
Scaling to Billion Parameters for Time Series
Foundation Models with Mixture of Experts

Xiaoming Shi∗♠, Shiyu Wang∗♠, Yuqi Nie∗1, Dianqi Li, Zhou Ye, Qingsong Wen†2, Ming Jin†♠3

1Princeton University 2Squirrel Ai Learning 3Griffith University
sxm728@hotmail.com, kwuking@gmail.com, ynie@princeton.edu

{dianqili77, yezhou199032, qingsongedu, mingjinedu}@gmail.com

Abstract
Deep learning has made significant strides in time series forecasting, yet the
field lacks large-scale pre-trained models comparable to those in language and
vision domains. In this paper, we introduce TIME-MOE, a scalable and unified
architecture designed to pre-train larger, more capable forecasting foundation
models while reducing inference costs. By leveraging a sparse mixture-of-experts
(MoE) design, TIME-MOE enhances computational efficiency by activating only
a subset of networks for each prediction while maintaining high model capacity.
TIME-MOE comprises a family of decoder-only transformer models that operate in
an auto-regressive manner and support arbitrary forecasting horizons with varying
input context lengths. We pre-trained these models on large-scale data, spanning
over 9 domains and encompassing over 300 billion time points. For the first
time, we scaled a time series foundation model up to 2.4 billion parameters,
achieving significantly improved forecasting precision. Our results validate the
applicability of scaling laws for training tokens and model size in the context
of time series forecasting. Compared to dense models with the same number of
activated parameters or equivalent computation budgets, our models consistently
outperform them by large margin. These advancements position TIME-MOE as a
state-of-the-art solution for tackling real-world forecasting challenges with superior
capability, efficiency, and flexibility.

1 Introduction

Time series data is a major modality in real-world dynamic systems and applications across various
domains [52, 22]. Recent advancements have underscored the potential of foundation models (FMs)
for universal forecasting [9, 45, 1]. However, the scaling laws—which posit that increasing model
size and training tokens typically leads to performance improvements—have not been thoroughly
investigated in the time series domain. More specifically, we aim to address a pivotal question: How to
scale time series foundation models to achieve universal forecasting while balancing model capability
and computational overhead, mirroring the success of foundation models in other domains?

Answering this question drives the design of TIME-MOE, a scalable and unified framework for pre-
training larger, more efficient, and more capable forecasting FMs. Our key contributions include: 1)
We explore sparse solutions for time series forecasting foundation models and their scaling properties;
2) We introduce TIME-MOE, a sparse, decoder-only time series foundation model architecture
designed for scalable, universal forecasting, maximizing task-solving capability within a given
computational budget; 3) We design a data-cleaning pipeline and curated the largest open time
series dataset with over 300 billion time points across more than 9 domains, aimed at facilitating the
pre-training of time series foundation models; 4) We present a family of open-source, pre-trained
forecasting foundation models, scaling up to 2.4 billion parameters for the first time. TIME-MOE

∗ Equal contribution ♠ Project lead † Corresponding author

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

2. Introduction results

Figure 1: Performance overview. (Left) Comparison between TIME-MOE models and state-of-the-art
time series foundation methods, reporting the average zero-shot performance across six benchmark
datasets. (Right) Comparison of few- and zero-shot performance between TIME-MOE and dense
variants, with similar effective FLOPs per time series token, across the same six benchmarks.

models outperform other time series foundation models by reducing squared error by 20% on average
in zero-shot performance across six benchmarks, with a similar number of activated parameters.

2 Methodology

Our proposed TIME-MOE, illustrated in Figure 2, adopts a mixture-of-experts-based, decoder-only
Transformer architecture, comprising three key components: (1) input token embedding, (2) MoE
Transformer block, and (3) multi-resolution output projection.

Input Token Embedding. We utilize point-wise tokenization for time series embedding to ensure the
completeness of temporal information. This enhances our model’s flexibility and broad applicability
in handling variable-length sequences. Then, we employ SwiGLU [36] to embed each time series
point: h0

t = SwiGLU(xt) = Swish (Wxt) ⊗ (V xt), where W ∈ RD×1 and V ∈ RD×1 are
learnable parameters, and D denotes the hidden dimension.

MoE Transformer Block. Our approach builds upon a decoder-only Transformer [40] and integrates
recent advancements from large language models [3, 39]. We employ RMSNorm [51] to normalize
the input of each Transformer sub-layer, thereby enhancing training stability. Instead of absolute
positional encoding, we utilize rotary positional embedding [38], which offers greater flexibility in
sequence length and better extrapolation capabilities. In line with [5], we remove biases from most
layers but retain them in the QKV layer of self-attention to improve extrapolation. To introduce spar-
sity, we replace a standard feed-forward network (FFN) with a mixture-of-experts layer, incorporating
a shared pool of experts that are sparsely activated.

ul
t = SA

(
RMSNorm

(
hl−1
t

))
+ hl−1

t , (1)
ūl
t = RMSNorm

(
ul
t

)
, (2)

hl
t = Mixture

(
ūl
t

)
+ ul

t. (3)
Here, SA denotes self-attention with a causal mask, and Mixture refers to the mixture-of-experts
layer. In practice, Mixture comprises several expert networks, each mirroring the architecture of a
standard FFN. An individual time series point can be routed to either a single expert [12] or multiple
experts [21]. Following [6], we designate one expert as a shared expert to capture and consolidate
common knowledge across different contexts.

Mixture
(
ūl
t

)
= gN+1,t FFNN+1

(
ūl
t

)
+

N∑
i=1

(
gi,t FFNi

(
ūl
t

))
, (4)

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ N},K),

0, otherwise,
(5)

gN+1,t = Sigmoid
(
Wl

N ūl
t

)
, (6)

si,t = Softmaxi
(
Wl

iu
l
t

)
, (7)

where Wl
i ∈ R1×D denotes the trainable parameters, and N and K respectively denote the numbers

of non-shared experts and activated non-shared experts per MoE layer.

2

1. Framework-v2.2

FFN

Time Series Tokens

Swish
FFN

Output Token
Embeddings

Point-wise Tokenization

Mixture-of-Expert

Causal Attention

Add + RMSNorm

Input Layer

FM Head

Mixture-of-Expert

Causal Attention

Add + RMSNorm

Add

Input Layer

FM Head

…

×𝑁

𝑋1:𝑇

෠𝑋𝑇:𝐻

RMSNorm RMSNorm

Add

…
FFN

1

FFN
2

FFN
3

GT1 GT2 GT3

Output Embeddings

In
fe

re
nc

e

Output
Patch 1

Multi-resolution
Scheduling

Output Embeddings

Output
Patch 2

FFN
1

FFN
2

FFN
3

1 M2 …

Router
𝒌=1

⨂

1×𝐷Input Hidden

1 × 𝐷Output Hidden

Training
⨂

Multi-task
Optimization

Figure 2: The architecture of TIME-MOE, which is a decoder-only model. Given an input time
series of arbitrary length, 1 we first tokenize it into a sequence of data points, 2 which are then
encoded. These tokens are processed through N -stacked backbone blocks, primarily consisting of
causal multi-head self-attention and 3 sparse temporal mixture-of-expert layers. During training, 4
we optimize forecasting heads at multiple resolutions using multi-task learning. For model inference,
TIME-MOE provides forecasts of arbitrary length by 5 dynamically scheduling these heads.

Multi-resolution Forecasting. We introduce a novel multi-resolution forecasting head, which allows
for forecasting at multiple scales simultaneously, in contrast to existing foundation models that are
limited to a single fixed scale. This capability enhances TIME-MOE ’s flexibility by enabling it
to generate forecasts across various horizons. The model uses multiple output projections from
single-layer FFNs, each designed for different prediction horizons. By incorporating a simple
greedy scheduling algorithm (see Appendix A.3), TIME-MOE efficiently handles predictions across
arbitrary horizons. This design also boosts prediction robustness through multi-resolution ensemble
learning. Additionally, TIME-MOE aggregates forecasting errors from different horizons to compute
a composite loss (Appendix A.2), thereby improving the model generalization.

3 Main Results
TIME-MOE consistently outperforms state-of-the-art forecasting models by large margins across
six well-established benchmarks and experimental settings, particularly in zero-shot scenarios. We
compared TIME-MOE against a wide range of time series models, including several recently released
foundation models for forecasting. Details of experiment settings and baselines are provided in
Appendix A.4. To ensure a fair comparison, we adhered to the experimental configurations from
[45] for out-of-distribution forecasting and [46] for in-distribution forecasting, applying a unified
evaluation pipeline that we developed. More analysis about ablation, scalability and sparsification are
provided in Appendix A.5, A.6, A.7.

Zero-shot Forecasting. We provide detailed results of zero-shot forecasting in Table 1. TIME-
MOE achieves consistent state-of-the-art performances, improving a large margin as MSE reduction
exceeding 20% over the most competitive baselines. Importantly, as the model size scales (from base
to ultra), it continuously exhibits enhanced performance across all datasets, affirming the efficacy
of scaling laws within our time series foundation models. Furthermore, in comparisons with robust
baselines possessing a similar number of activated parameters, TIME-MOE demonstrates significantly
superior performance, underscoring the successful implementation of the MoE architecture in the
large time series model.

In-distribution Forecasting. The full results are in Table 2. TIME-MOE exhibits remarkable
capabilities, comprehensively surpassing advanced deep time series models from recent years,
achieving an average MSE reduction of 24%. Fine-tuning downstream data with only one epoch

3

Table 1: Full results of zero-shot forecasting experiments. A lower MSE or MAE indicates a better
prediction. TimesFM, due to its use of Weather datasets in pretraining, is not evaluated on this dataset
and is denoted by a dash (−). Red: the best, Blue: the 2nd best.

Models
TIME-MOE (Ours) Zero-shot Time Series Models

TIME-MOEbase TIME-MOElarge TIME-MOEultra Moiraismall Moiraibase Moirailarge TimesFM Moment Chronossmall Chronosbase Chronoslarge
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.357 0.381 0.350 0.382 0.349 0.379 0.401 0.402 0.376 0.392 0.381 0.388 0.414 0.404 0.688 0.557 0.466 0.409 0.440 0.393 0.441 0.390
192 0.384 0.404 0.388 0.412 0.395 0.413 0.435 0.421 0.412 0.413 0.434 0.415 0.465 0.434 0.688 0.560 0.530 0.450 0.492 0.426 0.502 0.424
336 0.411 0.434 0.411 0.430 0.447 0.453 0.438 0.434 0.433 0.428 0.495 0.445 0.503 0.456 0.675 0.563 0.570 0.486 0.550 0.462 0.576 0.467
720 0.449 0.477 0.427 0.455 0.457 0.462 0.439 0.454 0.447 0.444 0.611 0.510 0.511 0.481 0.683 0.585 0.615 0.543 0.882 0.591 0.835 0.583

ETTh2

96 0.305 0.359 0.302 0.354 0.292 0.352 0.297 0.336 0.294 0.330 0.296 0.330 0.315 0.349 0.342 0.396 0.307 0.356 0.308 0.343 0.320 0.345
192 0.351 0.386 0.364 0.385 0.347 0.379 0.368 0.381 0.365 0.375 0.361 0.371 0.388 0.395 0.354 0.402 0.376 0.401 0.384 0.392 0.406 0.399
336 0.391 0.418 0.417 0.425 0.406 0.419 0.370 0.393 0.376 0.390 0.390 0.390 0.422 0.427 0.356 0.407 0.408 0.431 0.429 0.430 0.492 0.453
720 0.419 0.454 0.537 0.496 0.439 0.447 0.411 0.426 0.416 0.433 0.423 0.418 0.443 0.454 0.395 0.434 0.604 0.533 0.501 0.477 0.603 0.511

ETTm1

96 0.338 0.368 0.309 0.357 0.281 0.341 0.418 0.392 0.363 0.356 0.380 0.361 0.361 0.370 0.654 0.527 0.511 0.423 0.454 0.408 0.457 0.403
192 0.353 0.388 0.346 0.381 0.305 0.358 0.431 0.405 0.388 0.375 0.412 0.383 0.414 0.405 0.662 0.532 0.618 0.485 0.567 0.477 0.530 0.450
336 0.381 0.413 0.373 0.408 0.369 0.395 0.433 0.412 0.416 0.392 0.436 0.400 0.445 0.429 0.672 0.537 0.683 0.524 0.662 0.525 0.577 0.481
720 0.504 0.493 0.475 0.477 0.469 0.472 0.462 0.432 0.460 0.418 0.462 0.420 0.512 0.471 0.692 0.551 0.748 0.566 0.900 0.591 0.660 0.526

ETTm2

96 0.201 0.291 0.197 0.286 0.198 0.288 0.214 0.288 0.205 0.273 0.211 0.274 0.202 0.270 0.260 0.335 0.209 0.291 0.199 0.274 0.197 0.271
192 0.258 0.334 0.250 0.322 0.235 0.312 0.284 0.332 0.275 0.316 0.281 0.318 0.289 0.321 0.289 0.350 0.280 0.341 0.261 0.322 0.254 0.314
336 0.324 0.373 0.337 0.375 0.293 0.348 0.331 0.362 0.329 0.350 0.341 0.355 0.360 0.366 0.324 0.369 0.354 0.390 0.326 0.366 0.313 0.353
720 0.488 0.464 0.480 0.461 0.427 0.428 0.402 0.408 0.437 0.411 0.485 0.428 0.462 0.430 0.394 0.409 0.553 0.499 0.455 0.439 0.416 0.415

Weather

96 0.160 0.214 0.159 0.213 0.157 0.211 0.198 0.222 0.220 0.217 0.199 0.211 - - 0.243 0.255 0.211 0.243 0.203 0.238 0.194 0.235
192 0.210 0.260 0.215 0.266 0.208 0.256 0.247 0.265 0.271 0.259 0.246 0.251 - - 0.278 0.329 0.263 0.294 0.256 0.290 0.249 0.285
336 0.274 0.309 0.291 0.322 0.255 0.290 0.283 0.303 0.286 0.297 0.274 0.291 - - 0.306 0.346 0.321 0.339 0.314 0.336 0.302 0.327
720 0.418 0.405 0.415 0.400 0.405 0.397 0.373 0.354 0.373 0.354 0.337 0.340 - - 0.350 0.374 0.404 0.397 0.397 0.396 0.372 0.378

Global Temp

96 0.211 0.343 0.210 0.342 0.214 0.345 0.227 0.354 0.224 0.351 0.224 0.351 0.255 0.375 0.363 0.472 0.234 0.361 0.230 0.355 0.228 0.354
192 0.257 0.386 0.254 0.385 0.246 0.379 0.269 0.396 0.266 0.394 0.267 0.395 0.313 0.423 0.387 0.489 0.276 0.400 0.273 0.395 0.276 0.398
336 0.281 0.405 0.267 0.395 0.266 0.398 0.292 0.419 0.296 0.420 0.291 0.417 0.362 0.460 0.430 0.517 0.314 0.431 0.324 0.434 0.327 0.437
720 0.354 0.465 0.289 0.420 0.288 0.421 0.351 0.437 0.403 0.498 0.387 0.488 0.486 0.545 0.582 0.617 0.418 0.504 0.505 0.542 0.472 0.535

Average 0.336 0.384 0.336 0.380 0.322 0.372 0.349 0.377 0.347 0.370 0.359 0.373 0.396 0.413 0.461 0.454 0.428 0.420 0.429 0.412 0.416 0.405

1st Count 3 7 23 1 8 8 1 3 0 0 1

significantly enhances predictive performance. This demonstrates the extraordinary potential of large
time series models based on the MoE architecture. Similar to zero-shot forecasting results, as the
model size increases, the scaling law continues to be effective, leading to continuous improvements
in the performance of the TIME-MOE.

Table 2: Full results of in-domain forecasting experiments. A lower MSE or MAE indicates a better
prediction. Full-shot results besides Global Temp are from [24]. Red: the best, Blue: the 2nd best.

Models
TIME-MOE (Fine-tuned) Full-shot Time Series Models

TIME-MOEbase TIME-MOElarge TIME-MOEultra iTransformer TimeMixer TimesNet PatchTST Crossformer TiDE DLinear FEDformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.345 0.373 0.335 0.371 0.323 0.365 0.386 0.405 0.375 0.400 0.384 0.402 0.414 0.419 0.423 0.448 0.479 0.464 0.386 0.400 0.376 0.419
192 0.372 0.396 0.374 0.400 0.359 0.391 0.441 0.436 0.436 0.429 0.421 0.429 0.460 0.445 0.471 0.474 0.525 0.492 0.437 0.432 0.420 0.448
336 0.389 0.412 0.390 0.412 0.388 0.418 0.487 0.458 0.484 0.458 0.491 0.469 0.501 0.466 0.570 0.546 0.565 0.515 0.481 0.459 0.459 0.465
720 0.410 0.443 0.402 0.433 0.425 0.450 0.503 0.491 0.498 0.482 0.521 0.500 0.500 0.488 0.653 0.621 0.594 0.558 0.519 0.516 0.506 0.507

ETTh2

96 0.276 0.340 0.278 0.335 0.274 0.338 0.297 0.349 0.289 0.341 0.340 0.374 0.302 0.348 0.745 0.584 0.400 0.440 0.333 0.387 0.358 0.397
192 0.331 0.371 0.345 0.373 0.330 0.370 0.380 0.400 0.372 0.392 0.402 0.414 0.388 0.400 0.877 0.656 0.528 0.509 0.477 0.476 0.429 0.439
336 0.373 0.402 0.384 0.402 0.362 0.396 0.428 0.432 0.386 0.414 0.452 0.541 0.426 0.433 1.043 0.731 0.643 0.571 0.594 0.541 0.496 0.487
720 0.404 0.431 0.437 0.437 0.370 0.417 0.427 0.445 0.412 0.434 0.462 0.657 0.431 0.446 1.104 0.763 0.874 0.679 0.831 0.657 0.463 0.474

ETTm1

96 0.286 0.334 0.264 0.325 0.256 0.323 0.334 0.368 0.320 0.357 0.338 0.375 0.329 0.367 0.404 0.426 0.364 0.387 0.345 0.372 0.379 0.419
192 0.307 0.358 0.295 0.350 0.281 0.343 0.377 0.391 0.361 0.381 0.374 0.387 0.367 0.385 0.450 0.451 0.398 0.404 0.380 0.389 0.426 0.441
336 0.354 0.390 0.323 0.376 0.326 0.374 0.426 0.420 0.390 0.404 0.410 0.411 0.399 0.410 0.532 0.515 0.428 0.425 0.413 0.413 0.445 0.459
720 0.433 0.445 0.409 0.435 0.454 0.452 0.491 0.459 0.454 0.441 0.478 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.474 0.453 0.543 0.490

ETTm2

96 0.172 0.265 0.169 0.259 0.183 0.273 0.180 0.264 0.175 0.258 0.187 0.267 0.175 0.259 0.287 0.366 0.207 0.305 0.193 0.292 0.203 0.287
192 0.228 0.306 0.223 0.295 0.223 0.301 0.250 0.309 0.237 0.299 0.249 0.309 0.241 0.302 0.414 0.492 0.290 0.364 0.284 0.362 0.269 0.328
336 0.281 0.345 0.293 0.341 0.278 0.339 0.311 0.348 0.298 0.340 0.321 0.351 0.305 0.343 0.597 0.542 0.377 0.422 0.369 0.427 0.325 0.366
720 0.403 0.424 0.451 0.433 0.425 0.424 0.412 0.407 0.391 0.396 0.408 0.403 0.402 0.400 1.730 1.042 0.558 0.524 0.554 0.522 0.421 0.415

Weather

96 0.151 0.203 0.149 0.201 0.154 0.208 0.174 0.214 0.163 0.209 0.172 0.220 0.177 0.218 0.158 0.230 0.202 0.261 0.196 0.255 0.217 0.296
192 0.195 0.246 0.192 0.244 0.202 0.251 0.221 0.254 0.208 0.250 0.219 0.261 0.225 0.259 0.206 0.277 0.242 0.298 0.237 0.296 0.276 0.336
336 0.247 0.288 0.245 0.285 0.252 0.287 0.278 0.296 0.251 0.287 0.280 0.306 0.278 0.297 0.272 0.335 0.287 0.335 0.283 0.335 0.339 0.380
720 0.352 0.366 0.352 0.365 0.392 0.376 0.358 0.349 0.339 0.341 0.365 0.359 0.354 0.348 0.398 0.418 0.351 0.386 0.345 0.381 0.403 0.428

Global Temp

96 0.192 0.328 0.192 0.329 0.189 0.322 0.223 0.351 0.215 0.346 0.250 0.381 0.219 0.349 0.272 0.406 0.223 0.352 0.221 0.354 0.261 0.392
192 0.238 0.375 0.236 0.375 0.234 0.376 0.282 0.404 0.266 0.393 0.298 0.418 0.269 0.395 0.305 0.435 0.278 0.401 0.257 0.388 0.299 0.423
336 0.259 0.397 0.256 0.397 0.253 0.399 0.313 0.431 0.313 0.430 0.315 0.434 0.319 0.435 0.352 0.468 0.330 0.440 0.294 0.418 0.341 0.454
720 0.345 0.465 0.322 0.451 0.292 0.426 0.393 0.488 0.468 0.536 0.407 0.497 0.452 0.526 0.508 0.562 0.485 0.544 0.380 0.479 0.359 0.469

Average 0.306 0.362 0.304 0.359 0.301 0.358 0.349 0.382 0.337 0.375 0.356 0.400 0.349 0.382 0.560 0.516 0.421 0.439 0.387 0.416 0.375 0.417

1st Count 3 18 28 0 5 0 0 0 0 0 0

4 Conclusion
In this paper, we present TIME-MOE, a scalable architecture for time series foundation models that
uses sparse MoE to improve computational efficiency without sacrificing model capacity. By pre-
training on a vast dataset, we scaled our model to 2.4 billion parameters, activating 1.1 billion of them,
demonstrating significant improvements in forecasting precision. Our results validate the applicability
of scaling laws to time series forecasting and show that TIME-MOE consistently outperforms dense
models with equivalent computational budgets across multiple benchmarks. The multi-resolution
forecasting capability and superior performance in both zero-shot and fine-tuned scenarios position
TIME-MOE as a state-of-the-art solution for tackling real-world forecasting challenges. This work
paves the way for future advancements in scaling and constructing more efficient time series FMs.

4

References
[1] Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., Shchur, O., Rangapuram, S. S.,

Arango, S. P., Kapoor, S., et al. (2024). Chronos: Learning the language of time series. arXiv preprint
arXiv:2403.07815.

[2] Assimakopoulos, V. and Nikolopoulos, K. (2000). The theta model: a decomposition approach to forecasting.
International journal of forecasting, 16(4):521–530.

[3] Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan, Y., Ge, W., Han, Y., Huang, F., et al. (2023).
Qwen technical report. arXiv preprint arXiv:2309.16609.

[4] Chen, P., Zhang, Y., Cheng, Y., Shu, Y., Wang, Y., Wen, Q., Yang, B., and Guo, C. (2024). Pathformer:
Multi-scale transformers with adaptive pathways for time series forecasting. In International Conference on
Learning Representations.

[5] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W.,
Sutton, C., Gehrmann, S., et al. (2023). Palm: Scaling language modeling with pathways. Journal of Machine
Learning Research, 24(240):1–113.

[6] Dai, D., Deng, C., Zhao, C., Xu, R., Gao, H., Chen, D., Li, J., Zeng, W., Yu, X., Wu, Y., et al. (2024).
Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

[7] Dao, T. (2024). FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR).

[8] Das, A., Kong, W., Leach, A., Mathur, S. K., Sen, R., and Yu, R. (2023). Long-term forecasting with tide:
Time-series dense encoder. Transactions on Machine Learning Research.

[9] Das, A., Kong, W., Sen, R., and Zhou, Y. (2024). A decoder-only foundation model for time-series
forecasting. In Forty-first International Conference on Machine Learning.

[10] Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., Gao, J., Zhou, M., and Hon, H.-W. (2019).
Unified language model pre-training for natural language understanding and generation. Advances in neural
information processing systems, 32.

[11] Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A., Yang,
A., Fan, A., et al. (2024). The llama 3 herd of models. arXiv preprint arXiv:2407.21783.

[12] Fedus, W., Zoph, B., and Shazeer, N. (2022). Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39.

[13] Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J., and Montero-Manso, P. (2021). Monash time
series forecasting archive. In Neural Information Processing Systems Track on Datasets and Benchmarks.

[14] Goerg, G. (2013). Forecastable component analysis. ICML.

[15] Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., and Dubrawski, A. (2024). Moment: A family of
open time-series foundation models. In Forty-first International Conference on Machine Learning.

[16] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. (2021). Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural networks. Journal of Machine Learning Research,
22(241):1–124.

[17] Hu, J., Hu, Y., Chen, W., Jin, M., Pan, S., Wen, Q., and Liang, Y. (2024). Attractor memory for long-term
time series forecasting: A chaos perspective. arXiv preprint arXiv:2402.11463.

[18] Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pages 492–518. Springer.

[19] Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with exponential smoothing:
the state space approach. Springer Science & Business Media.

5

[20] Jin, M., Zheng, Y., Li, Y.-F., Chen, S., Yang, B., and Pan, S. (2022). Multivariate time series forecasting
with dynamic graph neural odes. IEEE Transactions on Knowledge and Data Engineering, 35(9):9168–9180.

[21] Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., and Chen, Z.
(2020). Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv preprint
arXiv:2006.16668.

[22] Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., Pan, S., and Wen, Q. (2024). Foundation models
for time series analysis: A tutorial and survey. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6555–6565.

[23] Lin, S., Lin, W., Wu, W., Chen, H., and Yang, J. (2024). Sparsetsf: Modeling long-term time series
forecasting with* 1k* parameters. In Forty-first International Conference on Machine Learning.

[24] Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L., and Long, M. (2024a). itransformer: Inverted
transformers are effective for time series forecasting. In The Twelfth International Conference on Learning
Representations.

[25] Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., and Long, M. (2024b). Timer: Generative pre-trained
transformers are large time series models. In Forty-first International Conference on Machine Learning.

[26] Ni, R., Lin, Z., Wang, S., and Fanti, G. (2024). Mixture-of-linear-experts for long-term time series
forecasting. In International Conference on Artificial Intelligence and Statistics, pages 4672–4680. PMLR.

[27] Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. (2023). A time series is worth 64 words: Long-
term forecasting with transformers. In The Eleventh International Conference on Learning Representations.

[28] Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio, Y. (2020). N-beats: Neural basis expansion
analysis for interpretable time series forecasting. In International Conference on Learning Representations.

[29] Qi, S., Xu, Z., Li, Y., Wen, L., Wen, Q., Wang, Q., and Qi, Y. (2024). Pdetime: Rethinking long-term
multivariate time series forecasting from the perspective of partial differential equations. arXiv preprint
arXiv:2402.16913.

[30] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning
research, 21(140):1–67.

[31] Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., and Januschowski, T. (2018). Deep
state space models for time series forecasting. Advances in neural information processing systems, 31.

[32] Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M., Jenatton, R., Susano Pinto, A., Keysers, D.,
and Houlsby, N. (2021). Scaling vision with sparse mixture of experts. Advances in Neural Information
Processing Systems, 34:8583–8595.

[33] Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). Deepar: Probabilistic forecasting with
autoregressive recurrent networks. International journal of forecasting, 36(3):1181–1191.

[34] Selva, J., Johansen, A. S., Escalera, S., Nasrollahi, K., Moeslund, T. B., and Clapés, A. (2023). Video
transformers: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(11):12922–
12943.

[35] Sen, R., Yu, H.-F., and Dhillon, I. S. (2019). Think globally, act locally: A deep neural network approach
to high-dimensional time series forecasting. Advances in neural information processing systems, 32.

[36] Shazeer, N. (2020). Glu variants improve transformer. arXiv preprint arXiv:2002.05202.

[37] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. (2017). The
sparsely-gated mixture-of-experts layer. Outrageously large neural networks.

[38] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. (2024). Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063.

6

[39] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N.,
Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971.

[40] Vaswani, A. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

[41] Wang, S., Wu, H., Shi, X., Hu, T., Luo, H., Ma, L., Zhang, J. Y., and ZHOU, J. (2024a). Timemixer:
Decomposable multiscale mixing for time series forecasting. In The Twelfth International Conference on
Learning Representations.

[42] Wang, X., Zhou, T., Wen, Q., Gao, J., Ding, B., and Jin, R. (2024b). Card: Channel aligned robust blend
transformer for time series forecasting. In The Twelfth International Conference on Learning Representations
(ICLR).

[43] Wen, Q., Gao, J., Song, X., Sun, L., and Tan, J. (2019). RobustTrend: a huber loss with a combined
first and second order difference regularization for time series trend filtering. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 3856–3862.

[44] Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., and Sun, L. (2023). Transformers in time series: a
survey. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI),
pages 6778–6786.

[45] Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and Sahoo, D. (2024). Unified training of universal
time series forecasting transformers. In Forty-first International Conference on Machine Learning.

[46] Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M. (2023). Timesnet: Temporal 2d-variation
modeling for general time series analysis. In International Conference on Learning Representations.

[47] Yang, Y., Zhang, C., Zhou, T., Wen, Q., and Sun, L. (2023). Dcdetector: Dual attention contrastive
representation learning for time series anomaly detection. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 3033–3045.

[48] Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y., and Xu, B. (2022). Ts2vec: Towards universal
representation of time series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 8980–8987.

[49] Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2023). Are transformers effective for time series forecasting?
In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages 11121–11128.

[50] Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., and Eickhoff, C. (2021). A transformer-based
framework for multivariate time series representation learning. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, pages 2114–2124.

[51] Zhang, B. and Sennrich, R. (2019). Root mean square layer normalization. Advances in Neural Information
Processing Systems, 32.

[52] Zhang, K., Wen, Q., Zhang, C., Cai, R., Jin, M., Liu, Y., Zhang, J. Y., Liang, Y., Pang, G., Song, D.,
et al. (2024). Self-supervised learning for time series analysis: Taxonomy, progress, and prospects. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[53] Zhang, X., Zhao, Z., Tsiligkaridis, T., and Zitnik, M. (2022). Self-supervised contrastive pre-training for
time series via time-frequency consistency. Advances in Neural Information Processing Systems, 35:3988–
4003.

[54] Zhang, Y. and Yan, J. (2023). Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations.

[55] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W. (2021). Informer: Beyond
efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 11106–11115.

[56] Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin, R. (2022). FEDformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In Proc. 39th International Conference on Machine
Learning (ICML 2022).

7

A Appendix

A.1 Related Work

Time Series Forecasting. Deep learning models have become powerful tools for time series
forecasting over the past decade. These models outperform traditional, local statistical methods, such
as Theta [2] and ARIMA [19], which fit separate models to each time series independently. In contrast,
deep learning models learn from data across multiple time series within a dataset, which can be
broadly categorized into two types: (1) univariate models, such as DeepState [31], DeepAR [33], and
N-BEATS [28], which focus on modeling individual time series, and (2) multivariate models, which
include both transformer-based approaches [44, 55, 27, 24, 42, 4] and non-transformer models [35,
20, 41, 17, 29], designed to handle multiple time series simultaneously. While these models achieve
competitive in-domain performance, many are task-specific and fall short in generalizability when
applied to cross-domain data in few-shot or zero-shot scenarios.

Large Time Series Models. Pre-training on large-scale sequence data has significantly advanced
modality understanding in language and vision domains [10, 34]. Building on this progress, self-
supervised learning has been extensively developed for time series [52], employing masked recon-
struction [50, 27] or contrastive learning [53, 48, 47]. However, these methods are often limited in
both data and model scale, with many focused on in-domain learning and transfer. Recently, general
pre-training of time series models on large-scale datasets has emerged, though still in its early stages.
Current efforts toward universal forecasting are in three categories: (1) encoder-only models, such
as Moirai [45] and Moment [15], which use masked reconstruction and have been pre-trained on
datasets with 27B and 1B time points, with model parameters up to 385M; (2) encoder-decoder
models, represented by Chronos [1], which has been pre-trained on approximately 796K time se-
ries, containing up to 710M parameters; and (3) decoder-only models, including TimesFM [9] and
Timer [25], where the most extensive models feature up to 200M parameters. Unlike these dense
models, TIME-MOE introduces a scalable and unified framework for pre-training larger forecasting
models, scaling up to 2.4B parameters and trained on over 300B time points. TIME-MOE is more
capable while maintaining the same scale of activated parameters or computational budget as dense
models.

Sparse Deep Learning for Time Series. Traditional deep learning models are dense and often over-
parameterized [16], resulting in increased memory and computational demands during training and
inference. However, in many fields, sparse networks, such as mixture-of-experts, have demonstrated
comparable or superior generalization compared to dense models, while being more efficient [12, 32].
In time series research, model sparsification has received less attention, as time series models have
traditionally been small in scale, with simple models like DLinear [49] and SparseTSF [23] excelling
in specific tasks prior to the advent of large-scale, general pre-training. The most relevant recent work
is MoLE [26], which trains multiple linear models to collaboratively predict time series. However,
unlike TIME-MOE, where dense feed-forward layers in the transformer backbone are replaced with
sparsely-activated subnetworks, MoLE is not a sparse model, as input data is passed to all heads and
then combined to make predictions.

A.2 Model Training

Pre-training Data Training time series foundation models requires extensive, high-quality data.
However, large-scale datasets that are adequately processed remain scarce. Recent advancements
have facilitated the collection of numerous time series datasets from various sources [13, 1, 45, 25].
Nonetheless, data quality remains a challenge, with prevalent issues such as missing values and
invalid observations that can impair model performance and destabilize training. To mitigate these
issues, we have developed a streamlined data-cleaning pipeline (see Appendix A.3) to filter and
refine raw data, thereby constructing a collection of high-quality, large-scale time series datasets for
model pre-training. We have collected a diverse range of publicly available datasets, including those
from Chronos [1], LOTSA [45] and UTSD [25], spanning multiple domains such as energy, retail,
healthcare, weather, finance, transportation, and web. We also include a portion of synthetic data to
enhance the quantity and diversity of our training data. These datasets vary in sampling frequencies
from 5 minutes to yearly and encompass over 300 billion time points in total.

8

Table 3: Key statistics of pre-training data across domains

Energy Finance Healthcare Nature Sales Synthetic Transport Web Other Total
Seqs. 1,817,756 1,683 2,275 3,257,621 95,402 7,406,529 101,011 1,069,565 356,147 14,107,989
Obs. 16.133 B 385.024 K 293.888 K 88.868 B 5.323 M 8.087 B 1.271 B 1.818 B 899.713 M 117.083 B
% 13.791% 0.0003% 0.0002% 75.881% 0.004% 6.913% 1.086% 1.554% 0.769% 100%

Loss Function Pre-training time series foundation models in large scale presents significant chal-
lenges in training stability due to the massive datasets and the vast number of parameters involved.
To address this, we use the Huber loss [18, 43], which provides greater robustness to outliers and
improves training stability.

Lar (xt, x̂t) =

{
1
2 (xt − x̂t)

2
, if |xt − x̂t| ≤ δ,

δ ×
(
|xt − x̂t| − 1

2 × δ
)
, otherwise,

(8)

where δ is a hyperparameter that balances the L1 and L2 loss components. When training the model
with a Mixture-of-Experts architecture, focusing solely on optimizing prediction error often leads
to load imbalance issues among the experts. A common problem is routing collapse [37], where
the model predominantly selects only a few experts, limiting training opportunities for others. To
mitigate this, following the approaches of [6, 12], we achieve expert-level balancing with an auxiliary
loss to reduce routing collapse. The auxiliary loss is computed as follows:

Laux = N

N∑
i=1

firi, fi =
1

KT

T∑
t=1

I (Time point t selects Expert i) , ri =
1

T

T∑
t=1

si,t, (9)

where fi represents the fraction of tokens assigned to expert i, and ri denotes the proportion of router
probability allocated to expert i. I is the indicator function. Finally, we combine the auto-regressive
losses across all multi-resolution projections with the auxiliary balance loss to form the final loss:

L =
1

P

P∑
i=1

Lar

(
Xt+1:t+pi

, X̂t+1:t+pi

)
+ αLaux, (10)

Training Details Informed by the scaling laws demonstrated by Llama [11, 39], which show
that a 7- or 8-billion parameter model continues to improve performance even after training on
over one trillion tokens, we chose to scale our model to 1 billion activated parameters. Notably,
TIME-MOEultra supports inference on consumer-grade GPUs with less than 8GB of VRAM. We
have also developed two smaller models: TIME-MOEbase, with 50 million activated parameters, and
TIME-MOElarge, with 200 million activated parameters, both specifically designed for fast inference
on CPU architectures. These streamlined models are strategically developed to ensure broader
accessibility and applicability in resource-constrained environments. Each model undergoes training
for 100, 000 steps with a batch size of 1024, where the maximum sequence length is capped at 4096.
This setup results in the consumption of 4 million time points per iteration. We choose {1, 8, 32, 64}
as different forecast horizons in the output projection and set the factor of the auxiliary loss α to 0.02.
For optimization, we employ the AdamW optimizer, configured with the following hyperparameters:
lr = 1e-3, weight_decay = 0.1, β1 = 0.9, β2 = 0.95. A learning rate scheduler with a linear
warmup over the initial 10, 000 steps followed by cosine annealing is also utilized. Training is
conducted on 128 × A100-80G GPUs using BF16 precision. To enhance batch processing efficiency
and accommodate varying sequence lengths, we implement sequence packing [30], significantly
reducing the need for extensive padding.

Table 4: A high-level summary of model configurations.
Layers Heads Experts K dmodel dff dexpert Activated Params Total Params

TIME-MOEbase 12 12 8 2 384 1536 192 50 M 113 M
TIME-MOElarge 12 12 8 2 768 3072 384 200 M 453 M
TIME-MOEultra 36 16 8 2 1024 4096 512 1.1 B 2.4 B

A.3 Implementation Details

Missing Value Processing. In time-series observations, missing values frequently manifest as
‘NaN’ (Not a Number) or ‘Inf’ (Infinity). Previous studies often addressed this issue by replacing

9

missing values with the mean value, which we believe can distort the original pattern of the time
series. Instead, we utilize a method that divides the original sequence into multiple sub-sequences at
points where missing values occur. This approach effectively removes the segments with missing
values while preserving the integrity of the original time-series pattern.

Invalid Observation Processing. In some data collection systems, missing values are often filled
with 0 or another constant value, resulting in sequences that contain constant values. These values
represent invalid patterns for the model. Consequently, we have developed a filtering method that
employs a fixed-length window to traverse the entire sequence. This method calculates the ratio
of first-order to second-order differences within the window. The window sequence is discarded
if the ratio exceeds a pre-specified threshold (0.2 in our setting). Subsequently, we concatenate
the continuous, satisfactory window sequences into a single sequence. This process transforms the
original sequence into multiple sub-sequences, effectively excluding segments with unacceptable
window sequences.

Scheduling Algorithm for Arbitrary Horizons. We define P output projections, each for a distinct
forecasting horizon, denoted as (p1, p2, . . . , pP). Each output projection corresponding to horizon pi
is utilized to forecast the subsequent pi time steps, as shown below:

X̂t+1:t+pi = Wpih
L
t , (11)

where Wpi
∈ Rpi×D is the learnable parameter matrix associated with that horizon, hL

t denotes
the output hidden state from the last MoE Transformer block. All output projections are optimized
simultaneously in model training. During inference, for each prediction in the auto-regressive
forecasting process, we select a projection pi with the closest forecasting horizon that is less than or
equal to the required forecast length. This allows TIME-MOE to make predictions beyond the next
time step or a fixed horizon, significantly enhancing the model’s utility and forecasting performance.

A.4 Experiment Details

Problem Statement. We address the problem of predicting future values in a time series: given
a sequence of historical observations X1:T = (x1, x2, . . . , xT) ∈ RT spanning T time steps, our
objective is to forecast the next H time steps, i.e., X̂T+1:T+H = fθ (X1:T) ∈ RH . Here, fθ
represents a time series model, where T is the context length and H is the forecasting horizon.
Notably, both T and H are arbitrary when inferencing TIME-MOE, distinguishing it from task-
specific models with fixed configurations. Additionally, channel independence [27] is adopted to
transform a multivariate input into univariate series, allowing TIME-MOE to handle any-variate
forecasting problems in real-world applications.

Datasets Details. We evaluate the performance of different models for long-term forecasting on 8
well-established datasets, including Weather, Electricity, and ETT datasets (ETTh1, ETTh2, ETTm1,
ETTm2). We detail the descriptions of the dataset in Table 5.

Table 5: Detailed dataset descriptions. Dataset sizes are listed as (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Frequency Forecastability∗ Information

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.46 Temperature

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.55 Temperature

Long-term ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly 0.38 Temperature

Forecasting ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly 0.45 Temperature

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min 0.75 Weather

Global Temp 1000 {96, 192, 336, 720} (12280, 1755, 3509) Hourly 0.78 Temperature

∗ The forecastability is calculated by one minus the entropy of Fourier decomposition of time series [14]. A larger value
indicates better predictability.

10

Metric Details. Regarding metrics, we utilize the mean square error (MSE) and mean absolute
error (MAE) for long-term forecasting. The calculations of these metrics are:

RMSE = (

H∑
i=1

(Xi − X̂i)
2)

1
2 , MAE =

H∑
i=1

|Xi − X̂i|,

where X, X̂ ∈ RH×C are the ground truth and prediction results of the future with H time pints and
C dimensions. Xi means the i-th future time point.

Baselines Details. We evaluate TIME-MOE against 14 baselines, representing state-of-the-art
models in long-term forecasting. These baselines are categorized into two groups. The first group,
for zero-shot forecasting evaluation, includes pre-trained foundation models such as Moirai [2024],
TimesFM [2024], Timer [2024b], Moment [2024], and Chronos [2024]. The second group, for
in-distribution (full-shot) forecasting evaluation, consists of deep time series models such as iTrans-
former [2024a], TimeMixer [2024a], TimesNet [2023], PatchTST [2023], Crossformer [2023],
TiDE [2023], DLinear [2023], and Fedformer [2022].

Setup Details. We use four different prediction horizons, which are {96, 192, 336, 720}, with
the corresponding input time series lengths {512, 1024, 2048, 3072}. The evaluation metrics adopt
mean square error (MSE) and mean absolute error (MAE). In zero-shot forecasting experiments,
we conducted experiments on the six well-known long-term forecasting benchmarks for which
datasets were not included in the pre-training corpora. Regarding in-distribution forecasting, we
simultaneously fine-tune the pre-trained TIME-MOE models on the training datasets of the above-
mentioned six benchmarks and set the number of epochs to 1. This implies that the model is trained
for approximately only 200 steps.

A.5 Ablation Study

Table 6: Ablation studies. (Left) Average MSE for horizon-96 forecasting across six benchmarks,
evaluated with different model components. (Right) Analysis of various multi-resolution forecasting
configurations.

Average MSE
TIME-MOEbase 0.262

w/o Huber loss 0.267
w/o multi-resolution layer 0.269
w/o mixture-of-experts 0.272
w/o auxiliary loss 0.275

Average MSE Inference Speed
TIME-MOEbase 0.262 0.095 s/iter
TIME-MOEbase w/ {1,8,32} 0.273 0.130 s/iter
TIME-MOEbase w/ {1,8} 0.320 0.411 s/iter
TIME-MOEbase w/ {1} 1.382 2.834 s/iter

To assess the effectiveness of our design for large time series models, we performed a detailed ablation
analysis on the key architectural components and loss functions across all experiment benchmarks.
We have the following observations from Table 6.

Model Architecture. Replacing the MoE with a vanilla FFN led to a performance drop from 0.262
to 0.272, highlighting the significant advantage of the MoE architecture, as in the left of Table 6.
Further comparisons between dense and sparse models are discussed in detail in Section A.6. In the
TIME-MOEbase, we removed the multi-resolution output layers, retaining only the horizon-32 output
layer and thus excluding the multi-task learning component. This modification resulted in a slight
performance degradation compared to the original TIME-MOEbase. As illustrated on the right side of
Table 6, the default configuration of four multi-resolution output projections with receptive horizons
of 1, 8, 32, and 64 achieves the best balance between predictive performance and inference speed.
Reducing the number of projections consistently worsens performance while significantly improving
inference speed, underscoring the effectiveness of our multi-resolution output projection design.

Training Loss. We note that the model trained with Huber loss demonstrates enhanced performance
over the one using MSE loss due to the superior robustness of Huber loss in handling outlier time
points. We removed the auxiliary loss from the objective function, keeping only the auto-regressive
loss while still employing the MoE architecture. This modification caused the expert layers of the
model to collapse to a smaller FFN in training, as the activation score of the more effective expert
became disproportionately stronger without the load balance loss. As a result, its performance was
notably worse than the TIME-MOEbase.

11

Table 7: Comparison of BF16 and FP32 in terms of training and inference efficiency. FA denotes
flash-attention. .

Average MSE Training Speed Inference Speed Training Memory Inference Memory
TIME-MOEbase 0.262 0.84 s/iter 0.095 s/iter 1.77 GB 226.70 MB
TIME-MOEbase w/o FA 0.262 1.09 s/iter 0.118 s/iter 1.77 GB 226.70 MB
TIME-MOEbase w/ FP32 0.261 1.24 s/iter 0.133 s/iter 2.21 GB 453.41 MB

A.6 Scalability Analysis

Dense and Sparse Models. To evaluate the performance and efficiency advantages of the Mixture
of Experts (MoE) architecture in time-series forecasting, we substituted the MoE layer with a dense
layer having an equivalent number of parameters to the activated parameters of the MoE layer.
Employing identical training settings and data, we trained three dense models corresponding to
the sizes of the three TIME-MOE models. The zero-shot performance comparison between the
dense and MoE models is presented on the left of Figure 3. Compared to Sparse models (MoE) and
Dense models, we observe that our approach achieved an average reduction of 78% in training costs
and 39% in inference costs. This greatly demonstrates the advantages of Time-MoE, especially in
maintaining exceptional performance while offering extreme cost-effectiveness.

Model and Data Scaling. We save the checkpoints for each model at intervals of every 20 billion
time points during training. This enables us to plot performance traces for models of different sizes
trained across various data scales. The right of Figure 3 illustrates that models trained with more data
generally exhibit better performance across all model sizes.

(base) (large)(200M) (1B)

24

4.8 4.8

1.2

Figure 3: Scalability analysis. (Left) Comparison of dense models and TIME-MOE models in
terms of training cost and inference cost. (Right) Average MSE for a 96-horizon forecast across six
benchmarks, comparing TIME-MOE and the dense models, both trained from scratch with different
training time points.

Training Precision. We trained a new model, TIME-MOEbase (FP32), using identical configura-
tions but with float32 precision instead of bfloat16. As shown in Table 7, the forecasting performance
of both models is comparable. However, the bfloat16 model achieves a 12% improvement in train-
ing speed and reduces memory consumption by 20% compared to the float32 model. Moreover,
the bfloat16 model can seamlessly integrate with flash-attention [7], further boosting training and
inference speed by 23% and 19% respectively.

A.7 Sparsification Analysis

As shown in Figure 4, we can observe that TIME-MOE activates different experts across various
datasets, with each expert learning distinct knowledge. This results in different activation values on
datasets from diverse domains. This also reveals why TIME-MOE, as a large time series foundation
model, possesses remarkable transferability and generalization capabilities.

12

Figure 4: The gate scores for experts across different layers in the six benchmarks

Furthermore, we conducted a sensitivity analysis on the number of experts as topk within the MoE
architecture, as shown in Table 8. As k increases, it can be observed that there is no significant
improvement in performance, and inference speed decreases markedly. This indicates that for the
MoE architecture, sparsity not only does not degrade performance but also greatly enhances inference
efficiency. This is crucial for training large models, as we must consider performance, efficiency, and
cost. Models based on the sparse MoE architecture have inherent advantages in these aspects.

Table 8: Performance and inference speed among the different topk. The average MSE for horizon-
96 forecasting across six benchmarks.

TIME-MOEbase Average MSE Inference Speed
w/ {Top1} 0.264 0.082 s/iter
w/ {Top2} 0.262 0.095 s/iter
w/ {Top4} 0.262 0.109 s/iter
w/ {Top6} 0.265 0.120 s/iter
w/ {Top8} 0.269 0.129 s/iter

13

	Introduction
	Methodology
	Main Results
	Conclusion
	Appendix
	Related Work
	Model Training
	Implementation Details
	Experiment Details
	Ablation Study
	Scalability Analysis
	Sparsification Analysis

