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ABSTRACT

In this paper we propose a deep learning method for unsupervised 3D implicit
shape reconstruction from point clouds. Our goal is to approximate 3D shapes as
the iso-surface of a scalar field that is the solution of a Poisson partial differential
equation. We propose neural network architecture that learns the distance field in
the Fourier domain, and solve the PDE by using spectral differentiation through
two novel loss functions. Our experiments show that our architecture can efficiently
learn the Fourier coefficients while accurately estimating the target distance field.
We train our models without any ground truth mesh, scalar distance field values, or
surface normals.

1 INTRODUCTION

In recent years, 3D reconstruction has gained momentum in computer vision and related areas of
study. Data-driven 3D reconstruction based on machine learning methods have potentiated the surge
of a new variety of generative methods to compute the 3D geometry of shape from different inputs,
such as point clouds or 2D images (Achlioptas et al., 2017; Fan et al., 2016; Ranjan et al., 2018;
Wang et al., 2018; Saito et al., 2019). While many of these methods have shown significant success
to recover full 3D geometries, there are still some challenges. Some of these challenges arise from
the choice of representation of the models’s output. For instance, generative point cloud networks
are lightweight methods to represent 3D geometries. However, point clouds (Fan et al., 2016; Wang
et al., 2020; Qi et al., 2016) lack the connectivity structure that triangular meshes have to approximate
the surface of a shape. Mesh deformation and mesh prediction approaches (Kanazawa et al., 2018;
Wang et al., 2018; Gkioxari et al., 2019; Gupta & Chandraker, 2020) successfully estimate shapes as
a piece-wise surface, but struggle to produce smooth manifold meshes. On the other hand, volumetric
approaches (Brock et al., 2016; Gadelha et al., 2017; Dai et al., 2017; Ulusoy et al., 2015) are a
straightforward way to represent 3D geometries, but they are memory inefficient at high resolutions.

Another important challenge in 3D reconstruction it that most methods rely heavily on full 3D
supervision, which is in many cases hard to obtain. Learned-based supervision for 3D reconstruction
often comes as ground truth triangular meshes, occupancy voxel grids, or sampled values from a
Signed Distance Function (SDF).

A class of 3D reconstruction approaches that has gained popularity in recent years is implicit
representation for shape reconstruction (Xu et al., 2019; Saito et al., 2019; Gropp et al., 2020;
Mescheder et al., 2019). In an implicit representation, the surface of a shape is estimated as a scalar
field over R3. Continuous spatial coordinates are fed as input features into a neural network which
directly produces the values of the implicit functions. Implicit methods are a promising line of
research because 1) they are capable of estimating shapes of any topology (number of holes), and 2)
they can be sampled at arbitrary resolution to produce high resolution meshes. However, they suffer
from the above-mentioned supervision problem. One can argue that in uncontrolled environments,
values of the distance to a surface are difficult to collect for training.

In this work, we propose a novel unsupervised deep neural network method to implicitly recover the
3D geometry of a shape from an un-oriented point cloud. Our formulation arises from posing the
implicit scalar field as the solution f of a partial differential equation (PDE) with Dirichlet boundary
conditions. We let our network learn the Fourier coefficients of the spectral expansion of f , instead

1



Under review as a conference paper at ICLR 2022

of directly estimating the values of the distance function. We then approach the PDE solution using
spectral differentiation Johnson (2011); Canuto et al. (1988) with two novel loss functions. Fig. 2
summarizes our model’s main components.

Figure 1: Proposed architecture. Our network takes an input shape in the form of a point cloud, and
outputs the spectral coeficients of our PDE-based distance field.

Figure 2: Caption

The contributions of our 3D reconstruction method are three-fold:

• We approach the problem of implicit shape representation by estimating the distance field as
the solution of a linear elliptic PDE.

• We learn the distance field on the Fourier domain and solve the PDE by using spectral
differentiation.

• Our method effectively reconstructs the surface of 3D shapes without any supervision from
ground truth mesh, scalar distance field, or surface normals.

2 BACKGROUND AND NOTATION

2.1 DEEP IMPLICIT 3D RECONSTRUCTION

Implicit methods for 3D reconstruction have gained popularity in recent years. They aim to recover
the geometry of a target shape Ω as the iso-surface of continuous scalar field f : R3 → R, such that

∂Ω =
{
x ∈ R3|f(x) = τ

}
. (1)

It is usual to set τ = 0 to recover the zero-crossing surface and set f to be the Signed Distance
Function (SDF) associated with the surface of Ω.

In general, implicit representations take the form of a deep neural network that approximates the SDF
on a subset of the Euclidean space R3 around the target shape (Genova et al., 2019; Michalkiewicz
et al., 2019; Niemeyer et al., 2019; Xu et al., 2019). Other approaches, instead, learn a decision
boundary of a binary classifier (Chen & Zhang, 2018; Mescheder et al., 2019; He et al., 2020),
indicating whether a point x is inside the surface.

Despite their remarkable reconstruction accuracy, implicit reconstruction methods come with the
significant drawback of needing a considerable amount of supervision. They require enough point-
distance sample pairs (x, s) ∈ R3×R around the target shape to properly learn the SDF. This amount
of supervision is infeasible in many real-world scenarios.

An alternative, to the stated supervision problem comes from the fact that the SDF is known to be a
solution a non-linear PDE called the Eikonal equation

||∇f || = 1. (2)
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The scalar field f can be approximated by solving Eq. 2. However, solutions to Eq. 2 are not
unique without specifying appropriate Neumann boundary conditions, a.k.a additional supervision in
the form of normal vectors at the boundary. This restriction motivates the research for PDE-based
alternatives to model scalar distance fields with similar properties, fewer supervision requirements,
and potentially easier to solve.

2.2 POISSON EQUATION IN SHAPE ANALYSIS

Poisson equation is one of the simplest and most widely studied second-order linear PDEs. It is
defined as

∆f(x) = ρ(x), ∀x ∈ Ω (3)

where ρ is a known source function, and ∆ denotes the Laplace operator. The solution to Eq. 3 can
be proven to always be unique and smooth given just Dirichlet boundary conditions, in contrast with
the Eikonal equation.

Poisson equation has been used extensively in computer vision, as it arises naturally in many
variational problems such as rendering high dynamic range images (Fattal et al., 2002), image
matting (Sun et al., 2004), shadow removal (Finlayson et al., 2002), image stitching (Zomet et al.,
2006; Agarwala, 2007), image impainting (Elder & Goldberg, 2001; Pérez et al., 2003; Raskar et al.,
2004; Agarwala et al., 2004; Jia et al., 2006).

Furthermore, the Poisson equation finds applications in tasks related to shape analysis such as mesh
optimization (Nealen et al., 2006), editing and deforming (Sorkine et al., 2004; Yu et al., 2004), and
shape representation (Gorelick et al., 2006). It is also the intuition behind one of the most widely
used methods for 3D reconstruction, Poisson Surface Reconstruction (PSR) (Kazhdan et al., 2006).

The PSR method reconstructs a shape’s surface ∂Ω using an oriented point cloud X . The surface
normals at points x ∈ X are assumed to come from a vector field G : R3 → R3. Later, PSR uses
G when solving the PDE in Eq. 3 by setting ρ(x) = div(G(x)), where div(.) is the divergence
operator.

Notice that PSR relies on estimations of the surface normals, which means more supervision might
not always be available or accurate. Moreover, including surface normals as supervision to solve the
PDE, a.k.a Newman boundary conditions, might make the problem over-constrained (Gropp et al.,
2020) as the problem need to satisfy to many restriction at once.

2.3 DEEP LEARNING FOR PDE SOLUTIONS

Partial differential equations (PDEs) are among the most ubiquitous tools for modeling physics and
engineering problems. Analytic solutions are rarely available for PDEs; thus, computational methods
to approximate their solutions are critical for many applications (Beatson et al., 2020).

Given the remarkable success of deep learning, it is not surprising that some authors have started
to address the question: Can a neural network approximate the solution of a PDE?. Although
solving PDEs with deep learning is an emerging field, there are already some exciting and promising
work (Beatson et al., 2020; Berner et al., 2020; Li et al., 2020; Holl et al., 2020; Um et al., 2020;
Grohs & Herrmann, 2020). Such approaches come in a wide range of formulations, from solving
families of high-dimensional Kolmogorov partial differential equations (Berner et al., 2020), find-
ing discretization invariant solutions to PDEs (Li et al., 2020), to solving them with deep neural
architectures that interact with external solvers (Holl et al., 2020; Um et al., 2020).

Despite this progress, some challenges remain. First, many common PDEs include derivatives of a
higher order. While most deep learning frameworks allow computation of derivatives with respect to
the network’s inputs via double back-propagation, this is cumbersome and computationally expensive
in practice. Moreover, most neural network architectures use ReLU-based multilayer perceptrons
(MLPs). Despite the representation power of ReLU networks, their higher-order derivatives are zero
everywhere, making them unsuitable for a wide range of PDEs (Liu et al., 2020; Sitzmann et al.,
2020).
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3 METHOD

Our goal is to implicitly represent the geometry of 3D shapes as the zero-crossing iso-surface of a
scalar field f : R3 → R. We define define f as the solution of PDE in Eq. 3. We approximate f in
the spectral domain by letting a neural network learn its frequency coefficients. Later, we use spectral
methods to estimate the target function derivatives. We train our architecture by minimizing two loss
functions that enforce f to satisfy the PDE and the boundary condition.

3.1 POISSON-BASED IMPLICIT DISTANCE FUNCTION APPROXIMATION

Consider a bounded domain Ω ∈ R3 with a smooth boundary ∂Ω given by the surface of a 3D shape.
Similar to (Gorelick et al., 2006; Aubert & Aujol, 2014), we approximate the SDF induced by ∂Ω as
the solution of the homogeneous Dirichlet problem for the Poisson equation. To solve the PDE, we
use boundary conditions given by f vanishing at all points on ∂Ω, and set the source function to have
always negative values:

ρ(x) < 0, ∀x ∈ R3 and f(x) = 0, x ∈ ∂Ω. (4)

We need to show that Eq. 3 conditioned with 4 is a suitable alternative to estimate the SDF of given
shape. To this purpose, we need f to satisfy two requirements that solutions the Eikonal equation
satisfy too. First, f must be zero at all points on ∂Ω. Second, we require f to be positive on all points
inside the domain Ω and negative outside, as it happens in the case of an SDF.

Our estimation of the distance field satisfies the first requirement because it is subject to the boundary
conditions in 4. The second requirement is essential when recovering the surface as a triangular
mesh with an iso-surface extraction algorithm like marching cubes. We need to recall a well-known
property of the solution of the Poisson equation to show that f satisfies the second requirement.
Proposition 1 (Minimum principle). Consider the PDE and the boundary condition in equation 3. If
the source function is such that ρ(x) < 0 ∀x ∈ Rn, then the PDE´s solution f(x) takes is minimum
value somewhere at ∂Ω.

Proof. Let us assume that f is the solution to Eq. 3 conditioned to 4. Suppose now that f reaches
a minimum value x∗ given by M = min {f(x) | x ∈ Ω}. This means that M = f(x∗) for some
x∗ inside Ω. According to the second derivative test, x∗ is a minimum point of f if and only if its
symmetric Hessian matrix H(f)(x) is positive-definite when evaluated at x∗.

If H(f)(x∗) is positive definite then it has a Cholesky decomposition H(f)(x∗) = LLᵀ, and thus
every element of its main diagonal is of the form Hk,k =

∑k
j=1 L

2
k,j . This implies that the trace of

H(f)(x∗) is also strictly positive and then

0 < Tr(H(f)(x)) = ∆f(x) = ρ(x) < 0,

which is a contradiction for any point inside Ω. Consequently, f can only reach a minimum value
along ∂Ω.

Note that we refer here to the solution of equation 3 in the weak sense. Therefore we are also
interested in what happens outside Ω. Additionally, the opposite sign convention (negative inside /
positive outside) is also valid up to a change of sign in ρ(x). The change of sign does not affect the
solution because 3 is a linear PDE.

Solutions to the Poisson equation can be guaranteed to be unique using only Dirichlet boundary
conditions. In contrast, the Eikonal equation needs a restriction on the gradient of the solution (normal
vectors at the surface) to achieve uniqueness. In a learned-based 3D reconstruction setting, requiring
the normal vectors at the surface translates into extra supervision at training time. Non-unique
solutions can potentially create local minima when optimizing the cost function.

3.2 SPECTRAL METHODS FOR SOLVING POISSON EQUATION

Spectral methods are a class of numerical techniques to solve certain PDEs using the Fourier
Transform. They allow us to approximate the solution of Eq. 3 with a trigonometric polynomial that
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interpolates f at equally spaced points. Under the assumption of periodicity, one can use the Discrete
Fourier Transform (DFT) coefficients to define the interpolating polynomial and expand f through its
Inverse Discrete Fourier Transform (IDFT). In the case where f is a function of a single value it takes
the form

fn = f

(
nL

N

)
=

1√
N

N−1∑
k=0

Fk e
2πi
N nk, (5)

where, N is the number of samples in the original signal, L is the function’s period, and F is the
DFT of f evaluated at the k-th frequency sample. We can approximate f at any continuous point by
computing

f(x) ≈ 1√
N

N−1∑
k=0

Fk e
2πi
L xk. (6)

Recall that for an absolutely continuous differentiable function, the Laplace operator commutes with
the summation in the IDFT. This is possible because the Fourier transform is a linear operation. We
can use this result along with Eq. 6 to rewrite the PDE. We then have that

∆f(x) = ∆

(
1√
N

N−1∑
k=0

Fk e
2πi
L xk

)
= ρ(x)

∆f(x) =
1√
N

N−1∑
k=0

−4π2k2L−2Fk e
2πi
L xk = ρ(x),

(7)

where, we call the factor −4π2k2L−2Fk the spectral second derivative of f . We assume N to be an
odd number, since the above derivation corresponds to the second derivatives only when the Nyquist
term vanishes. In the 3-dimensional case, equation 7 holds, correspondingly changing the spectral
derivative with the spectral Laplace operator given by −4π2||k||2L−2Fk, with k = [k1, k2, k3], and
||.|| the Euclidean norm. See (Johnson, 2011; Canuto et al., 1988) for a more detailed derivation of
spectral differentiation.

Let us define fi as the solution of equation 7 with Dirichlet boundary conditions given by the surface
of the i-th element of a 3D collections of shapes X . For each point cloud Xi ∈ X , we aim to recover
its implicit surface by estimating fi. We approximate the Fourier coefficients of each fi with a 3D
CNN architecture Fk(zi; θ) with parameters θ. Fk(zi; θ) predicts the Fourier Transform coefficients
on a regular 3-dimensional grid of length N . We condition Fk(zi; θ) with a latent code zi generated
through a encoder network zi = g(Xi;ψ) that takes the point cloud Xi as input.

3.3 SOURCE FUNCTION CHOICE

A straight forward choice for the source function is ρ(x) = −c2, with c a constant. However, this
poses a problem: The value of the Laplacian of f at x accounts for how fast the function is decreasing,
and that we do not have any guarantees of what happen to f outside Ω. A function that continues
decreases could potentially creating discontinuities that could manifest in undesired artifacts in the
spectral domain such as Gibbs phenomenon. This happens when the function keep deacresing at a
constant rate driven by c. To avoid these artifacts we set

ρ(x) = − 1

|Xi|

|Xi|∑
j=1

exp

(
− (x− xj)

ᵀ(x− xj)

2σ2

)
, with x ∈ R3. (8)

Note that Eq. 8 is always negative, and its values get closer to zero when x is far from ∂|Ω. Thus,
our choice of ρ(x) reduces the magnitude of possible discontinuities.

3.4 IMPLEMENTATION DETAILS

3.4.1 LEARNING THE COEFFICIENTS WITH THE DISCRETE COSINE TRANSFORM

Because the DFT is a complex-valued function, one must estimate two values per coefficient in Fk,
the real and the imaginary part. Hence, handling complex numbers doubles the memory requirements
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to train our model. To alleviate this, we leverage the Discrete Cosine Transform (DCT) as an
alternative to learn the coefficients in our spectral method formulation.

The DCT applies only to real-even function. We know that our distance field approximation f is real
but most likely not even. However, we can consider an even extension of f , such that:

fe(x) =

{
f(x) 0 < x ≤ L
f(2L− x) L ≤ x ≤ 2L.

It is easy to check that the Fourier expansion of fe only includes cosines as basis functions. Addi-
tionally, it has been shown that the DCT of the original signal f can be efficiently recovered from an
N-point DFT on the odd values of fe (Makhoul, 1980).

Now, we can exchange the DFT of f with its DCT in Eq. 7 because spectral differentiation is also
possible (Ito, 2020) when using the DCT. Our approach to the solution of the PDE becomes

∆

(
C0(zi; θ)

2
+

N−1∑
k=1

Ck(zi; θ) cos

[
(2x+ 1)πk

2L

])
= ρ(x)

N−1∑
k=0

−π2k2L−2Ck(zi; θ) cos

[
(2x+ 1)πk

2L

]
= ρ(x),

(9)

where Ck(zi; θ) is now the output of our neural network architecture.

3.4.2 ARCHITECTURE

We model the point cloud encoder zi = g(Xi;ψ) as a PointNet (Qi et al., 2016) network with max.
activation functions. The encoder produces a 1024-dimensional latent code zi from each Xi. Later,
a 3D CNN decodes zi into the DCT coefficients, Ck. We model Ck with a four-block Residual 3D
CNN. There is an up-sampling convolution at the end of every block, except for the last convolution,
where a linear activation function predicts the DCT values. The network’s output is a regular grid of
size 64× 64× 64 containing the DCT coefficients.

In Fig. 2 we show an overview of the entire pipeline of our proposed method.

3.4.3 LOSS FUNCTIONS

Regardless of the dimensions of the Ck grid, we can estimate f at continuous values of x using Eq. 6.
Let us denote by ∆f̂(x; zi, θ) and f̂(x; zi, θ) the predicted Laplacian and the Poisson Distance field
after taking the IDCT, respectively. We train our model without any ground-truth distance field or
surface normals by defining two loss functions.

Boundary condition loss: Our first loss function intends to enforce the Dirichlet boundary condi-
tions necessary to find a solution of the PDE for each shape Xi. We define the boundary condition
loss as:

Lbc =
1

|Xi|

|Xi|∑
j=1

||f̂(xij ; zi, θ)− τ ||1, ∀xij ∈Xi. (10)

PDE Loss: We derive the second loss function from Eq. 3. Let Si =
{
Ssurf
i ∪ S rand

}
be a set

of points in R3. The set Ssurf
i contains points on the i-th shape’s surface, while S rand consist of

points randomly sampled around each surface point. For each xij ∈Xi we sample points normally
distributed with N (xij , 0.05). We then define the PDE loss as:

Lpde =
1

|Si|

|Si|∑
j=1

||∆f̂(xij ; zi, θ)− ρ(xij)||1, ∀xij ∈ Si (11)

The overall loss is a weighted sum of the two losses with weights λ1 = 1.0 and λ2 = 2.0.

Ltotal = λ1Lpde + λ2Lbc (12)
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Table 1: Poisson distance field results. The table shows the Chamfer distance and the normal
consistency for all methods in our study.

Method CD (↓) Normal consistency (↑)
planes cars chairs planes cars chairs

SDF Regress 0.0028 0.0039 0.0092 0.782 0.781 0.783
IGR 0.0060 0.0183 0.0175 0.819 0.756 0.807
OccNET 0.0093 0.0112 0.0302 0.767 0.810 0.765
Ours 0.0846 0.0052 0.0407 0.734 0.784 0.657

4 EXPERIMENTS

Baselines: We test our method against three baselines. We use an occupancy network (OccNet)
(Mescheder et al., 2019) to test our model against fully supervised approaches. OccNet assumes
ground truth occupancy values on random points around the surfaces of the target shapes. We include
in our experiments the Implicit Geometric Regularization approach (IGR) (Gropp et al., 2020) to
compare with non-fully supervised methods. Note, however, that the IGR’s results largely depend
on including the surface’s normals into their training pipeline. The surface’s normals constitute
additional supervision which is not always available. Furthermore, when we omit the surface’s
normals in IGR, it drops its performance.

Finally, we also compare our proposed method with a baseline of our own by directly estimating a
volume with the values of f . Instead of the IDCT, we use a discrete Laplace filter to compute ∆f .
We use the same loss functions and keep the rest of the pipeline the same. We call this baseline SDF
Regress.

Dataset: We use a subset of three classes from ShapeNet v2.0 dataset (Chang et al., 2015) consisting
of "planes", "cars", and "chairs". We use 80% of the objects in each category for training, 15% for
testing, and 5% for validation.

The meshes in ShapeNet are not guaranteed to be watertight or winding-consistent. Thus, we pre-
process them into 2-manifolds using the method defined in (Huang et al., 2018) and remove all the
internal meshes with code provided in1. Additionally, we center all the meshes at the origin and
normalize them to a cube of side 2. Later, we scale the meshes by a factor of 0.85 to guarantee
enough padding inside the cube.

We uniformly sample 4096 surface points on each watertight mesh for all of our experiments. We
sample 5e4 additional points to be used within the PDE loss. Before feeding the points to our models,
we add Gaussian noise with N (0, 0.05).

Metrics: To evaluate the quality of our 3D reconstructions, we measure the Chamfer-L2 distance
(CD) between our predictions and their ground truth. We use the CD definition from Wang et al.
(2018). Additionally, we report the normal consistency score NCS. The NCS is defined as the mean
absolute dot product of the surface normals in one mesh and the normals at the corresponding nearest
neighbors in the other. We randomly sample 1e4 points with its normals on both meshes’ surface to
estimate the CD and the normal consistency.

Training: Regardless of the category, we train our models for 150.000 steps with a batch size of
22. We train with ADAM optimizer with a base learning rate of 1e−5. This training strategy ensures
at least 35 epochs per category. Because our model is compact, we train each model on a single
NVIDIA 2080Ti GPU. The total training time per model is approximately 48 hours. Further speed
improvement is possible with multi GPU training. After one-third of the training time, the learning
rate decays by a factor of 0.1. We follow the training recipes reported in their respective papers and
their official implementation for all the baselines.

1https://github.com/tomfunkhouser/gaps
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Figure 3: Poisson distance learning results. We show the results of our approach on the first row,
against the ground truth meshes in the second row. Notice that our method produces smooth surface
from no supervision.
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4.1 POISSON DISTANCE FIELD LEARNING

In our experiment, we train our full model using the two loss functions from section 3.4.3. We allow
our neural network learn the DCT coefficients that solve our formulation of Poisson equation. Our
results show that our architecture can accurately approximate the surface of the models in the dataset
from just the input point cloud.

We summarize our results in Table 1 and Figure 3. We report the Chamfer-2 loss, and the normal
consistency. We compare our results to all baselines. Note that the surface of our predicted meshes
are smooth and do not show surface noise like the SDF Regress baseline. Note also that our results
look visually comparable to the supervised baselines despite not using ground-truth for the distance
field.

5 CONCLUSIONS

We propose a novel semi-supervised method to implicit 3D reconstruction from point clouds. Our
method defines a shape’s surface as the solution of a Poisson partial differential equation in R3.
We approach the PDE solution using spectral methods through a neural network architecture that
learns the target scalar field’s spectral coefficients. To the best of our knowledge, this is the only
method that has taken this approach. Our experiments show that our model can recover the discrete
cosine transform of a function in space from a point cloud and that it can be trained with no distance
ground-truth supervision through our PDE y and boundary condition loss functions.
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