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Abstract

Traditional multi-armed bandit (MAB) frameworks, predominantly examined under
stochastic or adversarial settings, often overlook the temporal dynamics inherent in
many real-world applications such as recommendation systems and online advertis-
ing. This paper introduces a novel non-stationary MAB framework that captures
the temporal structure of these real-world dynamics through an auto-regressive
(AR) reward structure. We propose an algorithm that integrates two key mecha-
nisms: (i) an alternation mechanism adept at leveraging temporal dependencies to
dynamically balance exploration and exploitation, and (ii) a restarting mechanism
designed to discard out-of-date information. Our algorithm achieves a regret upper
bound that nearly matches the lower bound, with regret measured against a robust
dynamic benchmark. Finally, via a real-world case study on tourism demand
prediction, we demonstrate both the efficacy of our algorithm and the broader
applicability of our techniques to more complex, rapidly evolving time series.

1 Introduction

The multi-armed bandit (MAB) framework [51, 46] is commonly used to study online decision-
making under uncertainty. It is primarily examined under either the stochastic setting [51, 6], where
arms have fixed unknown reward distributions, or the adversarial setting [7, 5, 31, 16], where an
adversary determines the reward distributions that can change arbitrarily over time. However, neither
setting accurately represents real-world decision-making problems (see examples in dynamic pricing
[30], online advertising [42], and online auctions [33]), where reward distributions change over
time following intrinsic temporal structures. These structures often exhibit frequent variations and
temporal dependencies, making them challenging to approximate using stationary distributions.

This motivates us to consider a non-stationary bandits setting involving certain temporal structure,
which captures the real-world characteristics. Specifically, we are interested in temporal structures
with linear amount of changes, which are distinct from the infrequent, limited changes typically
handled by change-point detection [25] or seasonality analysis [15]. Such frequent changes are
commonly observed in applications such as financial data [14] and click-through rates in online
advertising [2], where the data experience lots of volatility within a short time. Traditional bandits
algorithms, such as Thompson sampling or UCB, may explore too aggressively in response to these
drastic changes, leading to suboptimal performance [39]. That being said, the observed time series in
these scenarios typically exhibit certain temporal dependencies between past and present, which can
be leveraged to improve decision-making.

To encapsulate the main characteristics of real-world time series, we relax the previously restrictive
assumptions on the reward distributions and study a non-stationary MAB problem, where the reward
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of each arm evolves over time following an auto-regressive (AR) temporal structure. The AR model is
a popular time series model for predicting outcomes in applications such as sales [47], advertising [1]
and marketing [18]. It simultaneously captures frequent changes (i.e., linear amount of changes over
the time horizon) and temporal dependencies, both of which impact the quality of online decision-
making. Although real-world data cannot be perfectly represented by an AR model, it has been
shown that the AR parameters accurately capture temporal dependencies and can serve as a useful
proxy [47]. The non-stationary bandits framework with an AR reward structure can effectively model
a wide range of real-world applications, including:
(1) recommendation systems, where MAB can determine the best product/contents to display to
users, while the AR model captures the evolution of user preferences and demand over time [21] (see
Section 7 for a related case study on tourism demand prediction);
(2) online advertising, where MAB adjusts budget allocation for ad campaigns, and the AR model
can capture the evolution of click-through rates of ads. The amount of changes are usually linear in
time, making the AR structure a potential modeling choice [2];
(3) financial portfolio management, where MAB can determine the investment allocation, and the
AR model can capture the evolution of returns for each investment/asset [4, 19].

When making online decisions in the presence of frequent changes, traditional methods that are
designed for stationary or adversarial settings can be ineffective, due to two main challenges.

1. Balancing exploration and exploitation becomes more challenging, as complete exploration is
often unattainable. Continuous exploration is crucial, but there is also a risk of over-exploration.
Therefore, finding the right balance becomes essential in navigating this tradeoff effectively.

2. Frequent changes in the environment can significantly diminish the value of past learnings. Failing
to promptly leverage the knowledge we have gained can lead to a swift deterioration in our
confidence levels regarding the accuracy of our reward estimates.

The goal of this work is to show, via our non-stationary bandits framework with an AR reward
structure, that effectively leveraging knowledge of temporal structure can address these challenges.
In our approach, we would use our knowledge or estimates of the temporal dependency, measured by
the AR parameter. Since non-stationary bandits with temporal structures exhibiting such real-world
characteristics have been scarcely explored in the literature, we consider the AR structure as a suitable
starting point for showcasing key ideas and techniques. We anticipate that this work will inspire
future research on bandits with alternative temporal structures with similar features.

1.1 Main Contributions

We present an algorithm for the non-stationary AR bandits, called AR2, which stands for “Alternating
and Restarting” algorithm for non-stationary “AR” bandits. AR2 features two mechanisms: (i) an
alternation mechanism that handles the first challenge above by enforcing exploitation at least every
other round, and switch to exploration only when we discover an arm with potential, instead of simply
adopting the principle of “optimism in the fact of uncertainty” which can lead to over-exploration.
(ii) a restarting mechanism that handles the second challenge by discarding unnecessary information
when our confidence level deteriorates significantly, which balances a second tradeoff known as
“remembering”-and-“forgetting”; this tradeoff is crucial even for time series with limited changes [10].
Overall, our work addresses an important gap in the literature by studying non-stationary bandits with
temporal structure that exhibit frequent changes and temporal dependency. While the AR structure
does not capture all temporal structures in the real world, we believe that our high-level messages
and techniques will guide future research on bandits with other temporal structures.

In evaluating the performance of our algorithm, we employ the concept of per-round steady state
dynamic regret (Definition 2.1). This metric serves as a robust dynamic benchmark that competes
with the best arm in each round. It surpasses the static benchmark used in stochastic and adversarial
MAB, making it a considerably stronger measure of performance. We provide an upper bound on the
regret of AR2 (Theorem 5.2), for which the analysis is rather intricate (Section 6), and show that it
almost matches the regret lower bound (Theorem 3.1). Our lower bound result also characterizes the
challenges embedded in AR temporal processes, as it shows the per-round dynamic regret does not
go to zero as T increases, implying that any algorithm needs to keep exploring over time.

Finally, we conduct a real-world case study on tourism demand prediction [36] in Section 7, con-
firming the superiority of AR2 compared to benchmark algorithms. There, we also show that the
techniques and high-level ideas of our algorithm can be readily extended to handle more complicated,
rapidly changing temporal structure (e.g., general AR-p processes) while still achieving good perfor-
mance. Our case study is complemented by synthetic experiments in Appendix A which show the
strength of AR2 against a number of benchmarks designed for stationary and non-stationary settings.
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1.2 Related Work

Our work, which focuses on MAB with an AR temporal structure, contributes to the non-stationary
MAB literature that draws attention in recent years. Most related works on non-stationary bandits
focused on either the rested bandits [26] or restless bandits [53]. In rested bandits, only the expected
reward of the arm that is being pulled will change, while in restless bandits, the expected reward of
each arm changes at each round according to a known yet arbitrary stochastic process, regardless
of whether the arm is pulled. Recently, there has also been a third stream of literature that studies
non-stationary bandits where the changes in reward distributions depend on both which arm is pulled
and the time period that passes by since its last pull (see, e.g., [32, 13]). The non-stationary bandit
problem that we study belongs to the restless setting, since the reward distributions change at each
round based on AR processes, independent of our actions. Restless bandits, however, is known to
be difficult and intractable [43], and many work thus focus on studying its approximation [28] or
relaxation [9].

One line of closely related work on restless bandits studies non-stationary MAB problems with limited
amount of changes. These works either assume piecewise stationary rewards (see [25, 37, 12]), or
impose a variation budget on the total amount of changes (see [10]). They differ from our setting
in that they rely on the amount of changes in the environment to be sublinear in T , while in AR
processes, changes are more rapid and linear in T . Another line of relevant research on restless bandits
assumes different types of temporal structures for the reward distributions. See, e.g., [38, 41, 50, 40]
for finite-state Markovian processes, [27] for stationary ϕ-mixing processes and [48] for Brownian
processes, which is a special case of an AR model but does not experience the exponential decay in the
correlation between the past and the future. Recently, [39] proposed a predictive sampling algorithm
that can also be applied to AR-1 bandits; their main focus, however, is to show the algorithm’s
superiority over the traditional Thompson sampling algorithm in non-stationary environments.

Similar to the second line of works above, our work also aims to exploit the temporal structure of the
reward distributions to devise well-performing learning algorithms. However, the AR process is much
more unpredictable than the temporal structures studied previously, due to its infinite state space
and the fast decay in the values of the past observations. We are thus prompted to take a different
approach that is designed specifically for adapting to the rapid changes attributed to the AR process.

2 Preliminaries

Expected rewards. Consider a non-stationary MAB problem with k arms over T rounds. The state
(expected reward) of arm i ∈ [k] at any round t ∈ [T ] is denoted by ri(t), where ri(t) ∈ [− ,+ ].
Conditioned on the state ri(t), the realized reward of arm i at round t, denoted by Ri(t), is given by
Ri(t) = ri(t) + ϵi(t) , where ϵi(t) ∼ N(0, σ) is independent across arms and rounds and we call
σ ∈ (0, 1) the stochastic rate of change. More generally, if each arm i ∈ [k] has a different, unknown
stochastic rate of change σi, as long as we have an upper bound σ ≥ maxi σi, all of our theoretical
results naturally carries over with the same dependency on σ.

Evolution of expected rewards. The expected reward of each arm i ∈ [k], ri(t), evolves over time.
In our model, we assume that ri(t) undergoes an independent AR-1 process:

ri(t+ 1) = α(ri(t) + ϵi(t)) = αRi(t) ,

or equivalently, Ri(t + 1) = αRi(t) + ϵi(t + 1), where α ∈ (0, 1) is the parameter of the AR-1
model and can be used as a proxy to measure temporal correlation over time. As α increases, the
temporal correlation increases. As commonly seen in the bandit literature (e.g., [35]), we make the
rewards bounded by truncating ri(t+ 1) when its absolute value exceeds some finite boundary value

> 0. That is, ri(t+ 1) = B
(
α(ri(t) + ϵi(t))

)
, where B(y) = min{max{y,− }, }.

Here, we assume that the AR parameter α is known to the decision maker, a common assumption in
literature [10, 27, 48], and often justifiable in real-world scenarios where sufficient historical data
enables accurate fitting of AR models (see Section 7). This assumption is made to simplify the
analysis. However, in Section 8, we would show that this assumption can be relaxed, and the AR
parameter can be effectively estimated via maximum likelihood estimation.

We also assume here that all arms share the same AR parameter α. As our numerical studies in
Appendix A and Section 8 suggest, this assumption can be relaxed too. There, we generalize our
model by considering heterogeneous AR parameters αi for each arm i ∈ [k], and our algorithm
maintains its performance. Nonetheless, it is worth noting that the homogeneity of AR parameter can
be justified in some applications. One example can be seen in our case study in Section 7, where a
travel agency offers vacation packages to travelers originating from a particular origin and heading
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to a specific destination. In this scenario, the demand is modeled as a general AR-4 process, with
the AR parameters being consistent across all arms. This is because the temporal correlation here is
primarily determined by exogenous factors related to the travel route, such as popular attractions and
the availability of flights between the two locations, hence impacting all arms in the same way.

Feedback structure and goal. Our goal is to design an algorithm that obtains high reward, against a
strong dynamic benchmark that in every round t, pulls an arm that has the highest expected reward.
This benchmark is much more demanding than the time-invariant benchmark used in traditional MAB
literature. Obtaining good performance against the dynamic benchmark is particularly challenging as
in any round t ∈ [T ], only the reward of the pulled arms can be observed. Not being able to observe
the reward of unpulled arms in dynamic and time-varying environments introduces missing values in
the AR process associated with arms. This, in turn, deteriorates the prediction quality of the future
expected rewards and the performance of any algorithm that relies on such predictions (see [3] for a
work that studies the impact of missing values on the prediction quality in AR processes).

We now formally define how we measure the performance of any non-anticipating algorithm.
Definition 2.1 (Dynamic steady state regret). Let A be a non-anticipating algorithm that, at each
round t ∈ [T ], pulls arm It based on the history {I1, R1, . . . , It−1, Rt−1}, where Rt′ = RIt′ (t

′) is
the observed reward at round t′ < t. The dynamic regret of A at round t is defined as

REGA(t) = r⋆(t)− rIt(t),

where r⋆(t) = maxi∈[k]{ri(t)} is the maximum expected reward at round t. Furthermore, the
per-round steady state regret of algorithm A is defined as

REGA = lim sup
T→∞

E

[
1

T

T∑
t=1

REGA(t)

]
.

We remark that in Definition 2.1, our per-round regret is defined asymptotically mainly because we
would like to focus on evaluating the steady state performance of our algorithm (i.e., under the steady
state distribution).1 All of our theoretical analyses for regret lower bound (Section 3) and upper
bounds (Section 5) are also performed under the steady state distribution.

In this work, we would like to design an algorithm with a small per-round steady state regret, where
the per-round regret is a function of the stochastic rate of change (σ) and the temporal correlation (α).

3 Regret Lower Bound

We now provide a lower bound on the best achievable dynamic per-round steady state regret.
Theorem 3.1 (Regret Lower Bound). Consider a non-stationary MAB problem with k arms, where
the expected reward of each arm evolves as an independent AR-1 process with parameter α, stochastic
rate of change σ and truncating boundaries [− , ]. Then the per-round steady state regret of any
algorithm A is at least Ω(g(k, α, σ)ασ), where g(k, α, σ) is the probability that two best arms are
within ασ distance of each other at any given round, under the steady state distribution. See the
expression of this probability in Equation (16) in Appendix F.

The proof of Theorem 3.1, provided in Appendix F, builds on the following idea: even if algorithm A
has access to all past information at round t, due to stochastic noise ϵi(t), A will pull a sub-optimal
arm with constant probability at round t + 1. We show that the probability of the two best arms’
expected rewards being within ασ of each other can be expressed as g(k, α, σ) (see (16)).2 If the two
best arms are ασ close, A will incur Ω(ασ) regret with constant probability at round t+ 1.

In the extreme case when α is close to one, the steady state distribution of ri(t) can be approximated
with a uniform distribution within the boundaries and two probability masses at the boundaries
(see Appendix D). Using the uniform approximation, one can show that g(k, α, σ) = Ω(kασ) (see
discussion in Appendix F). This then yields a regret lower bound of order Ω(kα2σ2).

Theorem 3.1 implies that under our setup, the best achievable per-round regret with respect to a
strong dynamic benchmark does not converge to zero, which differs from stationary or adversarial

1If we assume that the initial state ri(0) is drawn from the steady state distribution, defined in Appendix D,
we can simply define our per-round regret as REGA = E

[
1
T

∑T
t=1 REGA(t)

]
, and all of our results remain valid.

This also matches the definition of dynamic regret in works such as [10, 11, 39].
2See, also, Appendix E.1 for an illustration of how g(k, α, σ) evolves with respect to σ under different α.
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Algorithm 1 Alternating and Restarting algorithm for non-stationary AR bandits (AR2)
Input: AR Parameter α, stochastic rate of change σ, epoch size ∆ep, parameter c0.
1. Set the epoch index s = 1, parameter c1 = 24c0.
2. Repeat while s ≤ ⌈T/∆ep⌉:

(a) Initialization: Set t0 = (s− 1)∆ep. Set the initial triggered set T = ∅. Pull each arm i ∈ [k] at round
t0 + i and set τi = t0 + i. Set estimates r̂i(t0 + k + 1) = αk−i · B(αRi(t0 + i)).

(b) Repeat for t = t0 + (k + 1), . . . ,min{t0 +∆ep, T}
• Update the identity of the superior arm and its estimated reward

isup(t) =
{

It−1 if r̂It−1(t) ≥ r̂It−2(t)
It−2 if r̂It−1(t) < r̂It−2(t)

and r̂sup(t) = r̂isup(t)(t) . (1)

• Trigger arms with potential: For i /∈ T ∪ {isup(t)}, trigger arm i if

r̂sup(t)− r̂i(t) ≤ c1σ
√

(α2 − α2(t−τi+1))/(1− α2). (2)

If triggered, add i to T and set τ trig
i = t.

• Alternate between exploration and exploitation:
– If t is odd and T ≠ ∅, pull a triggered arm with the earliest triggering time: It = argminj∈T τ trig

j .

– Otherwise, pull the superior arm It = isup(t).
• Receive a reward RIt(t), and set τIt = t.
• Maintain Estimates: Set r̂It(t+ 1) = B(αRIt(t)) and set r̂i(t+ 1) = αr̂i(t) for i ̸= It.

(c) Set s = s+ 1.

bandits with a time-invariant benchmark where algorithms like UCB for stationary bandits and Exp3
for adversarial bandits can achieve zero per-round regret as T approaches infinity. In our setting, each
arm undergoes linear amount of changes, making it challenging for any algorithm to adapt to the
changing environment in time. Our result aligns with the lower bound from [10], which states that
when the total variation of expected rewards is O(T ), the regret also grows linearly.

4 Algorithm AR2

In this section, we present our algorithm, called AR2 (Alternating and Restarting algorithm for non-
stationary "AR" bandits). Algorithm 1 outlines the workings of AR2, which operates in epochs of a
fixed length. Within each epoch, AR2 maintains and updates estimates of the expected rewards for
each arm i ∈ [k]. It alternates between exploitation and exploration steps based on these estimates.
During exploitation, AR2 plays a "superior arm" expected to yield high rewards, while in exploration,
it selects a "triggered arm" that hasn’t been pulled recently but has high potential. At the end of
an epoch, the algorithm restarts. As alluded earlier, AR2 effectively balances two inherent tradeoffs
in non-stationary MAB problems with AR reward structure. Firstly, it addresses the exploration-
exploitation tradeoff by alternating between exploiting the superior arm and exploring the triggered
arm within each epoch. Secondly, it handles the tradeoff between “remembering”-and-“forgetting”, a
commonly considered tradeoff in non-stationary environments [10, 11], via restarting.

Maintaining estimates of expected reward of arms. For any round t and arm i ∈ [k], let τi(t)
be the last round before t (including t) at which arm i is pulled, and let τnexti (t) be the next round
after t (excluding t) at which arm i is pulled. Let ∆τi(t) = τnexti (t)− τi(t) be the gap between two
consecutive pulls of arm i around t. Define r̂i(t) as the estimate of the reward of arm i at t based on
the most recent observed reward of arm i (i.e., Ri(τi(t))). Via recursive updates (see Step (b)), AR2
maintains the following estimate of expected reward for each arm:

r̂i(t) = αt−τi(t)−1r̂i(τi(t) + 1) = αt−τi(t)−1B
(
αRi(τi(t))

)
.

Superior arms. The superior arm at round t, denoted by isup(t), is one of the two most recently
pulled arms, i.e., It−1 or It−2, that has the higher estimated reward (see (1)). We further define
r̂sup(t) = r̂isup(t)(t) as the estimated reward of the superior arm at round t. We remark that here, for
simplicity of analysis, our definition of the superior arm only considers the two most recently pulled
arms. We can in fact set the superior arm to be the one with the highest estimated reward among the
m most recently pulled arms for any constant m ≥ 2. A similar theoretical analysis will then yield
the same theoretical guarantee, as shown in Theorem 5.2. We further verify the robustness of AR2 to
the choice of m in our numerical studies, where we consider all arms as potential candidates for the
superior arm, and AR2 maintains its competitive performance (see Appendix A).
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Triggered arms. In order to adapt to changes, AR2 identifies and keeps track of a set of arms with
potential that are not pulled recently. We refer to these arms as triggered arms and denote their
associated set by T . In a round t, an arm i ̸= isup(t) gets triggered if the triggering criteria in (2)
is satisfied. We call the earliest such time t > τi(t) as the triggering time of arm i and denote it as
τ trig
i (t). If arm i is triggered, it is added to the triggered set T . When arm i gets pulled or is chosen as

the superior arm, it is removed from T . The right-hand side of the triggering criteria is a confidence
bound constructed based on Hoeffding’s Inequality (see details in Section 6 and Appendix H).

Note that at the exploration step, AR2 would only pull a triggered arm if the triggered set T is
non-empty. This inherently adjusts the rate of exploration in our alternation mechanism. In a slowly-
changing environment (e.g., with small σ), the triggered set may not always include arms needing
exploration, thus allowing focused exploitation of the superior arm; in a fast-changing environment,
the rate of exploration can be as high as the rate of exploitation.

5 Regret of Algorithm AR2

Our algorithm AR2 works for AR-1 model with any choice of parameter α ∈ (0, 1). However, it
turns out that the problem is less challenging when the future is weakly correlated with the past
(i.e., when α is small). Theorem 5.1 states that any algorithm—including both a naive approach that
continuously pulls the same arm throughout the horizon and our algorithm AR2—can achieve near-
optimal performance when α is too small. This is because with small α, (i) for any arm i ∈ [k], the
steady state distribution of its expected reward ri(t) concentrates around zero with high probability,
and (ii) our observations of past rewards quickly deteriorate in their value of providing insights on
the evolution of expected rewards in the future.

Theorem 5.1. Any non-anticipating algorithm A incurs per-round steady state regret of at most
O
(
min(

√
log(1/ασ) + log k · ασ√

1−α2
, 2 )

)
.

0.2 0.4 0.6 0.8
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Figure 1: Comparison of the orders of
the regret upper bound in Theorem 5.1
and the lower bound in Theorem 3.1, ob-
tained with k = 5, σ = 0.2, C = 0.4.
(Similar plots can be obtained for differ-
ent values of k and σ.)

In Figure 1, we compare the order of the regret upper
bound in Theorem 5.1 with the order of the regret lower
bound in Theorem 3.1.3 Observe that ᾱ ≜ 0.5 serves as
a rough threshold value such that when α ∈ (0, ᾱ), the
orders of lower and upper bounds almost match each other,
which suggests limited room for improvement. (That be-
ing said, our numerical studies in Appendix A in fact show
that AR2 still outperforms other benchmarks even when
α is small.) On the other hand, as α → 1, the gap be-
tween lower and upper bounds start to expand, implying
that the problem becomes more difficult and simplistic
approaches such as the naive algorithm would no longer
produce satisfying performance.

In the rest of the discussion, we thereby focus on the more
challenging regime (i.e., α ∈ [ᾱ, 1)), and establish a regret
upper bound for AR2 when α ∈ [ᾱ, 1).

Theorem 5.2. Let K(α) ≜ ⌊ 1
2 (log(

1
8 )/logα + 1)⌋, and let A be the AR2 algorithm that gets

restarted in each epoch of length ∆ep = ⌈kα−3σ−3⌉. If α ∈ [ᾱ, 1) and k ≤ K(α), the
per-round steady state regret of A satisfies REGA ≤ O(c20α

2σ2k3 log(c0ασ
√
k)) , where c0 =√

4 log(1/ασ) + 4 log∆ep + 2 log(4k).

Recall that if α is close to one, the regret lower bound can be characterized as Ω(kα2σ2). This
shows that our algorithm is optimal in terms of AR parameter α and stochastic rate of change σ (up
to logarithmic factors). In Appendix E.3, we further highlight the significance of Theorem 5.2 by
illustrating the evolution of upper and lower bounds, as well as the per-round regret attained by AR2,
at different values of α and σ. We show that Theorem 5.2 well characterizes the performance of AR2
under different settings.

We remark that in terms of the dependency on k, Theorem 5.2 requires k ≤ K(α) mainly for the rigor
of theoretical analysis, and this bound loosens as α approaches one (for example, when α = 0.95,

3See, also, Figure 5 in Appendix E.2 for a comparison of upper/lower bounds with respect to σ.
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K(α) = 20.).4 Our numerical studies in Appendix A also reveal that (i) AR2 maintains its competitive
performance even when the number of arms k exceeds K(α); and (ii) its per-round regret grows
modestly with k. These suggest that the assumption/dependency on k for our upper bound are artifacts
of our analysis, rather than an intrinsic property of our algorithm.

6 Proof of Theorem 5.2

The proof of Theorem 5.2 proceeds in four steps. Step 1 introduces distributed regret, a novel notion
that distributes instantaneous regret over subsequent rounds, enabling us to rephrase per-round steady
state regret. Step 2 defines a high-probability good event crucial for analyzing distributed regret. In
Step 3, we leverage the good event to establish an upper bound for each round’s distributed regret.
Finally, Step 4 aggregates these regrets across rounds and epochs, establishing the per-round steady
state regret of AR2 against the dynamic benchmark.

Step 1: Distributed regrets. Let ∆ri(t) = r⋆(t)− ri(t) be the instantaneous regret from pulling
arm i at round t, where r⋆(t) = maxi∈[k] ri(t) is the maximum expected reward at round t. Consider

the expected per-round regret: REGA = E
[
1
T

∑T
t=1 REGA(t)

]
= 1

T

∑T
t=1 E

[
∆rIt(t)

]
, where

∆rIt(t) = r⋆(t)− rIt(t) is the instantaneous regret incurred at round t. In the following, we show
that we can distribute this instantaneous regret over subsequent rounds.

Note that for any i ∈ [k], let ℓ(j)i denote the round at which arm i gets pulled for the jth time within
an epoch. Then during the period between two consecutive pulls ℓ(j)i ≤ t < ℓ

(j+1)
i , the only regret

incurred from pulling arm i is the instantaneous regret ∆ri(ℓ
(j)
i ). By previous definition, we also

have τi(t) = ℓ
(j)
i , τnexti (t) = ℓ

(j+1)
i and ∆τi(t) = ℓ

(j+1)
i − ℓ

(j)
i for all ℓ(j)i ≤ t < ℓ

(j+1)
i . Observe

that we can decompose ∆ri(ℓ
(j)
i ) as follows, which then leads to the notion of distributed regret:

∆ri(ℓ
(j)
i ) =

ℓ
(j+1)
i −1∑
t=ℓ

(j)
i

( ∆ri(ℓ
(j)
i )α2(t−ℓ

(j)
i )

1 + α2 + · · ·+ α2(ℓ
(j+1)
i −1−ℓ

(j)
i )

)
=

ℓ
(j+1)
i −1∑
t=ℓ

(j)
i

( ∆ri(τi(t))α
2(t−τi(t))

1 + α2 + · · ·+ α2(∆τi(t)−1)

)
.

Definition 6.1 (Distributed regret). The distributed regret of arm i at round t is defined as

Di(t) =

(
∆ri(τi(t))

1 + α2 + · · ·+ α2(∆τi(t)−1)

)
α2(t−τi(t)) (3)

Note that Di(t) = 0 if arm i is the best arm at round τi(t). Now, let Ti be the total number of rounds
we pull arm i in the horizon, we can rewrite the expected per-round regret as

REGA =
1

T

k∑
i=1

Ti∑
j=1

E
[
∆ri(ℓ

(j)
i )
]
=

1

T

k∑
i=1

T∑
i=1

E
[
Di(t)

]
=

1

T

k∑
i=1

S∑
s=1

s∆ep∑
t=(s−1)∆ep+1

E[Di(t)] ,

(4)
where the second equality follows from the Definition 6.1 and the third equality follows from that
AR2 proceeds in epochs of length ∆ep, and S = T/∆ep is the total number of epochs.

Step 2: Good event and its implications. Before proceeding, we first define a good event G(t) at
round t, which would help simplify our analysis. In principle, we say that a good event G(t) happens at
round t if the noises within the epoch including t are not too large in magnitude. Recall from Section 2
that ri(t) follows an AR-1 process with truncating boundaries: ri(t + 1) = B (α(ri(t) + ϵi(t))),
where B(y) = min{max{y,− }, }. Hence, we need to first define a new noise term that shows
the influence of the truncating boundary.

ϵ̃i(t) =
{ ϵi(t) if α(ri(t) + ϵi(t)) ∈ [− , ]

1
α [B

(
α(ri(t) + ϵi(t))

)
− αri(t)] otherwise (5)

4Here, the bound K(α) results from our loose upper bound for the number of triggered arms in the proof of
Lemma H.3, where we used the fact that there are at most k − 1 < K(α) triggered arms at any round to limit
how quickly the values of the past observations diminish. If, at any given round, the number of triggered arm is
O(1), the upper bound K(α) would no longer be required, and the regret upper bound can be further reduced to
O(c20α

2σ2k log(c0ασ)), which matches the lower bound up to logarithmic factors.
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In particular, the new noise ϵ̃i(t) satisfies the following recursive relationship: ri(t+ 1) = αri(t) +
αϵ̃i(t). We now formally define the good event G(t), which states that for any sub-interval [t0, t1]
within the epoch including t, the weighted sum of ϵ̃i(t) satisfies a concentration inequality.
Definition 6.2 (Good event at round t). We say that the good event G(t) occurs at round t if for
every i ∈ [k], and for every sub-interval [t0, t1], where t−∆ep ≤ t0 < t1 ≤ t+∆ep, the weighted

sum of the noises ϵ̃i(t) satisfies
∣∣∣∑t1−1

t=t0
αt1−tϵ̃i(t)

∣∣∣ < c0σ
√

(α2 − α2(t1−t0+1))/(1− α2) , where

c0 =
√
4 log(1/ασ) + 4 log∆ep + 2 log(4k).

By building a connection between ϵ̃i(t) and ϵi(t) and Hoeffding’s inequality, we show Lemma 6.3,
which confirms that the good event G(t) happens with high probability.

Lemma 6.3. For any t ∈ [T ], we have P[Gc(t)] ≤ (ασ)2.

Step 3: Distributed regret analysis. For a given round t in the s-th epoch, we can bound its expected
distributed regret by first decomposing it into two terms: E[Di(t)] = E[Di(t)1Gc(t)]+E[Di(t)1G(t)],
where 1E is the indicator function of event E . We can bound the first term by applying Lemma 6.3

E[Di(t)1Gc(t)] ≤ 2 · P[Gc(t)] ≤ 2 · (ασ)2 = O(σ2α2). (6)

To bound the second term, we rely on the implications of the good event G(t) (presented in Ap-
pendix H.1) to show the following.
Lemma 6.4. Suppose that we apply AR2 to the non-stationary MAB problem with α ∈ [ᾱ, 1)
and and k ≤ K(α), for every arm i ∈ [k] and some round τi(t) ≤ t < τnexti (t), where
τi(t) and τnexti (t) are two consecutive rounds at which i gets pulled, we have E[Di(t)1G(t)] ≤
O(c20α

2σ2k2 log(c0σα
√
k)).

The proof of Lemma 6.4 is deferred to Appendix H.2. There, we provide a bound for the nominator
and denominator of Di(t) respectively, conditioning on the good event G(t) and the value of ∆ri(t).
In the proof, we critically use the implications of the good event (see Appendix H.1). Now, combining
(6) and Lemma 6.4, for any round t within the sth epoch such that τi(t) ≤ t < τnexti (t), we have

E[Di(t)] = E[Di(t)1Gc(t)] + E[Di(t)1G(t)] ≤ O(c20σ
2α2k2 log(c0σα

√
k)). (7)

Step 4: Summing the distributed regrets. Given Equations (4), (7) and ∆ep = ⌈kα−3σ−3⌉,
summing the expected distributed regrets first within an epoch, and then along the horizon yields

REGA =
1

T

k∑
i=1

S∑
s=1

s∆ep∑
t=(s−1)∆ep+1

E[Di(t)] ≤
1

T

k∑
i=1

S · [O(C̃2 log(C̃))∆ep + 2 ] = O(kC̃2 log(C̃)),

where the additional 2 term comes from the initialization round and the last round we pull arm i
within an epoch. This concludes the proof if we plug in C̃ = c0ασ

√
k. ■

7 A Real-World Case Study on Tourism Demand Prediction

In this section, we numerically demonstrate the efficacy of AR2 via a real-world case study based
on a international Tourism Demand dataset for Australia [36]. In this case study, we act as a travel
agency that needs to determine which vacation package to offer, where the demand for each vacation
package is highly dependent on the tourism demand during each quarter. Our case study is further
complemented by a number of synthetic experiments in Appendix A, where we compare AR2 against
various benchmarks designed for both stationary and non-stationary settings and again show the
superior performance of AR2 in adapting to the rapidly changing environment.

Dataset and setup. The international tourism demand dataset [36], obtained from the Australian
Bureau of Statistics, records the number of individual tourist arrivals to Australia from Hong Kong
during each quarter between the years 1975-1989. The authors of [36] have fitted an AR model to the
logarithms of quarterly tourist arrivals, which results in an AR-4 model with a trend component5:
ri(t) = −0.01 + 0.32Ri(t − 2) + 0.6Ri(t − 4) . Note that here, the number of tourist arrivals is
strongly correlated with the number of arrivals four quarters before, which is likely due to seasonal
patterns. The time series analysis in [36] also supports our assumption in Section 2 that the AR

5We keep the significant lags in forecasting tourist arrivals, which are the second and fourth lags.
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parameters are known. In this dataset, as well as many others from the real world, decision-makers are
likely to have access to historical data, which enables them to fit AR processes with good precision.

Given the AR model, we consider a recommendation setting where the travel agencies have k = 5
vacation packages (arms) to offer to the tourists from Hong Kong, and wish to dynamically feature
the package with the highest demand (reward) at each round. For each arm, we simulate its reward
sequence by randomly drawing the initial reward from a uniform distribution in [0, 1] and simulate
ri(t) for a total of T = 200 rounds, based on the AR-4 model above. We take the stochastic rate of
change to be σ = 0.1 for all arms.

Extension of AR2 to AR-p processes. We extend our algorithm AR2 to handle MAB problems with
rewards modeled using general AR-p processes with trends; see Algorithm 2 in Appendix B.2. At a
high level, the extension of AR2 uses similar techniques as described in Section 4. The key difference
is that, for each arm i ∈ [k], it maintains not only an estimate r̂i(t) of the arm’s reward at round t, but
also an estimate Êi(t) that captures the associated estimation error. These estimates are dynamically
updated based on the structure of the AR-p process with trends. The extended algorithm, akin to
Algorithm 1, (i) selects the arm with the highest estimated reward r̂i(t) and (ii) triggers arms with
potential, where the confidence bound in the triggering criteria now depends on the estimate of the
error Êi(t). For a comprehensive discussion of our extension, please refer to Appendix B.2.

Results. We compare the performance of AR2 against the two most competitive benchmarks (ϵ-greedy
and a modified UCB algorithm) that we identfied in synthetic experiments; see Appendix A for
comparisons with the other benchmarks. The comparison is shown in Table 1. It can be seen that
AR2 stands out in terms of both the regret6 and the number of times it pulls the optimal arm. In this
case study, while the ϵ-greedy algorithm frequently selects the optimal arm, it still accumulates high
regret due to its purely random exploration, which can lead to the selection of arms with low rewards.
Similarly, the modified UCB algorithm, which leverages the knowledge of the temporal structure
in its confidence bound (see description in Appendix C), doesn’t perform well. Due to the rapidly
changing nature of the AR-p process, modified UCB over-explores. AR2, on the other hand, prove to
be effective even amidst the rapid changes introduced by more complex time series.

Table 1: Performance comparison.
Algorithm normalized regret # optimal arms

AR2 0.26 (0.14) 142.04 (15.71)
UCB-mod 0.60 (0.27) 106.62 (7.12)
ϵ-greedy 0.38 (0.16) 133.83 (12.47)

8 Extension on Learning the AR Parameter

In the previous sections, we have assumed full knowledge of the AR parameter, which as discussed
in Sections 2 and 7, when we have access to past data. This section proposes an algorithm extension
for when the AR parameter needs estimation. We introduce a maximum likelihood method and
numerically evaluate the performance of AR2, which show that AR2 still remains competitive despite
noise in the estimated AR parameter.

A Maximum Likelihood Estimator. If the decision maker does not have prior knowledge of the
AR parameter α, one can learn the AR parameter via Maximum Likelihood Estimation (MLE). In
the first Test rounds of the time horizon, where Test = O(T β) for some β ∈ (0, 1), we pull one arm
i ∈ [k] consecutively for a fixed arm i and observe rewards Ri(1), . . . , Ri(Test). We then define
the maximum likelihood estimator α̂ = argminα∈(0,1) L(α) , where L(α) is the negative of the
log-likelihood function defined in (60) of Appendix I. Observe that here we cannot directly apply
linear regression for estimating α because the existence of truncating boundaries would lead to a
biased estimator. MLE, on the other hand, remains robust even when the expected reward of our arm
hits the boundary. Since the number of rounds used for estimation Test scales sublinearly with T , the
regret incurred within the first Test rounds would not impact our per-round regret upper bound. If we
have heterogeneous AR parameters αi for arms i ∈ [k] (as in Appendix A), one can simply pull each
arm i ∈ [k] consecutively for Test rounds and perform MLE for each αi.

The following proposition quantifies the amount of noise in the estimated AR parameter.
Proposition 8.1. Let α̂ = argminα∈(0,1) L(α) be the estimated AR parameter. Then, for γ > 0,
with probability at least 1− 2/T γ

est − 2 exp(−TestV
2/2

2
), there exists constants L1, L2 such that

6Here we evaluate each algorithm using the normalized regret:
∑T

t=1 REGA(t)/
∑T

t=1 r
⋆(t) , which nor-

malizes the total regret with the optimal reward in hindsight.
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|α̂− α| ≤ (4σ L1)/(V L2) ·
√
2γ log Test/Test , where V is the variance of the observed reward in

the steady state distribution, which is independent of our algorithm or the time horizon T .

We plot the normalized regret incurred by AR2, ϵ-greedy and mod-UCB using the estimated AR
parameters, obtained through MLE with Test = {25, 50, 100}. We observe that whenever the AR
parameters αi are small or large, the performance of AR2 outcompetes the other two benchmarks. In
particular, AR2 appears to be robust to the noises in the estimated AR parameter, with performance
close to what we would otherwise obtain with the accurate AR parameters (see Table 2 in Appendix A).
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Figure 2: Box plots of normalized regret incurred by each algorithm at T = 10, 000 (AR2 highlighted
in gray). The input AR parameter α̂i is the maximum-likelihood estimator of the true AR parameter. We
vary the magnitudes of AR parameters E[αi] ∈ {0.4, 0.9} and the number of rounds used for estimation
Test ∈ {25, 50, 100}. The parameters of our instances are the same as in Appendix A, and we take k = 6.

9 Conclusion and Future Directions

In this paper, we studied a non-stationary MAB problem with an AR structure, which captures the
rapid changes commonly observed in real-world dynamics. Our proposed algorithm, AR2, leverages
our knowledge or estimate of the temporal dependency to effectively handle the challenges associated
with the fast-changing environment, and our techniques can be potentially adapted to more complex
temporal series. As the realm of non-stationary bandits with rewards governed by temporal structures
remains largely unexplored, there are several exciting avenues for future research. One intriguing
direction is to incorporate seasonality into our framework, exploring models such as seasonal ARIMA
with both long-term and short-term changes. Additionally, building on the promising numerical results
in Section 8, it would be interesting to theoretically characterize the performance of our algorithm
when estimation of the AR parameter and online-decision making are performed simultaneously.
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Appendices for
Non-Stationary Bandits with Auto-Regressive Temporal

Dependency

A Numerical Studies on Synthetic Data

Set-up. We consider a non-stationary bandit problem with k arms and T = 10, 000 rounds. To make
the setting more general, we let the expected reward ri(t) of each arm i ∈ [k] follow an independent
AR-1 process with heterogeneous AR parameter αi, stochastic rate of change σi, and truncating
boundary [−1, 1]. We consider two different regimes of αi’s: (i) Small αi’s: the AR-1 parameters
{αi}ki=1 are drawn from a dirichlet distribution with rescaling such that for all i ∈ [k], E[αi] = 0.4,
which is less than the threshold value ᾱ = 0.5 that we defined in Section 5. (ii) Large αi’s: the AR-1
parameters {αi}ki=1 are chosen from a dirichlet distribution with rescaling such that E[αi] = 0.9 for
all i ∈ [k]. The concentration parameters of the dirichlet distributions are all set to be 5. For each
regime of αi’s (small v.s. large), we consider 100 instances, where each instance corresponds to AR
parameters (α1, . . . , αk) generated as described above; and stochastic rates of change (σ1, . . . , σk)
generated from i.i.d. uniform distributions in (0, 0.5). The initial reward ri(0) is drawn independently
from the steady state distribution discussed in Appendix D.

Performance comparison. We implement AR2 and compare it against a number of benchmarks
designed for stationary and non-stationary bandits respectively. (See Appendix B.1 for the imple-
mentation details, where we generalize AR2 to the setting with heterogeneous αi’s and σi’s.) All
parameters used in the following algorithms are tuned.

The benchmark algorithms designed for stationary settings are: (i) “explore-then-commit” (ETC)
policy [24] that first selects each arm for m rounds, and commits to the arm with the highest average
pay-off in the remaining T −mk rounds; (ii) UCB algorithm [6], which achieves sublinear regret
under static settings; (iii) ϵ-greedy algorithm [49] with probability of exploration ϵ = 0.1, which
acts greedily with probability (1− ϵ) and explores a random arm otherwise. (iv) Exp3 algorithm [7],
which is designed for the adversarial setting and achieves sublinear regret when evaluated against the
weak static benchmark.

Further, we also consider several benchmark algorithms designed for non-stationary settings: (i)
Rexp3 algorithm [10], which modifies the Exp3 algorithm for the non-stationary setting by introducing
a restarting mechanism, and assumes that the total variation of expected rewards is bounded by a
variation budget VT ; (ii) a modified UCB algorithm (mod-UCB), which modifies the upper confidence
bound based on the structure of the AR-1 process; see Appendix C for a description and discussion
of the algorithm; (iii) the sliding-window UCB (SW-UCB) algorithm [25] and the sliding-window
Thompson Sampling (SW-TS) algorithm [52], both of which adopt sliding-window approaches; (iv)
the predictive sampling (PS) algorithm for AR-1 bandits recently introduced by [39], which is shown
to outperform the Thompson sampling algorithm in non-stationary environments.

Results. In Table 2, we evaluate and compare the performance of AR2 against the benchmark
algorithms in instances with small αi’s (E[αi] = 0.4) as well as large αi’s (E[αi] = 0.9). We also
vary the number of arms k ∈ {2, 10, 20}. To keep our results consistent across instances, we evaluate
each algorithm A using the normalized regret7:

∑T
t=1 REGA(t)/

∑T
t=1 r

⋆(t), which normalizes the
total regret using the reward of optimal in hindsight dynamic policy.

From Table 2, we see that AR2 clearly outperforms the benchmarks in almost all choices of k
and regimes of αi’s. The algorithms designed for stationary settings (ETC, UCB, Exp3) perform
poorly, as the AR setting includes non-stationarity that differs substantially from the stochastic or
adversarial settings they were intended for. Similarly, the algorithms designed for non-stationary
setting with limited amount of changes (RExp3, SW-UCB, SW-TS) do not perform well since they
are designed to tackle environments either with abrupt changes, or with sublinear amount of changes,
and are not suited for the fast changes in the AR environment. Finally, when compared against
benchmarks that take into account the AR structure of rewards (ϵ-greedy, modified UCB, PS), AR2
also displays superior performance. Here, the PS algorithm indeed dominates TS-based approaches

7Note that since the expected rewards can be negative, the normalized regret can exceed one. Further, when
αi’s are small, the normalized regret of each algorithm is in general larger. This is because the optimal reward
used in normalization tends to be smaller, and hence does not contradict the fact that our problem is more
challenging when the AR parameters are small.
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Table 2: The mean and standard deviation (in parenthesis) of normalized regret incurred by each
algorithm at T = 10, 000. All experiments are run with 100 instances. The algorithm with the
smallest normalized regret is highlighted in gray.

(a) Comparison with Stationary Benchmarks

E[αi] k AR2 ETC UCB ϵ-greedy Exp3

0.4
2 0.38 (0.10) 1.00 (0.03) 0.68 (0.09) 0.43 (0.09) 0.99 (0.02)

10 0.67 (0.01) 1.00 (0.01) 0.80 (0.01) 0.76 (0.02) 1.00 (0.01)
20 0.72 (0.01) 1.00 (0.01) 0.84 (0.01) 0.81 (0.01) 1.00 (0.01)

0.9
2 0.18 (0.06) 1.00 (0.11) 0.65 (0.13) 0.36 (0.14) 0.95 (0.12)

10 0.40 (0.04) 1.00 (0.05) 0.58 (0.04) 0.60 (0.06) 0.99 (0.02)
20 0.49 (0.02) 1.00 (0.02) 0.62 (0.02) 0.64 (0.03) 0.99 (0.01)

(b) Comparison with Non-Stationary Benchmarks

E[αi] k AR2 Rexp3 mod-UCB SW-UCB SW-TS PS

0.4
2 0.38 (0.10) 0.96 (0.03) 0.45 (0.05) 0.69 (0.05) 1.00 (0.03) 0.51 (0.04)

10 0.67 (0.01) 0.99 (0.01) 0.67 (0.03) 0.90 (0.02) 0.98 (0.01) 0.78 (0.03)
20 0.72 (0.01) 1.00 (0.01) 0.72 (0.02) 0.95 (0.01) 0.99 (0.01) 0.84 (0.02)

0.9
2 0.18 (0.06) 0.87 (0.08) 0.20 (0.07) 0.55 (0.13) 0.99 (0.15) 0.52 (0.33)

10 0.40 (0.04) 0.97 (0.01) 0.43 (0.05) 0.70 (0.03) 0.86 (0.04) 0.47 (0.03)
20 0.49 (0.02) 0.99 (0.01) 0.53 (0.03) 0.84 (0.02) 0.91 (0.02) 0.52 (0.02)

in non-stationary environments, as suggested by [39], but AR2 remains competent in all kinds of
AR-based setups; further, [39] also suggests that deriving the conditional probability distribution in
the predictive sampling procedure and implementing it can be complicated in general, and hence
it is unclear how one can adapt the PS algorithm for more complicated AR-p processes as we did
in our case study (see Section 7 and Appendix B.2). Among all stationary benchmarks, ϵ-greedy is
the most competitive; while mod-UCB stands out as the most competitive within the non-stationary
benchmarks. However, there are instances where AR2 can contribute to a decrease in regret as high
as 50% when compared to ϵ-greedy, and a 15.5% decrease in regret when compared to modified
UCB. All of the aforementioned results attest to the efficacy of AR2 in rapidly changing environments
governed by the AR process.

B Implementation Details and Extensions of Algorithm AR2

B.1 Implementation of AR2

To apply AR2 to the more general setting described in Appendix A, where the expected reward of
each arm i undergoes an AR-1 process with heterogeneous AR parameter αi and stochastic rate of
change σi, we make a few straightforward updates to AR2: (i) when maintaining estimated reward
r̂i(t) of arm i, we use its AR parameter αi; (ii) we assume that an arm i ̸= isup(t) gets triggered if at
round t,

r̂sup(t)− r̂i(t) ≤ c1σi

√
(α2

i − α
2(t−τi+1)
i )/(1− α2

i ) .

Empirically, we make two more minor changes to AR2 in its numerical implementation. (i) The
definition of the superior arm: instead of considering one of the two most recently pulled arms,
we consider all arms and choose the one with the highest estimated reward at round t to be the
superior arm at round t, i.e., isup(t) = argmaxi∈[k] r̂i(t). (ii) The triggered arm to be played: in
the exploration round t (when t is odd and T ̸= ∅), we consider the upper confidence bound of the
expected reward of each arm i, defined as:

UCBi(t) = r̂i(t) + c1σi

√
(α2

i − α
2(t−τi(t))
i )/(1− α2

i )

and pull the triggered arm with the highest upper confidence bound, i.e. It = argmaxj∈T UCBj(t).
Note that the arms in the triggered set T differ in terms of both triggering time and estimated rewards.
Previously, our criteria for selecting the triggered arm to play only takes into account one aspect of
such heterogeneity, i.e., the triggering time. The new criteria allows us to also consider the estimated
reward of each arm, which is another indicator of the arm’s potential.
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B.2 Extension of AR2 to AR-p Process with Trend

In this section, we provide an extension of AR2 (Algorithm 1), which would apply to non-stationary
bandits where the rewards follow general AR-p processes with trends for any p ≥ 1. This algorithm
is applied when we perform our case study on tourism demand prediction in Section 7, and is shown
to adapt well to the more complex, rapidly evolving environment.

Let us assume that for each arm i ∈ [k], the reward distribution following an AR-p process, potentially
with a trend component. That is, conditioning on past history during rounds t−1, . . . , 1, the expected
reward of arm i at round t is

ri(t) = αi,0 +

p∑
j=1

αi,jRi(t− j) ,

where αi,0 is the trend component and (αi,1, . . . , αi,p) is the set of AR parameters associated with
arm i.

The details of the extension of AR2 is presented in Algorithm 2, which we called AR2-p. At a high
level, the main techniques used in AR2-p are very similar to those used in AR2. As AR2-p is specifi-
cally designed to address practical scenarios where real-world dynamics are represented by more
complex time series, we have incorporated the implementation changes discussed in Appendix B.1 to
enhance its practical applicability.

At each round t of Algorithm 2, we first determine the superior arm isup(t), which is the arm with the
highest expected reward. We then decide if there are any arms that we wish to trigger, depending on
whether some untriggered arm has an upper confidence bound that exceeds the expected reward of the
superior arm r̂sup(t). We then alternate between exploration and exploitation: (i) during exploitation
rounds, we pull the superior arm; (ii) during exploration rounds, we pull the arm with the highest
upper confidence bound out of the set of triggered arms, denoted as T . Finally, after we pull arm It
at each round, we update the estimate for the state of each arm i ∈ [k].

The main difference between AR2-p and AR2 for AR-1 process lies in how we maintain estimates for
each arm. To account for the more complicated structure of an AR-p process with trends, we need to
maintain two estimates for each arm—an estimate for the expected reward r̂i(t), and an estimate for
the error bound Êi(t), defined as follows:

r̂i(t) = αi,0 +

p∑
j=1

αi,j r̂i(t− j) and Êi(t) =

p∑
j=1

αi,jÊi(t− j) + αi,j .

Here, the estimate for error bound Êi(t) essentially captures how much error is contained in our
estimate for arm i at round t, i.e., r̂i(t). Since we estimate r̂i(t) based on p past estimates r̂i(t −
1), . . . , r̂i(t− p), the error associated with each of these terms, i.e., Êi(t− 1), . . . , Êi(t− p), would
contribute the total error for arm i at round t, i.e., Êi(t).

We would then use the error estimate Êi(t) in determining our triggering condition. We trigger an
arm i /∈ T ∪ {isup(t)} at round t if

r̂sup(t)− r̂i(t) ≤ cσi

√
Êi(t) .

The error bound estimates would also be useful when we determine which arm to pull out of all the
triggering arms. To do that, we form the upper confidence bound for each arm

UCBi(t) = r̂i(t) + cσi

√
Êi(t)

and pick the one with the highest upper confidence bound: It = argmaxi∈T UCBi(t) .

C Description of Modified UCB Algorithm

In our numerical studies (Appendix A), we have considered the modified UCB algorithm as one of
the non-stationary benchmarks. We now describe this algorithm, which borrows idea from the UCB
algorithm [6] for stochastic MAB, and modifies the expression of the upper confidence bound based
on the AR temporal structure.
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Algorithm 2 Alternating and Restarting algorithm for non-stationary bandits with AR-p reward
structure (AR2-p)
Input: AR parameters {αi,j} i∈[k]

j∈[p]

, trend components {αi,0}i∈[k], stochastic rate of change {σi}i∈[k], epoch

size ∆ep, parameter c.

1. Set the epoch index s = 1.
2. Repeat while s ≤ ⌈T/∆ep⌉:

(a) Initialization:
• Set t0 = (s− 1)∆ep. Set the initial triggered set T = ∅.
• For each arm i ∈ [k], set estimates for expected rewards r̂i(t) = 0 and error bound estimates
Êi(t) = ∞ for t ≤ 0.

(b) For t = t0 + 1, . . . ,min{t0 +∆ep, T}
• If t− t0 ≤ p ·k, pull arm i = ⌊(t− t0 − 1)/p⌋ + 1. // Pull each arm consecutively for p rounds.
• Else,
– Update the identity of the superior arm and its estimated reward

isup(t) = argmax
i∈[k]

r̂i(t) and r̂sup(t) = r̂isup(t)(t)

– Trigger arms with potential: For i /∈ T ∪ {isup(t)}, trigger arm i if

r̂sup(t)− r̂i(t) ≤ cσi

√
Êi(t).

If triggered, add i to T .
– Alternate between exploration and exploitation:

i. If t is odd and T ̸= ∅, pull a triggered arm with the highest upper confidence bound estimate:

It = argmaxi∈T r̂i(t) + cσi

√
Êi(t) .

ii. Otherwise, pull the superior arm It = isup(t).
• Receive a reward RIt(t). Update r̂It(t) = RIt(t) and ÊIt(t) = 0.
• Maintain Estimates: For each arm i ∈ [k], set estimates for expected rewards and error bounds

r̂i(t) = αi,0 +

p∑
j=1

αi,j r̂i(t− j) and Êi(t) =

p∑
j=1

αi,jÊi(t− j) + αi,j .

(c) Set s = s+ 1.

Algorithm 3 A modified UCB algorithm for non-stationary AR bandits (mod-UCB)
Input: AR Parameters (α1, . . . , αk), stochastic rates of change (σ1, . . . , σk), parameter δ.
1. Initialization: pull each arm i ∈ [k] at round i. Set estimates r̂i(k + 1) = αk−i · B(αRi(i)) and τi = i.
2. While t ≤ T :

(a) For each arm i ∈ [k], compute its upper confidence bound (UCB):

UCBi(t) = r̂i(t) +
√

2 log(2/δ) · σi

√
(α2

i − α
2(t−τi(t))
i )/(1− α2

i ) .

(b) Pull the arm with the highest UCB: It = argmaxi∈[k] UCBi(t). Receive a reward RIt(t), and set
τIt = t.

(c) Maintain Estimates: Set r̂It(t+ 1) = B(αRIt(t)) and set r̂i(t+ 1) = αr̂i(t) for i ̸= It.

The details of modified UCB is presented in Algorithm 3. Similar to the original UCB algorithm,
we consider an upper confidence bound of the expected reward of each arm i at round t, denoted as
UCBi(t), which consists of two terms. The first term r̂i(t) is the estimated reward of arm i based on
past observations; the second term is the size of the one-sided confidence interval for the expected
reward ri(t). The confidence interval is constructed based on Hoeffding’s Inequality (see Lemma J.3),
and is designed such that the true expected reward ri(t) will fall into the confidence interval with
probability at least 1 − δ, where δ is an input parameter. To derive the expression of the upper
confidence bound in the AR setting, consider a non-stationary MAB problem, in which the expected
reward of arm i follows an AR-1 process with parameter αi ∈ (0, 1), stochastic rate of change
σi ∈ (0, 1), and truncating boundary [− , ]. (See Section 2 for details about the set-up.) The
estimated reward of arm i at round t, r̂i(t), can be maintained in the same way as done in Algorithm 1.
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The modified UCB algorithm always selects the arm with the highest upper confidence bound. To
construct the confidence bound, we first recall from Section 6 that we define a new noise term ϵ̃i(t)
(see (5)) that incorporates the influence of the truncating boundary, and the new noise term satisfies
the recursive relationship: ri(t+ 1) = αri(t) + αϵ̃i(t). Suppose that at round t, we last observed the
reward of arm i at round τi(t). Using the recursive relationship, we have:

ri(t) = αiri(t− 1) + αiϵ̃i(t− 1) = α
t−τi(t)−1
i ri(τi(t) + 1) + α

t−τi(t)−1
i ϵ̃i(τi(t) + 1) + · · ·+ αiϵ̃i(t− 1)

= α
t−τi(t)−1
i ri(τi(t) + 1) +

t−1∑
t′=τi(t)+1

αt−t′ ϵ̃i(t
′) = r̂i(t) +

t−1∑
t′=τi(t)+1

αt−t′ ϵ̃i(t
′) ,

(8)
where the last equality follows from the way we maintain estimates. By Lemma H.1, we have that for
any s > 0,

P
[∣∣∣ t−1∑

t′=τi(t)+1

αt−t′ ϵ̃i(t
′)
∣∣∣ ≤ s

]
≥ P

[∣∣∣ t−1∑
t′=τi(t)+1

αt−t′ϵi(t
′)
∣∣∣ ≤ s

]
, (9)

where ϵi(t
′) ∼ N(0, σi) is the independent Gaussian noise applied to arm i at round t′. By Hoeffd-

ing’s Inequality (Lemma J.3), for fixed δ > 0, we also have the following concentration result:

P
[∣∣∣ t−1∑

t′=τi(t)+1

αt−t′ϵi(t
′)
∣∣∣ ≤√2 log(2/δ) · σi

√
(α2

i − α
2(t−τi(t))
i )/(1− α2

i )
]
≥ 1− δ . (10)

Equations (8), (9) and (10) together establish a confidence bound centered around r̂i(t), such that
the true expected reward ri(t) falls into the confidence bound with probability at least 1 − δ. In
Algorithm 3, we thus define the upper confidence bound of arm i at round t as:

UCBi(t) = r̂i(t) +
√
2 log(2/δ) · σi

√
(α2

i − α
2(t−τi(t))
i )/(1− α2

i ) ,

and we have P[ri(t) > UCBi(t)] ≤ 1 − δ when implementing the modified UCB algorithm for
numerical experiments in Appendix A.

Finally, we remark that our algorithm AR2 and the modified UCB algorithm share some similarities.
Both algorithms incorporate our knowledge of the AR temporal structure into their design, which
makes them more competitive against the rest of the benchmarks. The triggering criteria of AR2
essentially constructs a confidence interval around the estimated reward r̂i(t) of arm i at round t, and
triggers arm i if the upper confidence bound of arm i exceeds the estimated reward of the superior arm.
On the other hand, AR2 also differs from the modified UCB in two main aspects. (i) By alternating
between exploration and exploitation rounds, AR2 avoids potential over-exploration. This is especially
common when αi’s are close to one, and any arm that has not been explored for a few rounds would
have a very high confidence bound. In that case, modified UCB is likely to shift in between arms
very often, which leads to too little exploitation. (ii) As discussed in Section 4, unlike the modified
UCB algorithm, AR2 also deals with the tradeoff of “remembering” and “forgetting” via the restarting
mechanism, which is especially important in a fast changing environment such as the AR setting.

D Steady State Distribution of Rewards

In this section, we characterize the steady state distribution of the expected reward ri(t). Lemma D.1
shows that the steady state distribution depends on two probability masses at the boundaries and a
probability density function between the boundaries.
Lemma D.1 (Probability density of steady state distribution). Consider the steady state distribution
of ri(t), which follows the AR process with truncating boundaries defined in Section 2. Suppose that
at the steady state distribution, we have two probability masses at the boundaries, i.e., P[ri(t) =
] = P[ri(t) = − ] = p, where p ∈ (0, 1/2) depends on α and σ. Then, the steady state distribution

between the boundaries can be characterized by the following probability density function (PDF),
denoted by fp : (− , ) → R

+.

fp(x) = (1− 2p)C(α, σ) exp
( (α− 1)x2

α2σ2

)
x ∈ (− , ), (11)

where C(α, σ) =
√
1−α

√
πασ erf

(
√

1−α
ασ

) is a normalization factor and erf(z) = 2√
π

∫ z

0
e−s2ds is the

error function.
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Given Lemma D.1, we are now ready to define the steady state distribution of ri(t):
Definition D.2 (Steady state distribution of rewards). Let r be a random variable with range [− , ]
whose probability distribution characterizes the steady state distribution of ri(t). It has probability
masses on the boundaries, i.e., P[r = ] = P[r = − ] = p , and probability density function fp on
(− , ) as defined in (11), that satisfies the following conditions:

1. P [α(r + ϵ) ≥ ] = P [α(r + ϵ) ≤ − ] = p.
2. P [α(r + ϵ) < y] = p+

∫ y

−
fp(x)dx for all y ∈ (− , ).

Note that the probability masses on the boundaries result from the truncating boundary condition,
and by symmetry, the masses on upper and lower boundaries are the same. If one adopts a reflecting
boundary condition, we would have p = 0; if one adopts an absorbing boundary condition, we would
have p = 1/2 (see [44] for definitions of the aforementioned boundary conditions).

We remark that for any fixed σ ∈ (0, 1), when α → 1, the probability density function fp(x) in
the steady state distribution of ri(t) can be well approximated by a constant function. In Figure 3,
we plot the PDF of the steady state distributions for α ∈ {0.3, 0.6, 0.9} (with σ = 0.8 and = 1),
and numerically compute the value of p (see legends in Figure 3)8. It can be seen that for larger α,
the distribution within the boundaries becomes almost “uniform”. In the other extreme case, when
α → 0, it can be seen both from Figure 3 and from the definition of fp(x) in Lemma D.1 that the
distribution can be approximated by a normal distribution.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

va
lu

e

= 0.3, p = 3 × 10 5

= 0.6, p = 0.04
= 0.9, p = 0.16

Figure 3: PDF of the steady state distribution of AR process with truncating boundaries for α ∈
{0.3, 0.6, 0.9}, σ = 0.8, = 1. The probability masses p associated with the steady state distribution
are included in the legends.

Proof of Lemma D.1: We first note that the continuous-time analogue of an AR-1 process is a
Ornstein-Uhlenbeck (OU) process [22], defined as the following stochastic differential equation
(SDE):

drt = κ (θ − rt) dt+ ζdWt, (12)

where κ, θ, ζ are constant parameters9 and Wt denotes the Wiener process10. If we perform Euler-
Maryuama discretization (see [34]) on the above OU process at ∆t, 2∆t, . . . , we get

rt+1 = κθ∆t− (κ∆t− 1)rt + ζϵ′t
√
∆t, (13)

where ϵ′t is a standard normal noise. Now, recall from Section 2 that the evolution of expected rewards
evolve as an independent AR-1 process:

ri(t+ 1) = αRi(t) = α (ri(t) + ϵi(t)) , (14)

where ϵi(t) ∼ N(0, σ). Let rt ≜ ri(t). By coefficients in (13) and (14), the two equations are
equivalent if we let κ = 1− α, θ = 0, ζ = ασ,∆t = 1. By plugging the values of coefficients into
(12), the continuous-time analogue of (14) can be described by the following SDE:

drt = (α− 1)rtdt+ ασdWt.

Let fp(x) be the PDF for the steady state distribution of ri(t) on ( , ), given that the probability
mass on either side of the boundary is p. We can now solve for fp(x) by solving the following

8For numerically simulating steady state distributions of SDEs, see [34].
9We will see that when rt follows an AR-1 process with AR parameter α and stochastic rate of change σ,

these constants take the following values: κ = 1− α, θ = 0, η = ασ.
10A Wiener process Wt is a continuous-time stochastic process that satisfies the following properties: (i) W0 =

0; (ii) Wt is continuous in t; (iii) {Wt}t≥0 has stationary, independent increments; (iv) Wt+s −Ws ∼ N(0, t).
(See [20] for more details.)
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ordinary differential equation (see [23, 44] for a discussion of forward and backward equations for
SDEs):

(1− α)(fp(x) + xf ′
p(x)) +

1

2
α2σ2f ′′

p (x) = 0 , (15)

which gives

fp(x) = C̃(α, σ) exp(
(α− 1)x2

α2σ2
),

for C̃ that depends on α, σ. Since fp(x) is a probability density, we can solve for C̃(α, σ) by requiring∫
− fp(x) dx = 1− 2p , given that the total probability within the boundaries is 1− 2p. This then

gives

C̃(α, σ) = (1− 2p)
√
1− α/(

√
πασ erf

( √
1− α

ασ

)
) = (1− 2p)C(α, σ) ,

where C(α, σ) is defined in the statement of Lemma D.1. ■

E Additional Illustrations

E.1 Illustration of g(k, α, σ) in Regret Lower Bound

Recall that in Section 3, we characterize our regret lower bound to be Ω(g(k, α, σ)ασ), where
g(k, α, σ) is the probability that two best arms are within ασ distance of each other at any given round
under the steady state distribution, with its closed form presented in Equation (16) in Appendix F.

To better understand how g(k, α, σ) evolves in terms of our parameters, in Figure 4 we plot the
evolution of g(k, α, σ) in terms of σ in two different regimes: (i) a small-α regime when α = 0.4,
and (ii) a large-α regime when α = 0.9. Note that here, we consider the two regimes separately
because in Section 5, we will show that the large-α regime is inherently much more challenging than
the small-α regime.

In Figure 4, we see that in the small-α regime (α = 0.4), g(k, α, σ) is roughly constant as σ increases,
while in the large-α regime (α = 0.9), g(k, α, σ) is roughly linear in terms of σ. To understand why,
recall from our discussion in Appendix D that when α → 0, the steady state distribution approaches
a normal distribution with standard deviation proportional to ασ, while when α → 1, the steady state
distribution resembles a uniform distribution. Hence, when α is small, we expect g(k, α, σ) to be
roughly constant in terms of σ, while when α is close to one, we expect g(k, α, σ) to be roughly
linearly in terms of σ. Here, our observations in Figure 4 concur with our discussion in Appendix D.

0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

g(
k,

,
)

= 0.4
= 0.9

Figure 4: The evolution of function g(k, α, σ), as defined in Equation (16) in Appendix F, with
respect to σ. Here, we set α ∈ {0.4, 0.9}, k = 5 and = 1.

E.2 Illustration of Upper/Lower Bounds in the Small-α Regime

In Figure 5, we illustrate the evolution of our upper and lower bounds in the small-α regime (i.e.,
α ∈ (0, ᾱ)). Here, we take α = 0.4, and similar plots can be obtained for different values of α < ᾱ.
Recall from Section 5 that this regime is considered less challenging due to our result in Theorem 5.1,
which states that any algorithm can attain near-optimal performance when α ∈ (0, ᾱ). Here, Figure
5 reveals that our upper/lower bounds indeed have the same trend of increase in terms of σ in the
small-α regime, which complements our result in Figure 1 (that shows our upper/lower bounds match
in terms of α in the small-α regime).
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Figure 5: Comparison of the order of the regret upper bound in Theorem 5.1 and the order of the
lower bound in Theorem 3.1, with respect to σ, obtained with k = 5, α = 0.4, = 1, C = 0.4. This
plot complements Figure 1 that shows dependency on α.
E.3 Illustrations of Upper/Lower Bounds and Per-Round Regrets of AR2

To further highlight the significance of Theorem 5.2 and how well it characterizes the performance of
AR2, in Figure 6, we plot the evolution of the upper bound in Theorem 5.2, the lower bound O(kα2σ2)
for α close to one, and the per-round regret attained by AR2, at different values of parameters α and σ
respectively. In Figure 6a, the per-round regret of AR2 increases at roughly the same rate as the upper
and lower bounds, and stays close to the lower bound, as α increases. In Figure 6b, the upper and
lower bounds follow the same trend of increase with respect to σ. We note that as σ increases, the
upper bound loosens up as the per-round regret of AR2 experiences smaller growth and approaches
the worst-case lower bound. This especially highlights the strength of AR2 in adapting to a rapidly
changing environment.
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(a) Evolution of the upper/lower bounds and
per-round regret of AR2 with varying α. We
take α ∈ [0.85, 0.95] and σ = 0.4.
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(b) Evolution of the upper/lower bounds and
per-round regret of AR2 with varying σ. We
take σ ∈ [0.1, 0.5] and α = 0.9.

Figure 6: Comparison of the order of regret upper bound of AR2 (Theorem 5.2), the order of the lower
bound, and per-round regret attained by AR2 (averaged across 100 experiments). The constants of
upper/lower bounds are tuned for illustration purposes. Here, k = 5 and = 1.

F Missing Proof of Section 3

Before we show the proof for Theorem 3.1, we first present Lemma F.1 [17] which characterizes the
joint distribution for order statistics.
Lemma F.1 (The joint distribution of order statistics of a continuous distribution). Let X(1) ≤
X(2) ≤ · · · ≤ X(k) be the order statistics of k i.i.d. samples drawn from some continuous distribution
with probability density function (PDF) f(x) and cumulative density function (CDF) F (x). The joint
PDF of X(j), X(j) for any 1 ≤ i < j ≤ k is

fX(i),X(j) (u, v) =
k!F (u)

i−1
(F (v)− F (u))

j−i−1
(1− F (v))

k−j
f (u) f (v)

(i− 1)!(j − i− 1)!(k − j)!

In particular, if we take i = k − 1 and j = k, Lemma F.1 suggests that

fX(k−1),X(k) (u, v) = k(k − 1)F (u)
k−2

f(u)f(v),

which will be used in the following proof of Theorem 3.1.
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Proof of Theorem 3.1: The proof proceeds in two steps. First, we compute the probability that the
expected rewards of two best arms are close to each other at any given round t. Then, conditioning
on this event, we show that at the next round t+ 1, any algorithm incurs Ω(ασ) regret with constant
probability.

Step 1. We first lower bound the probability that the expected rewards of the two best arms are within
ασ of each other at round t. Recall from Appendix D that ri(t) follows the steady state distribution
with probability mass p on the boundary and PDF fp(x) defined in (11) within the boundaries. Let
F (x) be the CDF of the the steady state distribution of ri(t). We can compute the probability that the
expected rewards of the two best arms are within ασ by breaking the event into the following cases:

1. Both arms are at the upper boundary. This will happen with probability
∑k

j=2

(
k
j

)
pj(1−

p)k−j , where j denote the number of arms are at the upper boundary, i.e., have expected
reward .

2. The best arm is at the upper boundary, and the second best arm is within the boundaries.

This will happen with the following probability: k(k − 1) · p ·
∫

−ασ
F (x)k−2fp(x)dx

3. Both the best arm and the second best arm are between the boundaries. This will happen

with the following probability: k(k−1)
∫ ασ

0

∫
− F (x)k−2fp(x)fp(x+ z)dxdz . To obtain

this probability, we used the joint PDF stated in Lemma F.1.

4. The best arm is within the boundaries, and the second best arm is at the lower boundary.

This will happen with the following probability k ·
∫ ασ−
− fp(x)dx · pk−1 .

5. Both arms are at the lower boundary. This will happen with probability pk.

We define g(k, α, σ) as the probability that the expected rewards of the two best arms are within ασ
of each other at round t, which is the sum of the terms above:

g(k, α, σ) =

k∑
j=2

(
k

j

)
pj(1− p)k−j + k(k − 1) · p ·

∫
−ασ

F (x)k−2fp(x)dx

+ k(k − 1)

∫ ασ

0

∫
−

F (x)k−2fp(x)fp(x+ z)dxdz + k ·
∫ ασ−

−
fp(x)dx · pk−1 + pk

(16)

We now make a brief remark about the order of g(k, α, σ) as α approaches one. First note that among
the aforementioned cases, the first three cases would happen with probability at least 1/2 given that
the steady state distribution of expected reward is symmetric and the expected rewards of the two
best arms are skewed towards the upper boundary. Conditioning on the third case, i.e., both the best
and the second best arms are within the boundaries, as α approaches one, the conditional PDF can be
approximated as a uniform function (see Remark G.1 in Appendix G for a related discussion), and
hence the conditional probability that two best arms are within ασ of each other are of order Ω(kασ).
Further, conditioning on the first and the second cases, i.e., the best arm is at the upper boundary, the
conditional probability that two best arms are within ασ of each other are lower bounded by Ω(kασ).
We thus have g(k, α, σ) ≥ Ω(kασ) as α approaches one.

Step 2. Let A be any algorithm that selects arm A(t) at round t. In this step, we show that
conditioning on the event that the two best arms are within ασ of each other at round t, with constant
probability, A will make a mistake at round t+ 1 and incur regret of order O(ασ).

Without loss of generality, let us suppose r1(t) ≥ · · · ≥ rk(t), and that algorithm A(t) selects arm 1
at round t (if A(t) selects a different arm at round t, the following proof works similarly). We first
assume that r1(t) ∈ [− +3σ, − 3σ]. Let Φ(x) be the CDF of standard normal distribution. Since
ϵi(t)

i.i.d.∼ N(0, σ), when A pulls arm 1 at round t, with constant probability 2Φ( 12 ) − 1, we have
|ϵ1(t)| ≤ σ

2 . Let A(t+ 1) be the arm that A chooses to pull at round t+ 1. At round t+ 1, one of
the following scenarios will take place:

9



(i) If A(t+ 1) = 1, then if ϵ2(t) ∈ [2σ, 3σ], it will incur regret

r2(t+ 1)− r1(t+ 1) = α (r2(t) + ϵ2(t)− r1(t)− ϵ1(t))

≥ α(ϵ2(t)− |r2(t)− r1(t)| − |ϵ1(t)|)

≥ α(2σ − ασ − σ

2
)

≥ ασ

2
.

The event ϵ2(t) ∈ [2σ, 3σ] happens with constant probability Φ(3)− Φ(2).

(ii) If A(t+ 1) = j for any j ̸= 1 at t+ 1, then if ϵj(t) ∈ [−2σ,−σ], it will incur regret

r1(t+ 1)− rj(t+ 1) = α (r1(t) + ϵ1(t)− rj(t)− ϵj(t))

≥ α(ϵ1(t)− ϵj(t))

≥ α(−σ

2
+ σ)

=
ασ

2
.

The event ϵj(t) ∈ [−2σ,−σ] happens with constant probability Φ(2)− Φ(1).

In all of the above cases, we show that A will incur regret at least ασ
2 with constant probability,

conditioning on the event that r(1) − r(2) ≤ ασ. If r1(t) is close to either side of the boundary, a
similar analysis can establish the same result. To see that, if r1 ∈ [ − 3σ, ] and A pulls arm
1 at round t, with constant probability we have ϵ1(t) ∈ [−2σ,−3σ]. Then, we have one of the
following: (i) A(t+ 1) = 1. If |ϵ2(t)| ≤ σ

2 , arm 1 is sub-optimal and incurs regret by at least ασ
2 ;

(ii) A(t + 1) = j for some j ̸= 1. If ϵj(t) ∈ [−3σ,−4σ], arm j is sub-optimal and incurs regret
by at least ασ. This, again, shows that A incurs regret at least Ω(ασ) at round t+ 1 with constant
probability. The proof follows similarly when r1 ∈ [− ,− + 3σ].

Combining step 1 and 2, we conclude that the per-round regret of any algorithm A is at least
Ω(g(k, α, σ)ασ), which concludes the proof. ■

G Missing Proof of Section 5

Proof of Theorem 5.1: At any given round t, recall from Appendix D that ri(t) follows a steady
state distribution as defined in Definition D.2. Let us define r′i(t)

i.i.d.∼ N(0, ασ√
1−α2

). The variable
r′i(t) has the following PDF:

f ′(x) =

√
1− α2

√
2πασ

exp

(
(α2 − 1)x2

2α2σ2

)
for all x ∈ R. Note that for all 0 < s ≤ , we have that P [|ri(t)| > s] ≤ P [|r′i(t)| > s] ,
which can be obtained by directly computing both probabilities. Intuitively, one can think of the
normal distribution above as the steady state distribution of ri(t) that follows the same AR-1 process
ri(t+1) = α(ri(t)+ϵi(t)), without the truncating boundaries at [− , ]. As a result of the truncating
boundaries, the steady state distribution D (characterized in Appendix D) is more “concentrated”
than the normal distribution N(0, ασ√

1−α2
). Now, using the concentration bound for normal random

variable (see Lemma J.2), we have

P
[
|ri(t)| > c

ασ√
1− α2

]
≤ P

[
|r′i(t)| > c

ασ√
1− α2

]
≤ 2 exp(−c2

2
)

for every arm i ∈ [k]. Now let δ = 2 exp(− c2

2 ). By the union bound, with probability at least 1− kδ,
we would have |ri(t)| ≤ c ασ√

1−α2
for all i ∈ [k]. And hence ∆ri(t) ≤ 2c ασ√

1−α2
for all i ∈ [k]. Let

us denote the above event as E . If we set c =
√
2 log(1/ασ) + 2 log(2k), we would have δ = ασ

k ,
and hence P[E ] ≥ 1− kδ = 1− ασ.
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Let A be any non-anticipating algorithm that selects arm A(t) at round t. The expected regret A
incurs at round t is

E[∆rA(t)(t)] = E[∆rA(t)(t)|E ]P[E ] + E[∆rA(t)(t)|Ec]P[Ec] ≤ 2c
ασ√
1− α2

+ 2 · ασ

= O

(
c

ασ√
1− α2

)
= O

(√
log(1/ασ) + log k)

ασ√
1− α2

)
Given that the per-round regret is also bounded by 2 , this naturally gives

1

T
E

[
T∑

t=1

∆rA(t)(t)

]
= O

(
min(

√
log(1/ασ) + log k

ασ√
1− α2

, 2 )

)
. ■

In Section 5, we choose ᾱ ≜ 0.5 as the threshold value such that when α ∈ [ᾱ, 1), the problem is
more challenging and thereby of our interest. Given the threshold ᾱ, we further expand on the remark
made in Appendix D, which will be useful in the proof of Lemma 6.4 in Appendix H.

Remark G.1 (Uniform Approximation). For any fixed σ ∈ (0, 1), when α → 1, the probability
density function that characterizes steady state distribution of ri(t) within the boundaries can be well
approximated by a constant function. This can be seen from

max
x∈(− , )

fp(x)− min
x∈(− , )

fp(x) = (1− 2p)

[
1− exp

(
(α− 1)

2

α2σ2

)]
C(α, σ) −→

α→1
0.

In particular, by Lemma D.1, for any α ∈ [ᾱ, 1) and σ ≥ c′
√
1− α, we can bound the PDF fp(x)

that characterizes the steady state distribution of ri(t) for all x ∈ [− , ] using constants:

ρ− ≤ fp(x) ≤ ρ+, (17)

where ρ− = (1− 2p)C(ᾱ, c′
√
1− ᾱ) exp

(
− 2

/ᾱ2c′2
)
, ρ+ = (1− 2p)C(ᾱ, c′

√
1− ᾱ) are both

constants.

When α ∈ [ᾱ, 1) and σ = o(
√
1− α), the steady state distribution of ri(t) can be well approximated

by a normal distribution, and similar to what we show in Theorem 5.1, in this case even the naive
algorithm performs well. We thus focus on the more challenging regime when α ∈ [ᾱ, 1) and
σ = Ω(

√
1− α) in the following analysis.

H Missing Proofs of Section 6

H.1 Step 2: Good event and its implications.

In Section 6, we define a new noise term in (5) that shows the influence of truncating boundary:

ϵ̃i(t) =

{
ϵi(t) if α(ri(t) + ϵi(t)) ∈ [− , ]
1
α [B

(
α(ri(t) + ϵi(t))

)
− αri(t)] otherwise

The new noise ϵ̃i(t) satisfies the recursive relationship: ri(t+1) = αri(t) +αϵ̃i(t). Recall that here,
the boundary function is defined as B(y) = min{max{y,− }, }.

Before proceeding with the proof of Lemma 6.3, we first show an auxiliary lemma that establishes
the relationship between ϵ̃i(t) and ϵi(t). In particular, Lemma H.1 shows that if the weighted sum of
ϵi(t) is small with high probability, the weighted sum of ϵ̃i(t) is also small with high probability.

Lemma H.1. For any s > 0, i ∈ [k], and rounds t0 < t1, we have

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵ̃i(t)
∣∣∣ ≤ s

]
≥ P

[∣∣∣ t1−1∑
t=t0

αt1−tϵi(t)
∣∣∣ ≤ s

]
. (18)
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Proof of Lemma H.1: For simplicity of notation, let us drop the notation for dependence on i. We
first show that the following inequality holds for any r(t0):

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵ̃(t)
∣∣∣ ≤ s | r(t0)

]
≥ P

[∣∣∣ t1−1∑
t=t0

αt1−tϵ(t)
∣∣∣ ≤ s | r(t0)

]
. (19)

To show (19), we first consider a fictional scenario in which r(.) only gets truncated at the first
time it hits the boundary, and no longer gets truncated afterwards. Let t′ denote the first round at
which r(.) hits the boundary. With slight abuse of notation, we define corresponding fictional noises
ϵ1(t0), . . . , ϵ1(t1 − 1) such that ϵ1(t) = ϵ(t) for all t ̸= t′ and ϵ1(t

′) = ϵ̃(t′).

Since the expected reward r(.) hits the boundary for the first time at t′, we have |αr(t′)+αϵ(t′)| >
for some t0 ≤ t′ < t1. Recall that in the fictional scenario, ϵ1(t) = ϵ(t) for all t < t′. Let
L = αt′−t0+1r(t0), E1 =

∑t′−1
t=t0

αt′−t+1ϵ(t). Without loss of generality, let us assume that the
expected reward hits the upper boundary , i.e.

< αr(t′) + αϵ(t′) = L+

t′∑
t=t0

αt′−t+1ϵ(t) = L+ E1 + αϵ(t′).

Let d = L+E1+αϵ(t′)− > 0 be the distance by which the expected reward exceeds the boundary
at t′. By (5) and the definition of the truncating boundary in Section 2, we have

αr(t′) + αϵ1(t
′) = B(αr(t′) + αϵ(t′)) = .

From the discussion above, we have E1 + αϵ(t′) = + d−L and E1 + αϵ1(t
′) = −L. Since in

the fictional scenario, the expected reward only gets reflected at the first time of hitting the boundary,
we also have ϵ1(t) = ϵ(t) for all t > t′. Let E2 =

∑t1−1
t=t′+1 α

t1−tϵ(t) denote the weighted sum of
the noises after time of reflection t′. Now conditioning on the initial expected reward r(t0), we have

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵ1(t)
∣∣∣ ≤ s | r(t0)

]
= P

[∣∣∣αt1−t′−1E1 + αt1−t′ϵ1(t) + E2

∣∣∣ ≤ s | r(t0)
]

= P
[
− s− αt1−t′−1( − L) ≤ E2 ≤ s− αt1−t′−1( − L) | r(t0)

]
≥ P

[
− s− αt1−t′−1( + d− L) ≤ E2 ≤ s− αt1−t′−1( + d− L) | r(t0)

]
= P

[∣∣∣αt1−t′−1E1 + αt1−t′ϵ(t) + E2

∣∣∣ ≤ s | r(t0)
]
= P

[∣∣∣ t1−1∑
t=t0

αt1−tϵ(t)
∣∣∣ ≤ s | r(t0)

]
. (20)

Note that the inequality in (20) holds because E2 is normally distributed (it is a weighted sum of
normal noises). If we let q1 = αt1−t′−1( − L) and q2 = αt1−t′−1( + d − L), we must have
|q1| < |q2|. This, along with the normal distribution of E2, gives

P[−s− q1 ≤ E2 ≤ s− q1] ≥ P[−s− q2 ≤ E2 ≤ s− q2].

Following the same procedure as above, we can define fictional scenarios in which r(.) only gets
truncated when it hits the boundary for the first m times, for 1 ≤ m ≤ t1 − t0. We can then define
corresponding fictional noises ϵm(t0), . . . , ϵm(t1 − 1) and use the same proof ideas to show

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵm(t)
∣∣∣ ≤ s | r(t0)

]
≥ P

[∣∣∣ t1−1∑
t=t0

αt1−tϵm−1(t)
∣∣∣ ≤ s | r(t0)

]
for all 1 ≤ m ≤ t1− t0. Note that if m = t1− t0, the fictional rewards ϵm = ϵ̃ for all t ∈ [t0, t1− 1].
Hence,

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵ̃(t)
∣∣∣ ≤ s | r(t0)

]
≥ P

[∣∣∣ t1−1∑
t=t0

αt1−tϵ(t)
∣∣∣ ≤ s | r(t0)

]
.

Finally, since (19) holds for any initial expected reward r(t0), taking expectation with respect to r(t0)
gives (18), which concludes the proof. ■
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Proof of Lemma 6.3: Let us first consider the sequence of noises ϵi(t) (i.e., the noises before
applying the truncating boundary). For any fixed i ∈ [k], and for t′ ∈ [t−∆ep, t+∆ep], we have

ϵi(t
′)

i.i.d.∼ N(0, σ). Then, by Hoeffding’s inequality (see Lemma J.3, where for 1 ≤ j ≤ t1 − t0, we

set Xj = αjϵi(t1−j), σj = αjσ and s = c0σ
t1−t0

√
α2−α2(t1−t0+1)

1−α2 ), for t−∆ep ≤ t0 < t1 ≤ t+∆ep,
we have

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵi(t)
∣∣∣ > c0σ

√
(α2 − α2(t1−t0+1))/(1− α2)

]
≤ 2 exp(−c20

2
) =

(ασ)2

2k∆2
ep
,

where the last equality follows from c0 =
√

4 log(1/ασ) + 4 log∆ep + 2 log(4k). By Lemma H.1,
we can use the above inequality to also obtain a concentration inequality for the weighted sum of the
new noises ϵ̃i(t), which incorporate the influence of truncating boundary:

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵ̃i(t)
∣∣∣ > c0σ

√
(α2 − α2(t1−t0+1))/(1− α2)

]

≤ P
[∣∣∣ t1−1∑

t=t0

αt1−tϵi(t)
∣∣∣ > c0σ

√
(α2 − α2(t1−t0+1))/(1− α2)

]
≤ (ασ)2

2k∆2
ep
.

Since we have k arms and the number of sub-intervals to consider in [t−∆ep, t+∆ep] is 2∆ep(2∆ep−1)
2 ,

we can apply union bounds to get

P[Gc(t)] ≤
k∑

i=1

∑
t−∆ep≤t0<t1≤t+∆ep

P
[∣∣∣ t1−1∑

t=t0

αt1−tϵ̃i(t)
∣∣∣ > c0σ

√
(α2 − α2(t1−t0+1))/(1− α2)

]

≤
k∑

i=1

2∆ep(2∆ep − 1)

2
· (ασ)

2

2k∆2
ep

≤
k∑

i=1

2∆2
ep ·

(ασ)2

2k∆2
ep

= (ασ)2. ■

Having showed that good event G(t) happens with high probability, we now establish a number of
important implications of the good event:

(i) In Lemma H.2, we show that the expected reward ri(t) satisfies a series of concentration
inequalities. These inequalities guarantee that our estimated reward r̂i(t) does not deviate
too much from the true expected reward ri(t).

(ii) In Lemma H.3, we show that AR2 does not wait too long to play an arm with high expected
reward.

(iii) In Lemma H.4, we show that the best expected reward r⋆(t) is not too far away from our
estimate reward for the superior arm r̂sup(t).

These implications will be critical for our proof of Lemma 6.4. Before we proceed, let us define the
following:

F(∆t) ≜ c0σ
√
α2 + α4 + · · ·+ α2∆t = c0σ

√
(α2 − α2(∆t+1))/(1− α2), (21)

where the second equality follows from the geometric sum formula. The expression (21) will be used
throughout the rest of the analysis. In particular, since c1 = 24c0, the triggering criteria becomes: at
round t, an arm i ̸= isup(t) gets triggered if the following is satisfied:

r̂sup(t)− r̂i(t) ≤ c1σ
√
(α2 − α2(t−τi(t)+1))/(1− α2) = 24F(t− τi(t)) .

Lemma H.2. Given G(t), for any arm i ∈ [k] and any rounds t0, t1 such that t−∆ep ≤ t0 < t1 ≤
t+∆ep, the expected rewards satisfy the following inequalities:

|ri(t1)− αt1−t0ri(t0)| ≤ F(t1 − t0) (22)

|r⋆(t1)− αt1−t0r⋆(t0)| ≤ F(t1 − t0) (23)

|∆ri(t1)− αt1−t0∆ri(t0)| ≤ 2F(t1 − t0) (24)
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Proof of Lemma H.2 Given the AR-1 model and (5), we have the following recursive relationship

ri(t1) = α [ri(t1 − 1) + ϵ̃i(t1 − 1)]

= α [α(ri(t1 − 2) + ϵ̃i(t1 − 2)) + ϵ̃i(t1 − 1)]

= αt1−t0ri(t0) +

t1−1∑
t=t0

αt1−tϵ̃i(t) (25)

by repeating the above steps. Then by Lemma 6.3, we have that

∣∣ri(t1)− αt1−t0ri(t0)
∣∣ = ∣∣∣∣∣

t1−1∑
t=t0

αt1−tϵ̃i(t)

∣∣∣∣∣ ≤ F(t1 − t0),

which concludes the proof for (22).

As for (23), note that

r⋆(t1) = max
i∈[k]

ri(t1) ≤ max
i∈[k]

{
αt1−t0ri(t0) + F(t1 − t0)

}
≤ αt1−t0r⋆(t0) + F(t1 − t0)

and the other side of the inequality can be derived similarly.

The last inequality (24) easily follows from (22), (23), and the triangle inequality

|∆ri(t1)− αt1−t0∆ri(t0)| ≤ |(r⋆(t1)− ri(t1))− αt1−t0(r⋆(t0)− ri(t0))|
≤ |r⋆(t1)− αt1−t0r⋆(t0)|+ |ri(t1)− αt1−t0ri(t0)| ≤ 2F(t1 − t0).

This concludes the proof of Lemma H.2. ■
Lemma H.3. Suppose we apply AR2 to the non-stationary MAB problem with α ∈ [ᾱ, 1) and
k ≤ K(α), given G(t), the following holds for the best arm i at round t: t− τi(t) ≤ 4k − 3.

Proof of Lemma H.3 Suppose α ∈ [ᾱ, 1). Let arm i be the best arm at round t, i.e. i =
argmaxj rj(t). We let τ = τi(t), and let τ trig ≥ τ be the triggering time of arm i after it gets pulled
at round τ . First note that by design of AR2, we must have t− τ trig ≤ 2(k − 1), since at any given
round there are at most k− 1 triggered arms. We would prove the statement of the lemma by showing
the following inequality:

τ trig − τ ≤ t− τ trig + 1 (26)
If (26) holds, we then have t− τ = (τ trig − τ) + (t− τ trig) ≤ 2(t− τ trig) + 1 ≤ 4k − 3.

Suppose by contradiction that (26) does not hold. By the triggering criteria, we have

r̂sup(τ
trig − 1)− r̂i(τ

trig − 1) > 24 · F((τ trig − 1)− τ) (27)

Let j = isup(τ
trig−1) as defined in (1). Hence we have r̂sup(τ

trig−1) = rj(τ
trig−1) or r̂sup(τ

trig−1) =
αrj(τ

trig − 2). Let us assume r̂sup(τ
trig − 1) = rj(τ

trig − 1) and the proof follows similarly for the
other case. Since we also have r̂i(τ trig − 1) = ατ trig−τ−2B(αXi(τ)) = ατ trig−τ−2ri(τ + 1), (27) can
be rewritten as

rj(τ
trig − 1)− ατ trig−τ−2ri(τ + 1) > 24 · F((τ trig − 1)− τ) (28)

By (22) of Lemma H.2, we also have the following two inequalities:

ri(t) ≤ αt−(τ+1)ri(τ + 1) + F(t− (τ + 1)) (29)

rj(t) ≥ αt−(τ trig−1)rj(τ
trig − 1)−F(t− (τ trig − 1)) (30)

Then by (29) and (30), we have

rj(t)− ri(t) ≥
(
αt−(τ trig−1)rj(τ

trig − 1)−F(t− (τ trig − 1))
)
−
(
αt−(τ+1)ri(τ + 1) + F(t− (τ + 1))

)
≥ αt−τ trig+1

(
rj(τ

trig − 1)− ατ trig−τ−2ri(τ + 1)
)
−F(t− (τ trig − 1))−F(t− (τ + 1))

≥ 24 · αt−τ trig+1F((τ trig − 1)− τ)−F(t− (τ trig − 1))−F(t− (τ + 1)),
(31)

14



where the last inequality follows from (28). Since k ≤ K(α), we have αt−τ trig+1 ≥ α2k−1 ≥ 1
8 ,

which yields

rj(t)− ri(t) ≥ 24 · 1
8
· F(τ trig − τ − 1)−F(t− τ trig + 1)−F(t− τ − 1).

Since τ trig − τ ≥ t− τ trig + 2, we have F(τ trig − 1− τ) ≥ F(t− τ trig + 1). This further yields

rj(t)− ri(t) ≥ (24 · 1
8
− 1) · F(τ trig − τ − 1)−F(t− τ − 1) = 2F(τ trig − τ − 1)−F(t− τ − 1).

(32)

Note that if τ trig − τ > t − τ trig + 1, then since t − τ = (t − τ trig) + (τ trig − τ), we must have
2(τ trig − τ) > t− τ + 1, and thus

2F(τ trig − τ − 1) = 2c0σ
√
α2 + · · ·+ α2(τ trig−τ−1)

> 2c0σ
√
α2 + · · ·+ αt−τ−1

> c0σ(
√
α2 + · · ·+ αt−τ−1 +

√
αt−τ+1 + · · ·+ α2(t−τ)−2)

≥ c0σ
√
α2 + · · ·+ α2(t−τ)−2 since

√
a+

√
b ≥

√
a+ b

= F(t− τ − 1).

Plugging this into (32) gives rj(t)−ri(t) > 0, which contradicts that arm i is the best arm at t. Hence,
we must have τ trig − τ ≤ t− τ trig + 1. By our previous argument, this then gives t− τ ≤ 4k − 3. ■
Lemma H.4. Suppose we apply AR2 to the non-stationary MAB problem with α ∈ [ᾱ, 1) and
k ≤ K(α), for any arm i ∈ [k] and round t, we have

r⋆(t)− r̂sup(t) ≤ O(c0σαk), (33)
where r̂sup(t) = r̂isup(t)(t) and isup(t) is defined in (1).

Proof of Lemma H.4: Without loss of generality, suppose that t is even, and as a result It = isup(t).
The proof then proceeds in two steps. In step one, we establish a recursive inequality for the estimated
reward of the superior arm. In step two, we show that the estimated reward of the superior arm is in
fact close to the expected reward of the best arm.

Step 1: Establish a recursive inequality for r̂sup(t). We first assume that isup(t) = It−2 and hence
r̂sup(t) = αB(αRisup(t)(t− 2)) = αrisup(t)(t− 1). We also have

risup(t)(t) = αrisup(t)(t− 1) + αϵisup(t)(t− 1) = r̂sup(t) + αϵisup(t)(t− 1),

which then gives
risup(t)(t) ≥ r̂sup(t)− αc0σ (34)

by definition of the good event G(t) (set t0 = t and t1 = t+ 1). Since It = isup(t), we additionally
have

r̂sup(t+ 1) ≥ B(αRisup(t)(t)) = α(risup(t)(t) + ϵisup(t)(t)) ≥ αrisup(t)(t)− αc0σ (35)
Combining (34) and (35) gives us the following inequality, which is the desired result.

r̂sup(t+ 1) ≥ α(r̂sup(t)− αc0σ)− αc0σ ≥ αr̂sup(t)− 2c0ασ. (36)

On the other hand, if isup(t) = It−1, we have risup(t)(t) = B(αRisup(t)(t − 1)) = r̂sup(t), and
combining this with (35) also gives

r̂sup(t+ 1) ≥ αrisup(t)(t)− αc0σ = αr̂sup(t)− αc0σ ≥ αr̂sup(t)− 2c0ασ.

Overall, we show that r̂sup(t+ 1) ≥ αr̂sup(t)− 2c0ασ, which completes the proof of the first step.

Step 2: Show that r̂sup(t) and r⋆(t) are close. For simplicity of notation, let j be the best
arm at round t, so r⋆(t) = rj(t). Let τ = τj(t). Recall that by Lemma H.3, we have that
t− τ ≤ 4k − 3 = O(k). First note that
r̂sup(t) ≥ αr̂sup(t− 1)− 2c0ασ by (36)

≥ αt−(τ+1)r̂sup(τ + 1)− 2c0σ(α+ · · ·+ αt−(τ+1)) by applying (36) recursively

≥ αt−(τ+1)r̂sup(τ + 1)− 2c0σ(α+ · · ·+ α4k−4) since t− τ ≤ 4k − 3

≥ αt−τ−1B(αRj(τ))− 2c0σα(4k − 4) since r̂sup(τ + 1) ≥ r̂j(τ + 1) = B(αRj(τ))

= αt−τ−1rj(τ + 1)−O(c0σαk)
(37)
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We also note that

r⋆(t) = rj(t) ≤ αt−τ−1rj(τ + 1) + F(t− τ − 1) by (22) of Lemma H.2

= αt−τ−1rj(τ + 1) + c0σ
√
α2 + · · ·+ α2(t−τ−1)

≤ αt−τ−1rj(τ + 1) + c0σα
√
t− τ

= αt−τ−1rj(τ + 1) +O(c0σα
√
k) since t− τ ≤ 4k − 3.

(38)

Combining (37) and (38) then gives r⋆(t) − r̂sup(t) ≤ O(c0σαk). The proof works in a similar
fashion for the case when t is odd. ■

H.2 Step 3: Distributed regret analysis.

Recall from Definition 6.1 that the distributed regret of arm i at round t is defined as

Di(t) =

(
∆ri(τi(t))

1 + α2 + · · ·+ α2(∆τi(t)−1)

)
α2(t−τi(t)). (39)

Before proceeding with the proof of Lemma 6.4, we first establish the following two claims. In
Claim H.5 and Claim H.6, we respectively bound the nominator and denominator of Di(t), condi-
tioning on the good event G(t) and the value of ∆ri(t).
Claim H.5. Suppose we apply AR2 to the non-stationary MAB problem with α ∈ [ᾱ, 1) and k ≤ K(α).
Given G(t), for any arm i ∈ [k], let η ≜ ∆ri(t) > 0 for time τi(t) ≤ t < τnexti (t), we have that the
nominator of (39) satisfies: α2(t−τi(t))∆ri(τi(t)) ≤ O(η + c0σα

√
k) .

Proof of Claim H.5: For simplicity of notation, let τ = τi(t) and τnext = τnexti (t). Let τ trig be the
first round at which arm i gets triggered after it gets pulled at round τ . We divide our proof into two
cases.

Case 1: τ trig − τ ≤ t− τ trig. If τ trig − τ ≤ t− τ trig ≤ O(k), we must have t− τ = O(k). Then by
(22) of Lemma H.2, we have

|∆ri(t)− αt−τ∆ri(τ)| ≤ 2F(t− τ) ≤ 2c0σα
√
t− τ ≤ O(c0σα

√
k)

⇒ αt−τ∆ri(τ) ≤ η +O(c0σα
√
k)

⇒ α2(t−τ)∆ri(τ) ≤ αt−τO(η + c0σα
√
k) ≤ O(η + c0σα

√
k).

Case 2: τ trig − τ > t− τ trig. Consider time t such that τ ≤ t < τnext. Then, we have

r̂sup(t) = max
{
B(αRIt−1

(t− 1)), αB(αRIt−2
(t− 2))

}
= max

{
rIt−1

(t), αrIt−2
(t− 1)

}
≤ max {r⋆(t), αr⋆(t− 1)} ≤ max

{
r⋆(t), r⋆(t) + 2c0σ

√
α2
}

by (23) of Lemma H.2

= r⋆(t) + 2c0σα.
(40)

Let t′ = τ trig − 1 denote the round right before the round arm i gets triggered. Then since at round t′

the arm has not been triggered, we have

24F(t′ − τ) ≤ r̂sup(t
′)− r̂i(t

′)

≤ r⋆(t′) + 2c0σα− αt′−τ−1ri(τ + 1) by (40)

≤ ∆ri(t
′) + 2c0σα+ F(t′ − (τ + 1)) by (22) of Lemma H.2

≤ ∆ri(t
′) + 2c0σα+ F(t′ − τ) (41)

This then gives

F(t′ − τ) ≤ 1

23
(∆ri(t

′) +O(c0σα)) (42)

By (22) of Lemma H.2 and Equation (42), we also have

αt−t′∆ri(t
′) ≤ ∆ri(t) + 2F(t− t′) ≤ ∆ri(t) +

2

23
∆ri(t

′) +O(c0ασ) (43)
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We also have
α2k−1∆ri(t

′) ≤ αt−t′∆ri(t
′), (44)

since t− t′ = t− τ trig +1 ≤ 2(k− 1)+ 1 = 2k− 1. Now since k ≤ K(α) = 1
2 (log(

1
8 )/ logα+1),

we have α2k−1 ≥ 1
8 , and hence(

1

8
− 1

23

)
∆ri(t

′) ≤ ∆ri(t) +O(c0ασ) (45)

Now by (22) of Lemma H.2, we also have

αt′−τ∆ri(τ) ≤ ∆ri(t
′) + 2F(t′ − τ) ≤ ∆ri(t

′) +
2

23
∆ri(t

′) +O(c0ασ), (46)

where the last inequality follows from (42) and t− t′ ≤ t′ − τ . By multiplying the last equation by
αt−t′ , and by applying Equation (45), we then have

αt−τ∆ri(τ) ≤ αt−t′
(
∆ri(t

′) +
2

23
∆ri(t

′) +O(c0ασ)

)
≤ (1 +

2

23
)αt−t′∆ri(t

′) +O(c0α
t−t′+1σ)

≤ (1 +
2

23
)
∆ri(t) +O(c0ασ)

1
8 − 1

23

+O(c0α
t−t′+1σ) = O(∆ri(t) + c0ασ) = O(η + c0ασ)

(47)
Since t− τ ≥ 0, we then have α2(t−τ)∆ri(τ) ≤ O(η + c0ασ).

In summary of both cases, we have α2(t−τ)∆ri(τ) ≤ O(η + c0σα
√
k). ■

Claim H.6. Suppose we apply AR2 to the non-stationary MAB problem with α ∈ [ᾱ, 1) and k ≤ K(α).
Given G(t), for any arm i ∈ [k], let η ≜ ∆ri(t) > 0 for time τ ≤ t < τ next, the denominator of (3)
satisfies

1 + α2 + · · ·+ α2(∆τ−1) =
1− α2∆τ

1− α2
≥ max{Ω( η2

c20σ
2α2k2

), 1}.

Proof of Claim H.6 The first equality follows from the geometric sum formula. Since 1+α2+ · · ·+

α2(∆τ−1) ≥ 1, it suffices to show that it is also lower bounded by Ω(
η2

c20σ
2α2k2

). Let τ ≤ t < τnext

and recall that η = ∆ri(t). We divide our proof into two cases.

Case 1: αt−τ∆ri(τ) ≤ η/2. Then by (22) of Lemma H.2, we have

|η − αt−τ∆ri(τ)| = |∆ri(t)− αt−τ∆ri(τ)| ≤ 2F(t− τ)

⇒2F(t− τ) ≥ η/2 ⇒ 2c0σα
√

(1− α2(t−τ))/(1− α2) ≥ η/2

⇒(1− α2(t−τ))/(1− α2) ≥ Ω(
η2

c20σ
2α2

)

Since ∆τ ≥ t− τ , we have
1− α2∆τ

1− α2
≥ 1− α2(t−τ)

1− α2
≥ Ω(

η2

c20σ
2α2

).

Case 2: αt−τ∆ri(τ) > η/2. We would show that
1− α2∆τ

1− α2
≥ Ω(

η2

c20σ
2α2k2

). We have

r̂sup(t)− r̂i(t) = r̂sup(t)− αt−τri(τ)

≥ (r⋆(t)−O(c0σαk))− αt−τ (r⋆(τ)−∆ri(τ)) by Lemma H.4

= αt−τ∆ri(τ) +
(
r⋆(t)− αt′−τr⋆(τ)

)
−O(c0σαk)

≥ η

2
− (2F(t− τ) +O(c0σαk)) by (23) of Lemma H.2

≥ η

2
−O (kF(t− τ)) .

(48)
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Now consider τ trig, the round at which arm i gets triggered. By the triggering criteria, we have

r̂sup(τ
trig)− r̂i(τ

trig) ≤ 24F(τ trig − τ) ⇒ η

2
−O

(
kF(τ trig − τ)

)
≤ 24F(τ trig − τ) by (48)

⇒ O
(
kF(τ trig − τ)

)
≥ η

2

⇒ α2 − α2(τ trig−τ+1)

1− α2
≥ O(

η2

c20σ
2k2

) by (21)

⇒ 1− α2(τ trig−τ)

1− α2
≥ O(

η2

c20α
2σ2k2

)

(49)
Since we must have ∆τ > τ trig − τ , we have

1− α2∆τ

1− α2
≥ 1− α2(τ trig−τ)

1− α2
≥ Ω(

η2

c20α
2σ2k2

) . ■

Having showed Claim H.5 and Claim H.6, we now formally prove Lemma 6.4.

Proof of Lemma 6.4: Fix arm i ∈ [k] and round t. For simplicity of notation, let τ = τi(t),
τnext = τnexti (t) and ∆τ = ∆τi(t). Let us write E[Di(t)1G(t)] = E[Di(t)1G(t)1{∆ri(t)=0}] +
E[Di(t)1G(t)1{∆ri(t)>0}], and in the following analysis, we will bound the two terms on the right-
hand side respectively.

First term (Arm i is optimal at round t). We first rewrite the first term as
E[Di(t)1G(t)1{∆ri(t)=0}] = E[Di(t)|G(t) ∩ {∆ri(t) = 0}] · P[G(t) ∩ {∆ri(t) = 0}].

Note that if G(t) takes place and ∆ri(t) = 0, we have

αt−τ∆ri(τ) =
∣∣αt−τ∆ri(τ)−∆ri(t)

∣∣ ≤ 2F(t− τ) . (50)

by (24) in Lemma H.2. By Definition 6.1, we have

Di(t) =

(
∆ri(τ)

1 + α2 + · · ·+ α2(∆τ−1)

)
α2(t−τ) =

(
αt−τ∆ri(τ)

1
α2 (α2 + · · ·+ α2∆τ )

)
αt−τ

≤

(
2c0σ

√
α2 + · · ·+ α2(t−τ)

α2 + · · ·+ α2∆τ

)
αt−τ+2 by (21) and (50)

≤
(

2c0σ√
α2 + · · ·+ α2(t−τ)

)
αt−τ+2 since 1 ≤ t− τ ≤ ∆τ

(51)
That is,

E[Di(t)|G(t) ∩ {∆ri(t) = 0}] ≤
(

2c0σ√
α2 + · · ·+ α2(t−τ)

)
αt−τ+2. (52)

Now, let j be the optimal arm at time τ . If G(t) takes place and ∆ri(t) = 0, we have

∆rj(t) =
∣∣αt−τ∆rj(τ)−∆rj(t)

∣∣ ≤ 2F(t− τ) .

by (24) in Lemma H.2. Hence we have

P[G(t) ∩ {∆ri(t) = 0}] ≤ P[∆rj(t) ≤ 2F(t− τ),where j = argmax
j′

rj′(τ)]

≤ P [∃j ̸= i such that ∆rj(t) ≤ 2F(t− τ)] .
(53)

Recall from the discussion in Appendix D and Remark G.1 that the steady state distribution of ri(t)
can be reasonably approximated by a uniform distribution, and (17) states that the PDF of the steady
state distribution f(x) satisfies ρ− ≤ f(x) ≤ ρ+ for all x ∈ [− , ], where ρ−, ρ+ are constants.
Now let r′1, . . . , r

′
k be k i.i.d. uniform(−1/2ρ+, 1/2ρ+) random variables. We have

P [∃j ̸= i such that ∆rj(t) ≤ 2F(t− τ)]

= P [the two best arms of {r1(t), . . . , rk(t)} are within 2F(t− τ)]

≤ P [the two best arms of {r′1, . . . , r′k} are within 2F(t− τ)] = O(k · F(t− τ))11 (54)
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Combining (53) and (54) thus gives

P[G(t) ∩ {∆ri(t) = 0}] ≤ O(k · F(t− τ)) (55)

Overall, by (52) and (55), for all t ≥ τ we have

E[Di(t)1G(t)1{∆ri(t)=0}] = E[Di(t)|G(t) ∩ {∆ri(t) = 0}] · P[G(t) ∩ {∆ri(t) = 0}]

≤
(

2c0σ√
α2 + · · ·+ α2(t−τ)

)
αt−τ+2 ·O (k · F(t− τ)) = O(c20σ

2α2k).

(56)

Second term (Arm i is sub-optimal at round t). Given G(t) and the value of η ≜ ∆ri(t) > 0,
we have bounded the nominator and denominator of Di(t) in Claim H.5 and Claim H.6 respectively.
For any time τ ≤ t < τ next, in Claim H.5 we have showed α2(t−τ)∆ri(τ) ≤ O(η + c0σα

√
k) and

in Claim H.6 we have showed 1 + α2 + · · ·+ α2(∆τ−1) ≥ max
{
Ω(

η2

c20σ
2α2k2

), 1
}
. These results

then give

E
[
Di(t)1G(t)1{∆ri(t)>0}|η

]
≲ min

{η + c0ασ
√
k

η2

c20α
2σ2k2

, η + c0ασ
√
k
}

Let C̃ = c0ασ
√
k, this then yields

E
[
Di(t)1G(t)1{∆ri(t)>0}|η

]
≲ min

{
k
(η + C̃

η2

C̃2

)
, η + C̃

}
= min

{
k(

C̃2

η
+

C̃3

η2
), η + C̃

}
.

This then further leads to

E
[
Di(t)1G(t)1{∆ri(t)>0}|η

]
≲

{
k C̃2

η if η > C̃

C̃ if 0 < η ≤ C̃

We can now bound the second term by taking expectation of the above expression with respect to η.
Recall from (17) that the PDF of the steady state distribution of ri(t) satisfies ρ− ≤ f(x) ≤ ρ+ for
all x ∈ [− , ], where ρ− and ρ+ are constants. This then gives

E[Di(t)1G(t)1{∆ri(t)>C̃}] ≲
∫ 1

C̃

k
C̃2

η
dη = O(kC̃2 log(C̃)) = O(c20α

2σ2k2 log(c0ασ
√
k)) (57)

and

E[Di(t)1G(t)1{0<∆ri(t)≤C̃}] ≲ C̃ · P[0 < ∆ri(t) ≤ C̃] = O(C̃2) = O(c20α
2σ2k), (58)

which provides an upper bound for the second term.

Finally, summing (56), (57), and (58) gives E[Di(t)1G(t)] ≤ O(c20α
2σ2k2 log(c0ασ

√
k)), which

concludes the proof of Lemma 6.4. ■

I Missing Proof of Section 8

Proof of Proposition 8.1: Before proceeding, we first make some notational changes that would
simplify our proof. Since we pull arm i consecutively for Test rounds for some fixed arm i ∈ [k], in
the rest of this proof we omit the dependency of Ri(t) on i and denote Rt ≜ Ri(t).

Let us first define the loss function L(α) stated in the optimization problem

α̂ = argmin
α∈(0,1)

L(α) , (59)

11This follows from the fact that if X(1) ≤ X(2) ≤ · · · ≤ X(k) are the order statistics of k i.i.d. uniform(0, 1)

random variables, then X(k) −X(k−1) follows the Beta(1, k) distribution with CDF F (x) = 1− (1− x)k for
x ∈ [0, 1] (see, e.g., [17]).
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which is the negative of the log-likelihood function:

L(α) = − 1

Test

Test∑
t=1

1{Rt = } log
[
1− Φ(

− αRt−1

σ
)
]

+ 1{Rt = − } log
[
Φ(

− − αRt−1

σ
)
]

+ 1{− < Rt < } log
[
Φ(

− αRt−1

σ
)− Φ(

− − αRt−1

σ
)
]
,

(60)

where Φ(.) is the CDF of standard normal distribution Note that the three terms in the loss function
respectively represent the log likelihood of the observed reward at the upper boundary, at the lower
boundary and in between the boundaries.

Recall that α̂ is the solution to the optimization problem in (59). We can apply the second-order
Taylor’s Theorem to obtain the following:

L(α)− L(α̂) = −L′(α)(α̂− α)− 1

2
L′′(α̃)(α− α̂)2 (61)

for some α̃ between true AR parameter α and estimated AR parameter α̂. In the rest of this proof, we
will provide a bound for |α̂− α| via bounding the first and second derivatives of the loss function
L(.).
We thus have

L′(α) =− 1

Test

Test∑
t=1

1{Rt = } · log′
[
1− Φ(

− αRt−1

σ
)
]
·
(−Rt−1

σ

)
+ 1{Rt = − } · log′

[
Φ(

− − αRt−1

σ
)
]
·
(−Rt−1

σ

)
+ 1{− < Rt < } · log′

[
Φ(

− αRt−1

σ
)− Φ(

− − αRt−1

σ
)
]
·
(−Rt−1

σ

)
.

where log′ h(y) denote the derivative of function log h(y) with respect to y. Let

ut(α) =1{Rt = } · log′
[
1− Φ(

− αRt−1

σ
)
]
+ 1{Rt = − } · log′

[
Φ(

− − αRt−1

σ
)
]

+1{− < Rt < } · log′
[
Φ(

− αRt−1

σ
)− Φ(

− − αRt−1

σ
)
]
.

Note that L′(α) = 1
Test

∑Test
t=1 ut(α) · Rt−1

σ . To bound the first derivative of the loss function, our next

goal is to bound
∑Test

t=1 ut(α). Let Sj =
∑j

t=1 ut(α). Observe that

|Sj − Sj−1| ≤ sup
y1∈(0,2 /σ),

y2∈−2 /σ,0)

{
max

{
log′[1− Φ(y1)], log

′ Φ(y2), log
′(Φ(y1)− Φ(y2))

}}
.

Let us define
L1 = sup

y1∈(0,2 /σ),

y2∈−2 /σ,0)

{
max

{
log′[1− Φ(y1)], log

′ Φ(y2), log
′(Φ(y1)− Φ(y2))

}}
. (62)

Since Φ(y) is the CDF of the standard normal distribution, y1 ∈ (0, 2 /σ) and y2 ∈ −2 /σ, 0), we
have that L1 is a constant well defined by the above expression. Also observe that
E[Sj − Sj−1|Sj−1, . . . , S1] = E[ut(α)|Sj−1, . . . , S1]

= P{Rt = } ·
−ϕ( −αRt−1

σ )[
1− Φ( −αRt−1

σ )
] + P{Rt = − } ·

ϕ(− −αRt−1

σ[
Φ(− −αRt−1

σ )
]

+ P{− < Rt < } ·
ϕ( −αRt−1

σ )− ϕ(− −αRt−1

σ )[
Φ( −αRt−1

σ )− Φ(− −αRt−1

σ )
]

= −ϕ(
− αRt−1

σ
) + ϕ(

− − αRt−1

σ
+ ϕ(

− αRt−1

σ
)− ϕ(

− − αRt−1

σ
)

= 0 .
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where Φ(y) and ϕ(y) are the CDF and PDF of the standard normal distribution. The third equality
above follows from ϵt being independent from S1, . . . , Sj−1. Hence, Sj is a martingale with bounded
difference.

By Azuma-Hoeffding Inequality (see Lemma J.5), we thus have that for γ > 0, the following
concentration result holds:

P[|STest | > L1

√
2βTest log Test] ≤

2

T γ
est

. (63)

Let us denote the high probability event, i.e., |STest | ≤ L1

√
2γTest log Test, as E1. Note that condition-

ing on E1, we would have

L′(α) =
1

Test

Test∑
t=1

ut(α) ·
Rt−1

σ
≤
(L1

σ

)
·

√
2γ log Test

Test
. (64)

We also bound the second derivative using a constant L2 ≥ 0 as follow:

L′′(α) =
1

Test

Test∑
t=1

1{Rt = } · log′′
[
1− Φ(

− αRt−1

σ
)
]
·
(R2

t−1

σ2

)
+ 1{Rt = − } · log′′

[
Φ(

− − αRt−1

σ
)
]
·
(R2

t−1

σ2

)
+ 1{− < Rt < } · log′′

[
Φ(

− αRt−1

σ
)− Φ(

− − αRt−1

σ
)
]
·
(R2

t−1

σ2

)
≥ 1

Test

Test∑
t=1

(R2
t−1

σ2

)
· inf

y1∈(0,2 /σ),

y2∈−2 /σ,0)

{
min

{
− log′′[1− Φ(y1)],− log′′ Φ(y2),− log′′(Φ(y1)− Φ(y2))

}}

≜
1

Test

Test∑
t=1

(R2
t−1

σ2

)
· L2

(65)
Here, we define the constant L2 as

L2 = inf
y1∈(0,2 /σ),

y2∈−2 /σ,0)

{
min

{
− log′′[1− Φ(y1)],− log′′ Φ(y2),− log′′(Φ(y1)− Φ(y2))

}}
. (66)

Similar to our arguments above, since Φ(y) is the CDF of the standard normal distribution, y1 ∈
(0, 2 /σ) and y2 ∈ −2 /σ, 0), we have that L2 ≥ 0 is a constant well defined by the last equality.
Let V = E[R2

t ] > 0 denote the variance of reward under the steady state distribution. Since R2
t is

bounded, we can apply Hoeffding’s Inequality (see Lemma J.4) that states

P[|
Test∑
t=1

R2
t−1 − TestV | ≥ TestV

2
] ≤ 2 exp

(
−TestV

2

2
2

)
.

Let E2 denote the high probability event that |
∑Test

t=1 R
2
t−1 − TestV | ≤ TestV

2 . Then, under this event,
we have that

∑Test
t=1 R

2
t−1 ≥ TestV

2 . Hence, conditioning on the event E2, we have

L′′(α) ≥ V L2

2σ2
. (67)

After bounding the first and second derivatives of L(α) respectively, we are now ready to show
the proximity between our estimated parameter α̂ and the true parameter α, conditioning on the
high-probability events E1 ∩ E2. By optimality of α̂, we have that L(α̂) ≤ L(α). This, together with
(61), gives

1

2
L′′(α̃)(α− α̂)2 ≤ −L′(α)(α̂− α) ≤ |L′(α)| · |α̂− α| . (68)

Using (67), we can bound the left-hand side as
1

2
L′′(α̃)(α− α̂)2 ≥ 1

2
·
(V L2

2σ2

)
· (α− α̂)2 . (69)
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Conditioning on E1, we also know from (64) have that

|L′(α)| · |α̂− α| ≤
(L1

σ

)
·

√
2γ log Test

Test
· |α̂− α| (70)

Finally, combining (68), (69) and (70), we have that with probability at least 1 − 2/T γ
est −

2 exp(−TestV
2/2

2
), we have

1

2
·
(V L2

2σ2

)
· (α− α̂)2 ≤

(L1

σ

)
·

√
2γ log Test

Test
· |α̂− α|

which implies

|α̂− α| ≤ 4σ L1

V L2

√
2γ log Test

Test
. ■

J Concentration Inequalities

In this section, we state some useful concentration inequalities for subgaussian variables (see [29, 8,
45] for references).
Definition J.1 (Subgaussian variables). We say that a zero-mean random variable X is σ-subgaussian
(or, X ∼ subG(σ)), if for all λ ∈ R, E[eλX ] ≤ e

λ2σ2

2 .

In particular, note that if X ∼ N(0, σ), then X ∼ subG(σ). Subgaussian variables satisfy the
following concentration inequalities:
Lemma J.2 (Concentration of subgaussian variables). A zero-mean random variable X is σ-
subgaussian if and only if for any s > 0, P [|X| ≥ s] ≤ 2 exp(− s2

2σ2 ).

Lemma J.3 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent zero-mean random variables
such that Xj ∼ subG(σj), then for any s > 0, P

[∣∣∣ 1n ∑n
j=1 Xj

∣∣∣ ≥ s
]
≤ 2 exp(− n2s2

2
∑n

j=1 σ2
j
).

In particular, bounded variables are known to be subgaussian, and we thus have a special case of the
Hoeffding’s Inequality that applies to bounded variables:
Lemma J.4 (Hoeffding’s Inequality for Bounded Variables). Let X1, . . . , Xn be independent random
variables such that ai ≤ Xi ≤ bi. Consider the sum of these random variables Sn =

∑n
i=1 Xi. We

have that for s > 0, P [|Sn − E[Sn]| ≥ s] ≤ 2 exp
(
− 2s2∑n

i=1(bi−ai)
2

)
.

Another related concentration result is the Azuma-Hoeffding’s Inequality stated below, which applies
to martingales with bounded differences.
Lemma J.5 (Azuma-Hoeffding’s Inequality). Suppose that {Sj : j = 0, 1, 2, . . . } is a martingale
and has bounded difference |Sk − Sk−1| ≤ bk almost surely. Then, the following concentration

bound holds for any N ∈ Z+ and s > 0: P (|SN − S0| ≥ s) ≤ 2 exp
(

−s2

2
∑N

k=1 b2k

)
.
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