers the most severe degradation on GSM8K (−14.6 points) and also a drop on IFEval, while
1378 reasoning-augmented SFT with external CoT (SFT-Rea-4o-Rollout) forgets less but still more than
1379 SFT-Rea-GRPO-Rollout. The latter achieves a favorable trade-off, boosting Sci-MCQ4 accuracy
1380 while keeping GSM8K, MATH-500 and IFEval close to—or even slightly better than—the base
1381 model. This again establishes a consistent hierarchy of forgetting severity, *i.e.*, Non-Rea > Rea-4o
1382 > Rea-GRPO, now on a scientific QA benchmark.

1383
1384 **Analysis.** To probe the underlying mechanism, we recompute LBK between post-training samples
1385 and prior math knowledge during SFT on Sci-MCQ4. As shown in Fig. 16, Non-Rea data consist-
1386 ently exhibit the largest LBK values, whereas Rea-4o contains occasional high-LBK outliers and
1387 Rea-GRPO is concentrated in the low-LBK region, further supporting the learning-dynamics anal-
1388 ysis in Sec. 5.4. Moreover, Fig. 17 plots the perplexity of Rea-GRPO-Rollout and Rea-4o-Rollout
1389 trajectories under the base LLM. Similar to our findings on math reasoning and multimodal jigsaw
1390 puzzles, Rea-4o-Rollout tends to occupy higher-perplexity regions while Rea-GRPO-Rollout stays
1391 closer to the low-perplexity band defined by base rollouts, providing additional evidence for the
1392 low-perplexity training hypothesis in Sec. 5.5.

1393 **GPT-4o ScienceQA Prompt and Response.** Fig. 18 shows the prompt we use to elicit GPT-4o
1394 “thinking” for scientific multiple-choice problems and a representative response.



1402 **Figure 17: PPL of Rea-GRPO-Rollout and Rea-4o-Rollout trajectories on the Sci-MCQ4 dataset
1403 under the base LLM. Base-16-Rollout (Box) denotes the PPL range estimated from 16 rollouts
1404 generated by the base model, serving as a reference.**

1404
1405
1406
1407
1408
1409
1410

Prompt for generating thinking of Sci-MCQ4 tasks.

1411
1412
1413 You will be given a single math problem and the correct final
1414 answer.

1415
1416 Problem:
1417 {PROBLEM}

1418
1419 Correct answer:
1420 {ANSWER}

1421
1422 Write one compact reasoning sketch (no more than 300 words)
1423 that shows a plausible path from the problem statement to
1424 that answer. Focus on the main ideas: pattern spotting,
1425 substitutions, identifying recurrences/monotonicity,
1426 modular reductions, or comparing forms until the result
1427 becomes forced. Use cautious language (''we can see,''
1428 ''it suggests,''
1429 ''this leads to'') and keep the tone technical.
1430 Do NOT say that the answer was given to you, do NOT restate
the answer at the end, and do NOT list alternative answers.
The goal is to provide hidden working notes that make the
final answer unsurprising.

1431

1432
1433

Example model response.

1434
1435 The question focuses on the role of NADPH oxidase activation in cardiac dysfunc-
1436 tion, specifically its primary function. NADPH oxidase is a key enzyme involved in
1437 generating reactive oxygen species (ROS), which are implicated in oxidative stress.
1438 Oxidative stress is a well-established contributor to pathological cardiac remod-
1439 eling and dysfunction. Excessive ROS production can damage cellular components,
1440 leading to apoptosis (programmed cell death) and impairing diastolic function by
1441 disrupting myocardial relaxation and increasing stiffness.

1442
1443 The activation of NADPH oxidase suggests a pathological mechanism rather than
1444 a compensatory or beneficial one, as oxidative stress typically exacerbates cardiac
1445 injury rather than promoting hypertrophy or enhancing systolic function. While
1446 hypertrophy may occur as a secondary response to stress, the direct link between
1447 NADPH oxidase activation and apoptosis aligns with its role in facilitating cellular
1448 damage. This indicates that the enzyme's activation is consistent with promoting
1449 cardiac apoptosis and diastolic dysfunction, which are hallmarks of oxidative stress-
1450 induced cardiac pathology.

1451
1452
1453
1454
1455
1456
1457

Figure 18: Details of employing GPT-4o to generate hidden chain-of-thought reasoning trajectories for Sci-MCQ4 problems.