
Published as a conference paper at ICLR 2024

TOWARDS ROBUST OUT-OF-DISTRIBUTION
GENERALIZATION BOUNDS VIA SHARPNESS

Yingtian Zou, Kenji Kawaguchi, Yingnan Liu, Jiashuo Liu∗, Mong-Li Lee, Wynne Hsu
School of Computing, National University of Singapore
Institute of Data Science, National University of Singapore
∗Department of Computer Science & Technology, Tsinghua University, China

ABSTRACT

Generalizing to out-of-distribution (OOD) data or unseen domain, termed OOD
generalization, still lacks appropriate theoretical guarantees. Canonical OOD
bounds focus on different distance measurements between source and target do-
mains but fail to consider the optimization property of the learned model. As
empirically shown in recent work, the sharpness of learned minima influences
OOD generalization. To bridge this gap between optimization and OOD general-
ization, we study the effect of sharpness on how a model tolerates data change in
domain shift which is usually captured by "robustness" in generalization. In this
paper, we give a rigorous connection between sharpness and robustness, which
gives better OOD guarantees for robust algorithms. It also provides a theoreti-
cal backing for "flat minima leads to better OOD generalization". Overall, we
propose a sharpness-based OOD generalization bound by taking robustness into
consideration, resulting in a tighter bound than non-robust guarantees. Our find-
ings are supported by the experiments on a ridge regression model, as well as the
experiments on deep learning classification tasks.

1 INTRODUCTION

Machine learning systems are typically trained on a given distribution of data and achieve good
performance on new, unseen data that follows the same distribution as the training data. Out-of-
Distribution (OOD) generalization requires machine learning systems trained in the source domain to
generalize to unseen data or target domains with different distributions from the source domain. A
myriad of algorithms (Sun & Saenko, 2016; Arjovsky et al., 2019; Sagawa et al., 2019; Koyama &
Yamaguchi, 2020; Pezeshki et al., 2021; Ahuja et al., 2021) aim to learn the invariant components
along the distribution shifting. Optimization-based methods such as (El Ghaoui & Lebret, 1997;
Duchi & Namkoong, 2018; Liu et al., 2021; Rame et al., 2022) focus on maximizing robustness
by optimizing for worst-case error over an uncertainty distribution set. While these methods are
sophisticated, they do not always perform better than Empirical Risk Minimization (ERM) when
evaluated across different datasets (Gulrajani & Lopez-Paz, 2021; Wiles et al., 2022). This raises
the question of how to understand the OOD generalization of algorithms and which criteria should
be used to select models that are provably better (Gulrajani & Lopez-Paz, 2021). These questions
highlight the need for more theoretical research in the field of OOD generalization (Ye et al., 2021).

To characterize the generalization gap between the source domain and the target domain, a canonical
method (Blitzer et al., 2007) from domain adaptation theory decouples this gap into an In-Distribution
(ID) generalization and a hypothesis-specific Out-of-Distribution (OOD) distance. However, this
distance is based on the notion of VC-dimension (Kifer et al., 2004), resulting in a loose bound due to
the large size of the hypothesis class in the modern overparameterized neural networks. Subsequent
works improve the bound based on Rademacher Complexity (Du et al., 2017), whereas Germain
et al. (2016) improves the bound based on PAC-Bayes. Unlike the present paper, these works did
not consider algorithmic robustness, which has natural interpretation and advantages for distribution
shifts In this work, we consider algorithmic robustness to derive the OOD generalization bound.
The key idea is to partition the input space into K non-overlapping subspaces such that the error
difference in the model’s performance between any pair of points in each subspace is bounded by
some constant ϵ. Within each subspace, any distributional shift is considered subtle for the robust
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model thus leading to less impact on OOD generalization. Figure 1 illustrates this with the two
distributions where the target domain has a distributional shift from the source domain. Compared to
existing non-robust OOD generalization bounds Zhao et al. (2018), our new generalization error does
not depend on hypothesis size, which is more reliable in the overparameterized regime. Our goal is to
measure the generalizability of a model by considering how it is robust to this shift and achieves a
tighter bound than existing works.
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Figure 1: An example of a target distribution
(red) directly translated from a source distribu-
tion (blue). The 1D density reflects the marginal
distribution. Unlike existing works (left), we di-
vide the distributions into disjoint partitions as a
small change in distribution for a robust model
is negligible (right). The sharpness of the model
will decide the tolerance of change thus affecting
the partitions. If two sub-distributions S, T have
small shifts such that they fall into the same par-
tition (red grid), their distance measure d′(S, T )
by considering robustness will be zero.

Although robustness captures the tolerance to dis-
tributional shift, it is intractable to compute robust-
ness constant ϵ due to the inaccessibility of target
distribution. The robustness definition in Xu &
Mannor (2012) indicates that the loss landscape
induced by the model’s parameters is closely tied
to its robustness. To gain a deeper understanding
of robustness, we further study the learned model
from an optimization perspective. As shown in
(Lyu et al., 2022; Petzka et al., 2021), when the
loss landscape is "flat", there is a good general-
ization, which is also observed in OOD settings
(Izmailov et al., 2018; Cha et al., 2021). How-
ever, the relationship between robustness and this
geometric property of the loss landscape, termed
Sharpness, remains an open question. In this pa-
per, we establish a provable dependence between
robustness and sharpness for ReLU random neural
network classes. It allows us to replace robustness
constant ϵ with the sharpness of a learned model
which is only computed from the training dataset
that addresses the problem mentioned above. Our
result of the interplay between robustness and
sharpness can be applied to both ID and OOD
generalization bounds. We also show an example
to generalize our result beyond our assumption
and validate it empirically.

Our main contributions can be summarized as follows:

• We proposed a new framework for Out-of-distribution/ Out-of-domain generalization bounds.
In this framework, we use robustness to capture the tolerance of distribution shift which
leads to tighter upper bounds generally.

• We reveal the underlying connection between the robustness and sharpness of the loss
landscape and use this connection to enrich our robust OOD bounds under one-hidden
layer ReLU NNs. This is the first optimization-based bound in Out-of-Distribution/Domain
generalization.

• We studied two cases in ridge regression and classification which support and generalize our
main theorem well. All the experimental results corroborate our findings well.

2 PRELIMINARY

Notations We use [n] to denote the integers set {i}ni=1. We use ∥ · ∥ to denote the ℓ2-norm
(Euclidean norm). In vector form, wi denotes the i-th instance while the wj is the j-th element of
the vector w and we use |w| for the element-wise absolute value of vector w. We use n, d for the
training set size and input dimension. O is the Big-O notation.

2.1 PROBLEM FORMULATION

Consider a source domain and a target domain of the OOD generalization problem where we use
DS , DT to represent the source and target distribution respectively. Let each D be the probability
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measure of sample z from sample space Z = X × Y with X ∈ Rd. In the source domain, we have a
training set S = {zi}ni=1,∀i ∈ [n], zi ∼ DS while the target is to learn a model f ∈ F with S and
parameters θ ∈ Θ where f : Θ× X 7→ R generalizes well. Given loss function ℓ : R× R→ R+,
which is for short, the expected risk over the source distribution DS will be

LS(fθ) ≜ Ez∼DS
[ℓθ(z)] = Ez∼DS

[ℓ(f(θ,x), y)], L̂S(fθ) ≜
1

n

∑
zi∈S

[ℓθ(zi)].

We use ℓθ(z) as the shorthand. The OOD generalization is to measure between target domain
expected risk LT (fθ) and the source domain empirical risk L̂S(fθ) which involves two parts: (1)
In-domain generalization error gap between empirical risk and expected risk LS(fθ) in the source
domain. (2) Out-of-Domain distance between source and target domains. A model-agnostic example
in Zhao et al. (2018) gave the following uniform bound:
Proposition 2.1 (Zhao et al. Zhao et al. (2018) Theorem 2 & 3.2). With hypothesis class F and
pseudo dimension Pdim(F) = d′, unlabeled empirical datasets from source and target distribution
D̂S and D̂T with size n each, then with probability at least 1− δ, for all f ∈ F ,

LT (f) ≤ L̂S(f) +
1

2
dF∆F

(
D̂T ; D̂S

)
+O

(√
d′/n

)
where dF∆F (D̂T ; D̂S) := 2 supAf∈A{f(x)⊕f′(x):f,f′∈F}

∣∣∣PD̂S
[Af ]− PD̂T

[Af ]
∣∣∣ and ⊕ is the XOR

operator. Specific form of O(
√
|F|/n) is defined in Appendix C.6.

2.2 ALGORITHMIC ROBUSTNESS

Definition 2.2 (Robustness, Xu & Mannor (2012)). A learning model fθ on training set S is (K, ϵ(·))-
robust, forK ∈ N, if Z can be partitioned intoK disjoint sets, denoted by {Ci}Ki=1, such that ∀s ∈ S
we have

s, z ∈ Ci,∀i ∈ [K]⇒ |ℓθ(s)− ℓθ(z)| ≤ ϵ(S).

This definition captures the robustness of the model in terms of the input. Within each partitioned set
Ci, the loss difference between any sample z belonging to Ci and training sample s ∈ Ci will be
upper bounded by the robustness constant ϵ(S). The generalization result given by Xu & Mannor
(2012) provides a framework to bound the empirical risk with algorithmic robustness which has
been stated in Appendix C. Based on this framework, we are able to reframe the existing OOD
generalization theory.

3 MAIN RESULTS

In this section, we propose a new Out-of-Distribution (OOD) generalization bound for robust
algorithms that have not been extensively studied yet. We then compare our result to the existing
domain shift bound in Proposition 2.1 and discuss its implications for OOD and domain generalization
problems by considering algorithmic robustness. To further explain the introduced robustness, we
connect it to the sharpness of the minimum (a widely concerned geometric property in optimization)
by showing a rigorous dependence between robustness and sharpness. This interplay will give us a
better understanding of the OOD generalization problem, and meanwhile, provide more information
on the final generalization bound. Detailed assumptions are clarified in Appendix B.1.

3.1 ROBUST OOD GENERALIZATION BOUND

The main concern in OOD generalization is to measure the domain shift of a learned model. However,
existing methods fail to consider the intrinsic property of the model, such as robustness. Definition
2.2 gives us a new robustness measurement to the model trained on dataset S where the training
set S is a collection of i.i.d. data pair (x, y) sampled from source distribution DS with size n. The
measurement provides an intuition that if a test sample from the target domain is similar to a specific
group of training samples, their losses will be similar as well. In other words, the model’s robustness
is a reflection of its ability to generalize to unseen data. Our first theorem shows that by utilizing
the "robustness" measurement, we can more effectively handle domain shifts by setting a tolerance
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range for distribution changes. This robustness measurement, therefore, provides a useful tool for
addressing OOD generalization.

Theorem 3.1. Let D̂T be the empirical distribution of size n drawn from DT . Assume that the loss ℓ
is upper bounded by M. With probability at least 1− δ (over the choice of the samples S), for every
fθ trained on S satisfying (K, ϵ(S))-robust, we have

LT (fθ) ≤ L̂S(fθ) +Md(ϵ,K)(S, D̂T ) + 2ϵ(S) + 3M

√
2K ln 2 + 2 ln(2/δ)

n
(1)

where the total variation distance d(ϵ,K) for discrete empirical distributions is defined by:

∀i ∈ [n], ni(S) := #(z ∈ S ∩ Ci), d(ϵ,K)(S, D̂T ) :=

K∑
i=1

∣∣∣∣∣ni(S)n
− ni(D̂T )

n

∣∣∣∣∣ (2)

and ni(S), ni(D̂T ) are the number of samples from S and D̂T that fall into the set Ci, respectively.
Remark. The result can be decomposed into in-domain generalization and out-domain distance
|LT (fθ)− LS(fθ)| (please refer to Lemma C.1). Both of them depend on robustness ϵ(S).

See proof in Appendix C. The last three terms on the RHS of (1) are distribution distance, robustness
constant, and error term, respectively. Unlike traditional distribution measures, we partition the
sample space and the distributional shift separately in the K sub-groups instead of measuring it
point-wisely. We argue that the d(ϵ,K)(S, D̂T ) can be zero measure if all small changes happen within
the same partition where a 2D illustrative case is shown in Figure 1. Under the circumstances, our
distribution distance term will be significantly smaller than Proposition 2.1 as the target distribution
is essentially a perturbation of the source distribution. As a robust OOD generalization measure, our
bound characterizes how robust the learned model is to negligible distributional perturbations. To
prevent a bound that expands excessively, we also propose an alternate solution tailored for non-robust
algorithms (K →∞) as follows.
Corollary 3.2. If K → ∞, the domain shift bound |LT (fθ) − LS(fθ)| can be replaced to the
distribution distance in Proposition 2.1 where

|LT (fθ)− LS(fθ)| ≤
1

2
dF∆F (S;DT ) ≤

1

2
dF∆F (S; D̂T ) +O(

√
d′/n) (3)

where the pseudo dimension Pdim(F) = d′.
The proof is in Appendix C.1. As dictated in Theorem 3.1, when K →∞, the use infinite number of
partitions on the data distribution leads to meaningless robustness. However, Corollary C.7 suggests
that our bound can be replaced by dF∆F (DS ;DT ) in the limit of infinite K. This avoids computing
a vacuous bound for non-robust algorithms. In summary, Theorem 3.1 presents a novel approach
for quantifying distributional shifts by incorporating the concept of robustness. Our framework is
particularly beneficial when a robust algorithm is able to adapt to local shifts in the distribution.
Additionally, our data-dependent result remains valid and useful in the overparameterized regime,
since K does not depend on the model size.

3.2 SHARPNESS AND ROBUSTNESS

Clearly, robustness is inherently tied to the optimization properties of a model, particularly the
curvature of the loss landscape. One direct approach to characterize this geometric curvature, referred
to as "sharpness," involves analyzing the Hessian matrix (Foret et al., 2020; Cohen et al., 2021).
Recent research (Petzka et al., 2021) has shown that the concept of “relative flatness", the sharpness
in this paper, has a strong correlation with model generalization. However, the impact of relative
flatness on OOD generalization remains uncertain, even within the convex setting. To address this
problem, we aim to investigate the interplay between robustness and sharpness. With the following
definition of sharpness, we endeavor to establish an OOD generalization bound rooted in optimization
principles.
Definition 3.3 (Sharpness, Petzka et al. (2021)). For a twice differentiable loss function L(w) =∑

s∈S ℓw(s), w ∈ Rm with a sample set S, the sharpness is defined by

κ(w, S,A) := ⟨w,w⟩ · tr (HS,A(w)) (4)

where HS,A is the Hessian matrix of loss L(w) w.r.t. w with hypothesis set A and input set S.
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As per Definition 3.3, sharpness is characterized by the sum of all the eigenvalues of the Hessian
matrix, scaled by the parameter norm. Each eigenvalue of the Hessian reflects the rate of change of
the loss derivative in the corresponding eigenspace. Therefore the smaller value of κ indicates a flatter
minimum. In Cha et al. (2021), they suggest that flatter minima will improve the OOD generalization,
but fail to deliver an elaborate analysis of the Hessian matrix. In this section, we begin with the
random ReLU Neural Networks parameterized by θ = ({ai}i∈[m],w) where w = [w1, ..., wm]⊤ is
the trainable parameter. Let A = [a1, ...,am], the whole function class is defined as

f(w, A,x) ≜
1√
d

m∑
i=1

wiσ (x,ai) : wi ∈ R,ai ∼ Unif(Sd−1(
√
d)), i ∈ [m] (5)

where σ(·) is the ReLU activation function and a are random vectors uniformly distributed on
n-dim hypersphere whose surface is a n − 1 manifold. We then define any convex loss function
ℓ(f(w, A,x), y) : R× R→ R+. The corresponding empirical minimizer in the source domain will
be: ŵ = argminw

1
n

∑n
i=1 ℓ(f(w, A,xi), yi). With ŵ, we are interested in loss geometry over the

sample domain (ℓŵ,A(z) for short). Intuitively, a flatter minimum on the loss landscape is expected
to be more robust to varying input. Suppose the sample space Z can be partitioned into K disjoint
sets. For each set Ci, i ∈ [K], the loss difference is upper bounded by ϵ(S,A). Given z ∈ S, we have

ϵ(S,A) ≜ max
i∈[K]

sup
z,z′∈Ci

|ℓŵ,A(z)− ℓŵ,A(z
′)| . (6)

As an alternative form of robustness, the ϵ(S,A) in (6) captures the "maximum" loss difference
between any two samples in each partition and depends on the convexity and smoothness of the loss
function in the input domain. Given a training set S and any initialization w0, the robustness ϵ(S,A)
of a learned model fŵ will be determined. It explicitly reflects the smoothness of the loss function
in each (pre-)partitioned set. Nevertheless, its connection to the sharpness of the loss function in
parameter space still remains unclear. In order to address this gap, we establish a connection between
sharpness and robustness in Theorem 3.4. Notably, this interplay holds implications not only for
OOD but also for in-distribution generalization.

Theorem 3.4. Assume for any A, the loss function ℓŵ,A(z) w.r.t. sample z satisfies the L-
Hessian Lipschitz continuity (refer to Definition B.2) within every set Ci,∀i ∈ [K]. Let
zi(A) = argmaxz∈Ci∩S ℓŵ,A(z). Define Mi to be the set of global minima in Ci, sup-
pose ∃z∗

i (A) ∈ Mi such that for some ρi(L) > 0, ∥zi(A) − z∗
i (A)∥ ≤

ρi(L)
L almost

surely, then let ρmax(L) = max{ρi(L), i ∈ [K]}, ∥x∥2 ≡ R(d) and n′ ≤ n,∈ N+, w.p

p = min

{
2
π arccos

(
R(d)−

1
2

)
,

∣∣∣∣1− √
2d−4√
πR(d)

e
1

4d−9

∣∣∣∣} over {ai}mi=1 ∼ Unif(Sd−1(
√
d)) we have

ϵ(S,A) ≤ ρmax(L)
2

2L2

([
n′ +O

(
d

m

)]
κ(ŵ, S,A) +

4ρmax(L)

3

)
. (7)

Remark. Given the training set S, we can estimate factor n̂ that n′ ≤ n̂ by comparing the maximum
Hessian norm w.r.t. zj to the sum of all the Hessian norms over {zi}i∈[n]. Note that the smoothness
condition only applies to every partitioned set (locally) where it is much weaker than the global
requirement for the loss function to be satisfied We also discuss the difference between our results and
Petzka et al. (2021) in Appendix F. The chosen family of loss functions that applied to our theorem
can be found in Appendix B.1.

Corollary 3.5. Let ŵmin be the minimum value of |ŵ|. Suppose ∀x ∼ Unif(Sd−1(
√
d))

and |∂2ℓ(f(ŵ, A,x), y)/∂f2| is bounded by [M̃1, M̃2]. If m = Poly(d), d > 2, ρmax(L) <

(ŵ2
minM̃1σ̃(d,m))/(2d) taking expectation over all xj ∈ S, j ∈ [n] and all ai ∈ A ∼

Unif(Sd−1(
√
d))∀i ∈ [m], we have

ES,A [ϵ(S,A)] ≤ ES,A
7ρmax(L)

2

6L2

(
n′κ(ŵ, S,A) + M̃2

)
. (8)

where σ̃(d,m) = Ea∼Unif(Sd−1(
√
d))λmin(

∑m
i=1 aia

⊤
i Gii) > 0 is the minimum eigenvalue and Gii

is product constant of Gegenbauer polynomials (definition can be founded in Appendix B).
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See proof in Appendix D. From Theorem 3.4 we can see, the robustness constant ϵ(S,A) is (pointwise)
upper bounded by the sharpness of the learned model, as measured by the quantity κ(ŵ, S,A), and
the parameter ρmax(L). It should be noted that the parameter ρmax(L) depends on the partition,
and as the number of partitions increases, the region ρmax(L) of the input domain becomes smaller,
thereby making sharpness the dominant term in reflecting the model’s robustness within the small
local area. In Corollary 3.5, we show a stronger connection when the partition satisfies some
conditions. Overall, this bound states that the larger the sharpness of the model κ(ŵ, S,A), the
larger the upper bound on the robustness parameter ϵ(S,A). This result aligns with the intuition that
a sharper model is more prone to overfitting the training domain and is less robust in the unseen
domain. While the dependency is not exact, it still can be regarded as an alternative approach that
avoids the explicit computation of the intractable robustness term. By substituting this upper bound
for ϵ(S,A) into Theorem 3.1, we derive a sharpness-based OOD generalization bound. This implies
that the OOD generalization error will have a high probability of being small if the learned model
is flat enough. Unlike existing works, our generalization bound provides more information about
how optimization property influences performance when generalizing to OOD data. It bridges the
gap between robustness and sharpness which can also be generalized to non-OOD learning problems.
Moreover, we provide a better theoretical grounding for an empirical observation that a flat minimum
improves domain generalization (Cha et al., 2021) by pinpointing a clear dependence on sharpness.

3.3 CASE STUDY

To better demonstrate the relationship between sharpness and robustness, we provide two specific
examples: (1) linear ridge regression; (2) two-layer diagonal neural networks for classification.

Example 3.6. In ridge regression models, ϵ(S,A) has a reverse relationship to the regularization
parameter β. β ↑, the more probably flatter minimum κ ↓ and less sensitivity ϵ ↓ of the learned model
could be. Following the previous notation, we have ∃c̃1 > 0 such that ϵ(S,A) ≤ c̃1κ(θ̂, S) + õd
where õd has a smaller order than κ(θ̂, S) for large d (proof refer to Appendix E.1).

As suggested in Ali et al. (2019), let’s consider a generic response model y|θ∗ ∼ (Xθ∗, σ
2I) where

X ∈ Rn×d, d > n. The least-square empirical minimizer of the ridge regression problem will be:

θ̂ = argmin
θ

1

2n
∥Xθ − y∥2 + β

2
∥θ∥2 = (X⊤X + nβIn)

−1X⊤y =M−1X⊤y (9)

Let S be the training set. It’s trivial to get the sharpness of a quadratic loss function where

κ(θ̂, S) = ∥θ̂∥2 tr(X⊤X/n+ βIn) = ∥θ̂∥2 tr(M) (10)

It’s obvious that both of the above two equations depend on the same matrix M = X⊤X/n+ βIn.
For fixed training samples X , we have κ(θ̂, S) = O(β−1) in the limit of β. Then it’s clear that
a higher penalty β leads to a flatter minimum. This intuition is rigorously proven in Appendix
E.1. According to Theorem 3.1 and Theorem 3.4, a flatter minimum probably associates with lower
robustness constant ϵ(S,A). Thus it enjoys a lower OOD generalization error gap. In ridge regression,
this phenomenon can be reflected by the regularization coefficient β. Therefore, in general, the larger
β is, the lower the sharpness κ(θ̂, S) and variance are. As a consequence, larger β learns a more
robust model resulting in a lower OOD generalization error gap. This idea is later verified in the
distributional shift experiments, shown as Figure 2.

Example 3.7. We consider a classification problem using a 2-layer diagonal linear network with
exp-loss. The robustness ϵ(S,A) has a similar relationship in Theorem 3.4. Given training set S,
after iterations t > Tϵ, ∃c̃2 > 0, ϵ(S,A) ≤ c̃2 supt≥Tϵ

κ(θ(t), S).

In addition to the regression and linear models, we have obtained a similar relationship for 2-layer
diagonal linear networks, which are commonly used in the kernel and rich regimes as well as in
intermediate settings (Moroshko et al., 2020). Example 3.7 demonstrates that the relationship also
holds true when the model is well-trained, even exp-loss does not satisfy the PŁ condition. By
extending our theorems to these more complex frameworks, we go beyond our initial assumptions
and offer insights into broader applications. Later experiments on non-linear NN also support
our statements. However, we still need a unified theorem for general function classes with fewer
assumptions.
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4 RELATED WORK

Despite various methods (Sun & Saenko, 2016; Sagawa et al., 2019; Shi et al., 2021;
Shafieezadeh Abadeh et al., 2015; Li et al., 2018; Cha et al., 2021; Du et al., 2020; Zhang et al.,
2022) that have been proposed to overcome the poor generalization brought by unknown distribution
shifts, the underlying principles and theories still remain underexplored. As pointed out in Redko
et al. (2020); Miller et al. (2021), different tasks that address distributional shifts, such as domain
adaptation, OOD, and domain generalization, are collectively referred to as "transfer transductive
learning" and share similar generalization theories. In general, the desired generalization bound
will be split into In-Distribution/Domain (ID) generalization error and Out-of-Distribution/Domain
(OOD) distance. Since Blitzer et al. (2007) establish a VC-dimension-based framework to estimate
the domain shift gap by a divergence term, many following works make the effort to improve this
term in the following decades, such as Discrepancy (Mansour et al., 2009), Wasserstein measurement
(Courty et al., 2017; Shen et al., 2018), Integral Probability Metrics (IPM) (Zhang et al., 2019b; Ye
et al., 2021) and β-divergence (Germain et al., 2016). Among them, new generalization tools like
PAC-Bayes, Rademacher Complexity, and Stability are also applied. However, few of them discuss
how the sharpness reacts to data distributional shifts.

Beyond this canonical framework, Ye et al. (2021) reformulate the OOD generalization problem
and provide a generalization bound using the concepts of "variation" and "informativeness." The
causal framework proposed in Peters et al. (2017); Rojas-Carulla et al. (2018) focuses on the impact
of interventions on robust optimization over test distributions. However, none of these frameworks
consider the optimization process of a model and how it affects OOD generalization. Inspired by
previous investigation on the effect of sharpness on ID generalization (Lyu et al., 2022; Petzka
et al., 2021), recent work in Cha et al. (2021) found that flatter minima can also improve OOD
generalization. Nevertheless, they lack a sufficient theoretical foundation for the relationship between
the "sharpness" of a model and OOD generalization, but end with a union bound of Blitzer et al.
(2007)’s result. In this paper, we aim to provide a rigorous examination of this relationship.

5 EXPERIMENTS

In light of space constraints, we present only a portion of our experimental results to support the
validity of our theorems and findings. For comprehensive results, please refer to the Appendix G

5.1 RIDGE REGRESSION IN DISTRIBUTIONAL SHIFTING

Following Duchi & Namkoong (2021), we investigated the ridge regression on distributional shift.
We randomly generate θ∗0 ∈ Rd in spherical space, and data from the following generating process:
X

iid∼ N (0, 1), y = Xθ∗0 . To simulate distributional shift, we randomly generate a perpendicular
unit vector θ⊥0 to θ∗0 . Let θ⊥0 , θ

∗
0 be the basis vectors, then shifted ground-truth will be computed

from the basis by θ∗α = θ∗0 · cos(α) + θ⊥0 · sin(α). For the source domain, we use θ∗0 as our training
distribution. We randomly sample 50 data points and train a linear classifier with a gradient descent
of 3000 iterations. By minimizing the objective function in (9), we can get the empirical optimum
θ̂. Then we gradually shift the distribution by increasing α to get different target domains. Along
distribution shifting, the test loss ℓ(θ̂,yα) will increase. As shown in Figure 2, the test loss will
culminate in around 3 rads due to the maximum distribution shifting. Comparing different levels
of regularization, we found that the larger L2-penalty β brings lower OOD generalization error
which is shown as darker purple lines. This plot bears out our intuition in the previous section. As
stated in the aforementioned case, the sharpness of ridge regression should inversely depend on β.
Correspondingly, we compute sharpness using the definition equation (4) by averaging ten different
results. For each trial, we use the same training and test data for every β. The sharpness of each ridge
regressor is shown in the legend of Figure 2. As we can see, larger β leads to less sharpness.

5.2 SHARPER MINIMUM HURTS OOD GENERALIZATION

In our results, we proved that the upper bound of OOD generalization error involves the sharpness of
the trained model. Here we empirically verified our theoretical insight. We follow the experiment
setting in DomainBed (Gulrajani & Lopez-Paz, 2021). To easily compute the sharpness, we choose
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Figure 2: OOD test losses increase along dis-
tributional shifting. The X-axis is the shifting
angle α and the Y-axis is the test loss of the
model which is trained on distribution α = 0.
Lines are average test losses and shadows are
variances of 10 trials. Larger regularization β
(darker color) causes a lower increase in test
loss but smaller sharpness.

Figure 3: The relationship between out-of-
domain test accuracy and model sharpness on
RotatedMNIST dataset. Here we show 4 dif-
ferent OOD environments: 15◦, 30◦, 45◦, 60◦

rotation as the OOD test set respectively. Each
marker denotes a minimum of an algorithm with
a specific seed. The marker style means the
models trained in the same environment.

the 4-layer MLP on RotatedMNIST dataset where RotatedMNIST is a rotation of MNIST handwritten
digit dataset (LeCun, 1998) with different angles ranging from [0◦, 15◦, 30◦, 45◦, 60◦, 75◦]. In this
codebase, each environment refers to selecting a domain (a specific rotation angle) as the test
domain/OOD test dataset while training on all other domains. After getting the trained model of each
environment, we compute the sharpness using all domain training sets based on the implementation
of Petzka et al. (2021). To this end, we plot the performances of Empirical Minimization Risk (ERM),
SWAD (Cha et al., 2021), Mixup (Yan et al., 2020) and GroupDRO (Sagawa et al., 2019) with 6 seeds
of each. Then we measure the sharpness of all these minima. Figure 3 shows the relationship between
model sharpness and out-of-domain accuracy. The tendency is clear that flat minima give better OOD
performances. In general, different environments can not be plotted together due to different training
sets. However, we found the middle 4 environments are similar tasks and thus plot them together for
a clearer trend. In addition, different algorithms lead to different feature scales which may affect the
scale of the sharpness. To address this, we align their scales when putting them together. For more
individual results, please refer to Figure 8 in the appendix.

5.3 COMPARISON OF GENERALIZATION BOUNDS

To analyze our generalization bounds, we follow the toy example experiments in Sagawa et al. (2020).
In this experiment, the distribution shift terms and generalization error terms can be explicitly com-
puted. Furthermore, their synthetic experiment considers the spurious correlation across distribution
shifts which is now a general formulation of OOD generalization (Wald et al., 2021; Aubin et al.,
2021; Yao et al., 2022). Consider data x = [xcore, xspu] ∈ that consist of two features: core feature
and spurious feature. The features are generated from the following rule:

xcore | y ∼ N
(
y1, σ2

core Id
)
xspu | a ∼ N

(
a1, σ2

spuId
)

where y ∈ {−1, 1} is the label, and a ∈ {−1, 1} is the spurious attribute. Data with y = a forms the
majority group of size nmaj, and data with y = −a forms minority group of size nmin. Total number
of training points n = nmaj + nmin. The spurious correlation probability, pmaj =

nmaj

n defines the
probability of y = a in training data. In testing, we always have pmaj = 0.5. The metric, worst-group
error Sagawa et al. (2019) is defined as

Errwg(w) := max
i∈[4]

Ex,y|gi [ℓ0−1(w; (x, y))]

where ℓ0−1 is the 0− 1 loss in binary classification. Here we compare the robustness of our proposed
OOD generalization bound and the baseline in Proposition 2.1. We also give the comparison to other
baselines, like PAC-Bayes DA bound in the Appendix G.

8



Published as a conference paper at ICLR 2024

Figure 4: Spurious feature synthetic experiment. Each dot represents a trained model. The dash
curves are the smoothed function fit by the test data points. The baseline is Proposition 2.1. (a),(d):
the generalization error of the logistic regression models with increasing the model size/correlation
probability. (b): concentration error term in domain shift bound. (e): comparison of distribution
distance bounds. (c),(f): comparisons of generalization bounds. Note that model size > 500 is
the overparameterized regime. The further the correlation probability is from 0.5, the greater the
distributional shift is.

Along model size We plot the generalization error of the random feature logistic regression along
the model size increases in Figure 4(a). In this experiment, we follow the hyperparameter setup of
Sagawa et al. (2020) by setting the number of points n = 500, data dimension 2d = 200 with 100
on each feature. majority fraction pmaj = 0.9 and noises σ2

spu = 1, σ2
core = 100. The worst-group

error turns out to be nearly the same as the model size increases. However, in Figure 4(b), the
error term in domain shift bound Proposition 2.1(A) will keep increasing when the model size is
increasing. In contrast, our domain shift bound at order

√
K is independent of the model size which

addresses the limitation of their bound. We follow Kawaguchi et al. (2022) to compute K in an
inverse image of the ϵ-covering in a randomly projected space (see details in appendix). We set the
same value K = 1, 000 in our experiment. Different from the baseline, K is data dependent and
leads to a constant concentration error term along with model size increases. Analogously, our OOD
generalization bound will not explode as model size increases (shown in Figure 4(c)).

Along distribution shift In addition, we are interested in characterizing OOD generalization when
test distribution shifts from train distribution by varying the correlation probability pmaj during data
generation. As shown in Figure 4(d), when pmaj = 0.5, there is no distributional shift between
training and test data due to no spurious features correlated to training data. Thus, the training and test
distributions align closer and closer when pmaj < 0.5 and increase, resulting in an initial decrease in
the test error for the worst-case group. However, as pmaj > 0.5 and deviates from 0.5, introducing the
spurious features, a shift in the distribution occurs. This deviation is likely to impact the worst-case
group differently, leading to an increase in the test error. As displayed in Figure 4(e) and Figure 4(f),
our distribution distance and generalization bound can capture the distribution shifts but are tighter
than the baseline.

6 CONCLUSION

In this paper, we provide a more interpretable and informative theory to understand Out-of-
Distribution (OOD) generalization Based on the notion of robustness, we propose a robust OOD
bound that effectively captures the algorithmic robustness in the presence of shifting data distribu-
tions. In addition, our in-depth analysis of the relationship between robustness and sharpness further
illustrates that sharpness has a negative impact on generalization. Overall, our results advance the
understanding of OOD generalization and the principles that govern it.
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A ADDITIONAL EXPERIMENTS

A.1 SHARPNESS V.S. OOD GENERALIZATION ON PACS AND WILDS-CAMELYON17

Figure 5: The relationship between out-of-
distribution (OOD) test accuracy on the test
environment and model sharpness (of last FC
layer) on the Wilds-Camelyon17 dataset. Each
marker denotes a model trained using ERM
with different seed and hyperparameters.

Figure 6: The relationship between OOD test
accuracy and model sharpness on the PACS
dataset. Each marker denotes a model trained
using ERM with different seeds and hyperpa-
rameters. The marker style shows the out-of-
distribution test environment of the model.

To evaluate our theorem more deeply, we examine the relationship between our defined sharpness
and OOD generalization error on larger-scale real-world datasets, Wilds-Camelyon17 Bandi et al.
(2018); Koh et al. (2021) and PACS Li et al. (2017). Wilds-Camelyon17 dataset includes 455,954
tumor and normal tissue slide images from five hospitals (environments). One of the hospitals is
assigned as the test environment by the dataset publisher. Distribution shift arises from variations
in patient population, slide staining, and image acquisition. PACS dataset contains 9,991 images of
7 objects in 4 visual styles (environments): art painting, cartoon, photo, and sketch. Following the
common setup in Gulrajani & Lopez-Paz (2021), each environment is used as a test environment
in turn. We follow the practice in Petzka et al. (2021) to compute the sharpness using the Hessian
matrix from the last Fully-Connected (FC) layer of each model. For the Wilds-Camelyon17 dataset,
we test the sharpness of 18 ERM models trained with different random seeds and hyperparameters.
Figure 5 shows the result. For the PACS dataset, we run 60 ERM models with different random seeds
and hyperparameters for each test environment. To get a clearer correlation, we align the points from
4 environments by their mean performance. Figure 6 shows the result. From the two figures, we can
observe a clear correlation between sharpness and out-of-distribution (OOD) accuracy. Sharpness
tends to hurt the OOD performance of the model. The result is consistent with what we report in
Figure 3. It shows that the correlation between sharpness and OOD accuracy can also be observed on
large-scale datasets.

B NOTATIONS AND DEFINITIONS

Notations We use [n] denote the integers set {i}ni=1. ∥·∥ represents ℓ2-norm ∥·∥2 for short. Without
loss of generality, we use ℓ(f(θ,x),y) for the loss function of model fθ on data pair z = (x,y),
which is denoted as ℓθ(z)) and we use n, d for training set size and input dimension. Note that we
generally follow the notations in the original papers.

• LS ,LT : expected risk of the source domain and target domain, respectively. The corre-
sponding empirical version will be L̂S , L̂T

• {Ci}Ki=1: K partitions on sample space and Ci denotes each partitioned set.

• DS ,DT : distributions of source and target domain. Their sampled dataset will be denoted
as D̂S , D̂T accordingly.
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• θ: In our setting, θ = (w, {a}mi ) denotes the model parameters where w is the trainable
parameters and {ai}m are the random features (we also use A = [a1, ...,am] for short
notation in many places). ŵ is the minimizer of empirical loss.

• M : upper bound of the loss function.

• S = {(xi, yi)}ni /X = [x1, ...xn]: training data of size n.

Definition B.1 (Robustness, Xu & Mannor (2012)). A learning algorithm A on training set S is
(K, ϵ(·))-robust, for K ∈ N, if Z can be partitioned into K disjoint sets, denoted by {Ck}Kk=1, such
that for all s ∈ S, z ∈ Z we have

∀s, z ∈ Ci,∀k ∈ [K], |ℓ (AS , s)− ℓ (AS , z)| ≤ ϵ(S,A).

Definition B.2 (Hessian Lipschitz continuous). For a twice differentiable function f : Rn → R, it
has L-Lipschitz continuous Hessian for domain x,y are vectors in Ci if∥∥∇2f(y)−∇2f(x)

∥∥ ≤ Li∥y − x∥

where Li > 0 depends on input domain Ci and ∥ · ∥ is L2 norm. Then for all K domains ∪Ki=1Ci, let
L := max{Li|i ∈ [K]} be the uniform Lipschitz constant, so we have∥∥∇2f(y)−∇2f(x)

∥∥ ≤ Li∥y − x∥ ≤ L∥y − x∥,∀i ∈ [K], (x,y) ∈ Ci

which is uniformly bounded with L.

Lemma B.3 (Hessian Lipschitz Lemma). If f is twice differentiable and has L-Lipschitz continuous
Hessian, then∣∣∣∣f(y)− f(x)− ⟨∇f(x),y − x⟩ − 1

2

〈
∇2f(x)(y − x), (y − x)

〉∣∣∣∣ ≤ L

6
∥y − x∥3.

Gegenbauer Polynomials

We briefly define Gegenbauer polynomials here whose details can be found in Appendix of Mei
& Montanari (2022). First, we denote Sd−1(r) = {x ∈ Rd : ∥x∥ = r} as the uniform spherical
distribution with the radius r on d− 1 manifold. Let τd be the probability measure on Sd−1 and and
the inner product in functional space L2([−d, d], µd) denoted as ⟨·, ·⟩L2 and ∥ · ∥L2 :

⟨f, g⟩L2 ≡
∫
Sd−1(

√
d)

f(x)g(x)µd( dx).

For any function σ ∈ L2([−d, d], τd), where τd is the distribution of ⟨x,y⟩/
√
d (x,y ∼ Sd−1(

√
d)),

the orthogonal basis {Qd
t } forms the Gegenbauer polynomial of degree t(t ≥ 0), its spherical

harmonics coefficients λd,t(σ) can be expressed as:

λd,t(σ) =

∫
[−

√
d,
√
d]

σ(x)Q
(d)
t (
√
dx)τd(x),

then the Gegenbauer generating function holds in L2
(
[−
√
d,
√
d], τd

)
sense

σ(x) =

∞∑
k=0

λd,t(σ)Nd,tQ
(d)
t (
√
dx)

where Nd,t is the normalized factor depending on the norm of input.

B.1 ASSUMPTIONS

We discuss and list all assumptions we used in our theorems. The purposes are to offer clarity
regarding the specific assumptions required for each theorem and ensure that the assumptions made in
our theorems are well-founded and reasonable, reinforcing the validity and reliability of our results.
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OOD Generalization

(Setting): Given a full sample space Z , source and target distributions are two different measures over
this whole sample domainZ . The purpose is to study the robust algorithms in the OOD generalization
setting.

(Assumptions): For any sample ∀z ∈ Z , the loss function is bounded ℓθ(z) ∈ [0,M ]. This
assumption generally follows the original paper Xu & Mannor (2012). While it is possible to relax
this assumption and derive improved bounds, our primary objective is to formulate a framework for
robust OOD generalization and establish a clear connection with the optimization properties of the
model.

Robustness and Sharpness

(Setting): In order to give a fine-grained analysis, we follow the common choice where a two-layer
ReLU Neural Network function class is widely analyzed in most literature, i.e. Neural Tangent
Kernel, non-kernel (rich) regime Moroshko et al. (2020) and random feature models. Among them,
we select the following random feature models as our function class:

f(w, A,x) ≜
1√
d

m∑
i=1

wiσ (x,ai) : wi ∈ R,ai ∼ Unif(Sd−1(
√
d)), i ∈ [m]

where m is the hidden size and A = [a1, ...,am] contains random vectors uniformly distributed on
n-dim hypersphere whose surface is a n− 1 manifold. σ(a⊤x) = (a⊤x)I{a⊤x} denotes the ReLU
activation function and I is the indicator function. w = [w1, ..., wm]⊤ is the trainable parameter. We
choose the common loss functions: (1) Homogeneity in regression; (2) (Binary) Cross-Entropy Loss;
(3) Negative Log Likelihood (NLL) loss;

(Assumptions):

(i) Let Ci, i ∈ [K] be any set from whole partitions ∪Ki=1Ci, we assume ∀z ∈ Ci, the loss function
ℓŵ,A(z) satisfies L-Hessian Lipschitz for all i ∈ [K] (See details in Definition B.2). Note that we
only require this assumption to hold within each partition, instead of holding globally. In general,
the smoothness and convexity condition is actually equivalent to locally convex which is a weak
assumption for most function classes.

(ii) Consider an optimization problem in each partition Ci, i ∈ [K]. Let one of the training points
zi(A) ∈ S∩Ci be the initial point and z∗

i (A) ∈Mi is the corresponding nearest local minima where
Mi is the local minima set of partition Ci. For some ρi(L) > 0, we assume ∥zi(A) − z∗

i (A)∥ ≤
ρi(L)/L holds a.s.. It ensures the hessian norm ∥H(zi(A))∥ has the lower bound. Similar conditions
and estimations can be found in Zhang et al. (2019a).

(iii) To simplify the computation of probability, we assume ξi = a⊤
i x obeys a rotationally invariant

distribution.

(iv) For Corollary 3.5, we make additional assumptions that loss function ℓ() satisfied a bounded
condition where the second derivative ∀x ∼ Unif(Sd−1(

√
d)), |∂2ℓ(f(ŵ, A,x), y)/∂f2| with re-

spect to its argument f(ŵ, A,x) should be bounded by [M̃1, M̃2]. Note, we consider the case
where the data ∀x ∼ Unif(Sd−1(

√
d)) while m = Poly(d) is to ensure the positive definiteness of∑m

i=1 aia
⊤
i ∈ Rd×d almost surely.

C PROOF TO DOMAIN SHIFT

Lemma C.1. Let D̂T be the empirical distribution of size n drawn from DT . The loss ℓ is upper
bounded by M. With probability at least 1− δ (over the choice of the samples), for every fθ trained
on S, we have

LT (fθ) ≤ LS(fθ) +Md(ϵ,K)(S, D̂T ) + ϵ(S) + 2M

√
2K ln 2 + 2 ln(1/δ)

n
(11)

where

∀i ∈ [n], ni(S) := #(z ∈ S ∩ Ci), d(ϵ,K)(S, D̂T ) :=

K∑
i=1

∣∣∣∣∣ni(S)n
− ni(D̂T )

n

∣∣∣∣∣ (12)
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and ni(S), ni(D̂T ) are the number of samples from S and D̂T that fall into the set Ci, respectively.

Proof. In the following generalization statement, we use ℓ(fθ, z) to denote the error obtained with
input z and hypothesis function fθ for better illustration. By definition we have,

LT (fθ)− LS(fθ) := Ez′∼DT
ℓ(fθ, z

′)− Ez∼DS
ℓ(fθ, z). (13)

Then we make the K partitions for source distribution DS . Let ni be the size of collec-
tion set of points x fall into the partition Ci where ni is the i.i.d.multinomial random vari-
able with (ps(C1), ..., ps(CK)). We use parallel notation for target distribution DT with S′

i ∼
(pt(C1), ..., pt(CK)). Since

Ez∼DS
ℓ(fθ, z) =

K∑
i=1

Ez∼DS
(ℓ(fθ, z

′)|z ∈ Ci)ps(Ci)

Ez′∼DT
ℓ(fθ, z

′) =

K∑
i=1

Ez′∼DT
(ℓ(fθ, z

′)|z′ ∈ Ci)pt(Ci)

(14)

and thus we have

LT (fθ)− LS(fθ) =

K∑
i=1

E(ℓ(fθ, z′)|z′ ∈ Ci)pt(Ci)− E(ℓ(fθ, z)|z ∈ Ci)ps(Ci)

± E(ℓ(fθ, z′)|z′ ∈ Ci)ps(Ci)

=

K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci)) (pt(Ci)− ps(Ci))

+

K∑
i=1

[E(ℓ(fθ, z′)|z′ ∈ Ci)− E(ℓ(fθ, z)|z ∈ Ci)] ps(Ci)

≤
K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci)) (pt(Ci)− ps(Ci)) + ϵ(S,A).

(15)

If we sample empirical distribution S, D̂T of size n each drawn from DS and DT , respectively.
(n1, ..., nK) are the i.i.d. random variables belongs to Ci. We use the parallel notation n′i for target
distribution.

d(ϵ,K)(S, D̂T ) :=

K∑
i

∣∣∣∣∣ni(S)n
− ni(D̂T )

n

∣∣∣∣∣ . (16)

Further, we have

K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci)) (pt(Ci)− ps(Ci))−
K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci))

(
ni(D̂T )

n
− ni(S)

n

)

=

K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci))

(
pt(Ci)−

ni(D̂T )

n

)
−

K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci))

(
ps(Ci)−

ni(S)

n

)

≤M
K∑
i=1

∣∣∣∣∣pt(Ci)−
ni(D̂T )

n

∣∣∣∣∣+M

K∑
i=1

∣∣∣∣ps(Ci)−
ni(S)

n

∣∣∣∣ .
(17)

With Breteganolle-Huber-Carol inequality we have

K∑
i=1

∣∣∣∣ni(S)n
− ps(Ci)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

n
. (18)

17
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To integrate these two inequalities, we have

K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci))(pt(Ci)− ps(Ci))

≤
K∑
i=1

(E(ℓ(fθ, z′)|z′ ∈ Ci))

(
ni(D̂T )

n
− ni(S)

n

)
+ 2M

√
2K ln 2 + 2 ln(1/δ)

n

≤Md(ϵ,K)(S, D̂T ) + 2M

√
2K ln 2 + 2 ln(1/δ)

n
.

(19)

In summary with probability 1− δ we have

LT (fθ) ≤ LS(fθ) +Md(ϵ,K)(S, D̂T ) + ϵ(S) + 2M

√
2K ln 2 + 2 ln(1/δ)

n
(20)

which completes the proof.

With the result of the domain (distribution) shift and the relationship between sharpness and robustness,
we can move forward to the final OOD generalization error bound. First, we state the context of ID
robustness bound in Xu & Mannor (2012) as follows.

Lemma C.2 (Xu et al.Xu & Mannor (2012)). Assume that for all h ∈ H and z ∈ Z , the loss is
upper bounded by M i.e., ℓ(h, z) ≤M . If the learning algorithm A is (K, ϵ(·))-robust, then for any
δ > 0, with probability at least 1− δ over an iid draw of n samples S = (zi)

n
i=1, it holds that:

Ez [ℓ (AS , z)] ≤
1

n

n∑
i=1

ℓ (AS , zi) + ϵ(S) +M

√
2K ln 2 + 2 ln(1/δ)

n

As the conclusive results, we briefly prove the following result by summarizing Lemma C.2 and
Lemma C.1.

Theorem C.3 (Restatement of Theorem 3.1). Let D̂T be the empirical distribution of size n drawn
from DT . The loss ℓ is upper bounded by M. With probability at least 1− δ (over the choice of the
samples), for every fθ trained on S, we have

LT (θ) ≤ L̂S(θ) +Md(ϵ,K)(S, D̂T ) + 2ϵ(S) + 3M

√
2K ln 2 + 2 ln(2/δ)

n
. (21)

Proof. Firstly, with Lemma C.1 and probability as least 1− δ
2 , we have

LT (fθ) ≤ LS(fθ) +Md(ϵ,K)(D̂S , D̂T ) + 2M

√
2K ln 2 + 2 ln(2/δ)

n
+ ϵ(S)

Secondly, with Lemma C.2 (Xu & Mannor (2012) Theorem 3) and probability as least 1− δ
2 , we have∣∣∣LS(fθ)− L̂S(fθ)

∣∣∣ ≤ ϵ(S) +M

√
2K ln 2 + 2 ln(2/δ)

n

By taking the union bound, we conclude our final result that with probability at least 1− δ

LT (fθ) ≤ L̂S(fθ) + 3M

√
2K ln 2 + 2 ln(2/δ)

n
+ 2ϵ(S) +Md(ϵ,K)(S, D̂T ) (22)

Here ϵ(S) is the robustness constant that we can replace with any sharpness measure.
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C.1 PROOF TO COROLLARY 3.2

Definition C.4. dF∆F (DT ;DS) := 2 supA(f)∈AF∆F
|PrDS

(A(f))− PrDT
(A(f))| and F∆F is

defined as:
F∆F := {f(x)⊕ f ′(x) : f, f ′ ∈ F}

where ⊕ is the XOR operator e.g. I(f ′(x) ̸= f(x)).
Lemma C.5 (Lemma 2 Zhao et al. (2018)). If Pdim(F) = d′, then VCdim(F∆F) ≤ 2d′ .

Proposition C.6 (Zhao et al. (2018)). LetF be a hypothesis class with pseudo dimension Pdim(F) =
d′. If D̂S is the empirical distributions generated with n i.i.d.. samples from source domain, and D̂T

is the empirical distribution on the target domain generated from n samples without labels, then with
probability at least 1− δ, for all f ∈ F , we have:

LT (f) ≤ L̂S(f) + E∗ +
√

2d′ log en
d′

n
+

√
log 2

δ

2n

+
1

2
dF∆F

(
D̂T ; D̂S

)
+ 4

√
2d′ ln(2n) + ln 4

δ

n︸ ︷︷ ︸
(Empirical div Error)

(23)

where E∗ = L̂S(f
∗)+ L̂T (f

∗) is the total error of best hypothesis f∗ over source and target domain.

Proof. With Lemma 4 (Zhao et al., 2018), we have

LT (f) ≤ L̂S(f) +
1

2
dF∆F + E∗

where
E∗ = inf

f ′∈F
LS(f

′) + LT (f
′).

Lemma 6 (Zhao et al., 2018), which is actually Lemma 1 in (Ben-David et al., 2010), shows the
following results

dF∆F (DT ;DS) ≤ dF∆F

(
D̂T ; D̂S

)
+ 4

√
VCdim(F∆F) ln(2n) + ln 2

δ

n
.

As suggested in Zhao et al. (2018), VCdim(F∆F) is at most 2d′. Further, with Theorem 2 (Ben-
David et al., 2010), we have at probability at least 1− δ

2

LT (f) ≤ LS(f) +
1

2
dF∆F

(
D̂T ; D̂S

)
+ 4

√
VCdim(F∆F) ln(2n) + ln 2

δ

n
+ E∗

≤ LS(f) +
1

2
dF∆F

(
D̂T ; D̂S

)
+ 4

√
2d′ ln(2n) + ln 2

δ

n
+ E∗

(24)

Using in-domain generalization error Lemma 11.6 (Mohri et al., 2018), with probability at least 1− δ
2

the result is

LS(f) ≤ L̂S(f) +M

√
2d′ log en

d′

n
+M

√
log 1

δ

2n

Note in Zhao et al. (2018), the M = 1 for the normalized regression loss. Combine them all, we
conclude the proof.

Corollary C.7. If K → ∞,M = 1, domain shift bound |LT (fθ) − LS(fθ)| will be reduced to
(Empirical div Error) in Proposition C.6 where

|LT (fθ)− LS(fθ)| ≤
1

2
dF∆F (DS ;DT ) ≤ (Empirical div Error) (25)
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Proof. According to Theorem C.3, we have

LT (fθ)− LS(fθ) =

K∑
i

E(ℓ(fθ, z′)|z′ ∈ Ci)pt(Ci)− E(ℓ(fθ, z)|z ∈ Ci)ps(Ci) (26)

If K →∞, let’s define a domain that U :=
⋃∞

i=1 Ci. The equation (26) will be

LT (fθ)− LS(fθ) =

∫
z′∈U

ℓ(fθ, z
′)pt(z

′)dz −
∫
z∈U

ℓ(fθ, z)ps(z)dz

=

∫
z′∈DT

ℓ(fθ, z
′)pt(z

′)dz −
∫
z∈DS

ℓ(fθ, z)ps(z)dz

= Ez′∼DT
ℓ(fθ, z

′)− Ez∼DS
ℓ(fθ, z).

(27)

In this case, we have,

|LT (fθ)− LS(fθ)|
= |Ez′∼DT

ℓ(fθ, z
′)− Ez∼DS

ℓ(fθ, z)|

≤
∫ ∞

0

|PrDT
(ℓ(f(θ,x′), y′) > t) dt− PrDS

(ℓ(f(θ,x), y) > t) dt|

=

∫ 1

0

|PrDT
(ℓ(f(θ,x′), y′) > t)− PrDS

(ℓ(f(θ,x), y) > t)| dt (M = 1)

≤ sup
t∈[0,1]

sup
f(θ,·)∈F

|PrDT
(ℓ(f(θ,x′), y′) > t)− PrDS

(ℓ(f(θ,x), y) > t)|

≤ sup
A(f)∈AF∆F

|PrDT
(A(f))− PrDS

(A(f))|

=
1

2
dF∆F (DS ;DT ) ≤ (Empirical div error)

(28)

where AF∆F represents a learning algorithm under the hypothesis F∆F = {f(x)⊕ f ′(x) : f, f ′ ∈
F}, which completes the proof.

D SHARPNESS AND ROBUSTNESS

Lemma D.1 (positive definiteness of Hessian). Let ŵmin be the minimum value of |ŵ| and x∗ =

argminx∈Unif(Sd−1(
√
d)) ℓ(f(ŵ, A,x),y). For any A = (a1, ...,am),ai ∼ Unif(Sd−1(

√
d))∀i ∈

[m] denote σ̃(d,m) = λmin(
∑m

i=1 aia
⊤
i Gii) > 0 be the minimum eigenvalue, where Gij =∑∞

t=0 λ
2
d,t(σ)N

2
d,tQ

(d)
t (⟨ai,aj⟩/

√
d) is the polynomial product constant. If m = Poly(d), the

hessian H(x∗) can be lower bound by

Ex∗∼Unif(Sd−1(
√
d))H(x∗) ⪰ ŵ2

minσ̃(d,m)M̃1

d
Id. (29)

Proof. As suggested in Lemma D.6 of (Zhong et al., 2017), we have a similar result to bound the
local positive definiteness of Hessian. By previous definition, the Hessian w.r.t. x has a following
partial order

H(x∗) =
D2

f (x
∗, y∗)

d

 m∑
i=1

m∑
j=1

ŵiŵjaia
⊤
j σ

′(a⊤
i x

∗)σ′(a⊤
j x

∗)


⪰ M̃1

d

 m∑
i=1

m∑
j=1

ŵiŵjaia
⊤
j σ

′(a⊤
i x

∗)σ′(a⊤
j x

∗)


⪰ ŵ2

minM̃1

d

 m∑
i=1

m∑
j=1

ŵiŵjaia
⊤
j σ

′(a⊤
i x

∗)σ′(a⊤
j x

∗)


(30)
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For the ReLU activation function, we further have

σ(a⊤x∗) ≥ σ′(a⊤x∗) (31)

We extend the σ ∈ L2([−
√
d,
√
d], τd) (where τd is the distribution of ⟨x1,x2⟩/

√
d) by Gegenbauer

polynomials that

σ(x) =

∞∑
t=0

λd,t(σ)Nd,tQ
(d)
t (
√
dx). (32)

Let A = (a1, ...,am) ∈ Rm×d. We assume ∀x ∈ Unif(Sd−1(
√
d)). Lemma C.7 in (Mei &

Montanari, 2022), suggests that

U =
(
Ex∗∼Unif(Sd−1(

√
d))[σ(⟨ai,x

∗⟩/
√
d)σ(⟨ai,x

∗⟩/
√
d)]
)
i,j∈[m]

∈ Rm×m (33)

which shows matrix U is a positive definite matrix. Similarly, taking the expectation over x∗, terms
in RHS of (30) bracket can be rewritten as

Ex∗∼Unif(Sd−1(
√
d))

 m∑
i=1

m∑
j=1

aia
⊤
j σ

′(a⊤
i x

∗)σ′(a⊤
j x

∗)


⪰

m∑
i=1

m∑
j=1

aia
⊤
j Ex∗ [σ(a⊤

i x
∗/
√
d)σ(a⊤

j x
∗/
√
d)]

(34)

Besides, we have the following property of Gegenbauer polynomials,

1. For x,y ∈ Sd−1(
√
d)〈

Q
(d)
j (⟨x, ·⟩), Q(d)

k (⟨y, ·⟩)
〉
L2(Sd−1(

√
d),γd)

=
1

Nd,k
δjkQ

(d)
k (⟨x,y⟩).

2. For x,y ∈ Sd−1(
√
d)

Q
(d)
k (⟨x,y⟩) = 1

Nd,k

Nd,k∑
i=1

Y
(d)
ki (x)Y

(d)
ki (y).

where spherical harmonics {Y (d)
lj }1≤j≤Nd,l

forms an orthonormal basis which gives the following
results

Ex∗ [σ(a⊤
i x

∗/
√
d)σ(a⊤

j x
∗/
√
d)] =

∞∑
t=0

λ2d,t(σ)N
2
d,tEx∗Q

(d)
t (⟨ai,x

∗⟩/
√
d)Q

(d)
t (⟨aj ,x

∗⟩/
√
d)

=

∞∑
t=0

λ2d,t(σ)N
2
d,tQ

(d)
t (⟨ai,aj⟩/

√
d) = Gij <∞.

(35)
Hence, we have

m∑
i=1

m∑
j=1

aia
⊤
j Ex∗ [σ(a⊤

i x
∗/
√
d)σ(a⊤

j x
∗/
√
d)] =

m∑
i=1

aia
⊤
i Gii +O(1/d)Var(a) (36)

Since m = Poly(d), and {a}i∈[m] are i.i.d, then rank
(∑m

i=1 aia
⊤
i Gii

)
= rank

(
AA⊤) = d. Let

σ̃(d,m) = Eaλmin(
∑m

i=1 aia
⊤
i Gii) > 0 we have

Ex∗H(x∗) ⪰ ŵ2
minσ̃(d,m)M̃1

d
Id (37)
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Lemma D.2. Let
⋃K

k=1 Ck be the whole domain, the notion of (ϵ,K)-robustness is described by

ϵ(S,A) ≜ max
Ci⊂

⋃K
k=1 Ck

sup
z,z′

i∈Ci,z∈S

|ℓŵ,A(z)− ℓŵ,A(z
′
i)| .

DefineMi be the set of global minima in Ci, where

Mi ≜ {z(A)|z(A) = min
z∈Ci

ℓŵ,A(z)}

suppose for some maximum training loss point

zi(A) ∈
{

max
z∈Ci∩S

ℓŵ,A(z)− ℓŵ,A(z
∗
i (A))

}
there ∃z∗

i (A) where
z∗
i (A) ≜ arg min

z∈Mi

∥z − zi(A)∥

such that ∥zi(A)− z∗(A)∥ ≤ ρi(L)
L almost surely hold for any A ∈ Unif(Sd−1(

√
d)) and for any

A, ℓŵ,A(z) is L-Hessian Lipschitz continuous. Then the ϵ(S,A) can be bounded by

ϵ(S,A) ≤ max
i∈[K]

ρi(L)
2

2L2

(∥∥∇2ℓŵ,A(zi(A))
∥∥+ 4ρi(L)

3

)

Proof. Let z ∈ S be a collection of (x, y) from the training set S and z′
i denote any collection from

the set Ci. We define local minima setMi (which is the global minima set of Ci). Assume that for
some maximum point zi(A) ∈ maxz∈Ci∩S ℓŵ,A(z), there exists a z∗

i (A) ∈ Mi almost surely for
all A ∼ Unif(Sd−1(

√
d)) such that

z∗
i (A) = arg min

z∈Mi

f := {z ∈Mi : ∥zi(A)− z∥} s.t. ∥zi(A)− z∥ ≤ ρi(L)

L
(38)

By definition, ϵ(S,A) can be rewritten as

ϵ(S,A) = max
i∈[K]

sup
z,z′

i∈Ci,z∈S

|ℓŵ,A(z)− ℓŵ,A(z
′
i)|

= max
i∈[K]

sup
z∈Ci∩S,z∗∈Mi

ℓŵ,A(z)− ℓŵ,A(z
∗)

= max
i∈[K]

ℓŵ,A(zi(A))− ℓŵ,A(z
∗
i (A)).

(39)

According to Lemma B.3, we have

ϵ(S,A) = max
i∈[K]

ℓŵ,A(zi(A))− ℓŵ,A(z
∗
i (A))

(i)

≤ max
i∈[K]

⟨∇ℓŵ,A(z
∗
i (A)), zi(A)− z∗

i (A)⟩

+
1

2

〈
∇2ℓŵ,A(z

∗
i (A))(zi(A)− z∗

i (A)), zi(A)− z∗
i (A)

〉
+
L

6
∥zi(A)− z∗∥3

=max
i∈[K]

1

2

〈
∇2ℓŵ,A(z

∗
i (A))(zi(A)− z∗

i (A)), zi(A)− z∗
i (A)

〉
+
L

6
∥zi(A)− z∗

i (A)∥3

≤max
i∈[K]

1

2

∥∥∇2ℓŵ,A(z
∗
i (A))

∥∥ ∥zi(A)− z∗
i (A)∥2

+
L

6
∥zi(A)− z∗

i (A)∥3 (Cauchy-Schwarz)
(40)

where (i) support by the fact∇ℓŵ,A(z
∗) = 0. With Lipschitz continuous Hessian we have

∥∇2ℓŵ,A(z
∗
i (A))∥ ≤ L∥zi(A)− z∗

i (A)∥+ ∥∇2ℓŵ,A(zi(A))∥. (41)
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Overall, we have

ϵ(S,A) ≤ max
i∈[K]

1

2

∥∥∇2ℓŵ,A(z
∗
i (A))

∥∥ ∥zi(A)− z∗
i (A)∥2 +

L

6
∥zi(A)− z∗

i (A)∥3

≤ max
i∈[K]

1

2

(
∥∇2ℓŵ,A(zi(A))∥+ L∥zi(A)− z∗

i (A)∥
)
∥zi(A)− z∗

i (A)∥2

+
L

6
∥zi(A)− z∗

i (A)∥3

≤ max
i∈[K]

1

2

(
∥∇2ℓŵ,A(zi(A))∥+ ρi(L)

) ρi(L)2
L2

+
ρi(L)

3

6L2

= max
i∈[K]

ρi(L)
2

2L2
∥∇2ℓŵ,A(zi(A))∥+

2ρi(L)
3

3L2

(42)

which completes the proof.

Lemma D.3 (Lemma 2.1 Bourin et al. (2013)). For every matrix in M+
n+m partitioned into blocks,

we have a decomposition[
A X
X∗ B

]
= U

[
A 0
0 0

]
U∗ + V

[
0 0
0 B

]
V ∗

for some unitaries U, V ∈Mn+m.
Lemma D.4. Then, given an arbitrary partitioned positive semi-definite matrix,∥∥∥∥[ A X

X∗ B

]∥∥∥∥
s

≤ ∥A∥s + ∥B∥s

for all symmetric norms.

Proof. In lemma D.3 we have[
A X
X∗ B

]
= U

[
A 0
0 0

]
U∗ + V

[
0 0
0 B

]
V ∗

for some unitaries U, V ∈Mn+m. The result then follows from the simple fact that symmetric norms
are non-decreasing functions of the singular values where f = ∥ · ∥s : M 7→ R, we have

f

([
A X
X∗ B

])
≤ f

(
U

[
A 0
0 0

]
U∗
)
+ f

(
V

[
0 0
0 B

]
V ∗
)

Lemma D.5. For a ∼ Unif(Sd−1(
√
d)) and x are some vector ∈ Rd with norm ∥x∥ ≡

√
R(d) ≥ d,

we have

P(⟨x,a⟩2 ≥ ∥a∥2) ≥ min


2 arccos

(
1√
R(d)

)
π

,

∣∣∣∣∣1−
√
2d− 4√
πR(d)

exp

(
1

4d− 9

)∣∣∣∣∣
 (43)

Proof. We can replace the unit vector of a with e by

P(⟨x,a⟩2 ≥ ∥a∥2) = P(⟨x, e⟩2 ≥ 1) (44)

Similarly, we can replace x by unit vector s such that

P(⟨x, e⟩2 ≥ 1) = P
(
⟨s, e⟩2 ≥ 1

R(d)

)
(45)

Solving ⟨s, e⟩2 = 1
R(d) , we get

⟨s, e⟩2 = cos2 ϕ =
1

R(d)
⇒ ϕ = arccos± 1√

R(d)
(46)
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In this case, the probability will converge to 1 as R(d) increases. As is known to us, surface area of
Sd−1 equals

Ad = rd−1 2π
d/2

Γ
(
d
2

) (47)

An area Cd of the spherical cap equals

Acap
d (r) =

∫ ϕ

0

Ad−1(r sin θ)rdθ =
2π(d−1)/2

Γ
(
d−1
2

) rd−1

∫ ϕ

0

sind−2 θdθ. (48)

where Γ
(
n− 1

2

)
= (2(n−1))!

22(n−1)(n−1)!

√
π.

1) When d = 1, almost surely we have

P((x · e)2 ≥ e2) = P(x2 ≥ 1) = 1. (49)

2) When d = 2, we have a ∼ S2 where S2 is a circle r = 1 and the probability is the angle between
s, e how much the vectors span within the circle where

P
(
⟨s, e⟩2 ≥ 1

R(d)

)
=

2
∫ ϕ

0
rdθ

π
=

2ϕ

π
. (50)

3) When d ≥ 3, the probability equals

P

(
|⟨s, e⟩| ≥ 1√

R(d)

)
=
Acap

d (r)
1
2Ad

= 1−
Ãcap

d (r)
1
2Ad

(51)

where Ãcap
d (r) is the remaining area of cutting the hyperspherical caps in half of the sphere,

Ãcap
d (r) =

2π(d−1)/2

Γ
(
d−1
2

) ∫ π
2

ϕ

sind−2 θdθ

≤ 2π(d−1)/2

Γ
(
d−1
2

) ∫ π
2

ϕ

sin θdθ

≤ 2π(d−1)/2

Γ
(
d−1
2

) (− cos
π

2
+ cosϕ)

=
2π(d−1)/2

Γ
(
d−1
2

) cosϕ.

(52)

3-a) If d is even then Γ
(
d
2

)
=
(
d
2 − 1

)
!, so

Γ
(
d−1
2

)
Γ
(
d
2

) =
(d− 2)!

√
π

2d−2
(
d
2 − 1

)
!2

=

√
π

2d−2

(
d− 2
d−2
2

)
. (53)

Robbins’ bounds (Robbins, 1955) imply that for any positive integer d

4d√
πd

exp

(
− 1

8d− 1

)
<

(
2d
d

)
<

4d√
πd

exp

(
− 1

8d+ 1

)
. (54)

So we have
2Acap

d (r)

Ad
≤

2Γ
(
d
2

)
√
πΓ
(
d−1
2

) =
2d−1

π

(
d− 2
d−2
2

)−1

cosϕ

<
2d−1

π

√
π(d− 2)/2

2d−2 exp
(
− 1

4d−9

) cosϕ

<

√
2d− 4

√
π exp

(
− 1

4d−9

) cosϕ.

(55)
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So the probability will be

P
(
⟨s, e⟩2 ≥ 1

R(d)

)
> 1−

√
2d− 4√
π

exp

(
1

4d− 9

)
cosϕ. (56)

Suppose R(d) = kd, k > 1, we have

lim
d→∞

√
2d− 4

√
πkd exp

(
− 1

4d−9

) =

√
2

kπ
. (57)

3-b) Similarly, if d is odd, then Γ
(
d−1
2

)
=
(
d−3
2

)
!, so

Γ
(
d−1
2

)
Γ
(
d
2

) =
2d−2

(
d−3
2

)
!2

(d− 2)!
√
π

=
2d−2

(d− 2)
√
π

(
d− 3
d−3
2

)−1

. (58)

If d = 3 then

P
(
⟨s, e⟩2 ≥ 1

R(d)

)
≥ 1− 2

√
π

2
√
π
cosϕ = 1− 1√

R(d)
. (59)

If d > 3 then Robbins’ bounds imply that
√
πΓ
(
d−1
2

)
2Γ
(
d
2

) =
2d−4

d− 2

(
d− 3
d−3
2

)−1

>

√
π(d− 3)/2

d− 2
exp

(
1

4d− 11

)
. (60)

Thus, the probability will be at least

P
(
⟨s, e⟩2 ≥ 1

R(d)

)
> 1− d− 2√

π(d− 3)
exp

(
− 1

4d− 11

)
cosϕ. (61)

To simplify the result, we compare the minimum probability that for ∀d ≥ 3

P
(
⟨s, e⟩2 ≥ 1

R(d)

)
> 1− d− 2√

π(d− 3)
exp

(
− 1

4d− 11

)
cosϕ

= 1− d− 2√
π(d− 3)

exp

(
1

4d− 11

)
cosϕ

= 1− d− 2√
π(d− 3)R(d)

exp

(
1

4d− 11

)
cosϕ

> 1−
√
2d− 4√
πR(d)

exp

(
1

4d− 9

)
(62)

Overall, we have ∀d ∈ N+,

P
(
⟨s, e⟩2 ≥ 1

R(d)

)
> min


2 arccos

(
1√
R(d)

)
π

,

∣∣∣∣∣1−
√
2d− 4√
πR(d)

exp

(
1

4d− 9

)∣∣∣∣∣
 . (63)

D.1 PROOF TO THEOREM 3.4

Proof. LetAd = (ai)i∈[d]
i.i.d.∼ Unif(Sd−1(

√
d)). We consider the random ReLU NN function class

to be

Frelu(Ad) =

{
f(w, A,x) =

1√
d

m∑
i=1

wiσ
(
x⊤ai

)
: wi ∈ R, i ∈ [m]

}
where A = [a1, ...,am] ∈ Rd×m. The empirical minimizer of the source domain is

ŵ = min
w∈Rd

1

n

∑
xi,yi∈S

ℓ(f(w, A,xi), yi) =
1

n

∑
zi∈S

ℓŵ,A(zi). (64)
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Then with the chain rule, the first derivative of any input x at ŵ will be

∇xℓ (f(ŵ, A,x), y) =
∂ℓ (f(ŵ, A,x), y)

∂f(ŵ, A,x)

∂ℓf(ŵ, A,x)

σ(Ax)

∂σ(Ax)

∂x

=
D1

f (x, y)√
d

m∑
i=1

ŵiaiI
{
a⊤
i x ≥ 0

}
=
D1

f (x, y)√
d

ŵ⊤σ′(Ax)

(65)

where a short notationD1
f (x, y) denotes the first order directional derivative of f(ŵ, A,x) σ′(Ax) ∈

Rm×d is the Jacobian matrix w.r.t. input x. Apparently, the second order derivative is represented as
D2

f (x, y), thus the Hessian will be

∇2
xℓ(f(ŵ, A,x), y) =

D2
f (x, y)

d

m∑
i=1

m∑
j=1

ŵiŵjaia
⊤
j I
{
a⊤
i x ≥ 0 ,a⊤

j x ≥ 0
}

=
D2

f (x, y)

d
σ′(Ax)⊤ŵŵ⊤σ′(Ax)

(66)

Similarly, we have

∇2
yℓ(f(ŵ, A,x), y) = D2

y(x, y) · (sgn(y))2
∗
≤ D2

f (x, y) (67)

where sgn(y) is the sign function. ∗ holds under our choice of the family of loss functions.

1. Homogeneity in regression, i.e. L1, MSE, MAE, Huber Loss, we have |D2
y(x, y)| =

|D2
f (x, y)|;

2. (Binary) Cross-Entropy Loss:

D2
y(x, y) = ∂2

(
y
∑
i

exp(x)/

C∑
c=1

exp(xc)

)
/∂y2 = 0;

3. Negative Log Likelihood (NLL) loss: D2
y(x, y) = 0.

Besides, as a convex loss function, D2
y(x, y) ≥ 0. Hence, the range ofD2

y(x, y) will be [0, D2
f (x, y)].

To combine with robustness, we denote z = (x; y),∈ Rd+1. Therefore, the Hessian of z will be

H(z|S,A) :=

∇2
xℓ(f(ŵ, A,x), y)

∂2ℓ(f(ŵ,A,x),y))
∂y∂x(

∂2ℓ(f(ŵ,A,x),y)
∂y∂x

)⊤
∇2

y(ℓ(f(ŵ, A,x), y))

 . (68)

With Lemma D.4, the spectral norm of Hessian z will be bounded by

∥H(z)∥ ≤
∥∥∇2

xℓ(f(ŵ, A,x), y)
∥∥+ ∣∣∇2

yℓ(f(ŵ, A,x), y)
∣∣ . (69)

The first term in (69) can be further bounded by∥∥D2
f (x, y)σ

′(Ax)⊤ŵŵ⊤σ′(Ax)
∥∥ ≤ |D2

f (x, y)|
∥∥ŵŵ⊤∥∥∥∥σ′(Ax)σ′(Ax)⊤

∥∥
= D2

f (x, y)∥ŵ∥2
∥∥σ′(Ax)σ′(Ax)⊤

∥∥ (70)

where the convexity of loss functions ∀x, y,D2
f (x, y) ≥ 0 supports the last equation. The right term

has the facts that

∥σ′(Ax)σ′(Ax)⊤∥ ≤ ∥σ′(Ax)σ′(Ax)⊤∥F = tr
(
σ′(Ax)σ′(Ax)⊤

)
. (71)
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In summary, we have the following inequality:

∥H(z)∥ ≤ D2
f (x, y)

(
1

d
∥ŵ∥2

∥∥σ′(Ax)σ′(Ax)⊤
∥∥+ 1

)
≤ D2

f (x, y)

(
1

d
∥ŵ∥2 tr

(
σ′(Ax)σ′(Ax)⊤

)
+ 1

)

= D2
f (x, y)

1

d
∥ŵ∥2

m∑
j=1

∥aj∥2 I
{
a⊤
j x ≥ 0

}
+ 1


(72)

In Lemma D.2, it depends on some zi = (xi, yi) ∈ S ∩ Ci that

ϵ(S,A) ≤ max
i∈[K]

ρi(L)
2

2L2

(
∥H(zi(A))∥+

4ρi(L)

3

)

≤ max
i∈[K]

ρi(L)
2

2L2

D2
f (xi, yi)

∥ŵ∥2
d

m∑
j=1

∥aj∥2 I
{
a⊤
j xt ≥ 0

}
+ 1

+
4ρi(L)

3


≤ ρmax(L)

2

2L2

D2
f (xk, yk)

d
∥ŵ∥2

m∑
j=1

∥aj∥2 I
{
a⊤
j xk ≥ 0

}
+

4ρmax(L)

3
+ õκ


(73)

where ρmax(L) = max{ρi(L)}Ki=0, the õκ = O(ℓ′′(f,xk, yk)∥ŵ∥2
∑m

j=1 ∥aj∥2 I
{
a⊤
j xk ≥ 0

}
d/m)

is a smaller order term compared to first term, since m ≫ d. Last equality, the maximum can be
taken as we find maximum (xk, yk) ∈ Ĉ ∈ {Ci}i∈[K]. Because xk, yk ∈ S is one of the training
sample k ∈ [n], there must exist n′ ∈ [0, n] that

D2
f (xk, yk)∥ŵ∥2

m∑
j=1

∥aj∥2 I
{
a⊤
j xk ≥ 0

}
= ∥ŵ∥2n

′

n

n∑
k=1

D2
f (xk, yk)

d

m∑
j=1

∥aj∥2I{a⊤
j xk ≥ 0}.

(74)

Recall that the sharpness of parameter ŵ is defined by

κ(ŵ, S,A) := ∥ŵ∥2 tr[HS,A(ŵ)]

= ∥ŵ∥2 1
n

n∑
j=1

D2
f (xj , yj) · tr

(
σ(Axj)σ(Axj)

⊤)
= ∥ŵ∥2 1

n

n∑
j=1

D2
f (xj , yj)

d

m∑
i=1

(a⊤
i xj)

2I
{
a⊤
i xj ≥ 0

}
.

(75)

Let the ξi = a⊤
i x ∼ D(ξ) and the expectation of E(ξi > 0) = qi where D(ξ) is some rotationally

invariant distribution, i.e. uniform or normal distribution. Under this circumstance, the sample mean
of ξi still obeys the same family distribution as D(tξ). Thus, we have

P

 m∑
j=1

ξiI {ξi ≥ 0} ≥
m∑
j=1

∥aj∥2I {ξi ≥ 0}

 = P

 qi∑
j=1

ξi ≥
qi∑

j=1

∥aj∥2


= P((a⊤x)2 ≥ ∥a∥2) = Exp(x)

(76)

With Lemma D.5, we have at least a probability at

P((a⊤x)2 ≥ ∥a∥2) = min

{
2

π
arccos

(
R(d)−

1
2

)
,

∣∣∣∣∣1−
√
2d− 4√
πR(d)

e
1

4d−9

∣∣∣∣∣
}

(77)
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the following inequality holds,

ϵ(S,A) ≤ ρmax(L)
2

2L2

(
n′κ(ŵ, S,A) +

4ρmax(L)

3
+ õκ

)
=
ρmax(L)

2

2L2

([
n′ +O

(
d

m

)]
κ(ŵ, S,A) +

4

3
ρmax(L)

) (78)

D.2 PROOF TO COROLLARY 3.5

Corollary D.6 (Restatement of Corollary 3.5). Let ŵmin be the minimum value of |ŵ|. Sup-
pose ∀x ∼ Unif(Sd−1(

√
d)) and |∂2ℓ(f(ŵ, A,x), y)/∂f2| is bounded by [M̃1, M̃2]. If m > d,

ρmax(L) < (ŵ2
minM̃1σ̃(d,m))/(2d) for any A = (a1, ...,am),ai ∼ Unif(Sd−1(

√
d))∀i ∈ [m],

taking expectation over all xj ∈ Unif(Sd−1(
√
d)) in S, we have

ES,A [ϵ(S,A)] ≤ ES,A
7ρmax(L)

2

6L2

(
n′κ(ŵ, S,A) + M̃2

)
. (79)

where σ̃(d,m) = Eaλmin(
∑m

i=1 aia
⊤
i Gii) > 0 is the minimum eigenvalue and Gii is product

constant of Gegenbauer polynomials

Gij =

∞∑
t=0

λ2d,t(σ)N
2
d,tQ

(d)
t (⟨ai,aj⟩/

√
d).

Proof. In our main theorem, with some probability, we have the following relation

ϵ(S,A) ≤ ρmax(L)
2

2L2

(
n′κ(ŵ, S,A) +

4ρmax(L)

3
+ dκ

)
.

So, we are concerned about the relation between the κ(ŵ, S,A) second term. If ρi(L) < κ(ŵ, S,A),
we may say the RHS is dominated by sharpness term κ(ŵ, S,A) as well as the main effect is taken
by the sharpness. As suggested in Lemma D.1, we have

Ex∗∼Unif(Sd−1(
√
d))H(x∗) ⪰ ŵ2

minM̃1σ̃A(m, d)

d
Id (80)

where x∗ is the global minimum over the whole set. As defined in (38), the following condition holds
true

∃z∗
i (A) ∈Mi, ∥zi(A)− z∗

i (A)∥ ≤
ρi(L)

L
, (81)

and with Hessian Lipschitz, the relation is almost surely for arbitrary x that

Ez∗
i (A)∥H(zi(A))−H(z∗

i (A))∥ ≤ L∥zi(A)− z∗
i (A)∥ ≤ ρi(L)

≤

∥∥∥∥∥ ŵ2
minM̃1σ̃(d,m)

2d
Id

∥∥∥∥∥
≤ EA,x∗

1

2
∥H(x∗)∥

≤ Ez∗
i (A)

1

2
∥H(z∗

i (A))∥.

(82)

Obviously, ∥H(z∗
i (A))∥ > 2ρi(L). Following Lemma A.2 of Zhang et al. (2019a), for

z∗
i (A),∀z(A) ∈ Ci, we have a similar result that

σ̃min(H(z(A))) ≥ σ̃min(H(z∗
i (A))− ∥H(z(A))−H(z∗

i (A))∥ ≥ ρi(L) (83)

where σ̃min denotes the minimum singular value. With Lemma D.2, we know that

ES,Aϵ(S,A) ≤ ES,A max
i∈[K]

ρi(L)
2

2L2

(
∥H(zi(A))∥+

4ρi(L)

3

)
. (84)
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We also have another condition that

|D2
f (x, y)| :=

∣∣∣∣∂2ℓ(f(ŵ, A,x), y)∂f2

∣∣∣∣ ∈ [M̃1, M̃2],∀x, y. (85)

Combine all these results, we finally have

ES,Aϵ(S,A) ≤ ES,A max
i∈[K]

ρi(L)
2

2L2

(
1 +

4

3

)
∥H(zi(A))∥

≤ ES,A
7ρmax(L)

2

6L2

D2
f (xk, yk)

d
∥ŵ∥2

m∑
j=1

∥aj∥2 I
{
a⊤
j xk ≥ 0

}
+ M̃2

 .

(86)

Recall the definition of κ(ŵ, S,A) in the main theorem that

ES,Aκ(ŵ, S,A) ≤ E{x}n∥ŵ∥2 1
n

n∑
j=1

D2
f (xj , yj)

d

m∑
i=1

(a⊤
i xj)

2I
{
a⊤
i xj ≥ 0

}
(87)

Look at the second sum, we have

E{xj}n,{ai}m

m∑
i=1

(a⊤
i xj)

2I
{
a⊤
i xj ≥ 0

}
=

m∑
i=1

Exj
Eai
∥ai∥2∥xj∥2 cos2(β)I

{
a⊤
i xj ≥ 0

}
=

m∑
i=1

Exj
Eai
∥ai∥2∥I

{
a⊤
i xj ≥ 0

}
d cos2(β).

(88)

Suppose x and a are i.i.d. from Unif(Sd−1(1)), let u = ⟨x,a⟩, we have a well-known result that

Eu[u
2] = E[⟨x,a⟩2]

= E[∥x∥2∥a∥2 cos2(β)]

= E[cos2(β)] =
1

d
, x,a ∈ Rd

(89)

Therefore, in (88),
m∑
i=1

Exj
Eai
∥ai∥2∥I

{
a⊤
i xj ≥ 0

}
d cos2(β) =

m∑
i=1

Exj
Eai
∥ai∥2∥I

{
a⊤
i xj ≥ 0

}
(90)

and we have (based on proof of main theorem),
ES,Aϵ(S,A)

≤ 7ρmax(L)
2

6L2

∥ŵ∥2n′
n

n∑
j=1

D2
f (xj , yj)

d

m∑
i=1

Exj
Eai
∥ai∥2I{a⊤

i xj ≥ 0}+ M̃2


≤ ES,A

7ρmax(L)
2

6L2

(
n′κ(ŵ, S,A) + M̃2

) (91)

E CASE STUDY

To better illustrate our theorems, we here give two different cases for clearly picturing intuition. The
first case is the very basic model, ridge regression. As is known to us, ridge regression provides
a straightforward way (by punishing the ℓ2 norm of the weights) to reduce the "variance" of the
model in order to avoid overfitting. In this case, this mechanism is equivalent to reducing the model’s
sharpness.
Example E.1. In ridge regression models, the robustness constant ϵ has a reverse relationship to
regularization parameter β where β ↑, the more probably flatter minimum κ ↓ and less sensitivity ϵ ↓
of the learned model could be. Follow the previous notation that ϵ(S,A) denotes the robustness and
κ(θ̂, S) is the sharpness on training set S, then we have

τ > 0, c ∈ (0, n], ϵ(S,A) ≤ cκ(θ̂, S) + õd

where õd is a much smaller order than κ(θ̂, S).
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E.1 RIDGE REGRESSION

We consider a generic response model as stated in Ali et al. (2019).

y|θ∗ ∼ (Xθ∗, σ
2I)

ridge regression minimization problem is defined by

min
θ

1

2n
∥Xθ − y∥2 + β

2
∥θ∥2, X ∈ Rn×d, n < d. (92)

The least-square solution of ridge regression is

θ̂ =
(
X⊤X + nβI

)−1
X⊤y. (93)

With minimizer θ̂, we now focus on its geometry w.r.t. x. Let S = {z}ni = (X,y) be the training
set, (Z,Σ, ρ) be a measure space. Consider the bounded sample set Z such that

∃M > 0, ρ(Z) < +∞. (94)

The Z can be partitioned into K disjoint sets {Ci}i∈[K]. By definition, we have robustness defined
by each partition Ci,

∀z, z′ ∈ Ci,
∣∣∣ℓ(θ̂, z)− ℓ(θ̂, z′)

∣∣∣ ≤ ϵ(S,A). (95)

For this convex function ℓ(θ̂, z), we have the following upper bound in the whole sample domain

ϵ(S) = max
i∈[K]

sup
z,z′∈Ci

∣∣∣ℓ(θ̂, z)− ℓ(θ̂, z′)
∣∣∣

= max
i∈[K]

sup
z∈Ci

ℓ(θ̂, z)− ℓ(θ̂, z∗
i ∈ Ci)

≤ sup
zj∈Z∩S

ℓ(θ̂, zj)− ℓ(θ̂, z∗)

(96)

where the z∗
i , z

∗ are the global minimum point in Ci and whole domain Z =
⋃K

i Ci, respectively.
zj is a training data point that has the maximum loss difference from the optimum. Specifically, it as
well as the augmented form of θ̂ can be expressed as

z = [x1, ..., xd, y]
⊤, θ̂+ = [θ̂1, ..., θ̂d,−1]⊤,∈ Rd+1.

Then the loss difference can be rewritten as

ℓθ̂+
(z) = (θ̂⊤

+z)
2 = (θ̂⊤x− y)2 ⇒ H(ℓθ̂+

(z))is P.S.D matrix.

It is a convex function with regards to z such that

ϵ(S) ≤ sup
zj∈S

ℓθ̂+
(zj)− ℓθ̂+

(z∗)

= sup
zj∈S

∇ℓθ̂+
(z∗)⊤(zj − z∗) +

1

2
(zj − z∗)⊤H(ℓθ̂(z

∗))(zj − z∗)

= sup
zj∈S

1

2
(zj − z∗)⊤H(ℓθ̂+

(z∗))(zj − z∗)

≤ sup
zj∈S

1

2
∥H(ℓθ̂+

(z∗))∥∥zj − z∗∥2

(97)

where the second equality is supported by convexity and the third equality is due to ℓθ̂+
(zj) = 0.

Further, with Lemma D.4, we have

∥H(ℓθ̂+
(z∗))∥ =

∥∥∥∥∥∥∥
 θ̂θ̂⊤ ∂2ℓθ̂+

(zj))

∂y∂x(
∂2ℓθ̂+

(zj))

∂x∂y

)⊤

1


∥∥∥∥∥∥∥ ≤

∥∥∥θ̂θ̂⊤
∥∥∥+ 1. (98)
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In (97), we can also bound the norm of the input difference by

∥zj − z∗∥2 ≤ ∥xj − x∗∥2 + (yj − y∗)2 (99)

and then for simplicity, assume ∥x∗∥2 ≤ ∥xj∥2 we have

ϵ(S) ≤ sup
xj∈S

1

2

(∥∥∥θ̂θ̂⊤
∥∥∥+ 1

) (
∥xj − x∗∥2 + (yj − y∗)2

)
≤ sup

xj∈S

1

2

(∥∥∥θ̂∥∥∥2 + 1

)(
∥xj∥2 + ∥x∗∥2 + (yj − y∗)2

)
≤ sup

xj∈S

1

2

∥∥∥θ̂∥∥∥2 (∥xj∥2 + ∥x∗∥2
)
+O(d)

≤ sup
xj∈S

∥∥∥θ̂∥∥∥2 ∥xj∥2 +O(d)

(100)

where
∥∥∥θ̂∥∥∥2 ∥xj∥2 = O(d2) is the dominate term for large d. Now, let’s look at the relation to

sharpness. By definition,

κ(θ̂, S) = ∥θ̂∥2 tr
(
Hθ̂(ℓ(θ̂, S))

)
= ∥θ̂∥2 tr

(
X⊤X

n
+ βI

)
. (101)

Since

tr

(
X⊤X

n
+ βI

)
= tr

(
X⊤X

n

)
+ tr (βI) = tr

(
XX⊤

n

)
+ β =

1

n

n∑
j

∥xj∥2 + β, (102)

so we have

κ(θ̂, S) = ∥θ̂∥2 1
n

n∑
j

∥xj∥2 + β∥θ̂∥2. (103)

As is known to us, the "variance" of ridge estimator Ali et al. (2019) can be defined by

Var(θ̂) ≜ tr
(
θ̂θ̂⊤

)
= tr

((
XTX + nβI

)−1
XTyy⊤X

(
XTX + nβI

)−1
)
. (104)

Note that θ̂θ̂⊤ is a PSD with rank(θ̂θ̂⊤) = 1, thus it has only one eigenvalue λ(θ̂θ̂⊤) = ∥θ̂∥2 > 0.

Var(θ) = tr
(
θ̂θ̂⊤

)
= ∥θ̂∥2 = O(β−2) (105)

By definition, the covariance matrix E[yy⊤] is a diagonal matrix with entries of σ2. Averagely, we
have

tr
(
θ̂θ̂⊤

)
= σ2 tr

[(
X⊤X + nβI

)−1
X⊤X

(
X⊤X + nβI

)−1
]

=
σ2

n
tr

[
X⊤X

n

(
X⊤X

n
+ βI

)−2
]

=
σ2

n

d∑
i=1

λi(X
⊤X/n)

(λi(X⊤X/n) + β)
2

(106)

where X⊤X
n and

(
XTX

n + βI
)−1

are simultaneously diagonalizable and commutable. Therefore,

the greater β is, the smaller tr
(
θ̂θ̂⊤

)
is.

Conclusions From our above analysis, we have the following conditions.

• Upper bound of robustness ϵ(S) ≤ supxj∈S ∥θ̂∥2∥xj∥2 +O(d).

• Sharpness expression κ(θ̂, S) = ∥θ̂∥2
(

1
n

∑
xj ,yj∈S ∥xj∥2 + β

)
.
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• Variance expression Var(θ) = ∥θ̂∥2.

1) First, let’s discuss how β influences sharpness.

κ(θ̂, S) = ∥θ̂∥2 tr
(
Hθ̂(ℓ(θ̂, S))

)
= y⊤X

(
X⊤X + nβI

)−2
X⊤y

 1

n

∑
xj ,yj∈S

∥xj∥2 + β


= O(β−1).

(107)

As dictated in above equation, the κ(θ̂, S) = O(β−1) where sharpness holds an inverse relationship
to β.

2) Now, it’s trivial to get the relationship between robustness and sharpness by combining the first
two points. Because xj , yj ∈ S in supermum is one of the training samples there exists a constant
c < n and õd = o(d2) such that

ϵ(S) ≤ c

n

n∑
j

(
∥θ̂∥2∥xj∥2

)
+ õd

≤ c

n

n∑
j

(
∥θ̂∥2∥xj∥2

)
+ cβ∥θ̂∥2 + õd

= cκ(θ̂, S) + õd.

(108)

This relation is consistent with Theorem 3.4 where the robustness is upper bounded by n′ times
sharpness κ(θ̂, S). Besides, the relation is simpler here, where robustness only depends on sharpness
without other coefficients before κ(θ̂, S).

3) Finally, the relation between β and robustness will be

ϵ(S) ≤ c

n

n∑
j

(
Var(θ)∥xj∥2

)
+ õd =

cσ2

n

d∑
i=1

λi(X
⊤X/n)

(λi(X⊤X/n) + β)
2

∑n
j ∥xj∥2

n
+ õd

=
σ2

n

d∑
i=1

λi(X
⊤X/n)

(λi(X⊤X/n) + β)
2

∑d
j λj(X

⊤X/n)

n
+ õd

= O(β−2).

(109)

where the ϵ(S) somehow is the order of O(β−2) in the limit of β. It’s clear to us that the greater β is,
the less sensitive (more robust) model we can get. In practical, we show that "over-robust" may hurt
the model’s performance (we show the detail empirically in Figure 7).

E.2 2-LAYER DIAGONAL LINEAR NETWORK CLASSIFICATION

However, our main theorem assumes the loss function satisfying Polyak-Łojasiewicz (PŁ) condition.
To extend our result to a more general case, here we study a 2-layer diagonal linear network
classification problem whose loss is exponential-based and not satisfied the PŁ condition.
Example E.2. We consider a classification problem using a 2-layer diagonal linear network with
exp-loss. The robustness ϵ(S,A) has a similar relationship in Theorem 3.4. Given training set S,
after iterations t > Tϵ, ∃C2 > 0, ϵ(S,A) ≤ C2 supt≥Tϵ

κ(θ(t), S).

Given a training set S = (X, y), X = [x1, ...,xn], X ∈ Rd×n. A depth-2 diagonal linear networks
with parameters u = [u+,u−]

⊤ ∈ R2d specified by:

f(u,x) = ⟨u2
+ − u2

−,x⟩

We consider exponential loss where L(t) = 1
n

∑n
i=1 exp(−x⊤

i θ(t)yi) and yi ∈ {−1, 1}. It has the
same tail behavior and thus similar asymptotic properties as the logistic or cross-entropy loss. WLOG,
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we assume ∀i ∈ [n] : yi = 1 such that xi = yixi. Suggest by Moroshko et al. (2020), we have

θ(t) = 2α2 sinh

(
4X

∫ t

0

r(s)ds

)
where r(t) = 1

nexp(−X⊤θ(t)) and ∥r(t)∥1 = L(t). Note that

dθ(t)

dt
=

4

n

√
θ2(t) + 4α41 ◦X exp

(
−X⊤θ(t)

)
= A(t)Xr(t) (110)

where A(t) = diag
(
4
√

θ2(t) + 4α41
)

.

Part i, sharpness. First derivative and Hessian can be obtained by

∇θL(t) = −(Xr(t))⊤

Hθ(L(t)) = −
∂(Xr(t))⊤

∂θ(t)
=

n∑
i=1

ri(t)XiX
⊤
i .

(111)

With the definition of sharpness, we can get

κ(θ(t), S) = ∥θ(t)∥2 tr(Hθ[L(t)])

= ∥θ(t)∥2 tr

(
n∑

i=1

ri(t)XiX
⊤
i

)

= ∥θ(t)∥2 tr

(
n∑

i=1

ri(t)X
⊤
i Xi

)

= ∥θ(t)∥2
(

n∑
i=1

ri(t)∥xi∥2
)
.

(112)

Part ii, robustness. Now, let’s use the same discussion of the robustness constant in the previous
case. Follow the previous definition of ϵ(S,A), after some iteration number Tϵ it is defined by

ϵ(S,A) := sup
i∈[n],t≥Tϵ

|nrj(t)− r∗(t)| (113)

where nrj(t) is the (denormalized) point-wise loss of xj and r∗(t) denotes the minimum loss of
point x∗. There exists n′ < n, we have

ϵ(S,A) = sup
t≥Tϵ

n′ (∥r(t)∥1 − r∗(t)) ≤ sup
t≥Tϵ

n′∥r(t)∥1. (114)

Let ∥xmin∥ = mini∈[n] ∥xi∥, the above equation

ϵ(S,A) ≤ 1

∥xmin∥2
sup
t≥Tϵ

(n′∥r(t)∥∥xmin∥2)

=
n′

∥xmin∥2
sup
t≥Tϵ

(
n∑

i=1

ri(t)∥xmin∥2
)

≤ n′

∥xmin∥2
sup
t≥Tϵ

(
n∑

i=1

ri(t)∥xi∥2
)
.

(115)

Part iii, connection. Compare the last part of (112) and (115), we found that robustness and sharpness
depend on the same term. Further, we can say that for any step t, ∥θ(t)∥2 will have the upper bound.

From Lemma 11 of Moroshko et al. (2020), we have the following inequality,

∥θ(t)∥∞ ≤ 2α2 sinh

(
x̄

2γ22α
2
γ̃(t)

)
(116)

where L(t) = exp(−γ̃(t)). Then, we can bound the ∥θ(t)∥2 via:

C1 ≤ ∥θ(t)∥2 ≤ d∥θ(t)∥2∞ = 4dα4 sinh2
(

x̄

2γ22α
2
γ̃(t)

)
<∞ (117)
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Note that C1 > 0 In summary, we have

ϵ(S,A) ≤ n′

C1∥xmin∥
sup
t≥Tϵ

κ(θ(t), S) ≤ C2 sup
t≥Tϵ

κ(θ(t), S) (118)

where C2 = n′

C1∥xmin∥ > 0 is a constant.

Part iv, sanity check– asymptotic. Asymptotically, as t → ∞, L(t) → 0 while ∥θ(t)∥2 will be
explode. So if sharpness κ(θ(t), X)→∞, then it will fail to imply robustness.

κ(θ(t), S) = ∥θ(t)∥2
(

n∑
i=1

ri(t)∥xi∥2
)

≤ ∥θ(t)∥2
(

n∑
i=1

ri(t)∥xmax∥2
)

= ∥θ(t)∥2L(θ(t))∥xmax∥2

= κmax(θ(t), S)

(119)

Let κmax(θ(t), X) be a upper bound of κ(θ(t), X) at any time step t. The dynamics will be

dκmax(θ(t), S)

dt
=∇θκmax(θ(t), S)θ̇(t)

=∥xmax∥2 tr(XX⊤)
(
∥θ(t)∥2L̇(t) + 2L(t)θ(t)⊤θ̇(t)

)
=∥xmax∥2 tr(XX⊤)

(
−∥θ(t)∥2(Xr(t))⊤A(t)Xr(t) + 2L(t)θ(t)⊤A(t)Xr(t)

)
=∥xmax∥2 tr(XX⊤)

(
2L(t)θ(t)⊤ − ∥θ(t)∥2(Xr(t))⊤

)
A(t)Xr(t)

(120)

As t→∞, we have L(t)→ 0, thus it is easy to converge that

lim
t→∞

dκmax(θ(t), S)

dt
= −∥xmax∥2∥θ(t)∥2(Xr(t))⊤A(t)Xr(t) = −∥xmax∥2∥θ(t)∥2L̇(t) = 0

(121)
As we can see, the dynamics of the derivative of κmax(θ(t), X) is decreasing to 0 as t→∞ which
means the sharpness κ(θ(t), X) will be upper bounded by a converged number κ(θ(t→∞), X) <
C∞ <∞. So sharpness will not explode.

F COMPARISON TO FEATURE ROBUSTNESS

F.1 THEIR RESULTS

Definition F.1 (Feature robustness Petzka et al. Petzka et al. (2021)). Let ℓ : Y × Y → R+denote
a loss function, ϵ and δ two positive (small) real numbers, S ⊆ X × Y a finite sample set, and
A ∈ Rm×m a matrix. A model f(x) = (ψ ◦ ϕ)(x) with ϕ(X ) ⊆ Rm is called ((δ, S,A), ϵ)-feature
robust, if

∣∣∣EϕF (f, S, αA)∣∣∣ ≤ ϵ for all 0 ≤ α ≤ δ. More generally, for a probability distribution A on
perturbation matrices in Rm, we define

EϕF (f, S,A) = EA∼A

[
EϕF (f, S,A)

]
,

and call the model ((δ,S,A), ϵ)-feature robust on average over A, if
∣∣∣EϕF (f, S, αA)∣∣∣ ≤ ϵ for 0 ≤

α ≤ δ
Theorem F.2 (Theorem 5 Petzka et al. Petzka et al. (2021)). Consider a model f(x,w) = g(wϕ(x))
as above, a loss function ℓ and a sample set S, and let Om ⊂ Rm×m denote the set of orthogonal
matrices. Let δ be a positive (small) real number and w = ω ∈ Rd×m denote parameters at a
local minimum of the empirical risk on a sample set S. If the labels satisfy that y (ϕδA (xi)) =
y (ϕ (xi)) = yi for all (xi, yi) ∈ S and all ∥A∥ ≤ 1, then f(x, ω) is ((δ, S,Om) , ϵ)-feature robust
on average over Om for ϵ = δ2

2mκ
ϕ(ω) +O

(
δ3
)
.
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Proof sketch

1. With assumption that y[ϕδA(xi)] = yi for all (xi, yi) ∈ S and all ∥A∥ ≤ 1, feature
perturbation around w is

EϕF (f, S, αA) + Eemp(w, S) = Eemp(w + αwA,S)

2. Since Taylor expansion for local minimum w = ω will only remains second order term,
thus

Eemp(w + αwA,S) = Eemp(ω, S) +
α2

2

d∑
s,t=1

(ωsA)Hs,t(ω, ϕ(S))(ωtA)
⊤

3. With basic algebra, one can easily get

EA∼Om

[
EϕF (f, S, αA)

]
≤ δ2

2

d∑
s,t=1

EA∼Om

[
(ωsA)Hs,t (ωtA)

T
]
+O

(
δ3
)

=
δ2

2m

d∑
s,t=1

⟨ωs, ωt⟩ · Tr (Hs,t) +O
(
δ3
)

=
δ2

2m
κϕ(ω) +O

(
δ3
)

F.2 COMPARISON TO OUR RESULTS

We first summarize the commonalities and differences between their results and ours:

• Both of us consider the robustness of the model. But they define the feature robustness while
we study the loss robustness Xu & Mannor (2012) which has been studied for many years.

• They consider a non-standard generalization gap by decomposing it into representativeness
and the expected deviation of the loss around the sample points. But we strive to integrate
sharpness into the general generalization guarantees.

For point 1, their defined feature robustness trivially depends on the sharpness. Because the sharpness
(the curvature information) is just defined by the robust perturbation areas around the desired point.
From step 2 in the above proof sketch we can see, the hessian w.r.t. ω is exactly the second expansion
of perturbed expected risk. So we think this definition provides less information about the optimization
landscape. In contrast, we consider the loss robustness for two reasons: 1) it is easy to get in practice
without finding the orthogonal matrices Om first. 2) we highlight its dependence on the data manifold.

For point 2, we try to integrate this optimization property (sharpness) into the standard generalization
frameworks in order to get a clearer interplay. Unlike feature robustness, the robustness defined by
loss function will be easier analyzed in generalization tools, because it’s hard and vague to define the
"feature" in general. Besides, our result will also benefit the data-dependent bounds Xu & Mannor
(2012); Kawaguchi et al. (2022).

G EXPERIMENTS AND DETAILS

G.1 RIDGE REGRESSION WITH DISTRIBUTIONAL SHIFTING

As we stated before, we followed the Duchi & Namkoong (2021) to investigate the ridge regression
on distributional shift. We randomly generate θ∗0 ∈ Rd in spherical space, and data from

X
iid∼ N (0, 1), y = Xθ∗0 (122)

To simulate distributional shift, we randomly generate a perpendicular unit vector θ⊥0 to θ∗0 . Let
θ⊥0 , θ

∗
0 be the basis vectors, then shifted ground-truth will be computed from the basis by θ∗α =

θ∗0 · cos(α)+ θ⊥0 · sin(α). For the source domain, we use θ∗0 as our training distribution. We randomly
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sample 50 data points and train a linear classifier with a gradient descent of 3000 iterations. Starting
from α = 0, we gradually increase the α to generate different distributional shifts.

From the left panel in Figure 7 we can see that a larger penalty suffers from lower loss increasing
when β ranges from 0 to 2. Since we consider a cycling shift of label space, 180◦ corresponds to the
maximum shift thus leading to the highest loss increase. According to our analysis of ridge regression,
larger β means a flatter minimum and more robustness, resulting in a better OOD generalization.
This experiment verifies our theoretical analysis. However, it is important to note that too large a
coefficient of ℓ2 regularization will hurt the performance. As shown in Figure 7 (right panel), the
curse of underfitting (indicated by brown colors) appears when β > 4.

Maximum Shift Maximum Shift

Poor 
fitting

Figure 7: OOD test losses are increasing along distributional shifting. The X-axis is the shifting
angle α and the Y-axis is the test loss of the model which is trained on distribution α = 0. Left: The
larger regularization β causes a lower increase in test loss (Darker purple lines have lower test losses).
Right: Too large ℓ2 penalty coefficient β brings poor fitting and thus fails to generalize on both ID
and OOD datasets (orange lines). Best viewed in colors.

G.2 ADDITIONAL RESULTS ON SHARPNESS

Here we show more experimental results on RotatedMNIST which is a rotation of MNIST handwritten
digit dataset with different angles ranging from 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ (6 domains/distributions).
For each environment, we select a domain as a test domain and train the model on all other domains.
Then OOD generalization test accuracy will be reported on the test domain. In our experiments, we
run each algorithm with 12 different seeds, thus getting 12 trained models of different minima. Then
we compute the sharpness (see Algorithm 1) for all these models and then plot them in Figure 8. For
algorithms, we choose Empirical Risk Minimization (ERM), and Stochastic Weight Averaging (SWA)
as the plain OOD generalization algorithm which is shown in the first column. In robust optimization
algorithms, we choose Group Distributional Robust Optimization Sagawa et al. (2019). We also
choose CORALSun & Saenko (2016) as a multi-source domain generalization algorithm. Among
these different types of out-of-domain generalization algorithms, we can conclude that sharpness will
affect the test accuracy on the OOD dataset.

Experimental configurations are listed in Table 1. For each model, we run the 5000 iterations and
choose the last model as the test model. To ease the computational burden, we choose the 3-layer
MLP to compute the sharpness.

Algorithms Optimizer lr WD batch size MLP size eta MMD γ
ERM(SWA) Adam 0.001 0 64 265*3 - -

DRO Adam 0.001 0 64 265*3 0.01 -
CORAL Adam 0.001 0 64 265*3 - 1

Table 1: Hyperparameters we use for different DG algorithms in the experiments.

From Figure 8 we can see, the sharpness has an inverse relationship with the out-of-domain general-
ization performance for every model in each individual environment. To make it clear, we plot similar
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tasks from environment 1 to 4 as the last row. Thus, we can see a clearer tendency in all algorithms.
It verified our Theorem 3.1. Note that all algorithms have different feature scales. One may need to
normalize the results of different algorithms when plotting them together.

Algorithm 1 Pseudocode of model sharpness computation

Require: feature layer f(x), training loss ℓ
Ensure: Sharpness S

Get Jacobian matrix w.r.t. feature layer J = ∇ℓ(f(x), y)
for each gradient vector Ji in J⊤ do

Compute Hessian w.r.t. element i, j of f(x) by ∂Ji

∂fl(x)

end for
We store Hessian in the variable H
Initialize sharpness S = 0
for i in feature layer.shape[0] do

for j in feature layer.shape[0] do
Retrieve the hessian value of i, j element via h← H[:, j, i, :]
Sharpness sij ← Trace(h) ∗ fij(x)2
S = S + sij

end for
end for

G.3 COMPARE OUR ROBUST BOUND TO OTHER OOD GENERALIZATION BOUNDS

G.3.1 COMPUTATION OF OUR BOUNDS

First, we follow Kawaguchi et al. (2022) to compute the K in an inverse image of the ϵ− covering
in a randomly projected space. The main idea is to partition input space in a projected space with
transformation matrix Ã. The specific steps will be (1) To generate a random matrix Ã, we i.i.d.
sample each entry from the Uniform Distribution U(0, 1). (2) Each row of the random matrix
A ∈ R3×d is then normalized so that Ax ∈ [0, 1]3, i.e. Aij = Ãij/

∑d
j=1 Ãij (3) After generating a

random matrix A, we use the ϵ-covering of the space of u = Ax to define the pre-partition {C̃i}Ki=1.

G.3.2 COMPUTATION OF PAC-BAYES BOUND

We follow the definition to compute expected disρ in Germain et al. (2013) where

Definition G.1. LetH be a hypothesis class. For any marginal distributions DS and DT over X , any
distribution ρ onH, the domain disagreement disρ (DS , DT ) between DS and DT is defined by,

disρ (DS , DT )
def
=

∣∣∣∣ E
h,h′∼ρ2

[RDT
(h, h′)−RDS

(h, h′)]

∣∣∣∣ .
Since the disρ (DS , DT ) is defined as the expected distance, we can compute its empirical version
according to their theoretical upper bound as follows.

Proposition G.2 (Germain et al. Germain et al. (2013) Theorem 3). For any distributions DS and
DT over X , any set of hypothesisH, any prior distribution π overH, any δ ∈ (0, 1], and any real
number α > 0, with a probability at least 1− δ over the choice of S × T ∼ (DS ×DT )

m, for every
ρ onH, we have

disρ (DS , DT ) ≤
2α
[
disρ(S, T ) +

2KL(ρ∥π) ln 2
δ

m×α + 1
]
− 1

1− e−2α

. With disρ(S, T ), we can then compute the final generalization bound by the following inequality

∀ρ onH, RPT
(Gρ)−RPT

(
Gρ∗

T

)
≤ RPS

(Gρ)

+ disρ (DS , DT ) +RDT

(
Gρ, Gρ∗

T

)
+RDS

(
Gρ, Gρ∗

T

)
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Figure 8: Domain generalization test accuracy on RotatedMNIST. From top to the bottom: environ-
ment 0, 1, 2, 3, 4, 5 with angles: [0◦, 15◦, 30◦, 45◦, 60◦, 75◦] and a plot together. Each column shows
the 12 runs of each algorithm.
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with ρ∗T = argminρRPT
(Gρ) is the best target posterior, and RD

(
Gρ, Gρ∗

T

)
=

Eh∼ρEh′∼ρ∗
T
RD (h, h′).

Note that we ignore the expected errors over the best hypothesis by assuming the RD

(
Gρ, Gρ∗

T

)
= 0.

We apply the same operation in E∗ of Proposition C.6 as well.

G.3.3 COMPARISONS

In this section, we add some additional experiments on comparing to other baselines, i.e. PAC-Bayes
bounds Germain et al. (2013). As shown in the first row of Figure 9, our robust framework has a
smaller distribution distance in the bound compared to the two baselines when increasing the model
size. In the second row, we have similar results in final generalization bounds. From the third and
fourth rows we can see, our bound is tighter than baselines when suffering distributional shifts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9: Additional spurious feature synthetic experiment. Each dot represents a trained model. The
dash curves are the smoothed function fit by the test data points. The baseline is Proposition 2.1.
(a),(d),(g),(j): the generalization error of the logistic regression models with increasing the model
size/correlation probability. (b), (e): distribution distances for PAC-Bayes Germain et al. (2013) along
model size increases. (h), (k): distribution distances for PAC-Bayes Germain et al. (2013) along
model distribution shift. (c), (f), (i), (l): comparisons among baselines Proposition C.6, Germain
et al. (2013) and ours. Note that model size > 500 is the overparameterized regime. The further the
correlation probability is from 0.5, the greater the distributional shift is.
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