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Abstract

Counterfactual data augmentation, which gen-001
erates minimally edited tokens to alter labels,002
has become a key approach to improving model003
robustness in natural language processing. It004
is usually implemented by first identifying the005
causal terms and then modifying these terms006
to create counterfactual candidates. The emer-007
gence of large language models (LLMs) has008
effectively facilitated the task of counterfactual009
data augmentation. However, existing LLM-010
based approaches still face some challenges in011
1) accurately extracting the task-specific causal012
terms, and 2) the quality of LLM-generated013
counterfacts. To address the issues, we propose014
a dually self-improved counterfactual data aug-015
mentation method using LLM. On the one hand,016
we design a self-improved strategy employing017
the attention distribution of the task model to018
identify the task-specific causal terms, which019
is lightweight and task-specific. On the other020
hand, a second self-improved strategy based021
on direct preference optimization is utilized to022
refine LLM-generated counterfacts, achieving023
high-quality counterfacts. Finally, a balanced024
loss preventing over-emphasis on augmentated025
data is proposed to retrain the task model on026
the fusion of existing data and generated coun-027
terfacts. Extensive experiments on multiple028
benchmarks demonstrate the effectiveness of029
our proposed method in generating high-quality030
counterfacts for improving task performance.031

1 Introduction032

In the complex realm of machine learning and NLP,033

imbalance, and biases prevalent in real-world train-034

ing data continue to be an arduous challenge for ro-035

bust model development. Traditional data augmen-036

tation suffers from the issue of spurious association037

when alleviating these issues (Chen et al., 2021). In038

recent years, generating counterfactual augmented039

data (CAD) (Kaushik et al., 2020), introducing min-040

imal modifications to the data through additions,041

replacements, or deletions to flip the label, has042
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Figure 1: Introduction of Counterfactual Data Augmen-
tation.

been widely attempted in many tasks (Liu et al., 043

2021a). Target task models trained with large-scale 044

counterfacts can learn better representations and 045

effects of casual terms, which facilitates task per- 046

formance improvements and enables robust gener- 047

alization. Typically, counterfactual data augmenta- 048

tion involves three steps: (1) identifying important 049

tokens (known as causal terms) that can flip the 050

labels, (2) minimally editing these terms to create 051

counterfactual candidates, and (3) retraining the 052

model on the fusion data of existing data and aug- 053

mented data. For example, as shown in Figure 1, in 054

NLI task, through modifying the identified casual 055

term "talking to" to "walking with" for the given ex- 056

ample, we flip the original label from "Entailment" 057

to "contradiction", obtaining a counterfact. 058

However, it is non-trivial to obtain high-quality 059

counterfacts. Early works (Gardner et al., 2020; 060

Kaushik et al., 2020) relied on human experts to an- 061

notate counterfactual examples, which is not easily 062

scalable. Therefore, researchers have been explor- 063

ing automatic methods for counterfactual genera- 064

tion using neural networks (Chen et al., 2021). Re- 065

cently, AutoCAD (Wen et al., 2022) has attempted 066
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to leverage generative language models, such as067

T5 (Raffel et al., 2020), for controllable text gen-068

eration. However, due to the limited comprehen-069

sion and generation capabilities of these language070

models, the quality of the generated data remains071

constrained. The advent of LLMs has driven signifi-072

cant progress across various NLP tasks, researchers073

have focused on designing effective prompts to074

leverage the advanced comprehension and gener-075

ation abilities of LLMs for directly generating de-076

sired counterfacts (Chen et al., 2023; Dixit et al.,077

2022; Nguyen et al., 2024).078

Despite the promising advancements, research079

on LLM-based counterfactual data augmentation080

still faces several challenges. (1) How to extract081

causal terms specific to the task accurately? Ex-082

isting works either exploited all spans obtained083

through sentence splitting (Chen et al., 2023), or084

directly prompted LLMs (Li et al., 2024) to iden-085

tify causal terms. All of these methods suffer086

from the inaccurate casual terms specific to the087

task. (2) How to enhance the quality of LLM-088

generated CAD by modifying the causal terms?089

Those LLM-based approaches typically employ090

LLMs to rewrite causal terms and then select the091

desired counterfacts with a score function. How-092

ever, the quality of the generated counterfacts is093

still suboptimal since the LLM is not specially op-094

timized for generating CAD, and the low-scored095

data is also not fully leveraged.096

In this paper, to address the above issues, we097

propose a dually self-improved counterfactual data098

augmentation method using LLMs (DICT). On099

one hand, as the attention mechanism offers in-100

sights into the causal relationships between texts101

and their labels (Nauta et al., 2019), we design a102

self-improved strategy based on the attention dis-103

tribution of the target task model to identify causal104

terms, a lightweight and task-specific approach.105

As shown in Figure 1, the terms with larger at-106

tention of the target task model are more critical107

for the NLI label, while existing methods suffer108

from the accuracy of the identified causal terms109

and may introduce noise. On the other hand, to110

further improve the quality of CAD, we propose111

an additional self-improved strategy based on di-112

rect preference optimization (DPO) to refine itself.113

Specifically, after generating preliminary counter-114

facts, we construct the preference pairs based on115

the score function for DPO. Finally, through simple116

filtering and fusion, we retrain the task model on117

the fused data, using a balanced loss function to118

avoid over-emphasis on augmented data. Overall, 119

our contributions can be summarized as follows: 120

• We propose a dually self-improved counterfac- 121

tual data augmentation, improving the counter- 122

factual data augmentation framework depend- 123

ing on the task model and LLM themselves, 124

without external tools to identify casual terms 125

or human annotation for fine-tuning LLMs. 126

• Our proposed DICT improves the extraction 127

of task-specific causal terms through attention 128

mechanisms and further enhances the CAD 129

generation of LLMs using DPO. Additionally, 130

a novel balanced loss is introduced to retrain 131

the task model on the fused data, effectively 132

preventing excessive augmentation. 133

• Extensive experiments across multiple bench- 134

marks demonstrate that DICT significantly 135

outperforms the state-of-art annual and au- 136

tomatic CAD generation methods across all 137

metrics. 138

2 Related Work 139

Counterfactual Data Augmentation. Generating 140

fluent textual CAD are required to follow some 141

principles, including: (1) minimal edits, (2) flu- 142

ency, creativity, and diversity, and (3) adhering to 143

task-specific rules (Wang et al., 2024). However, 144

these requirements have been proved challenging 145

. Early, Kaushik et al. and Gardner et al. (2020) 146

employ human annotators to create counterfacts by 147

manually rewriting the original data. Obviously, 148

manual rewrites are not only time-consuming and 149

expensive but also may exacerbate existing spu- 150

rious features. To alleviate the mentioned issues, 151

Tokpo and Calders (2024) rely on additional word 152

dictionaries to select casual terms, which is inac- 153

curate and difficult to be generalized. Further, re- 154

searchers (Madaan et al., 2021; Ross et al., 2021; 155

Wen et al., 2022) proposed using advanced text 156

generation models, such as T5 (Raffel et al., 2020), 157

to generate CAD. Due to the limited comprehen- 158

sion and generation capabilities of previous gen- 159

erative language models, the quality of the gener- 160

ated data remains constrained. Additionally, some 161

works (Liu et al., 2021b; Zeng et al., 2020) con- 162

sider the task-specific issue when generating CAD, 163

which cannot generalize to other tasks. For ex- 164

ample, TCWR (Liu et al., 2021b) considers the 165

symmetry between source and target sequences 166
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in Natural Machine Translation when generating167

CAD.168

LLM-based Counterfactual Data Augmenta-169

tion. LLMs have shown remarkable proficiency170

in synthesizing natural languages for downstream171

tasks. Leveraging the powerful generative ability172

of LLMs to automatically generate counterfacts has173

recently attracted considerable attention (Liu et al.,174

2020a). DISCO (Chen et al., 2023) prompts GPT3175

(Brown et al., 2020) to generate phrasal perturba-176

tions for automatically generating CAD at scale.177

Nguyen et al. (2024) and Li et al. (2024) investi-178

gated the strengths and weaknesses of LLMs as179

generators comprehensively, instructing LLMs to180

identify casual terms and generate counterfacts.181

However, despite the significant advancements,182

the quality of counterfactual augmented data with183

LLMs still remains to be improved since LLMs184

are not specially trained for CAD generation. Our185

work bridges this gap by designing a dually self-186

improved method to enhance both the extraction187

of the specific causal terms and the generation of188

CAD (modifying the causal terms) with LLMs.189

3 Preliminaries190

We implement counterfactual data augmentation191

on the Natural Language Inference (NLI) task, re-192

ferring to determining the relationship between193

a given premise sentence and a hypothesis sen-194

tence (Hosseini et al., 2024). Formally, given195

an input premise-hypothesis pair ⟨Pi,Hi⟩ and its196

ground-truth label li, where Pi = {t1, t2, · · · , tm},197

tj = {w1, · · · , wn} represents a token that con-198

sists of n words 1, and m is the number of tokens.199

li ∈ {Entailment,Contradiction,Neutral}, the task200

aims to produce a counterfactual example ⟨P̂i,Hi⟩201

that flips the origin label l to a desired label l̂i,202

l̂i ̸= li, through perturbing parts of the premise Pi.203

When the original premise Pi is altered into coun-204

terfactual P̂i, minimal changes are required. Here,205

casual terms are denoted as Ci = {c1, · · · , ck},206

where each cj corresponds to a token tj extracted207

from Pi. After CAD generation, the performance208

is evaluated through a baseline NLI model M, such209

as RoBERTa (Liu et al., 2020b).210

4 Our Proposed Model211

In this section, we detail our proposed dually self-212

improved counterfactual data augmentation method213

1We split sentences into tokens through Flair (Akbik et al.,
2018).

using a large language model (DICT). 214

As shown in Figure 2, our model consists of 215

three stages: 1) self-improved casual terms iden- 216

tification, 2) self-improved CAD generation, 3) 217

retraining. First, we design a self-improvement 218

strategy leveraging the attention distribution of the 219

task model to enhance the identification of causal 220

terms. Second, we further propose to utilize a self- 221

improved LLM based on DPO to refine the CAD 222

generation by modifying the causal terms. Finally, 223

after filtering and fusing the generated counterfacts, 224

we retrain the task model with a balanced loss func- 225

tion, avoiding over-augmentation. In this way, we 226

improve the task model performance with our gen- 227

erated augmented counterfactual data. 228

4.1 Self-improved Casual Terms Identification 229

Casual terms capture the effective features implied 230

in sentences. Therefore, identifying causal terms is 231

the crucial first step of counterfactual data augmen- 232

tation. To achieve this, we propose a self-improved 233

causal term identification method based on the at- 234

tention distribution of the task model. Different 235

attention layers can be seen as a hierarchy that 236

gradually refines the context of the input sequence; 237

the higher layers focus on more abstract seman- 238

tic understanding (Clark et al., 2019; Gillioz et al., 239

2020). Therefore, given the task model M trained 240

on the original dataset and a premise-hypothesis 241

sample ⟨Pi,Hi⟩, we utilize the last attention layer 242

of the task model to compute the attention score 243

αwi on each word wi of premise Pi under its label 244

li: 245

αwi = AttentionM(li|Pi,Hi), (1) 246

where AttentionM is the last attention layer embed- 247

ded in the task model M. Then, the attention score 248

αtj on each token tj is calculated as 249

αtj = Average(αw1 , · · · , αwn), (2) 250

where Average is a mean-pooling layer. In this way, 251

we obtain the attention weights of tokens. Finally, 252

tokens are sorted in descending order based on the 253

attention score αtj , and top K (K = 3 in this 254

paper) tokens are selected as the final causal terms 255

Ci. 256

4.2 Self-improved CAD Generation 257

With the identified causal terms and original sen- 258

tence pairs, we propose a self-improved LLM 259

based on DPO to modify causal terms, thereby 260

flipping the label and generating CAD. 261
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Figure 2: The architecture of our proposed DICT.

First, each casual term Ci is replaced with a262

mask token [MASK] individually to obtain K sen-263

tences to be rewritten. Then, for each sentence,264

we instruct an LLM to alter the [MASK] into cer-265

tain tokens for flipping the original label li of the266

⟨Pi,Hi⟩ into a specific label l̂i. To achieve this, the267

prompt (shown in Appendix A.1) is designed to268

instruct an LLM to generate CAD. Note that, for269

each causal term, we employ an over-generation270

strategy to generate multiple corresponding candi-271

date counterfacts {P̂
1
i , · · · , P̂

o
i } by rephrasing the272

causal terms. Afterward, all the candidate counter-273

facts are scored via the predicted probability shift274

of the target label l̂i based on the task model M:275

δj = p(l̂i|P̂
j
i ,Hi)− p(l̂i|Pi,Hi). (3)276

Instead of directly using the filtered results by277

the calculated scores δ, we design another self-278

improved strategy based on DPO to achieve self-279

improved LLM for generating higher-quality candi-280

date counterfacts. Specifically, for each causal term281

in C, we choose the corresponding generated can-282

didate counterfact (by modifying the causal term)283

with the highest score δ as the accepted example284

P̂
1
i , and a random one with δ < γ as a rejected ex-285

ample P̂
2
i , where γ is the threshold and set to 0.7 in286

this work. Formally, by forming the two samples,287

the entire preference pair data are denoted as:288

P = {(Pi, P̂
1
i , P̂

2
i ))}Ni=1. (4)289

Self-Improved LLM based on DPO. As de- 290

fined previously, we prefer the counterfact P̂
1
i to 291

P̂
2
i given an input Pi. To enable the LLM to learn 292

this desired preference, DPO is employed to refine 293

the LLM using the preference pairs. Formally, the 294

preference probability is first predicted as follows: 295

r(Pi, P̂i) = β log
πr(P̂i|Pi)

πref (P̂i|Pi)
+ β logZ(Pi), (5) 296

p(P̂
1
i > P̂

2
i |Pi) =

1

1 + er(Pi,P̂
1
i )−r(Pi,P̂

2
i )
, (6) 297

where r(Pi, P̂i) is the reward function with the in- 298

put of any generated counterfact P̂i and its origin 299

text Pi, πr and πref are respectively the correspond- 300

ing optimal policy and the reference policy, Z(·) is 301

the partition function and β is a parameter control- 302

ling the deviation from the reference policy. 303

Then, LLMs can be directly optimized with pref- 304

erence probabilities (DPO) using the following bi- 305

nary cross-entropy loss function: 306

L(π) = −
∑
P
[p(P̂

1
i > P̂

2
i |Pi) log πr(P̂

1
i |Pi))

+ (1− p(P̂
2
i > P̂

1
i |Pi)) log (1− πr(P̂

1
i |Pi))].

(7) 307

308

Subsequently, we apply the self-improved LLM 309

to generate higher-quality CAD. The generated can- 310

didate counterfacts are further filtered based on the 311

aforementioned probability shift score δ to ensure 312

the data quality (i.e., δ is above the threshold γ). 313
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4.3 Retraining314

Finally, we fuse the filtered CAD with the original315

data and retrain the task model to improve the task316

performance. As the scale of counterfactual data317

grows, we observe that the task model may overly318

focus on the counterfactual data while overlooking319

the original data. Therefore, during the retraining, a320

penalty factor λ is used to balance the original data321

and the augmented data, improving the robustness322

of the model while preventing over-emphasis on323

the augmentation. The loss function is calculated324

through the cross entropy:325

L = CE(p(l|P,H), l) + λ · CE(p(l̂|P̂,H), l̂), (8)326

where CE is the cross entropy function, and λ is327

the balance factor.328

5 Experiments329

5.1 Datasets330

We evaluate the overall performance on NLI tasks331

over three benchmarks, including two in-domain332

subsets from SNLI(Bowman et al., 2015) and333

MNLI (Williams et al., 2018). In the following,334

we detail each dataset.335

• SNLI (Bowman et al., 2015). The Stanford336

Natural Language Inference (SNLI) corpus,337

derived from only one domain, is a collection338

of sentence pairs manually labeled for bal-339

anced classification with the labels entailment,340

contradiction, and neutral. The first subset341

SNLI-1, following (Wen et al., 2022), consists342

of an ambiguous part of SNLI. It contains343

20,000 examples for training, 4,800 for vali-344

dation, and 4,800 for testing. To further eval-345

uate the performance, we extracted a larger-346

scale examples randomly from the original347

SNLI corpus, consisting of 87,208, 18,688,348

and 18,688 pairs for training, validation, and349

testing respectively.350

• MNLI (Williams et al., 2018). Multi-genre351

NLI corpus (MNLI), including two differ-352

ent test sets MNLI-matched (MNLI-m) and353

MNLI-mismatched (MNLI-mm) 2, is a multi-354

ple out-of-domain and challenge benchmark355

to measure the generalization of the model356

after data augmentation. It contains 392,702357

pairs in the train set, 9,815 in the MNLI-m358

2The details can be found in the website
https://cims.nyu.edu/ sbowman/multinli/

test set, and 9,796 pairs in the MNLI-mm test 359

set. 360

5.2 Baselines 361

We compare our model with the state-of-the-art 362

baselines: 363

• RoBERTa-large (Liu et al., 2019). A ro- 364

bustly optimized SOTA transformer model 365

pre-trained on a large corpus. It is used as 366

the target task model to be augmented. 367

• HumanCAD (Kaushik et al., 2020). A manual 368

set of CAD for NLI, obtained by human anno- 369

tators rewriting a subset of SNLI. We append 370

them into original benchmarks and evaluate 371

the performance following (Wen et al., 2022). 372

• AutoCAD (Wen et al., 2022). A fully auto- 373

matic CAD generation framework with the 374

generative language model T5. 375

• DISCO (Chen et al., 2023). A counterfactual 376

knowledge distillation approach with LLMs. 377

It leverages all spans as causal terms for CAD 378

generation and filters out unqualified gener- 379

ated data using a SOTA task-specific model. 380

• LLMCF (Li et al., 2024). A CoT-based 381

method that prompts LLMs to identify causal 382

terms and produce CAD. To ensure a fair com- 383

parison, we adopt the task model to filter the 384

generated CAD, as we do in our DICT. 385

Note that, for fair comparison, all baseline methods 386

and our DICT use the same task model RoBERTa- 387

large and aim to improve the task model with the 388

generated counterfactual augmented data. 389

5.3 Experimental Settings 390

For SNLI-1, we perform counterfactual augmenta- 391

tion on each sample. Due to the large scale of the 392

SNLI-2 and the MNLI, we sampled subsets of a 393

fixed size for counterfactual augmentation, includ- 394

ing 50,000 examples from the training set. Follow- 395

ing (Chen et al., 2023), we measure the consistency 396

of model performances on the original and counter- 397

factual test examples. We sample 2,000 examples 398

from the test sets respectively for generating CAD . 399

In terms of LLM-based models, we use Qwen2.5- 400

7B-Instruct and Qwen2.5-14B-Instruct (Yang et al., 401

2024; Team, 2024) as the base LLMs. The prompt 402

for instructing LLMs follows (Chen et al., 2023), 403
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Dataset SNLI-1 SNLI-2 MNLI-m MNLI-mm

Metric(%) P R F1 P R F1 P R F1 P R F1

RoBERTa-large 61.36 59.77 58.29 87.92 86.76 86.82 87.38 87.23 87.27 87.06 86.92 86.97

Human-CAD 60.90 62.27 61.26 87.57 87.51 87.51 87.17 86.92 86.85 87.30 87.06 87.10
AutoCAD 57.08 58.58 57.48 87.37 87.35 87.36 87.52 87.33 87.41 87.44 87.32 87.37
DISCO-7B 59.50 61.18 59.26 87.80 87.73 87.75 87.76 87.77 87.76 87.56 87.50 87.54
LLMCF-7B 61.17 61.43 60.24 88.43 87.39 87.65 87.80 87.66 87.71 87.70 87.57 87.62
LLMCF-14B 63.15 63.43 62.84 88.82 88.79 88.79 88.89 88.73 88.84 88.72 88.66 88.68

DICT-7B 62.38 62.39 61.37 88.63 87.78 87.89 88.23 88.07 88.15 88.12 87.85 87.91
DICT-14B 65.10 65.08 64.89 89.42 89.51 89.47 89.44 89.33 89.36 89.28 89.25 89.26

Table 1: Performance comparison of different methods over Precision, Recall and F1 score, where 7B and 14B
means Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct as the base LLM respectively.

ensuring a fair comparison and minimizing the im-404

pact of prompt variations on the generated coun-405

terfacts. The RoBERTa-large model is trained on406

all basic and augmented datasets with a learning407

rate of 1e-5 for 3 epochs. The size of obtained408

preference pairs is approximately 25,000 across409

all the datasets. For the DPO process, we set the410

number of epochs to 1. The penalty factors λ in411

the loss function are 0.4 and 0.6 for DICT-7B and412

DICT-14B, respectively. All the reported results of413

our DICT are the average results of three runs.414

5.4 Overall Performance415

To assess the overall performance, we perform416

counterfactual data augmentation on the training417

data and conduct evaluation on the original test418

set. As shown in Table 1, we report Precision419

(P), Recall (R) and F1-score (F1) respectively on420

all datasets to evaluate the overall performance421

of CAD methods. Concretely, the task model422

RoBERTa is trained on the fusion of the generated423

counterfacts and the original data, and evaluated424

on the original test data. It can be observed that:425

(1) all counterfactual data augmentation methods426

prove effective in most cases. However, due to427

the higher ambiguity and difficulty of SNLI-1, Au-428

toCAD slightly weakens the model performance.429

(2) LLM-based methods outperform AutoCAD in430

most cases, indicating the powerful comprehension431

and generation capabilities of LLMs. (3) Our pro-432

posed model DICT achieves the best results across433

both 7B and 14B settings, especially on the more434

challenging SNLI-1 dataset and the out-of-domain435

MNLI-mm dataset. It demonstrates the robust-436

ness and effectiveness of our proposed DICT. (4)437

Both LLMCF and DICT exhibit significant perfor-438

mance improvements as the LLM scale increases,439

demonstrating that larger models can capture more440

Method FR ACCδ

Auto-CAD 0.46 0.59
DISCO-7B 0.61 0.77
LLMCF-7B 0.60 0.81
LLMCF-14B 0.71 0.83
DICT-7B 0.80 0.84
DICT-14B 0.82 0.87

Table 2: Evaluation of the quality of generated counter-
facts.

complex causal relationships and generate higher- 441

quality counterfactual data, leading to better task 442

performance. Note that, DICT performs best in all 443

cases. We believe the reason is that DICT with dual 444

self-improvement can accurately identify the task- 445

specific causal terms and generate higher-quality 446

counterfacts. To further assess the generalizabil- 447

ity of our method, we also extend DICT to the 448

sentiment analysis task and demonstrate the effec- 449

tiveness of DICT, with the results presented in Ap- 450

pendix B. 451

5.5 The Quality of Generated Counterfacts 452

Following (Nguyen et al., 2024; Chen et al., 2023), 453

we use the filp rate (FR) and the counterfactual 454

accuracy ACCδ to evaluate the quality of generated 455

counterfacts on SNLI-1. Specifically, FR quantifies 456

how effectively a method can alter the labels of 457

instances and a higher FR indicates more confident 458

and impactful context modifications. FR is defined 459

as: 460

FR =
1

N

N∑
i=1

I[p(l̂i|P̂i,Hi) = l̂i], (9) 461

, where I is an indicator function that outputs 1 462

if the predicted label of a counterfact matches its 463

desired label. The FR is evaluated using the coun- 464
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terfactual augmentation results on the training set,465

where the probability p(l̂i|P̂i,Hi) is computed us-466

ing the task model.467

The counterfactual accuracy ACCδ is used to468

measure the consistency of the DICT’s perfor-469

mance on original and counterfactual examples of470

test data, and is defined as:471

1

N

N∑
i=1

I[p(l̂i|P̂i,Hi) = l̂i ∧ p(li|Pi,Hi) = li],

(10)472

where I indicts 1 only when the model correctly473

predicts the original and counterfactual examples.474

All probabilities are computed using the augmented475

task model on the test set and their corresponding476

counterfacts. Therefore, test samples linked to cor-477

responding counterfactual examples are preserved.478

As shown in Table 2, our model achieves the479

best performance on both FR and ACCδ. DICT-480

14B increases the FR by around 15% compared to481

LLMCF-14B, demonstrating that DICT effectively482

produces a larger quantity of high-confidence coun-483

terfacts. Additionally, the results on ACCδ also484

highlight that our DICT exhibits better consistency485

and generalization.486

Evaluation with GPT-4. GPT-4 is a reliable487

evaluator for accessing the quality of CAD, as488

demonstrated in (Nguyen et al., 2024; Liu et al.,489

2023). Accordingly, we select 1,000 samples ran-490

domly from SNLI-1 for all methods and use GPT-4491

to assign an overall score (on a 5-point scale) to492

them from three aspects, including fluency, realism,493

and conciseness. The utilized instruction is detailed494

in Appendix A.2. As shown in 3, compared to Auto-495

CAD that employs traditional generative language496

models, LLM-based models achieve higher scores497

obviously. Despite that all model-based methods498

fall short of Human-CAD, our DICT still achieves499
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Figure 4: Ablation study over Qwen2.5-7B and
Qwen2.5-14B on SNLI-1.
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Figure 5: The impact of Hyperparameter λ for DICT-7B
and DICT-14B on SNLI-1.

superior performance over Human-CAD. Simulta- 500

neously, as the scale of the large models increases, 501

the scores show significant improvements. 502

5.6 Ablation Study 503

In order to verify the effectiveness of different mod- 504

ules of our model, we design two variant models: 505

• DICT-base removes the self-improved gener- 506

ator and use a basic LLM to produce CAD. 507

• DICT-sft replaces the DPO strategy with su- 508

pervised fine-tuning (SFT). Instead of improv- 509

ing the LLM on preference data pairs, it just 510

employs the preferred parts. 511

They are both compared to LLM-based methods 512

on SNLI-1 dataset with Qwen2.5-7B and Qwen2.5- 513

14B respectively. As shown in Figure 4, we re- 514

port F1-scores as evaluated results. Without a self- 515

improvement generator, the performances are still 516

better than both DISCO and LLMCF. It demon- 517

strates that our self-improved identifier can iden- 518

tifying specific casual terms that are crucial for 519

generating CAD. If we replace DPO with SFT as 520

7



Case 3Case 2Case 1

An oriental girl is 
searching a baby in her 
arms.

A woman wearing orange 
looking upward.

Two people are holding a large upside-down earth globe,  
about 4‘ in diameter,  and a child appears to be jumping over 
Antarctica.

Original
Premise

The girl is looking for 
her baby brother.A woman gazes at her shoes.The earth globe is purple.Original

Hypothesis

EntailmentContradictionContradictionOriginal
Label

An oriental girl is 
holding a baby in her 
arms.

A woman wearing orange 
looking down at her orange 
high heels.

Two people are holding a large purple earth globe,  about 
4‘ in diameter,  and a child appears to be jumping over 
Antarctica.

Counterfactual
Premise

ContradictionEntailmentEntailmentFlipped
Label

Figure 6: Counterfactual examples from SNLI-1 generated by our DICT.

our self-improved strategy of the generator, the521

performances of DICT-sft decrease by 0.5% and522

1.77% over Qwen2.5-7B and Qwen2.5-14B respec-523

tively. It indicates the necessity of designing a self-524

improved strategy to enhance the LLM’s rewrit-525

ing capability of CAD. We also find that the per-526

formances of DICT-sft increase in-obviously com-527

pared to DICT-base. The reason may be that with-528

out the constraint of negative samples, the optimiza-529

tion space of the LLM becomes more complicated530

in our task. It is assumed that there should be more531

high-confidence CAD to train the LLM better with532

SFT. Additionally, as the parameter scale of the533

LLM increases, the performance of all methods im-534

proves significantly, further validating that larger535

models can generate higher-quality counterfactual536

data.537

5.7 HyperParameter Experiments538

We validate the impact of different hyperparame-539

ters λ within {0, 0.2, 0.4, 0.6, 0.8, 1} on prevent-540

ing over-emphasis on augmented data. When λ is541

equal to 0, the DICT degenerates to the basic model542

RoBERTa. As shown in Figure 5, when λ is rela-543

tively small (e.g., 0.2 or below), the model primar-544

ily focuses on original data, limiting the benefits545

of counterfactual data augmentation. Conversely,546

when λ is too high (e.g., 1.0), the model heav-547

ily emphasizes CAD, degrading the performance.548

Optimal results are observed within the range of549

λ ∈ [0.4, 0.6] for both DICT-7B and DICT-14B,550

where the balance between original and generated551

counterfactual data contributes to improving the552

performance.553

5.8 Case Study554

Figure 6 shows counterfual examples from SNLI-555

1. In Case 1, key tokens in premises like "earth556

globe" and "purple" significantly influence the rela-557

tionship with the hypothesis, namely the NLI label. 558

Our DICT can successfully extract these tokens as 559

causal terms for modifying to flip the NLI label. 560

This step ensures that the counterfactual generation 561

is grounded in the critical linguistic features. Thus, 562

the generated coungterfacts are of high quality. 563

6 Conclusion 564

In this paper, we address the challenges in LLM- 565

based counterfactual data augmentation by intro- 566

ducing the proposed DICT method, a dually self- 567

improved counterfactual data augmentation ap- 568

proach using LLM. Specifically, we first introduce 569

a lightweight and task-specific causal term iden- 570

tification strategy that leverages the attention dis- 571

tribution of the task model for self-improvement. 572

This approach effectively captures causal terms 573

by interpreting the attention scores, overcoming 574

the limitations of LLMs in accurately identifying 575

specific causal terms. Second, we propose a self- 576

improved counterfactual generator that modifies 577

the causal terms to flip the label based on DPO. By 578

constructing preference data pairs from the prelim- 579

inary generated counterfacts, we refine the LLM 580

with DPO, ensuring higher-quality counterfactual 581

generation. Our experimental results demonstrate 582

that DICT outperforms existing LLM-based coun- 583

terfactual data augmentation methods across vari- 584

ous NLI datasets, achieving superior performance 585

in terms of both accuracy and robustness. Addition- 586

ally, we observe that increasing the LLM’s parame- 587

ter scale further boosts the performance, highlight- 588

ing the scalability and effectiveness of our proposed 589

method. 590

Furthermore, our DICT can be directly applied 591

to various NLP tasks such as relation extraction, 592

which we will explore in future work. 593
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7 Limitation594

While DICT demonstrates strong performance, it595

is inherently dependent on the capabilities of the596

underlying large language models (LLMs). This de-597

pendence means that DICT’s effectiveness can vary598

across different LLM architectures and versions,599

highlighting the need for a strong LLM backbone600

to ensure reliable outcomes.601
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A Instruction780

A.1 Instruction for CAD Generation781

Taking the NLI task as the example, we design the782

following instruction for generating counterfacts:783

Given the conclusion, the statement, and what
you know about the world, fill in the [MASK]
to complete the statement so that the conclu-
sion is absolutely true based on the statement.
Do not repeat the original statement or the con-
clusion when completing the statement. Be
creative and specific, yet brief and concise.
Statement: A juggling street performer
[MASK]. Conclusion: A street performer
does acrobatic tricks for onlookers. [MASK]
should be:
is doing flips for people who are watching
Statement: A man jumps highly in front
[MASK]. Conclusion: A man dove into the
water. [MASK] should be:
of a large diving pool
Statement: Two children wearing helmets
[MASK]. Conclusion: The children are on
an exercise bike. [MASK] should be:
are pedaling as if they are riding a bicycle, but
without having to go anywhere.
Statement: A cashier at [MASK]. Conclu-
sion: A cashier is currently working. [MASK]
should be:

A.2 Instruction for GPT-4784

The detailed instruction for using GPT4 as an eval-785

uator is:786

Assuming you are a manual annotator, please
evaluate the following counterfactual data
based on the following criteria, each on a scale
from 1 to 5, where 5 is the best:
Fluency: How natural and grammatically cor-
rect is the generated text?
Realism: How plausible and contextually ap-
propriate is the counterfactual scenario?
Conciseness: How clear and succinct is the
text without unnecessary elaboration?
Provide an overall score (out of 5) based on
the combined evaluation of these aspects.

B Evaluation on Sentiment Analysis787

To further verify the generalizability, we apply our788

method DICT to the Sentiment Analysis task and789

evaluate the performance on the SST-2 dataset. The790

Data Split Size

Train 67,350
Dev 873
Test 1,821

Table 3: Statistics of Dataset SST-2 for Sentiment Anal-
ysis.

Method P R F1

RoBERTa-large 93.40 93.03 93.01
DISCO-14B 94.61 94.35 94.33
DICT-14B 95.88 95.88 95.88

Table 4: Performance comparison on Sentiment Analy-
sis.

Method Number of generated available
counterfactual examples

AutoCAD 9,218
DISCO-7B 12,201
LLMCF-7B 12,033
LLMCF-14B 14,208
DICT-7B 16,012
DICT-14B 16,403

Table 5: Statistics of Generated CAD on SNLI-1.

Run P R F1

1 65.17 65.21 64.89
2 65.28 65.16 64.92
3 64.84 64.88 64.85
Average 65.10 65.08 64.89

Table 6: Different Runs on SNLI-1.

details of SST-2 dataset are shown in Table 4. We 791

compare our method DICT with RoBERTa-large 792

(base model) and DISCO (the best baseline). The 793

compared results (shown in Table 5) prove the ef- 794

fectiveness of our DICT on other NLP tasks. Our 795

DICT can be generalized to various NLP tasks. 796

C Statistics of Generated CAD 797

Taking the SNLI-1 dataset as an example, we per- 798

form counterfactual augmentation on each of the 799

20,000 samples across all methods. Notably, due to 800

variations in the quality of counterfactual examples 801

generated by different methods, the flip rate differs 802

across them. As a result, the number of available 803
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counterfactual samples varies among the models.804

The details are provided in Table 5.805

D Results of Different Runs on SNLI-1806

We report the results of three runs of our DICT-14B807

on dataset SNLI-1 and show the mean results in808

Table 6. It shows that there is a slight fluctuation809

across different runs.810
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