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Abstract

We study Bayesian neural networks (BNNs) in the theoretical limits of infinitely1

increasing number of training examples, network width and input space dimen-2

sion. Our findings establish new bridges between kernel-theoretic approaches and3

techniques derived from statistical mechanics through the correspondence between4

Mercer’s eigenvalues and limiting spectral distributions of covariance matrices5

studied in random matrix theory. Our theoretical contributions first consist in6

novel integral formulas that accurately describe the predictors of BNNs in the7

asymptotic linear-width and sublinear-width regimes. Moreover, we extend the8

recently developed renormalisation theory of deep linear neural networks, enabling9

a rigorous explanation of the mounting empirical evidence that hints at the theory’s10

applicability to nonlinear BNNs with ReLU activations in the linear-width regime.11

From a practical standpoint, our results introduce a novel technique for estimating12

the predictor statistics of a trained BNN that is applicable to the sublinear-width13

regime where the predictions of the renormalisation theory are inaccurate.14

1 Introduction15

Bayesian Neural Networks (BNNs) are a variant of neural networks that incorporate Bayesian infer-16

ence techniques to mitigate overfitting, enable learning from small datasets, and capture uncertainty17

in predictions [Neal, 2012, Gal, 2016]. In a BNN, prior probability distributions are specified for18

weights and biases. During training, the posterior distribution, which represents the updated knowl-19

edge about the parameters after observing the data, is updated using Bayes’ rule. A trained BNN20

can be interpreted as an infinite ensemble of neural networks where each individual contribution21

in the ensemble is weighted by the posterior probability of its parameters given the training data.22

Although computing the posterior distribution is intractable and difficult to approximate, BNNs have23

gained significant traction with the development of effective estimation techniques [Gal, 2016, Blei24

et al., 2017].BNNs demonstrate generalisation performance on par with deep neural networks trained25

using gradient descent [Lee et al., 2020, Magris and Iosifidis, 2023]. BNNs also showcase improved26

sensitivity to out-of-distribution examples [Gal, 2016] and the ability to estimate uncertainty.27

In an effort to analyse the generalisation properties of BNNs, researchers study idealised views28

of fully-connected neural architectures defined by the input dimension, the layer widths, and the29

activation function. As the width approaches infinity in each layer (the NNGP limit), the functions30

generated by random weight selection converge in distribution to a Gaussian process (GP) [Rasmussen31

and Williams, 2006]. The covariance function of such GP, called the NNGP kernel, can be recursively32

defined by proceeding on a layer by layer basis [Lee et al., 2018b]. This perspective based on kernel33

and GP theory has led to the development of analytical formulas to estimate the generalisation error34

of related kernel and random features models [Canatar et al., 2021, Simon et al., 2023]. These35

formulas often rely on the spectral universality assumption (SUA), which simplifies the derivations36
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by approximating the eigenfunctions of the kernel with independent Gaussian entries [Karoui, 2010,37

Cheng and Singer, 2013, Fan and Montanari, 2015]. Extensive research is being devoted to study the38

accuracy of the SUA [Liu et al., 2021, Lu and Yau, 2023, Schröder et al., 2023].39

In addition to the NNGP limit, BNNs have also been studied under the linear-width limit (also40

referred to as thermodynamic limit or proportional limit) where the network’s width, the number of41

training examples and the dimension of the input space are taken simulataneously to infinity while42

keeping constant and bounded ratios between them [Engel et al., 2012]. By employing techniques43

from statistical mechanics, such as saddle point approximations [Seung and Sompolinsky, 1992], the44

replica method [Barbier et al., 2018, Canatar et al., 2021], and random matrix theory [Wigner, 1955,45

Livan et al., 2018], researchers have studied the mean and variance of the output generated by trained46

BNNs in this setting. One of the most prominent results in this area is the renormalisation theory [Li47

and Sompolinsky, 2021] of linear BNNs (i.e., those without non-linear activations), which establishes48

that the mean predictor and the predictor variance of the BNN coincide with that of Bayesian linear49

regression, but surprisingly the variance must be renormalised by a factor dependent on the training50

data and problem dimensions. Subsequent developments have provided more detailed analysis on51

the linear setting including non-asymptotic results [Hanin and Zlokapa, 2023], and comparison with52

deep random feature models [Zavatone-Veth et al., 2022]. It remains an open question, however,53

whether the insights from the renormalisation theory for linear BNNs can be extended to non-linear54

networks, as suggested by empirical evidence [Li and Sompolinsky, 2021, Ariosto et al., 2023]. A55

recent theoretical work [Cui et al., 2023] further substantiates these observations by deriving the56

predictor learned by non-linear BNNs in the case of Gaussian data.57

More recently, sublinear-width regimes, where the width is small compared to the number of data58

points [Maillard et al., 2024], and related scalings [van Meegen and Sompolinsky, 2024] have been59

studied, and the emergence of strong feature learning has been demonstrated in these scenarios.60

Our Contributions In this paper, we establish new connections between the kernel-theoretic61

perspective associated with the NNGP limit and the statistical mechanics viewpoint associated62

with the linear-width and sublinear-width limits, and contribute new insights to the generalisation63

properties of BNNs. First, we demonstrate that training a (non-linear) BNN in the linear-width and64

sublinear-width limits result in a predictor with identical mean and variance to that of GP regression65

with a modified NNGP kernel, and we observe that the Mercer spectrum [Mercer, 1909, Minh66

et al., 2006] of this kernel is known in the linear-width regime. Second, we prove necessary and67

sufficient conditions (on the data and the architecture) for the application of renormalisation theory to68

non-linear BNNs in the linear-width limit. These conditions also provide a criterion for determining69

the applicability of the spectral universality assumption (SUA) from kernel theory in the context of70

BNNs. Third, we present initial findings on a sublinear-width regime where the relevant quantities71

are simultaneously taken to infinity while the number of training examples remains proportional to72

the product of the network width and the dimension of the input space. In particular, we provide a73

novel mechanism for estimating the mean and variance of the predictions of non-linear BNNs in this74

setting, for which renormalisation theory is not applicable.75

2 Preliminaries76

We use standard notation for real-valued vectors v ∈ Rn, matrices A ∈ Rm×n, and their transposes77

vT and AT . We use ai to denote the vector in the i-th row of A. The Moore-Penrose pseudo-inverse78

of a matrix A is denoted as A† [Moore, 1920].79

Neural networks. A fully-connected neural (FCN) architecture with L layers is a tuple f =80

⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩. Each layer ℓ ∈ {1, ..., L} of width Nℓ is given by a weight81

matrix Wℓ ∈ RNℓ×Nℓ−1 , a bias bℓ ∈ RNℓ and an activation function σℓ : R 7→ R. On input82

x ∈ RN0 , network f sets x0 = x and then computes recursively on the depth the sequence of83

pre-activations hℓ and activations xℓ as follows, where the network’s output f(x) is given by xL:84

hℓ = Wℓ · xℓ−1 + bℓ xℓ = σℓ(hℓ) (1)

We assume that all but the last layer have the same width N . For the last layer, we assume width85

NL = 1 (ensuring a real-valued output), bL = 0 and σL = IdR (ensuring linearity). In this setting,86

the weights WL are referred to as the readout weights [Li and Sompolinsky, 2021].87
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Kernels. A kernel on RN0 is a positive semi-definite symmetric function K : RN0 ×RN0 7→ R. By88

Mercer’s theorem [Minh et al., 2006], given a distribution x ∼ p(x) with compact support on RN0 ,89

there exist unique countable collections of Mercer’s eigenvalues (λi)i∈N and eigenfunctions (φi)i∈N90

such that K(x,x′) =
∑∞

i λiφi(x)φi(x
′) and (φi) are orthonormal w.r.t. the data distribution:91

Ex∼p(x) (φi(x)φj(x)) = δi,j for all i, j. By Riesz’s theorem, there exists a Hilbert space H and a92

feature map ϕ : RN0 7→ H such that K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H. Kernel regression amounts to linear93

regression in the corresponding Hilbert space: when trained on data X,y, the prediction on a new94

point x∗ is given by kT
x∗,XK−1

X,Xy where the vector kx∗,X is given by (kx∗,X)i = K(x∗,xi) and95

the kernel matrix KX,X is given by (KX,X)i,j = K(xi,xj). Although the kernel’s eigenfunctions96

exhibit the described structure, the spectral universality assumption (SUA) is commonly adopted. The97

SUA posits that, as P increases, the eigenfunctions can be approximated by independent Gaussian98

entries: φi(xj) ∼ N (µK , σ2
K), where µK and σ2

K depend on the kernel K and the data distribution99

p(x), but not on specific instances i and j. The SUA works well in practice [Karoui, 2010, Cheng100

and Singer, 2013, Fan and Montanari, 2015, Liu et al., 2021, Simon et al., 2023, Lu and Yau, 2023,101

Schröder et al., 2023], and research focuses on identifying conditions under which it holds.102

Random feature maps. Let Θ represent all parameters of f up to layer L − 1. The random103

feature map ϕ(Θ, ·) : RN0 7→ RN is a nonlinear transformation (random in Θ) mapping the input104

and the activation xL−1. By definition, f(x) = (WL)Tϕ(Θ,x), and to highlight the parameter105

dependency we denote it as fΘ,WL . The random feature map is associated to a random kernel106

KN,N0

Θ : (x,x′) 7→ 1
N ⟨ϕ(Θ,x), ϕ(Θ,x′)⟩ expressed as the inner product between the corresponding107

random feature map evaluations. For this kernel, the Hilbert space H = RN is thus known.108

Training set. The training set (X,y) consists of P examples sampled i.i.d. from an unknown109

distribution PN0
with compact support on RN0 × R. We assume that in the limit N0 → ∞, PN0

110

converges to a well-defined distribution over RN noted limN0→∞ PN0 . We denote each example111

by (xi, yi), so that X = (x1, ...,xP )
T ∈ RP×N0 and y = (y1, ..., yP )

T ∈ RP . We denote the112

evaluation of the random feature map on the training set by ϕ(Θ,X) = (ϕ(Θ,x1), ..., ϕ(Θ,xP ))
T ∈113

RN×P ; this induces an empirical kernel matrix KP,N,N0

Θ (X,X) given by 1
N [ϕ(X,Θ)]Tϕ(X,Θ) ∈114

RP×P . The training data X also induces an empirical distribution pX(x) = 1
P

(∑P
i=1 δxi

(x)
)

with115

δxi
the Dirac measure.116

BNNs. We assume a prior distribution over parameters (Θ,WL) with weights sampled i.i.d. from117

N (0, 1
N ) and biases sampled i.i.d. from N (0, 1); this yields a density p(Θ,WL) that is a product of118

Gaussian densities. The posterior distribution given the training data is given by Bayes’ rule:119

p(Θ,WL|X,y) = p(Θ,WL)
p(y|X,Θ,WL)

p(y|X)

where p(y|X,Θ,WL) is the likelihood of the data given a set of parameters, and p(y|X) =120 ∫
p(y|X,Θ,WL)p(Θ,WL)dΘdWL. is the marginal likelihood (or evidence). We assume Gaussian121

likelihoods, i.e. p(y|X,Θ,WL) ∼ N (y, ϕ(Θ,X)
T
WLWLT

ϕ(Θ,X)). Calculating the posterior122

distribution, which is the essence of BNN training, is analytically intractable and remains a core123

challenge [Gal, 2016]. In practice, the posterior distribution is estimated via variational inference124

[Blei et al., 2017] or Monte-Carlo simulation methods [Rasmussen, 1995].125

Given the posterior distribution, the predictor defines a distribution over functions fΘ,WL with126

(Θ,WL) ∼ p(Θ,WL|X,y). The mean-squared generalisation error is defined for any new point127

(x∗, y∗) as the expectation over the predictor error: E(Θ,WL)∼p(Θ,WL|X,y)

(
(y∗ − fΘ,WL(x∗))

2
)

.128

Only the mean and variance of the predictor are needed to calculate it.129

Gaussian processes and NNGPs. A GP g over a space RN0 is a random scalar field such that its130

evaluation at any collection of finitely many points (g(x1), ..., g(xP )) follows a multivariate Gaussian131

distribution. A GP is determined by a mean function µ : RN0 7→ R, and a covariance function132

K : RN0 × RN0 7→ R, which describe respectively the mean of the Gaussian distribution at each133

point and the covariance between the Gaussians at any two points. The covariance function of a GP134
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is a kernel [Rasmussen and Williams, 2006]. We note g ∼ GP(µ,K). Gaussian process regression135

consists in performing Bayesian inference using a Gaussian process as the prior distribution over136

functions. The prediction distribution of GP regression with prior GP(0,K) trained on the data137

X,y is given, on a new point x∗, by N (kT
x∗,XK−1

X,Xy,K(x∗,x∗)− kT
x∗,XK−1

X,Xkx∗,X). The mean138

prediction of GP regression coincides with the prediction of kernel regression with the same kernel.139

Applying successively the central limit theorem to each layer, the infinite-width limit of (1) yields140

a GP, called the Neural Network Gaussian Process (NNGP). If we let the width N → ∞, the141

hL
i ∼ GP(µL,KL) are independent and defined inductively by layers as follows for all x,x′ ∈ RN0142

and each ℓ ∈ 1, ..., L. First, µℓ(x) = 0 and K0(x,x′) = xTx′. Then, hℓ−1
i ∼ GP(µℓ−1,Kℓ−1) and143

the covariance functions Kℓ(x,x′) are given by Ehℓ−1
i ∼GP(µℓ−1,Kℓ−1)

(
σℓ(hℓ−1

i (x))σℓ(hℓ−1
i (x′))

)
.144

The covariance function KL is the NNGP kernel [Daniely et al., 2016], denoted as KL = KNNGP.145

Infinite-width limits involve various subtleties [Matthews et al., 2018], and we follow the approach in146

Lee et al. [2018a] where infinite limits are taken sequentially. In this limit, the number of examples147

P and the input dimension N0 remain fixed. Furthermore, we will investigate more comprehensive148

limits where P , N , and N0 all tend to infinity simultaneously, first while maintaining constant and149

bounded ratios α = P
N and α0 = P

N0
(linear-width regime), then while P ∝ N ·N0, thus α → ∞150

and α0 → ∞ (sublinear-width regime).151

Random matrix theory. Random matrix theory [Wigner, 1955, Livan et al., 2018] is the study152

of the spectral distributions of large matrices of random variables. The spectral measure FP for153

a given matrix, with eigenvalues λi, is given, for x ∈ R, by FP (x) := 1
P

∑P
i=1 δλi

(x), where154

δλi
(x) represents the Dirac measure centered at the eigenvalue λi. When the matrix is random, the155

spectral measure becomes a random measure, called the empirical spectral distribution. Our focus156

lies in studying weak convergences (convergences in distribution) of the spectral measures towards157

nonrandom measures [Geronimo and Hill, 2002]. A sufficient condition for weak convergence of158

measures is to have pointwise convergence in their Stieltjes transforms [Geronimo and Hill, 2002].159

We rely on a famous result in random matrix theory. Consider W ∈ RN×P , a random matrix with160

i.i.d. entries drawn from N (0, 1
N ) and Ψ a nonrandom positive semi-definite matrix. Suppose that Ψ161

has a limiting spectral measure ρ, and let P,N → ∞ with fixed ratio α := P
N , then the random matrix162

Ψ1/2WTWΨ1/2 has a limiting nonrandom spectral measure ραMP ⊠ ρ. The Marchenko-Pastur163

map of ρ, denoted ρMP
α ⊠ ρ, is defined by the Stieltjes transform solving the Marchenko-Pastur164

equation [Marchenko and Pastur, 1967]. It also appears in the free probability literature as the free165

multiplicative convolution between the probability measures ραMP and ρ [Mingo and Speicher, 2017].166

When considering the specific case where Ψ = IP (identity matrix of size P ), then ρ represents the167

Dirac measure at 1 and we recover the well-known Marchenko-Pastur distribution, denoted as ραMP .168

Furthermore, we denote as ρMP ⊠ℓ ρ := ρMP ⊠ (...(ρMP ⊠ ρ)) the composition of ℓ successive169

Marchenko-Pastur maps.170

3 BNNs as Modified GP Regression171

First we state our definitions of linear-width and sublinear-width regimes.172

Assumption 3.1 (Linear-width regime). Assume that P
N → α and P

N0
→ α0 as P,N,N0 → ∞ with173

the ratios α, α0 ∈ (0,+∞).174

Assumption 3.2 (Sublinear-width regime). Assume that P
N ·N0

→ γ as P,N,N0 → ∞ with the ratio175

γ ∈ (0,+∞).176

Our first aim in this section is to showcase the emergence of a modified NNGP kernel during the177

training of BNNs in the linear-width and sublinear-width limits. We then study the Mercer’s spectrum178

of the modified NNGP kernel and exploit it to extend the renormalisation theory to encompass179

nonlinear networks in the linear-width regime. Finally, we outline the fundamental arguments180

supporting the expansion of this theory to the sublinear-width regime.181
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3.1 The Modified NNGP Kernel182

Mercer’s theorem applied to the random kernel KN,N0

Θ and the data distribution pX decom-183

poses the kernel into terms of eigenvalues and eigenfunctions as follows: KN,N0

Θ (x,x′) =184 ∑
k λ

P,N,N0

k φP,N,N0

k (x)φP,N,N0

k (x′). This defines a random spectral measure ρP,N,N0

Θ with spec-185

trum given by the eigenvalues and random eigenfunctions φP,N,N0

k (·) Here, the dependency in P186

stems from the empirical training data distribution. We use the correspondence between Mercer’s187

eigenvalues and the limiting spectral measure of the corresponding empirical kernel matrix to show188

that, to estimate the infinite random matrix KP,N,N0

Θ (X,X), there is no need to examine the joint189

distribution of its eigenvalues, as Mercer’s eigenvalues can be sampled independently. This is a crucial190

observation because the correlations between kernel matrix eigenvalues in the classical decomposition191

is a notorious obstacle in the computation of the posterior distributions.192

Theorem 3.3. Assume that Assumption 3.1 (respectively, Assumption 3.2) holds. Assume that for193

each k ∈ N there is a random function φα,α0

k : RN 7→ R (respectively, φγ
k) such that φP,N,N0

k (xi)194

converges in distribution to φα,α0

k (x) (respectively, φγ
k(x)), where x ∼ limN0→∞ PN0 . Assume that195

the spectrum of KP,N,N0

Θ (X,X) (respectively, the strictly positive support of the spectrum) admits196

a limiting nonrandom measure ρα,α0 (respectively, ργ). Consider the random matrix ΦΛΦT , with197

Φ ∈ RP×M , Φi,k := φα,α0

k (x̃i) (respectively, φγ
k) and Λ ∈ RM×M , Λk,l := δk,lλk with each λk198

follows independently ρα,α0 (respectively, ργ) and each x̃i follows independently limN0→∞ PN0
1.199

Then, the random matrices KP,N,N0

Θ (X,X) and ΦΛΦT converge (in distribution) to the same200

distribution over RN×N in the limit M
P → ∞.201

This result is non-trivial and only holds if the spectrum admits a nonrandom limit: this is the key202

argument that allows us to disregard, in the limit, the correlations between eigenvalues when using203

the Mercer decomposition. Note that the distribution of eigenfunctions φα,α0

k and φγ
k are not known204

in general. We will justify in the next section the SUA as a means for alleviating this limitation.205

Similarly, we will denote with Φ∗ evaluations of the eigenfunctions on an unseen data point x∗.206

The modified NNGP kernel is the random kernel Kα,α0

Θ (respectively, Kγ
Θ) defined over RN in the207

linear-width regime (respectively, the sublinear-width regime). In the limit, the feature map is not208

known explicitly, but it must exist by Riesz’s representation theorem.209

The nonrandom spectral measure is known in the linear-width regime. Observe that, in the210

linear-width regime, for many cases of interest (including ReLU activations), ρα,α0

Θ indeed no longer211

depends on Θ and hence becomes a nonrandom measure. To this end, let us first consider the212

kernel random matrix KNNGP(X,X) associated with the NNGP kernel KNNGP. El Harzli et al.213

[2024] have shown that, under mild assumptions on the activation functions σℓ (namely measurability214

and Lipschitz continuity), KNNGP(X,X) admits a limiting nonrandom spectral measure ρα0

NNGP215

as P,N0 → ∞ with constant ratio α0; and furthermore, in the linear-width limit, the limiting216

spectral distribution of the same random matrix as KP,N,N0

Θ (X,X) but where the interior widths217

have already been taken to infinity (i.e. when the linear-width limit only pertains to the last-layer218

width) is ραMP ⊠ ρα0

NNGP. By immediate induction, successively applying the linear-width limit to219

the hidden-layer widths and keeping the remaining interior widths infinite until reaching the input220

layer, it follows as a direct corollary of Theorem 2 in El Harzli et al. [2024] that, in the linear-width221

limit, KP,N,N0

Θ (X,X) also admits a limiting nonrandom spectral measure given by the composed222

Marchenko-Pastur maps ραMP ⊠L ρα0

NNGP.2223

3.2 Training BNNs with the Modified NNGP Kernel224

We can now study the predictor statistics of trained BNNs in the linear-width limit and the sublinear-225

width limit. In particular, the following theorem provides integral formulae to estimate, under the226

SUA, the first and second moments of the trained BNN using only the limiting spectral measure.227

1Expression ΦΛΦT is not the usual eigendecomposition of a square matrix: the evaluations of eigenfunctions
yield rectangular (infinite) matrices. This decomposition is enabled by Mercer’s theorem and applies to kernels.

2This result first appeared in the context of neural networks in Fan and Wang [2020]. The result by El Harzli
et al. [2024] extends it to a more general setting.
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In this section, the results hold indistinctively of the linear-width or the sublinear-width limit, so to228

simplify notations, we will note ρ for both ρα,α0 and ργ and K for both Kα,α0

Θ and Kγ
Θ.229

Theorem 3.4. Assume that Assumption 3.1 or Assumption 3.2 holds. Let ρ be the nonrandom spectral230

measure characterising the modified NNGP kernel K, and assume that the SUA holds.231

The mean ⟨f⟩(x∗,X,y) and variance ⟨δf⟩(x∗,X,y) of the predictor associated to a BNN with232

training data (X, y) is given by expressions (2) and (3) respectively:3233

⟨f⟩ =
∫ (

Φ∗TΛΦTΦT †
Λ−1Φ†y

)
· p(y,Φ|Λ,X)

p(y|X)
d (ρ) (Λ)DΦDΦ∗ (2)

234

⟨δf⟩ =
∫
(Φ∗TΛΦ∗ −Φ∗TΛΦTΦT †

Λ−1Φ†ΦΛΦ∗) · p(y,Φ|Λ,X)

p(y|X)
d (ρ) (Λ)DΦDΦ∗ (3)

where DΦ is a standard Gaussian matrix measure, Φi,j ∼iid N (µK , σ2
K) obtained from the SUA; the235

likelihood is given by p(y,Φ|Λ,X) ∼ N (ΦTy,Λ); the marginal likelihood is given by p(y|X) =236 ∫
p(y,Φ|Λ,X)d (ρ) (Λ)DΦ.237

The integral forms (2) and (3) provide a new estimation of the predictor statistics of a trained BNN.238

While these expressions are exact only in the limit, we will present empirical evidence suggesting that239

they constitute a reasonable approximation. A practical challenge arises from the need to estimate the240

spectral distribution p(Λ|X,x∗) = (ρ) (Λ), which often involves diagonalising a kernel matrix. This241

process can be computationally intensive, especially for large training datasets; however, it is worth242

mentioning that in many applications of BNNs, where the training datasets are relatively small, this243

computational difficulty becomes less significant.244

Theorem 3.4 and its proof also offer valuable new perspectives on the applicability of the SUA. In245

particular, in the last steps of the proof, the probability density of Φ,Φ∗ no longer appears directly246

in the integral. For given Λ,X,x∗, if each orthogonal matrix Φ,Φ∗ has a non-zero probability of247

occurring, the integral spans uniformly over the entire space of orthogonal matrices of size P ×M .248

This is useful because in the limit of infinite dimensions, this space coincides with that of Gaussian249

matrices with independent entries [Haar, 1933]. Remarkably, this property precisely corresponds250

to the SUA in kernel theory [Karoui, 2010, Jacot et al., 2020, Simon et al., 2023], which posits251

that, in terms of the generalisation error statistics in kernel regression, the eigenfunctions can be252

approximated by Gaussian matrices with independent entries, denoted Φi,k ∼ N (µK , σ2
K). This is253

reminiscing of the Gaussian equivalence assumption [Schröder et al., 2023, Cui et al., 2023]; however,254

to the best of our knowledge, this marks a first connection between BNNs and the SUA from kernel255

theory (i.e. applied to Mercer’s eigenfunctions).256

We can now reframe the question concerning the correctness of the SUA approximation as follows:257

given Λ and X, is it the case that all orthogonal matrices Φ have non-zero probabilities (according258

to Θ) to satisfy K(X,X) = ΦΛΦT ? If this condition holds, the SUA is applicable and Gaussian259

eigenfunctions can be used for estimating (2) and (3). Since the prior is a Gaussian matrix, any matrix260

has a non-zero probability of occurrence, thus it suffices to show that for any orthogonal Φ, there261

exists a Θ such that K(X,X) = ΦΛΦT . In particular, it is easy to show that the SUA always holds262

in the linear case: for any orthogonal Φ, there exists Θ such that XTΘTΘX = ΦΛΦT . With a263

non-linearity, the problem is less obvious: is there a Θ such that ϕ(Θ,X)
T
ϕ(Θ,X) = ΦΛΦT for264

any orthogonal Φ ? In the next section, we show that, in the linear-width limit, this criterion about265

ϕ(Θ, .) and X is a necessary and sufficient assumption for the renormalisation theory to hold.266

3.3 An Extended Renormalisation Theory267

This section only concerns the linear-width regime. In this limit, we can explicitly study the results268

on our integral estimators because the corresponding limiting nonrandom spectral measure is known269

El Harzli et al. [2024] (see Paragraph 3.1).270

The renormalisation theory for linear BNNs establishes that, in the linear-width limit, the marginal271

likelihood p(y|X) follows a multivariate Gaussian with mean vector y and covariance matrix272

3Here, X is the infinite matrix representing the linear-width limit of the training data. To be completely
rigorous, we should write f(x∗,X,y) = limP,N,N0→∞ fP,N,N0(x

∗
N0 ,XP,N0 ,yP ), but by slight abuse of

notation the same notation is used for both. In practice, one would use finite (but large) objects in calculations.
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uL
0K0, with K0 = 1

N0
XXT and u0 the renormalisation factor fulfilling the fixed-point equation273

1−u0 = α(1− r0
uL
0
) with r0 = 1

P yTK0
−1y. This result was obtained in Li and Sompolinsky [2021]274

by successively applying the saddle point method when integrating out the weights Θ,WL.275

The following theorem shows that this result generalises to BNNs with nonlinear activations if and276

only if the SUA is correct (i.e., it gives the correct estimate for the marginal likelihood). Here, we277

exploit the characterisation of the correctness of the SUA developed as a corollary of Theorem 3.4.278

Theorem 3.5. Assume that Assumption 3.1 holds. Let uNNGP fulfil the fixed-point equation 1 −279

uNNGP = α(1− rNNGP

uL
NNGP

) with rNNGP = 1
P yTKNNGP

−1y. The marginal likelihood for a nonlinear280

BNN verifies p(y|X) ∼ N (y, uL
NNGPKNNGP) if and only if, for given Λ,X and orthogonal Φ, there281

exists Θ such that ϕ(Θ,X)
T
ϕ(Θ,X) = ΦΛΦT .282

This result characterises the renormalisation theory in the nonlinear case and describes a continuous283

transition between an accurate and a poor approximation. Specifically, if the SUA significantly284

deviates (the feature map spans a small fraction of the space of orthogonal matrices) then the285

equivalence (7) also deviates substantially from the correct value. Conversely, if the SUA is nearly286

accurate (meaning that the feature map encompasses a large portion of the space of orthogonal287

matrices) then (7) closely approximates the true marginal likelihood. Thanks to these insights, future288

research on BNNs can benefit from research advances on the accuracy of the SUA [Liu et al., 2021].289

3.4 Applications to the Sublinear-Width Regime290

In this section, we consider the application of our integral estimators to the sublinear-width regime.291

In this regime, the ratios α and α0 from the linear-width regime tend to infinity and hence are292

no longer bounded. Here, the renormalisation theory breaks even in the linear case, because the293

random matrix KP,N,N0

Θ (X,X) becomes degenerate and its limiting spectral distribution is the Dirac294

distribution at 0 and (6) no longer holds. A mismatch with the predictions of the renormalisation295

theory has indeed been observed empirically for high values of α and α0 [Li and Sompolinsky, 2021],296

hence the need for a new theory.297

Remarkably, our kernel-theoretic description of BNNs (Theorem 3.4) still holds as its validity relies298

only on the dot product of random feature maps ϕ(Θ, ·) defining a random kernel. This remains true299

for the sublinear-width regime (as well as for other regimes of interest). Additionally, zero eigenvalues300

in Mercer’s decomposition can be disregarded since they do not contribute to the kernel evaluation.301

An alternative perspective is that, when calculating the first two moments, one takes into account the302

Moore-Penrose pseudo-inverse KP,N,N0

Θ (X,X)
†

of the kernel random matrix. Consequently, only303

the contributions from the strictly positive support of the limiting spectral distribution are considered304

(see Theorem 3.3). As a result, our integral estimators for the mean and variance of the predictor305

remain applicable under the SUA. The only missing element in the argument is whether p(Λ|X,x∗),306

which is now the strictly positive support of the limiting spectral distribution of KP,N,N0

Θ (X,X)307

(rescaled to integrate to 1), also converges to a nonrandom spectral measure (in order to apply308

Theorem 3.3). Although further work is needed to precisely characterise the behavior of this Mercer’s309

random spectral measure, it is still possible to numerically compute the strictly positive support of310

the random matrix KP,N,N0

Θ (X,X) and use our integral forms (4) and (5) to estimate the predictor311

of a trained BNNs in this new regime. Note however that our approach only concerns the predictor312

statistics and is not derived in weight space, thus one limitation of our approach that we anticipate is313

that it might be difficult to characterize (strong) feature learning from this standpoint.314

4 Experiments315

We consider a synthetic dataset generated by a multivariate Gaussian x ∼ N (0, 1
N0

IN0
) to which316

we apply a linear teacher and noise y = βTx+ ϵ with ϵ ∼ N (0, σ2
ϵ ). We also consider a subset of317

MNIST restricted to classes "0" and "1" of size P = 105 and with N0 = 784 pixels per image.318

Our first experiment verifies that our estimators coincide with the predictions of the renormalisation319

theory in the linear-width limit both for a single hidden-layer network with ReLU activations and a320

linear network with a hidden layer. We computed the renormalisation factors using the fixed-point321

7



Figure 1: Comparison with Li and Sompolinsky [2021]. X-axis are indexed by the width and Y-axis
by the renormalisation factor, which is computed in the linear setting on our synthetic dataset with
N0 = 500 and P = 200 (respectively, in the nonlinear setting on the subset of MNIST) on the left
(respectively, on the right). The blue line is computed using the fixed-point equation, and the orange
dots are the ratio between the result of our integral estimator (3) and the variance of Bayesian linear
regression (respectively, NNGP regression) on the left (respectively, on the right). In the nonlinear
case, we use a large width N̂ = 10000 to estimate the NNGP kernel matrix for ReLU.

Figure 2: Mean and variance of the predictor against the width N of the single ReLU hidden-layer
on our synthetic dataset with P = 200 and N0 = 40. X-axis are indexed by the width and Y-axis are
indexed respectively by the mean of the predictor (on the left) and by the variance of the predictor (on
the right). In both cases, the blue line is computed using the probabilistic predictions of a BNN trained
with variational inference on the synthetic data, and the orange dots correspond to our estimates.

equation and used (2) and (3) to estimate the mean and the variance of the predictor in our approach.322

To compute (2) and (3) we first computed the Marchenko-Pastur maps of the empirical spectral323

distributions (of the NNGP kernel) by solving numerically the Marchenko-Pastur fixed-point equation324

in the Stieltjes transform space; then, we relied on the SUA to estimate the integral forms. In a second325

experiment, we simulated the regime P ∝ N ·N0 (for which the renormalisation theory breaks) using326

a small value of N0 (thus making α0 high). We compared our estimators for the regime as described327

in the previous section with the predictions of BNNs trained with variational inference using the328

library Pyro [Bingham et al., 2019]. For the spectral distribution, we computed the strictly positive329

support of the empirical spectral distributions by sampling and diagonalising the empirical kernel330

matrices several times and shuffling the eigenvalues; we continued to use the SUA for eigenfunctions.331

As shown in Figure 1, our estimates align with the renormalisation theory in the thermodynamic limit.332

As shown in Figure 2, for a regime where the renormalisation theory is inaccurate, our estimators333

provide reasonable matches to the actual predictions. These results suggest that our estimates are334

better suited to regimes where key assumptions of the renormalisation theory do not hold.335
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5 Conclusion336

In this paper, we have explored bridges between BNNs trained under interesting idealised limits and337

kernel theory, which enable an extension of the renormalisation theory to non-linear networks. From338

a practical standpoint, our theory offers a new way to estimate the prediction of BNNs with better339

accuracy in the sublinear-width regime. Finally, we hope that the theory developed here will motivate340

further research on the application of existing kernel-theoretic results in the context of BNNs.341
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A Proof of Theorem 3.3466

In the linear-width (respectively, the sub-linear width limit), the positive semi-definiteness of any467

matrix extracted from KN,N0

Θ and pX is maintained (the limit of a positive sequence remains positive),468

and this suffices to characterise the kernel property over a compact subset of an infinite-dimensional469

space [Saitoh and Sawano, 2016]. Thus, there is a random kernel Kα,α0

Θ (respectively, Kγ
Θ)defined470

over RN which characterises the convergence in distribution of KP,N,N0

Θ (X,X). As per Mercer’s471

theorem, Kα,α0

Θ (respectively, Kγ
Θ) also defines a random spectral measure ρα,α0

Θ (respectively, ργΘ)472

associated with its Mercer’s eigenvalues. By Baker’s result [Baker, 1977] stating the convergence of473

eigenvalues in a kernel matrix to the Mercer eigenvalues of the respective kernel, it follows that ρα,α0

Θ474

(respectively, ργΘ) is the limiting spectral distribution of the random matrices KP,N,N0

Θ (X,X) in the475

linear-width limit (respectively, the sublinear-width regime). By assumption, this spectral measure476

(respectively, the strictly positive support of this spectral measure) is nonrandom ρα,α0

Θ = ρα,α0477

(respectively, ργΘ = ργ). Thus, we can reformulate the empirical kernel matrix corresponding to the478

random kernel Kα,α0

Θ (respectively, Kγ
Θ) as ΦΛΦT , where λk are drawn independently according479

to ρα,α0 (respectively, ργ). Since the spectral measure no longer depends on Θ, the eigenvalues480

can be sampled independently from the eigenfunctions. It follows that KP,N,N0

Θ (X,X) and ΦΛΦT481

converge to the same distribution over RN×N.482

B Proof of Theorem 3.4483

We calculate the conditional expectation ⟨f⟩(x∗,X,y,Θ) and variance ⟨δf⟩(x∗,X,y,Θ) of the484

predictor by marginalising over the readout weights WL:485

⟨f⟩(x∗,X,y,Θ) =

∫
WLT

ϕ(Θ,X)p(WL|X,y,Θ)dWL

486

⟨δf⟩(x∗,X,y,Θ) =

∫ [
WLT

ϕ(Θ,X)
]2

p(WL|X,y,Θ)dWL − [f(x∗,X,y,Θ)]2

where p(WL|X,y,Θ) can be expressed by Bayes rule using Gaussian likelihoods. The result can be487

expressed analytically and yields the same prediction as GP regression with prior GP(0,KN,N0

Θ ):488

⟨f⟩(x∗,X,y,Θ) = [kP,N,N0

Θ (x∗,X)]
T
[KP,N,N0

Θ (X,X)]
−1

y
489

⟨δf⟩(x∗,X,y,Θ) = KP,N,N0

Θ (x∗,x∗)− [kP,N,N0

Θ (x∗,X)]
T
[KP,N,N0

Θ (X,X)]
−1

kP,N,N0

Θ (x∗,X).

To marginalise over Θ ∼ p(Θ|X,y), we perform the change of variables Θ 7→ (Φ∗,Φ,Λ), relying on490

the fact that all quantities of interest involving Θ can be expressed in the limit solely using eigenvalues491

and eigenfunctions, namely K(X,X) = ΦΛΦT , k(x∗,X) = ΦΛΦ∗, and K(x∗,x∗) = Φ∗TΛΦ∗.492

Since Φ ∈ RP×M has orthogonal rows, Φ† = ΦT
(
ΦΦT

)−1
, and ΦT †

=
(
ΦΦT

)−1
Φ. This493

allows us to express the mean and variance of the predictor as follows:494

⟨f⟩ =
∫ (

Φ∗TΛΦTΦT †
Λ−1Φ†y

)
· p(Λ,Φ,Φ∗|X,x∗) · p(y|Λ,Φ,Φ∗,X,x∗)

p(y|X)
dΛdΦdΦ∗

(4)
495

⟨δf⟩ =
∫ (

Φ∗TΛΦ∗ −Φ∗TΛΦTΦT †
Λ−1Φ†ΦΛΦ∗

)
·

p(Λ,Φ,Φ∗|X,x∗)
p(y|Λ,Φ,Φ∗,X,x∗)

p(y|X)
dΛdΦdΦ∗ (5)
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Furthermore, it holds that p(Λ,Φ,Φ∗|X,x∗) = p(Λ|X,x∗)p(Φ,Φ∗|Λ,X,x∗) if p(Λ|X,x∗) ̸= 0496

and also p(y|Λ,Φ,Φ∗,X,x∗) = p(y,Φ,Φ∗|Λ,X,x∗)
p(Φ,Φ∗|Λ,X,x∗) if p(Φ,Φ∗|Λ,X,x∗) ̸= 0, which yields:497

⟨f⟩ =
∫ (

Φ∗TΛΦTΦT †
Λ−1Φ†y

)
· p(Λ|X,x∗)

p(y,Φ,Φ∗|Λ,X,x∗)

p(y|X)
dΛdΦdΦ∗

498

⟨δf⟩ =
∫ (

Φ∗TΛΦ∗ −Φ∗TΛΦTΦT †
Λ−1Φ†ΦΛΦ∗

)
·

p(Λ|X,x∗)
p(y,Φ,Φ∗|Λ,X,x∗)

p(y|X)
dΛdΦdΦ∗

where the integral over Λ is restricted to segments where p(Λ|X,x∗) ̸= 0 and the integrals over Φ499

and Φ∗ are restricted to where p(Φ,Φ∗|Λ, X, x∗) ̸= 0. We obtain equations (2) and (3) by replacing500

dΦ and dΦ∗ by standard Gaussian matrix measures and the density of Λ by the spectral measure.501

C Proof of Theorem 3.5502

In the linear case, the true NNGP kernel is simply KNNGP(x,x
′) = 1

N0
xTx′; hence, ρα0

NNGP503

is the limiting spectral distribution of the kernel random matrix K0, which we denote ρ0. The504

renormalisation theory of linear networks thus implies that:505 ∫
p(y,Φ|Λ,X)d

(
ραMP ⊠L ρ0

)
(Λ)DΦ ∼ N (y, uL

0K0) (6)

This identity is exact in the linear-width limit and holds in general without assumption on X,y, as506

long as the integral DΦ is uniform on the space of orthogonal matrices.507

Assume the SUA holds in the nonlinear case. Thus, we can express the marginal likelihood as508

p(y|X) =
∫
p(y,Φ|Λ,X)d

(
ραMP ⊠L ρα0

NNGP

)
(Λ)DΦ. Furthermore, we can freely interchange509

the role of K0 and KNNGP(X,X) in (6). Indeed, it suffices to consider the linear case and a new510

training dataset X̃ which exhibits the same covariance structure 1
N0

X̃X̃T as that of KNNGP(X,X).511

As a result, a similar equation to (6) applies to nonlinear networks by replacing the linear kernel512

(x,x′) 7→ 1
N0

xTx′ with the true NNGP kernel in the equations, provided that the SUA holds:513 ∫
p(y,Φ|Λ,X)d

(
ραMP ⊠L ρα0

NNGP

)
(Λ)DΦ ∼ N (y, uL

NNGPKNNGP) (7)

Conversely, if the SUA does not hold, the integral with respect to Φ does not span the space of514

orthogonal matrices, the identity (7) is no longer exact (all integrands are stricly positive), nor is the515

renormalisation. Thus, the SUA is necessary and sufficient for the renormalisation to hold.516
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