
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

CONSISTENCY MATTERS: NEURAL ODE PARAME-
TERS ARE DEPENDENT ON THE TRAINING NUMERI-
CAL METHOD

C. Coelho 1, M. Fernanda P. Costa 1, L.L. Ferrás 1,2

1Centre of Mathematics (CMAT), University of Minho
2Department of Mechanical Engineering (Section of Mathematics), FEUP - University of Porto
cmartins@cmat.uminho.pt, mfc@math.uminho.pt, lferras@fe.up.pt

ABSTRACT

Neural Ordinary Differential Equations (Neural ODEs) are continuous-depth
models that use an ordinary differential equation (ODE) to capture the dynam-
ics of data. Due to their modelling capabilities several works on applications and
novel architectures using Neural ODEs can be found in the literature. In this work,
we call for the attention to the need of using the same numerical method for both
training and making predictions with Neural ODEs since the numerical method
employed influences the prediction process, thereby impacting the loss function
and introducing variance into parameter optimisation. We provide theoretical in-
sights into how numerical methods of varying orders or with different step sizes
influence the loss function of the network. To validate our theoretical analysis,
we conduct a series of simple preliminary numerical experiments employing a re-
gression task, demonstrating how the training numerical method influences model
performance for testing. Our findings underscore the need for consistency in nu-
merical methods for training and prediction, a consideration not previously em-
phasised or documented in the literature.

1 INTRODUCTION

Traditional Neural Networks (NNs) typically consist of a discrete sequence of layers tasked with
mapping input data to corresponding outputs. However, they face limitations in handling time-
dependent systems effectively and are restricted to making one prediction per input.

Neural Ordinary Differential Equations (Neural ODEs) are continuous-depth models that use an
ODE to capture the dynamics of data. Unlike traditional NNs, Neural ODEs inherently account
for the time-dependence of inputs, enabling predictions at arbitrary time points (Chen et al., 2018;
Krishnapriyan et al., 2023; Onken & Ruthotto, 2020). This distinctive capability has attracted signif-
icant attention, leading to various applications in real-world problems, as evidenced by the growing
literature (Portwood et al., 2019; Xing et al., 2022; Bansude et al., 2023). Furthermore, researchers
have proposed various architectures that incorporate Neural ODEs to enhance modelling capabili-
ties, capitalising on their flexibility and expressive power to address various tasks (Rubanova et al.,
2019; Yildiz et al., 2019; Khoshsirat & Kambhamettu, 2023).

An integral aspect of Neural ODEs is the incorporation of a numerical method to solve the ODE
being learnt. Numerous choices of numerical methods exist in the literature, with selecting the
appropriate one posing a challenge due to the need to balance accuracy and computational cost.
Moreover, besides being essential for training, a numerical method is also indispensable for making
predictions using the learnt ODE. Interestingly, while the literature provides guidance on selecting
numerical methods for solving ODEs (Chapra, 2010), there is a notable absence of explicit direc-
tion regarding whether the same numerical method should be used for both training and making
predictions in the context of Neural ODEs.

In numerical methods theory, it is well-established that in the limit where the step size approaches in-
finitesimal values, any numerical method, irrespective of its approximation error and computational
scheme, will compute the same solution. However, in the realm of Neural ODEs, the numerical

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

method employed influences the prediction process, thereby impacting the loss function and intro-
ducing variance into parameter optimisation. This variance introduced by the choice of numerical
method during training can affect the optimisation of model parameters, potentially influencing con-
vergence behaviour and overall model performance.

In this work, we underscore the critical importance of thoughtful consideration when selecting a nu-
merical method for making predictions with Neural ODEs. We provide theoretical insights into how
numerical methods of varying orders or with different step sizes influence the loss function of Neural
ODEs, thereby demonstrating that the choice of numerical method inherently impacts the parame-
ters of the network. To complement our statements, we present numerical experiments employing a
simple regression task. Through this experiments, we showcase the performance disparities exhib-
ited by Neural ODEs when trained and tested using the same versus different numerical methods.
Ultimately, our aim is to raise awareness within the research and industry community about the
significance of employing consistent numerical methods for both training and prediction in Neural
ODEs and, by extension, in any architecture that incorporates a numerical method.

This paper is organised as follows. In Section 2, we provide a concise review of Neural ODEs
and numerical methods, giving the essential background needed for understanding the subsequent
discussions. Section 3 delves into our theoretical analysis, demonstrating how the order and step
size of the numerical method impact the loss function of Neural ODEs. Additionally, we present
numerical results corroborating these theoretical findings. Finally, we conclude our work in Section
4 by summarising the key findings.

2 BACKGROUND

In this section, we give a briefly highlight of the fundamentals of Neural ODEs and a short introduc-
tion to numerical methods, elucidating their impact on the solution of ODEs.

2.1 NEURAL ODES

Chen et al. (2018) introduced Neural ODEs, continuous-depth models that define the output as
the solution of an Ordinary Differential Equation (ODE). Thus, Neural ODEs learn to model the
underlying dynamics of data by fitting an ODE. To do this, Neural ODEs are composed of two
main components: a NN with parameters θ, fθ, that models the right-hand side of an ODE; and a
numerical method, ODESolve, that solves the ODE and outputs the predictions:

ŷm(θ)m=1,...,M = ODESolve(fθ,y0, (t0, tM)), with m = 1, . . . ,M, (1)

where ŷm(θ) is the prediction at time step tm with m = 1, . . . ,M and M the number of data points.
The numerical method solves the ODE as an initial value problem with initial condition (y0, t0), i.e.
the data point at the first time step, in the time interval (t0, tM).

Neural ODEs are trained similarly to traditional NNs, by minimising a loss function l(θ). When

training finishes, to make predictions the resulting ODE,
dŷ

dt
= fθ, must be solved using a numerical

method (Chen et al., 2018).

2.2 NUMERICAL METHODS

Numerical methods play a crucial role in solving differential equations when analytical solutions are
either impossible or intractable, which is often the case in real-world applications. These methods
encompass a diverse array of techniques designed to address specific types of differential equations
or to optimize computational efficiency while maintaining solution accuracy (Chapra, 2010).

Fundamentally, numerical methods discretize the continuous differential equations into discrete time
steps with size h, iteratively approximating the solution at the desired time step. There are two dis-
tinct approaches to the discretization: fixed-step methods discretize the solution domain at predeter-
mined fixed intervals h; adaptive-step methods dynamically adjust the step size based on the local
solution behaviour by refining the discretization where the solution evolves rapidly and coarsening

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

where the solution changes slowly. Additionally, numerical methods employ varying computation
schemes and have different orders, i.e. rate at which the error decreases as the step size decreases,
that offer higher precision or lower computational cost (Chapra, 2010).

The official Neural ODE library, Torchdiffeq, offers several choices of fixed-step and adaptive-step
methods for solving ODEs. The choices available with their corresponding error are as follows
(Chen, 2018):

• Fixed-step methods: Euler, first-order method O(h1); Midpoint, Second-order method
O(h2); Fourth-order Runge-Kutta with 3/8 rule, O(h4), denoted rk4; Explicit Adams-
Bashforth, fourth-order is used O(h4), denoted explicit adams; Implicit Adams-Bashforth-
Moulton, fourth-order is used O(h4), denoted implicit adams.

• Adaptive-step methods: Runge-Kutta of order 8 of Dormand-Prince-Shampine, O(h8),
denoted dopri8; Runge-Kutta of order 5 of Dormand-Prince-Shampine, O(h5), denoted do-
pri5; Runge-Kutta of order 3 of Bogacki-Shampine, O(h3), denoted bosh3; Runge-Kutta-
Fehlberg of order 2, O(h2), denoted fehlberg2; Runge-Kutta of order 2, O(h2), , denoted
adaptive heun.

Understanding how the order of a numerical method influences on the solution of an ODE is cru-
cial for selecting an appropriate method based on the computational cost versus accuracy trade-off.
Higher-order methods offer higher precision but at increased computational cost. Conversely, lower-
order methods are computationally cheaper but may produce less accurate solutions, especially in
systems with complex dynamics or rapid changes (Chapra, 2010).

3 THE DEPENDENCE ON THE NUMERICAL METHOD

In this section, we demonstrate and analyse how employing different numerical methods, distinct
from the one used for training, impacts the performance of making predictions with Neural ODEs.
First, we provide a theoretical exposition of the contribution of the numerical method to the training
and testing of a Neural ODE, followed by empirical evidence from experimental results.

3.1 THEORETICAL EXPOSITION

Numerical methods inherently introduce errors during the approximation of ODE solutions. This
error is described in terms of the step size h and the order of the method p, denoted as Elocal(h, p) =
O(hp). Then, the global error over N integration steps for each prediction point m is denoted by,

Em
global(h, p) =

N∑
n=1

En
local(h, p).

As the number of steps N increases, the accumulated error grows linearly, while decreasing h results
in the decrease of the error, indicating that the accuracy of the approximation improves.

In the context of training Neural ODEs, the loss function is typically defined as the error between
the predicted trajectory and the ground-truth trajectory over a set of observed data points. In this
work we consider the Absolute Error (AE),

l(θ) =
1

M

M∑
m=1

|ŷm(θ)− ym|.

However, since predictions ŷm(θ) are computed using the contributions of a numerical method,
equation (1), they are affected by Em

global(h, p) resulting in,

ŷm(θ) = ŷ∗m(θ) + Em
global(h, p),

where ŷ∗m(θ) is the Neural ODE prediction without the approximation error of the numerical
method.

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

By incorporating the accumulated error into the predictions, the loss function is then given by,

l(θ) =
1

M

M∑
m=1

|(ŷ∗m(θ) + Em
global(h, p))− ym|.

Consequently, the accumulated error influences the computation of the loss function by introducing
a term dependent on the numerical method into the predicted trajectory, thereby inducing variance in
the loss. This variance impacts the optimisation process during training, thereby influencing parame-
ter adjustments and rendering them dependent on the chosen numerical method at the training stage.
As a result, employing different numerical methods for making predictions introduces discrepancies
between the predicted trajectory and the trajectory learnt during training. Thus, predictions may
deviate from anticipated trajectories based on training data, potentially leading to inaccuracies in
model performance evaluation and decision-making.

3.2 EXPERIMENTAL RESULTS

To validate our theoretical analysis, we conduct preliminary numerical experiments focusing on a
simple regression task involving the dynamics of a spiral ODE, as detailed by Chen et al. (2018)
(Chen, 2018). Our aim is to demonstrate the influence of numerical methods even in simple tasks
with shallow Neural ODEs and low training times 1.

We train a Neural ODE using a specific numerical method and evaluate its performance on both
the training dataset (reconstruction) and a testing dataset (extrapolation) using the same numerical
method employed during training. We compare this performance against that achieved with differ-
ent numerical methods. Performance is evaluated by training two models with each method and
computing the average AE and respective standard deviation (std).

The results for reconstruction and extrapolation are summarised in Appendix A Table 1 and Ta-
ble 2, respectively. Notably, the numerical methods rk4, implicit adams, dopri8, dopri5, bosh3,
fehlberg2 and adaptive heun exhibit consistent performance, suggesting that these methods could
be used interchangeably for both training and testing without significant performance degradation in
reproducing or extrapolating the learnt trajectory. Conversely, euler and explicit adams demonstrate
high performance variance, while also failing to learn the dynamics of the spiral ODE being evident
from the high error values.

While this study explores the impact of numerical methods on Neural ODE performance using
simplified conditions, further investigation is needed. Theoretical considerations suggest that more
differences in numerical method orders may lead to performance divergence in complex scenar-
ios. Thus, additional experiments with varied conditions, including complex datasets and deeper
architectures, are essential to fully understand, and experimentally study, the behaviour of different
numerical methods.

4 CONCLUSION

In this work, we show, from a theoretical analysis, that during the training of Neural ODEs, errors
introduced by the chosen numerical method propagate through the optimisation process. The learnt
parameters θ are optimised to minimise a loss function l(θ), accounting for the errors inherent in
the numerical method’s approximation. Thus, when making predictions using a different numerical
method, the discrepancies in errors (arising from differences in order or step size) lead to divergent
approximations of the system dynamics. Consequently, predictions made with different numerical
methods deviate from those obtained during training, resulting in higher prediction errors, especially
if the model was trained for many iterations in which the method-induced errors accumulate signif-
icantly. Hence, careful consideration is imperative to ensure consistency across model training and
prediction phases. The preliminary experimental results corroborate the theoretical insights however
further numerical experiments are essential to evaluate the performance divergence of numerical
methods in complex scenarios, considering factors such as dataset complexity, network depth, and
training iterations.

1This does not encompass experiments on using the same numerical method with different step sizes.

4

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

ACKNOWLEDGMENTS

The authors acknowledge the funding by Fundação para a Ciência e Tecnologia (Portuguese
Foundation for Science and Technology) through CMAT projects UIDB/00013/2020 and
UIDP/00013/2020 and the funding by FCT and Google Cloud partnership through projects CPCA-
IAC/AV/589164/2023 and CPCA-IAC/AF/589140/2023.

C. Coelho would like to thank FCT for the funding through the scholarship with reference
2021.05201.BD.

This work is also financially supported by national funds through the FCT/MCTES (PIDDAC),
under the project 2022.06672.PTDC - iMAD - Improving the Modelling of Anomalous Diffusion
and Viscoelasticity: solutions to industrial problems.

REFERENCES

Shubhangi Bansude, Farhad Imani, and Reza Sheikhi. A data-driven framework for computationally
efficient integration of chemical kinetics using neural ordinary differential equations. ASME Open
Journal of Engineering, 2, 2023.

Steven C Chapra. Numerical methods for engineers. Mcgraw-hill, 2010.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/
torchdiffeq.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Seyedalireza Khoshsirat and Chandra Kambhamettu. A transformer-based neural ode for dense
prediction. Machine Vision and Applications, 34(6):113, 2023.

Aditi S Krishnapriyan, Alejandro F Queiruga, N Benjamin Erichson, and Michael W Mahoney.
Learning continuous models for continuous physics. Communications Physics, 6(1):319, 2023.

Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-discretize for time-series regres-
sion and continuous normalizing flows. arXiv preprint arXiv:2005.13420, 2020.

Gavin D Portwood, Peetak P Mitra, Mateus Dias Ribeiro, Tan Minh Nguyen, Balasubramanya T
Nadiga, Juan A Saenz, Michael Chertkov, Animesh Garg, Anima Anandkumar, Andreas Dengel,
et al. Turbulence forecasting via neural ode. arXiv preprint arXiv:1911.05180, 2019.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Yuting Xing, Hangting Ye, Xiaoyu Zhang, Wei Cao, Shun Zheng, Jiang Bian, and Yike Guo. A
continuous glucose monitoring measurements forecasting approach via sporadic blood glucose
monitoring. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
pp. 860–863. IEEE, 2022.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second order
odes with bayesian neural networks. Advances in Neural Information Processing Systems, 32,
2019.

A NUMERICAL RESULTS

5

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 1: Numerical results for the spiral ODE at reconstruction (average AE ± std).
Training Fixed-step Adaptive-step

Predictions euler midpoint rk4 explicit adams implicit adams dopri8 dopri5 bosh3 fehlberg2 adaptive heun

Fixed-step

euler 5.4e-01 ± 2.3e-01 5.5e-01 ± 2.7e-02 5.6e-01 ± 2.6e-02 6.4e+01 ± 3.8e-02 5.6e-01 ± 2.6e-02 5.6e-01 ± 2.6e-02 5.6e-01 ± 2.6e-02 5.6e-01 ± 2.6e-02 5.6e-01 ± 2.6e-02 5.6e-01 ± 2.6e-02
midpoint 1.9e+00 ± 9.6e-02 2.3e-01 ± 1.2e-01 2.3e-01 ± 1.2e-01 6.4e+01 ± 4.0e-01 2.3e-01 ± 1.2e-01 2.3e-01 ± 1.2e-01 2.3e-01 ± 1.2e-01 2.3e-01 ± 1.2e-01 2.3e-01 ± 1.1e-01 2.3e-01 ± 1.2e-01

rk4 2.6e+00 ± 3.0e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01 6.4e+01 ± 2.0e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01
explicit adams 2.0e+00 ± 3.2e-01 2.9e-01 ± 5.5e-02 2.9e-01 ± 5.8e-02 6.4e+01 ± 6.1e-0 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-0
implicit adams 2.8e+00 ± 1.5e-01 4.8e-01 ± 2.4e-01 4.7e-01 ± 2.5e-01 6.3e+01 ± 2.9e-02 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-01

Adaptive-step

dopri8 1.9e+00 ± 3.0e-02 6.6e-01 ± 6.5e-02 6.6e-01 ± 6.6e-02 6.3e+01 ± 2.3e-01 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02
dopri5 2.2e+00 ± 2.0e-01 3.8e-01 ± 2.1e-01 3.8e-01 ± 2.0e-01 6.4e+01 ± 1.0e+00 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01
bosh3 1.9e+00 ± 2.0e-01 2.0e-01 ± 1.6e-02 2.0e-01 ± 1.3e-02 6.4e+01 ± 2.4e-01 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02

fehlberg2 2.3e+00 ± 2.5e-01 5.2e-01 ± 1.6e-01 5.1e-01 ± 1.5e-01 6.4e+01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01
adaptive heun 2.0e+00 ± 2.0e-01 6.1e-01 ± 3.6e-02 6.1e-01 ± 3.8e-02 6.3e+01 ± 9.0e-01 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02

Table 2: Numerical results for the spiral ODE at extrapolation (average AE ± std).
Training Fixed-step Adaptive-step

Predictions euler midpoint rk4 explicit adams implicit adams dopri8 dopri5 bosh3 fehlberg2 adaptive heun

Fixed-step

euler 2.4e+00 ± 2.8e-01 5.5e-01 ± 2.7e-02 5.5e-01 ± 2.6e-02 1.3e+02 ± 4.7e-02 5.5e-01 ± 2.6e-02 5.5e-01 ± 2.6e-02 5.5e-01 ± 2.6e-02 5.5e-01 ± 2.6e-02 5.5e-01 ± 2.6e-02 5.5e-01 ± 2.6e-02
midpoint 3.5e+00 ± 2.8e-01 2.4e-01 ± 1.9e-01 2.3e-01 ± 1.1e-01 1.3e+02 ± 6.1e-01 2.3e-01 ± 1.3e-01 2.3e-01 ± 1.2e-0 2.3e-01 ± 1.2e-0 2.3e-01 ± 1.2e-01 2.3e-01 ± 1.1e-01 2.3e-01 ± 1.2e-01

rk4 4.6e+00 ± 3.9e-01 4.0e-01 ± 3.5e-01 4.0e-01 ± 3.0e-01 1.3e+02 ± 2.6e-0 4.0e-01 ± 3.1e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-0 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01 4.0e-01 ± 3.0e-01
explicit adams 3.8e+00 ± 6.3e-01 2.9e-01 ± 2.5e-02 2.9e-01 ± 6.0e-02 1.3e+02 ± 4.5e-01 2.9e-01 ± 4.2e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02 2.9e-01 ± 5.8e-02
implicit adams 4.9e+00 ± 1.1e-01 5.1e-01 ± 1.8e-01 4.7e-01 ± 2.5e-01 1.3e+02 ± 3.8e-02 4.8e-01 ± 2.4e-01 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-01 4.7e-01 ± 2.5e-0 4.7e-01 ± 2.5e-01

Adaptive-step

dopri8 3.7e+00 ± 1.4e-01 7.0e-01 ± 3.4e-02 6.6e-01 ± 6.6e-02 1.3e+02 ± 6.7e-01 6.7e-01 ± 6.0e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02 6.6e-01 ± 6.6e-02
dopri5 4.1e+00 ± 2.9e-01 3.8e-01 ± 2.9e-01 3.8e-01 ± 2.0e-01 1.3e+02 ± 2.0e+00 3.8e-01 ± 2.2e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01 3.8e-01 ± 2.0e-01
bosh3 3.4e+00 ± 2.7e-01 2.0e-01 ± 9.8e-02 2.0e-01 ± 1.1e-02 1.3e+02 ± 7.7e-01 2.0e-01 ± 2.9e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02 2.0e-01 ± 1.3e-02

fehlberg2 4.2e+00 ± 5.2e-01 5.9e-01 ± 1.4e-01 5.1e-01 ± 1.5e-01 1.3e+02 ± 1.1e-02 5.3e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01 5.1e-01 ± 1.5e-01
adaptive heun 3.8e+00 ± 8.4e-01 6.3e-01 ± 2.5e-02 6.1e-01 ± 3.9e-02 1.3e+02 ± 1.9e+00 6.2e-01 ± 2.7e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02 6.1e-01 ± 3.8e-02

6

	Introduction
	Background
	Neural ODEs
	Numerical Methods

	The Dependence on the Numerical Method
	Theoretical Exposition
	Experimental Results

	Conclusion
	Numerical Results

