Physics-informed Neural Operator for Pansharpening
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Abstract

Over the past decades, pansharpening has contributed greatly to numerous remote
sensing applications, with methods evolving from theoretically grounded models to
deep learning approaches and their hybrids. Though promising, existing methods
rarely address pansharpening through the lens of underlying physical imaging pro-
cesses. In this work, we revisit the spectral imaging mechanism and propose a novel
physics-informed neural operator framework for pansharpening, termed PINO,
which faithfully models the end-to-end electro-optical sensor process. Specifically,
PINO operates as: (1) First, a spatial-spectral encoder is introduced to aggregate
multi-granularity high-resolution panchromatic (PAN) and low-resolution multi-
spectral (LRMS) features. (2) Subsequently, an iterative neural integral process
utilizes these fused spatial-spectral characteristics to learn a continuous radiance
field L;(z,y, ) over spatial coordinates and wavelength, effectively emulating
band-wise spectral integration. (3) Finally, the learned radiance field is modu-
lated by the sensor’s spectral responsivity Ry(A) to produce the desired fusion
products. This physics-grounded fusion paradigm offers a principled solution
for pansharpening in accordance with sensor imaging physics. Experiments on
multiple benchmark datasets show that our method surpasses state-of-the-art fu-
sion algorithms, achieving reduced spectral aberrations and finer spatial textures.
Furthermore, extension to hyperspectral (HS) data demonstrates its generalizability
and universality. The code is available at https://github.com/ez4lionky/PINO.

1 Introduction

Remote sensing satellites have become indispensable tools for Earth observation and monitoring,
which span diverse civilian and military applications, such as precision agriculture, environmental
monitoring, and mineral exploration [56 |67, 50} 49]. Unfortunately, existing optical satellite sensors
struggle to directly acquire high-resolution multispectral (HRMS) observations. Instead, they typically
acquire paired low-resolution (LR) MS and high-resolution panchromatic (PAN) images of the same
scene. Pansharpening techniques aim to bridge the resolution gap by fusing complementary PAN and
MS modalities to produce HRMS images, benefiting downstream remote sensing tasks.
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Over the past decades, the pansharpening community has witnessed a proliferation of methodologies,
spanning from traditional model-driven algorithms to deep learning approaches and their hybrid
variants. Despite notable advancements, most existing methods inadequately model the fundamental
electro-optical process inherent to optical sensor systems, such as continuous radiance formation,
optical filtering and sensor responsivity 59,133, [79]]. Traditional approaches, including component
substitution and multiresolution analysis, typically operate on tensorized band data, applying heuris-
tic transformations to align spatial details with spectral content. Deep learning approaches learn
direct mappings from LRMS to HRMS. Both paradigms exhibit critical shortcomings: model-driven
methods rely on simplified physical assumptions that often violate sensor-specific radiometric con-
straints, while data-driven approaches implicitly capture sensor characteristics through training data
without explicit physical constraints. This disconnect from the underlying sensor imaging physics
leads to critical challenges, including sensor-specific biases, spectral aberrations and spatial artifacts,
restricting the applicability in real-world scenes.

In this work, we propose a physics-informed neural operator framework, named PINO, which unifies
continuous radiance field modeling with learnable spectral responsivity, significantly boosting spatial-
spectral fidelity and enhancing generalization across heterogeneous sensors and varying imaging
conditions. The key procedures of PINO are as follows: First, we employ a spatial-spectral encoder
to aggregate multi-granularity high-resolution PAN and LRMS features. Second, we exploit the
fused spatial-spectral characteristics to learn a continuous radiance field over spatial coordinates and
wavelengths, enabling the coexistence of sub-pixel spatial details and sub-band spectral nuances
within the implicit neural representation. This process is implemented using an iterative kernel
integral operator, effectively emulating band-wise spectral integration. Finally, we modulate the
learned radiance field with the sensor’s spectral responsivity, in accordance with the camera forward
model, to generate high-resolution fusion products. We summarize the main contributions as follows:

* We propose a physically-grounded pansharpening framework that establishes a new
paradigm bridging neural representations with physical sensor models, providing a princi-
pled solution applicable to multispectral and hyperspectral image fusion tasks.

* We employ an iterative kernel integral operator that leverages multi-granularity spa-
tial-spectral features to learn a continuous radiance field over spatial coordinates and
wavelength, enabling sub-pixel and sub-band fusion of different modalities while effectively
emulating band-wise spectral integration.

* We introduce a learnable band-wise spectral responsivity modulation to simulate the sensor’s
spectral properties, allowing the simultaneous optimization of response functions.

» Experiments on multiple remote sensing benchmark datasets reveal that PINO consistently
outperforms state-of-the-art methods in fusion capability, generaizalibity and adaptability.

2 Related Works

Deep Learning-based MSI and HSI Fusion In recent years, fueled by the availability of large-
scale datasets, deep learning-based methods have achieved impressive progress in MS and HS
image sharpening, significantly outperforming traditional model-driven approaches [16} 67, [24].
Typical techniques range from convolutional neural networks (CNNs) [[78 (9} 25| 27, [19], global
transformers [82} 123} 43| 73], to recently emerging generative diffusion models [55, 6]]. In addition,
growing interest has been directed toward hybrid approaches that integrate traditional fusion principles
with deep learning architectures to enhance model interpretability [[75, 84, 163} [35, |51]. While
promising, these methods are largely grounded in mathematical models and rarely explore potential
solutions from the physical imaging process. Concurrently, recent methods SSMNet and FBS-PS
[42,130] begin to incorporate sensor-related physics (e.g. band-separable properties) into learning-
based fusion. However, they still fall short of modeling the full electro—optical imaging process.

Implicit Neural Representation Implicit neural representations (INRs) have drawn significant
attention for their ability to encode continuous signals with high fidelity in a parametric form. This
approach has been revolutionary in the domain of 3D computer vision, as exemplified by NeRF [57,4]],
which demonstrated the potential of encoding intricate 3D structures with just 2D pose images. Recent
advancements in INR architecture have led to the development of continuous image functions, which
leverage the power of multi-layer perceptrons (MLPs) for tasks such as super-resolution (SR). For
instance, LIIF [7]] introduced a local implicit image function for SR, where the network performs



localized learning across the spatial domain to improve high-resolution reconstruction. Similarly,
UltraSR [77] and DIINN [358] employ deep neural networks with residual connections and dual-
interactive architectures, respectively, to further enhance decoding capabilities and spatial detail
recovery. Furthermore, SSIF learns a continuous spatial-spectral representation for spectral image
super-resolution [S3]], and SpectralNeRF performs physically based spectral rendering with a neural
radiance field [36], illustrating how INR can extend beyond purely spatial signals. This line of work
has naturally extended to the pansharpening and MHIF domain [54} 39, [13]], where INRs have shown
promise in enhancing the representation of spectral data. However, the current methods mainly use
spatial coordinates or/and a simple band index to encode the continuous signal of spectral data.

Image Super-resolution Neural Operator Neural operators (NOs) have recently been introduced
to learn mappings between infinite-dimensional function spaces [32| 13]. In contrast to classical
neural networks, which typically operate on finite-dimensional Euclidean spaces or discrete sets,
neural operators optimize network training within function spaces, offering superior nonlinear
fitting and invariance to discretization [45) 38l 164]. As a resolution-invariant architecture, neural
operators generalize effectively across different discretizations, rendering them highly suitable for
tasks involving continuous or resolution-varying data. Wei et al. introduce SRNO, which integrates
the function space mapping of neural operators with the efficient non-local modeling of Galerkin-
style attention, offering a novel approach to continuous super-resolution [[7/1]. DiffFNO designs a
Weighted Fourier Neural Operator with a novel mode rebalancing mechanism to address the loss
of high-frequency details in traditional counterparts caused by mode truncation [41]. HiNOTE
introduces a hierarchical neural operator framework that effectively broadens the scope of neural
operators to scientific data [46]. Very recently, He et al. apply neural operators to the hyperspectral
pan-sharpening, developing a spectral-spatial continuous function mapping to solve the challenging
scale generalization problem [20].

3 Methodology

In this section, we first introduce the preliminary of the spectral sensor imaging mechanism and then
derive the proposed physics-informed neural operator framework. Subsequently, we elaborate on
the implementation details of continuous radiance field learning, band-wise spectral responsivity
modulation, optimization strategies and objectives within the proposed PINO.

3.1 Preliminary of Spectral Imaging Sensor Model
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Figure 1: The key components and processes in an electro-
optical spectral-imaging system.

As schematically depicted in Figure |1} this imaging pipeline operates as: (i) the scene radiance is
collected and formed on the focal plane; (ii) it passes through band-selecting filters or prisms; (iii)
detectors measure the filtered irradiance; (iv) the resulting analog signal is digitized. Let L; represent
spectral irradiance on a detector located on the optical axis, it is related to the at-sensor radiance L;
by the camera equation [60} 59]:

TTo(N)
4N?

where N is the optics f-number, given by the ratio of the optical focal length divided by the aperture
stop diameter. For simplicity, we assume unit geometric magnification between the scene and the

Li(z,y,\) = Li(z,y,A) (W-m™-um™), 4))
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Figure 2: Overview of the proposed PINO. It features three key ingredients: (i) Spatial-spectral
encoder: Aggregating multi-granularity spatial-spectral features; (ii) Iterative kernel integral operator:
Learning a continuous radiance field over spatial coordinates and wavelength; (iii) Radiance Field
Modulation: Modulating the learned continuous radiance field with the spectral responsivity to
generate the desired HRMS images.

image plane, and use the same (z, y) coordinate system for both the scene and image. The optical
transmittance 7,(\) (excluding filters) remains high (>90%) and spectrally uniform in reflective
systems, causing minimal spectral distortion.

We then introduced multispectral filters or wavelength dispersion elements, such as prisms, to split
the incoming energy into distinct wavelength bands. Denote the combined filter transmittance and
detector sensitivity by the spectral responsivity R;(\), the signal intensity I; , measured by the
sensor in band b is:

Lo(a,y) = /A Li(z,y, ) Ry(N) dXA - (W -m™2), @

where the integral is over the sensor’s spectral range A;. In practice, we discretize this integral via
Riemann summation by sampling wavelengths {\; };, € Ay:

Lip(,y) =Y Li(z,y. M) Ry(M\)AN = Li(z,y, ARy (\), 3)
J J

where R} (\;) represents weighted spectral responsivity that incorporates both the original spectral
responsivity and the wavelength sampling interval. Finally, the analogue signal I; ,(z, y) is converted
to digital values via A/D conversion. In general, this model reveals a critical insight: The sensor
output is a weighted integral of continuous radiance, motivating us to learn this mapping directly.

3.2 Physics-informed Neural Operator for Radiance Formation

To approximate the integral of continuous radiance, we first employ a transformer-based encoder to
extract features from the input MS image IS € R#*Wxs and PAN image I74N € R¥*W shown
in Figure2} Specifically, we use the bidirectional dilation transformer (BDT) architecture [12], which
leverages dilated spatial self-attention and grouped spectral self-attention in a bidirectional hierarchy,
expanding the spatial receptive field while capturing local spectral correlations. This allows the model
to aggregate both global context and fine details across the multi-resolution inputs. The encoder thus
outputs an intermediate feature map F' that jointly encodes information from the upsampled MS
image and the PAN image. More details about the encoder can be found in the Appendix[A.3.3]



Given the fused feature map F', we could query and unfold the feature to obtain each point-wise
feature in the input resolution, which is a de facto standard for SR-related INRs [7}139]]. Meanwhile,
we use periodic Fourier encoding [52] for both sampled spatial coordinates and wavelengths:

II(v) = p([sin(a%), cos(;—’o), el sin(gT”_l)7 cos(gT”_l)])7
0y =Cuing™ 7, t=0,1,...,T—1,

“

where v denotes the input, 7" is the total number of grid scales and g = % Crnins Crnaz are

predefined constants and present the minimum and maximum grid scale, p could be parameterized by
a MLP or a neural operator.

Consequently, we weight each neighboring feature by the fraction of its overlap with the query
coordinates (z, y) in the targeted-resolution to obtain an interpolated pixel-wise feature that captures
local image content. As iullustrated in Figure 2] we concatenate these features with periodic fourier
encodings of the same spatial coordinates, yielding the final fetched feature F'. Based on F', we
approximate the continuous radiance field L(z, y, A) by leveraging an iterative kernel integral operator
with Galerkin-type integral form [3]:

W=F h'—=h—. ...Vt 5N, 5)

with each hidden feature h"(x,y,\),n = 1,2,--- | N, defined as:
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after N iterations, the hidden feature h'V is projected to obtain the radiance field L(x,y, ). To make
the computation tractable, we discretize the outer integral over A in Eq[8] approximating it via a finite
summation, which we dubbed as wavelength modulation.

3.3 Band-wise Spectral Responsivity Modulation

‘While we have obtained the estimated radiance, as described in Section @ we still need to integrate
the radiance field through each band’s responsivity to produce the recovered sensor measurements.
Specifically, for each spectral band b, we parameterize its spectral responsivity function R} (\)
as a learnable MLP layer that maps wavelengths to responsivity values. Note that this learnable
responsivity function is shared across spatial coordinates and image contents, and the output of
this MLP will be applied to perform band-wise modulation for estimated radiance, such that there
are s MLP layers in total. To ensure physical validity, we enforce non-negativity and smoothness
constraints on the learned responsivity functions by adding a sigmoid activation function:

Ry (A, 00) = Sigmoid(6,(I1(;))), ©)
where 6, is learnable and parameterized by a MLP, \; € {\; };. In summary, the learnable R; (\;, 6;)
lies within the range of [0, 1] and could be regarded as a relative responsivity function [39].

Finally, we could predict the signal intensity and the pansharpened pixel value at the corresponding
spatial coordinate and band:

ji,b(xay) = ZLl($>y7 )‘j)ng()‘ja 91,),
J (10)

Piy(z,y) = Lip(z,y) + P (z,y)
where P% 9(z,y) is the pixel value from the upsampled MS image at the corresponding spatial

coordinates and band. The residual value could help the neural network to align the scale, as the
physical dimension is not specified in the implicit neural representations.



3.4 Optimization Strategies and Objectives

Since learning implicit representations relies on sampling spatial coordinates, direct optimization
can lead to the degradation or loss of spatial and semantic information from the input MS and PAN
images. To mitigate this issue and build a robust foundation for spatial-spectral feature extraction,
we adopt a two-stage training strategy. In the first stage, the encoder is trained independently using
reconstruction losses, specifically L1 and SSIM, defined as:

L:sl = »Cl + asl£ssim7 (11)

where oy is a trade-off hyperparameter that balances two loss terms, L; measures the mean of
absolute error, Lg;,, measures structural similarity.

Then the encoder is fine-tuned in conjunction with PINO, which learns the continuous radiance field
and spectral responsivity. Since the second-stage training involves uniform pixel sampling, local
structural consistency is disrupted during the process. To address this, we incorporate the histogram
loss Lp;st [42]] to align the statistical distributions of the predicted and reference pixel samples. Given
the sampled HRMS pixels Uy and corresponding reference pixels ¥, the loss for the second stage

is defined as follows:
Loo = L1 + os2Lpist,

(12)

s—1
1S : ;
Lissi = -+ 3 [Dh,, ~ Dy,
b=0
where o, is introduced to balances the loss terms, DY, and Di\I,G are the estimated 1D cumulative
histogram vectors of the sampled pixels from the i-th fused spectral band and its corresponding
reference sampled pixels, respectively.

4 Experiments

Datasets, Metrics and Implementaion Details. We assess the effectiveness of our method using data
collected from the WorldView-3 (WV3), GaoFen-2 (GF2), and WorldView-2 (WV2) satellites, which
are publicly available through the PanCollection dataset [10]. Owing to the absence of ground-truth
references, the training datasets are simulated using observations from the original satellite imagery
in accordance with Wald’s protocol. In particular, WV?2 samples are used for cross-sensor evaluation
to further validate the model’s generalizability and transferability. Reduced resolution evaluation
is conducted using five established metrics: PSNR, SAM [80], ERGAS [68]], Q2n and SCC [81]].
Full resolution performance is assessed through three no-reference indicators: D), and Dy, and
HQNR [2]. All experiments are conducted on an NVIDIA GeForce GTX 4090 GPU, using the
PyTorch framework. More implementation and training details can be found in Appendix

Baselines. We compare our model against several state-of-the-art DL-based methods to validate
its superiority, including FusionNet [9)], GPPNN [75]], Fourmer [83], HFIN [62], and HOIF [85]],
PanMamba [21]], LFormer [23]], ADWM [28]]. For a comprehensive evaluation, we also include three
classical algorithms: BT-H [44], BDSD-PC [65]], LRTCFPan [74].

4.1 Comparison With SOTA Methods

Evaluation on Reduced Resolution Scene. We first quantitatively assess the similarity between the
fused images and the ground truth in reduced resolution scenarios. As shown in Table|l} our model
surpasses state-of-the-art pan-sharpening methods across all evaluation metrics for both the WV3
and GF2 datasets. Figure |3|displays the RGB visualizations alongside their corresponding Mean
Absolute Error (MAE) residues against the ground truth for both benchmarks. Our model’s outputs
exhibit minimal aberrations, as evidenced by its sparse MAE residue maps. These quantitative and
qualitative findings together corroborate the superior fusion capability of our method.

Evaluation on Full Resolution Scene. We then evaluate our model on full resolution data to assess
real-world applicability. As summarized in Table|l} it achieves the optimal outcomes on the majority
of metrics for both the WV3 and GF2 datasets, mirroring the positive trends seen at reduced resolution.
In particular, it delivers the highest HQNR values, surpassing both traditional and deep-learning
baselines, which reflects superior spectral fidelity and spatial detail. These full resolution results
confirm our method’s robust generalization in practical settings.



Table 1: Quantitative results for reduced and full resolution WV3 and GF2 samples, comparing
several representative state-of-the-art methods. Bold: Best; Underline: Second best.

Reduced Resolution Full Resolution

Method
‘ etho ‘ PSNR(+ std) SAM(= std) ERGAS(+ std) Q2"(fstd) SCC(£std) | Dx(+ std) Dy(£std) HQNR(+ std)

BDSD-PC [65] |32.969+2.784 5.4294+1.823 4.698+1.617 0.82940.097 0.908+0.041| 0.0634+0.024 0.07340.036 0.870+0.053
BT-H [44] 33.080+2.880 4.92041.425 4.579£1.496 0.83240.094 0.925+0.024| 0.05740.023 0.08140.037 0.867+0.054
LRTCFPan [74] | 33.6134+2.839 4.737+1.412 4.315£1.442 0.846+0.091 0.927+0.023| 0.01840.007 0.05340.026 0.93140.031
FusionNet [9] |38.042+2.592 3.32540.698 2.467£0.645 0.904+0.090 0.981£0.007 | 0.0244-0.009 0.03630.014 0.941+0.020

g GPPNN [75] |38.571£2.776 3.0554+0.610 2.30640.587 0.914+0.087 0.98440.006 | 0.028+0.010 0.038+0.016 0.935+0.022
= Fourmer [83] |38.268+2.727 3.236+0.681 2.41940.665 0.911£0.090 0.98440.005 | 0.022+0.010 0.035£0.004 0.944+0.013
a HFIN [62] |38.534+2.786 3.088+0.635 2.306+0.557 0.9124+0.089 0.98440.006 | 0.025+0.008 0.043+0.017 0.934+0.024
; HOIF [85] |38.352+2.855 3.186+0.643 2.385+0.668 0.91310.086 0.982+0.007 | 0.03940.021 0.03940.010 0.924+0.026
PanMamba [21] [ 39.0124+2.818 2.914+0.592 2.18440.521 0.920£0.085 0.9864-0.005 | 0.018+0.007 0.031+0.011 0.952+0.015
LFormer [23] |39.0754:2.844 2.899+£0.584 2.165+0.509 0.91940.086 0.986+0.005| 0.037£0.022 0.036+£0.012 0.92940.027
ADWM [28] |39.1704+2.878 2.914+0.589 2.145£0.531 0.919+0.086 0.986+0.005| 0.02440.010 0.029+0.015 0.948+0.021
PINO (ours) |39.383+2.897 2.845+0.586 2.087+0.496 0.922+0.085 0.988+0.004 | 0.014+0.005 0.03240.003 0.954+0.006
BDSD-PC [65] |35.180+2.317 1.6814+0.360 1.667+£0.445 0.89240.035 0.952+0.016| 0.07640.030 0.1554-0.028 0.781:£0.041
BT-H [44] 36.054+2.236 1.64940.360 1.528+0.409 0.918+0.025 0.957+0.015| 0.06040.025 0.13140.019 0.817£0.031
LRTCFPan [74] | 37.5994+2.331 1.298+0.312 1.272+0.343 0.935+0.030 0.964+0.012| 0.03340.027 0.0904+0.014 0.88140.023
FusionNet [9] |39.639+£2.270 0.97440.212 0.988+0.222 0.964+0.009 0.981£0.005|0.0400£0.013 0.10140.013 0.863+0.018

B GPPNN [75] |42.446£1.800 0.79740.161 0.711£0.130 0.979+£0.008 0.99040.002 | 0.023£0.012 0.067+0.009 0.912+0.014
£ Fourmer [83] [40.670£1.903 0.976+0.209 0.88540.185 0.970£0.011 0.98740.003 | 0.047£0.039 0.038+0.010 0.917+0.035
g HFIN [62] |42.189+1.752 0.843+0.148 0.735+0.126 0.97740.011 0.99040.002 | 0.027+0.020 0.062+0.009 0.912+0.018
(["5 HOIF [85] |40.982+1.802 0.943+0.205 0.841+0.162 0.97440.009 0.988+0.002| 0.029+£0.015 0.051£0.011 0.92240.018
PanMamba [21] [42.907£1.811 0.743+0.156 0.68440.129 0.982+0.008 0.99140.002 | 0.023£0.011 0.057£0.012 0.921+0.015
LFormer [23] |44.1964-1.800 0.648+0.130 0.578+0.112 0.98540.007 0.993£0.002| 0.021£0.010 0.050£0.008 0.93040.013
ADWM [28] |43.884£1.714 0.67240.130 0.597+0.107 0.985+0.006 0.99340.001 | 0.022+0.012 0.052+0.011 0.928+0.014
PINO (ours) |44.705£1.819 0.615+0.129 0.544+0.107 0.987+0.006 0.9944-0.001 | 0.016+0.009 0.018+0.008 0.967+0.009

| Ideal value | oo 0 0 1 1 0 0 1

WV3 Dataset

GF2 Dataset

v

Fusu)nNLl GPPNN Fourmer HFIN HOIF PanMamba LFormer ADWM PINO

Figure 3: The visual results (top) and mean absolute error maps (bottom) of all compared DL-based
methods on a reduced-resolution sample from WV3 and GF2 sensors, respectively.

Generalizing to New Satellite Data. We further evaluate adaptability by deploying the WV3-trained
model on unseen WV2 samples without any fine-tuning. As reported in Table 2] our method
outperforms all deep-learning baselines across all reduced and full resolution metrics, demonstrating
its robust cross-satellite generalization and adaptability.

Evaluation on Hyperspectral Datasets. We further demonstrate our model’s versatility by applying
it to multispectral and hyperspectral image fusion (MHIF) task, which shares degradation principles
with multispectral pansharpening. We benchmark against leading MHIF methods over the widely
used CAVE dataset. As shown in Table 3] our approach outperforms all baselines across all metrics.

4.2 Ablation Studies

We first investigate the contribution of different core ingredients by performing ablation studies on
the WV3 dataset with reduced resolution setting. To demonstrate the adaptability of our proposed



Table 2: Quantitative results for reduced and full resolution WV2 samples, comparing several
state-of-the-art deep learning methods. Bold: Best; Underline: Second best.

Reduced Resolution Full Resolution
PSNR(+ std) SAM(+ std) ERGAS(+ std) Q2"(fstd) SCC(£std) | Dy(£std)  Dg(£std) HQNR(= std)

FusionNet [9] |28.73442.460 6.426+0.860 5.136+0.515 0.796+0.074 0.875+0.013 | 0.052+0.029 0.056+0.015 0.894+0.019
GPPNN [75] |28.384+1.876 6.823+0.882 5.208+0.473 0.791£0.095 0.91140.011|0.11940.064 0.055+0.012 0.832+0.063
Fourmer [83] |28.9244+2.418 6.2244+0.459 4.9154+0.348 0.821+0.078 0.898+0.017 | 0.038+0.027 0.085+0.017 0.879+0.017
HFIN [62] |30.093£2.208 5.467+0.681 4.411+0.447 0.83540.083 0.918+0.008|0.05940.045 0.039+0.013 0.905+0.054
HOIF [85] |29.917£2.242 5.490+£0.655 4.517+0.457 0.83440.085 0.908+0.010|0.068+0.046 0.043+£0.058 0.894+0.088
PanMamba [21] | 29.3724+2.654 6.471£0.943 4.790+0.399 0.817£0.076 0.898+0.018 | 0.056+0.027 0.040+0.011 0.907+0.033
LFormer [23] |30.0774+2.338 5.613+£0.594 4.411+0.399 0.838£0.081 0.91630.010|0.056+0.038 0.0384+0.010 0.908+0.040
ADWM [28] |30.27042.257 5.4834+0.668 4.343+0.460 0.841+0.083 0.921+0.010|0.192+0.310 0.073+0.076 0.77140.309
PINO (ours) |31.509+2.323 4.892+0.545 3.750+0.359 0.871+0.085 0.9410.007 | 0.025:£0.014 0.034+0.012 0.94240.018

Ideal value | oo 0 0 1 1| o 0 1

Method

Table 3: The average and standard deviation calculated for all the compared approaches on 11 CAVE
examples simulating a scaling factor of 4 and 8. Bold: Best; Underline: Second best.

CAVE x4 CAVE x8

Meth.
ethod PSNR(% std) SAM( std) ERGAS(: std) SSIM( std) | PSNR(% std)  SAM( std) ERGAS(& std)  SSIM( std)

Bicubic 34.326+3.882 4.451+1.618  7.205+£4.902  0.94410.029 | 29.963+3.544 589042322  5.563+3.081  0.887+0.066
CSTF-FUS [37] | 34.463+4.281 14.368+5.302 7.684+4.562 0.86610.073 | 38.443+4.052 7.010+2.660  2.083+£1.087  0.960+0.027
LTTR [13 35.8514+3.488 6.990+2.554  5.822+£2.799  0.954+0.028 | 37.9224+3.594 5.373 £1.960 2.441 £1.050 0.972+0.018
LTMR [14] 36.543+3.300 6.71142.193  5.2414£2.419  0.96240.020 | 38.413+£3.572 5.041+1.704  2.244 0973  0.974+0.017
IR-TenSR [76] | 35.608+3.446 12.2954+4.683 5.715+2.899  0.944+0.026 | 36.787+3.638 12.865+4.979 2.667+1.399  0.943+0.030

Fusformer [26] | 49.983+£8.097 2.2034+0.851  2.50445.206 0.99440.011 | 48.363£5.108 2.6654+0.768  0.865+0.844  0.99440.004
DHIF [29 51.072+4.165 2.008+0.630  1.22240.967  0.997+0.002 | 48.461+4.893  2.505+0.787  0.836+0.672  0.995+0.003
PSRT [11 50.467£6.187  2.193+0.640  2.0574+3.713  0.996+0.003 | 47.857+£7.532 2.7314+0.804  1.521£3.023  0.994+0.005

3DT-Net [47] | 51.376+4.179 2.161+0.695  1.137£0.996  0.99610.003 | 48.985+£7.015 2.299+0.653  1.185+2.227  0.996+0.003
DSPNet [61] | 51.182£3.924  2.148+0.642  1.133+0.820  0.997+0.001 | 48.503+4.733  2.722+0.787  0.8114+0.642  0.995+0.003
QIS [86! 52.218+4.213 1.977+0.599  1.023+0.806  0.997+0.001 | 49.441+4.988 2.545+0.772  0.7334+0.625  0.996+0.003
DCT [48] 49.975£3.584 2.511+0.802  1.25040.884  0.996+0.002 | 46.14243.958 3.460+£0.988  0.967+0.656  0.993+0.004

MIMO [I7] | 50.855+3.454 228540712  1.184+0.717 0.996+0.001 | 47.976:+4.305 2.925+0.854  0.864+0.614 0.994+0.003
PINO (ours) | 523623432 1.857+0.556  0.946:0.603 0.998:0.001 | 50.221+4.374 2302:£0.686  0.631:£0.478  0.996::0.002
Ideal value | oo 0 0 1 1 0 0 1

PINO, we further apply it to different encoders and compare the performance gain. Moreover, we
also reveal the importance of different optimization strategies and objectives. We also refer readers to
Appendix for qualitative visualizations of the learned radiance maps and sensor responsivity, and
to Appendix [A.2)for theoretical analysis and physical-consistency details.

Ablation Study of Core Design. We investigate the integration of neural operators and ra-
diance field estimation in the context of pan-sharpening. The radiance field plays a critical
role in accurately representing the spectral information within produced MS images. To as-
sess its contribution, we conduct ablation studies that explore different design configurations.
Specifically, we consider the inclusion or exclusion of
the neural operator as well as the impact of incorporat-
ing or omitting the radiance field estimation process. We
also examine the role of spectral responsivity modula-
tion, which refines the output to align with sensor-specific
characteristics. Let "w/o no", "w/o sr" and "w/o wm"
represent the results: "without neural operator”, "without
spectral responsivity" and "without wavelength modula-
tion", respectively. As shown in Figure[d we report three
representative metrics "PNSR", "SAM" and "ERGAS"
on the reduced resolution WV3 examples. We can find
that the wavelength modulation is critical for the accurate
radiance field estimation, without it, the pansharpening
performance of PINO degrade largely. The neural operator
and spectral responsivity are also essential for improving
the performance. Overall, the results demonstrate that
integrating these components improves fusion accuracy, Figure 4: Ablation study of core design.
resulting in better spectral integrity and spatial detail.
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Figure 5: Ablation results for optimization strategies and objectives. "one stage", "w/o ssim" and

"w/o hist" represent the results of "only training encoder with PINO in one stage", "without ssim
loss" and "without histogram loss", respectively.

Optimization Strategies and Objectives. We investigate different optimization strategies, com-
paring single-stage versus two-stage training processes. In the single-stage training, the model is
optimized as a whole, while in the two-stage approach, the encoder is first pretrained independently
to extract spatial-spectral features. Then the encoder is fine-tuned in conjunction with PINO, which
learns the continuous radiance field. We also explore the use of different loss functions, including
SSIM loss and histogram loss, to ensure that both spatial and spectral integrity are preserved during
the fusion process. Figure[5|compares the impact of different optimization strategies on fusion quality,
where our method yields the optimal results, highlighting the efficacy of the selected techniques.
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Figure 6: Ablation results for different encoder architectures with and without PINO. X means
original encoder architecture while X+ denotes corresponding encoder with PINO.

Encoder Architecture. We explore the influence of different encoder architectures on the per-
formance of PINO. The encoder is responsible for aggregating multi-granularity features from the
input high-resolution PAN and LRMS images. We conduct a comparative analysis of various en-
coder architectures, such as SSMNet, LFormer and BDT, focusing on evaluating the performance
improvement when the encoder is combined with PINO compared to the encoder alone. The results
in Figure [6] highlight the advantages of PINO-enhanced encoder architectures, which offer improved
feature fusion and support more accurate pansharpening.

5 Limitations and Conclusion

Unlike conventional INRs developed for super-resolution tasks, in this paper, we mainly focus on the
spectral imaging process and incorporate its physical sensor characteristics. We do not explore the
use of arbitrary resolution settings for training and inference, which remains uncommon in current
practices of the pansharpening community. Nevertheless, investigating this capability could greatly
reduce the computation and parameters by unifying the redundant models and training for each
targeted resolution. Moreover, cross-sensor or cross-dataset training is not explicitly addressed in
our current design. The computational complexity and model size of our framework could also



be further optimized to enhance efficiency and scalability. In the wavelength modulation, we use
uniform spectral sampling, which is simple and empirically effective but potentially suboptimal under
strong wavelength variability; sensor-aware/adaptive schemes (e.g., denser samples where spectral
responsivity or radiance changes rapidly) could better capture fine spectral detail.

We present a physically-grounded pansharpening framework that establishes a new paradigm bridging
neural representations with physical sensor models, providing a principled solution applicable to
multispectral and hyperspectral fusion tasks. At its core, our method first learns a continuous
radiance field L;(x, y, ) over spatial coordinates and wavelength using multi-granularity spatial-
spectral features, effectively emulating band-wise spectral integration. By modulating this radiance
field with the sensor’s spectral responsivity R,(\), it can generate high-fidelity fusion outputs.
Extensive experiments on multiple benchmark datasets demonstrate that our approach outperforms
state-of-the-art fusion algorithms in both quantitative metrics and qualitative comparisons.
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A Appendix / Supplementary Material

This supplementary material provides additional insights into the background, methodologies, and
experimental details outlined in our paper. It includes details about theoretical analysis and physical
consistency of proposed physical modeling, datasets, metrics, the employed bidirectional transformer
encoder, implementation and training. Furthermore, extensive qualitative visualizations are presented
across standard pansharpening benchmarks and multispectral and hyperspectral image fusion, along
with analyses of the learned radiance field and spectral responsivity, to substantiate the interpretability
and physical grounding of our model. The provided information aims to enhance the reader’s
understanding of the intricacies involved in our research and its practical applications.

A.1 Theoretical Analysis of Physical Modeling

We begin by revisiting and summarizing the electro—optical image formation model used throughout
the paper and detailing how each component is instantiated within PINO, providing the context for
the subsequent discussion on boundary behavior and physical consistency.

1) Sensor physics modeling. (i) Irradiance formation follows the camera equation (Eq. (1) in the

main paper),

Litey N = T pe 13
z(xvyv )* AN?2 i(xvyv ), ( )

which is realized within our spatial-spectral encoder. (ii) Band-wise spectral integration (Eq. (2) in

the main paper) is

amm:ALm@mmWM, (14)

and in our PINO this integral is approximated via an iterative kernel integral operator (Eq. (8) in
the main paper), while Ry () is a learnable, modulated function (Eq. (9) in the main paper). (iii)
Discretization (Eq. (3) in the main paper) reflects sensor quantization:

Lip(x,y) = Y Li(z,y. ) Bo(Aj) AN; = > Li(w,y,A;) Ry(A;)- (15)
J J

The above formulas explicitly encodes key electro-optical process, and the proposed learning frame-
work is built on this theoretical base.

2) Neural operator as physics-informed solver. The iterative Galerkin-style kernel integral operator
acts as a functional approximator for the spectral integral in Eq. (2):

(g = T u,v)) h"(u,v)dudv -
h (%M(&Aﬁﬂwmdﬂ(7md o), (16)

where K captures spatial-radiance coupling and IT(\) provides implicit spectral basis functions (e.g.,
Fourier encoding); the wavelength discretization above mirrors sensor quantization. This iterative
operator lets the model learn a continuous radiance field aligned with radiative-imaging physics.

3) Spectral responsivity as differentiable physics. Parameterizing each band’s responsivity as:
Ry(Aj; 0b) = o(65(TI(N;))),  Ry(Aj: 0y) € [0,1], (17)

which guarantees the non-negativity that aligns with the bounded nature of real sensor spectral
responses; the differentiable sigmoid (with gradient o’ (x) = o(x)(1 — o(z))) avoids non-physical
discontinuities, IT()\) is a spectral encoding (e.g., Fourier features), and the learnable mapping 6, (-)
(e.g., MLP) adapts to sensor-specific bands.

A.2 Boundary Conditions of the Radiance Field and Physical Consistency

Building on the above modeling, we next state the boundary assumptions for the continuous radiance
field and clarify how physical consistency is enforced in the learned sensor model.

We assume homogeneous Neumann boundary conditions for the radiance field in Eq. (1) of the main
paper, i.e.,
oL A
3 (x? y? ) — 0, (1 8)
On 20
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which reflects the smooth transition commonly observed at image boundaries in natural and remote-
sensing scenes. Such boundary smoothness is a standard modeling choice in image processing and
remote sensing [8} 34} [72].

Although we do not explicitly encode boundary conditions into the network or loss, they can be
implicitly learned from data due to the inductive bias of convolutional operations and padding. Prior
work reports that networks trained for restoration or remote-sensing tasks learn smooth boundary
transitions even without explicit constraints [87,140]. Visualizations in Appendix further show
that our learned radiance fields exhibit boundary smoothness closely matching the ground truth.

While the boundary behavior of L7 is handled implicitly, we place an explicit physics prior on
the sensor’s spectral responsivity to ensure global physical consistency. Because responsivity is
sensor-specific and independent of scene content, we enforce non-negativity and smoothness by
parameterizing each band with a sigmoid activation. This guarantees learned spectral responses are
bounded, smooth, and sensor-consistent, leading to radiance maps that preserve fine spatial structures
and realistic wavelength-dependent variations; see Appendix Together with wavelength modu-
lation and the neural operator, this yields a PINO that is both physically consistent and spectrally
faithful.

A.3 Datasets, Metrics and Implementation Details
A.3.1 Datasets

We evaluate the pan-sharpening performance of our framework over several public benchmark
datasets, including WorldView-3 (WV3), GaoFen-2 (GF2) and WorldView-2 (WV2). MS im-
ages within the WV3 and WV2 datasets contain eight spectral bands: coastal 397-454/400—450
nm, blue 445-517/450-510 nm, green 507-586/510-580 nm, yellow 580-629/585—-625 nm, red
626-696/630-690 nm, red-edge 698—749/705-745 nm, near-IR1 765-899/770-895 nm, and near-IR2
857-1039/860-1040 nm. The corresponding PAN images observed from the same scene are single-
channel images. The GF2 dataset pairs a single-band PAN image with four MS channels covering
blue 450-520 nm, green 520-590 nm, red 620-690 nm and NIR 770-890 nm. Notably, due to the
absence of ground-truth (GT) images, we generate reduced-resolution MS—PAN training and testing
pairs following Wald’s protocol [69].

To evaluate the versatility of our model, we further conducted experiments on the multispectral and
hyperspectral image fusion (MHIF) task by using the CAVE dataset. The CAVE dataset comprises
32 Hyperspectral Images (HSIs) with 31 spectral bands spanning from 400 nm to 700 nm at 10 nm
intervals. We randomly selected 20 images for training and used the remaining 11 for testing (same
as [39,[13]]). The RGB visualization of the test set is shown in Figure

In our experiments, we uniformly sample and normalize the wavelength with min-max scaling
according to the specific spectral range of each band:

3 )\ - )\min
A=2— — 1 19
)\max - )\min ’ ( )
where A, and A\, represent the minimum and maximum value of spectral wavelength for the
corresponding band. For example, A\pyin = 397, Aoz = 454, A ~ U(Amin, Amaz) for the WV3

coastal band spans 397-454 nm, and the sampled wavelength X is normalized to [-1,1].

A.3.2 Metrics

Following standard evaluation protocols in the pansharpening community, we assess the quality of
fused images using both reference-based and no-reference metrics. For reduced-resolution qual-
ity assessment, we adopt the Peak Signal-to-Noise Ratio (PSNR) [22], Spectral Angle Mapper
(SAM) [80], Relative Dimensionless Global Error in Synthesis (ERGAS) [68]], Spatial Correlation
Coefficient (SCC) [81]], Structural Similarity (SSIM) [[70] and the generalized Q2" index [18]], where
n corresponds to the number of spectral bands (e.g., Q8 for 8-band data and Q4 for 4-band data).
For full-resolution no-reference evaluation, we utilize three widely accepted indicators: the Hybrid
Quality with No Reference (HQNR) [[1]], Spectral Distortion Index (D), and Spatial Distortion Index
(Dy) [66]. The formal definitions of these metrics are outlined below.
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Figure 7: The RGB visualization of CAVE testing samples.

(1) Peak Signal-to-Noise Ratio (PSNR): PSNR evaluates the pixel-wise fidelity of each reconstructed
band by comparing it to the ground truth. We compute the average PSNR over all B bands as

B
1 .

PSNR = — PSNR(1;, 20

B ; (2o, 1), (20)

where [, I » € REXW are the b-th bands of the reference and fused images, and

max (1) ) 21

PSNR (1, ) = 201og;, ( T
by Lb

where MSE represents Mean Square Error, and max represents the maximum value.

(2) Spectral Angle Mapper (SAM): SAM evaluates the angular difference between spectral vectors of
the fused image and ground truth (GT), with an ideal value of 0. It is defined as:

SAM = — Zarccos< AR > (22)

|rol2 - [Ep]2
where B is the number of spectral bands, r; and 1, denote the b-th spectral vector from the GT and
fused image, respectively.

(3) Relative Dimensionless Global Error in Synthesis (ERGAS): ERGAS measures the global
radiometric distortion, ideally approaching zero. It is computed as:

ERGAS =100 s -

B
RMSE(
Z (rp, 1) : (23)

b:

where s is the spatial resolution ratio between PAN and MS images, ;, is the mean of the b-th GT
band, and RMSE denotes the root mean square error.

(4) Spatial Correlation Coefficient (SCC): SCC quantifies the similarity of spatial details between the
fused image and GT using a high-pass filter and correlation coefficient (CC). The specific calculation
of SCC includes two steps: 1) Using a high-pass filter to extract the high frequencies of images. 2)
Calculating the CC between the high frequencies to obtain the SCC. The commonly used Laplacian
filter has the following form:

L=

R (24)
The CC is another widely used spectral indicator which is defined as follows:

Zz 1 Z] 1(72] )(T’ZJ F)
\/zizl Zj:l(rij’ —7)2(Fi — 7‘:)2

where r;; and 7;; are pixel values from GT and fused images, 7 and 7 are their respective means, w
and h are the width and height of the image.

CC = , (25)
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(5) Quality Index (Q2"): Q2" extends the universal image quality index (UIQI) metric to multi-
spectral or hyper-spectral images and is computed as:

[Cov(r,£)| 20w-0¢ 27| [F]

Q2"

5 = (26)
or 0  0F+o0f |p]2- |82
where r and r are multiband pixel vectors from the GT and fused image, respectively. Cov(-,-), o,
and * denotes covariance, standard deviation and mean, respectively.

(6) Spectral Distortion Index (D) ): This metric assesses spectral consistency among bands in the
fused image compared to the low-resolution input by using inter-band Q values. Mathematically, it
can be expressed as:

1 B B q
Dy=\sE-1 s ) = Qi yi)l? | 27
A 3(3—1)23__%#1_)@(7" 75) = Qyir y))] 27)

where Q(-, -) is the Quality Index between bands, 7; and y; denote the i-th band of the fused and
low-resolution MS images, respectively. ¢ is typically set to 1.

(7) Spatial Distortion Index (Dg): Dy measures spatial fidelity relative to the PAN image, which is
complementary to D). It is defined as follows:
1
q) ; (28)

where p is the original PAN image, p represents its downsampled version, Q(-, -) denotes the Quality
Index and q is typically set to 1.

(8) Hybrid Quality with No Reference (HQNR): HQNR provides an global no-reference quality
estimate by combining spectral and spatial distortions (D and D). Specifically, it is defined as:

HQNR = (1 - D)™ - (1 - Dy)", (29)

| B
Dy = (B Z |Q(7s,p) — Q(ys, D)

where K, a, and (3 are hyperparameters (typically, « = 8 = 1).

(9) Structural Similarity (SSIM): SSIM captures structural similarity by combining luminance and
structural contrast functions:

1 (2uif1i + C1)(20;; + Ca)
SSIM = > ( (30)

B
S (7 + iF + C)(0f + 67 + o)’

1

where p;, fi; are the mean intensities of I; and I;, 01-2, &f are their variances, o; is their covariance,
(1 and (' are fixed constants.

A.3.3 Encoder Details: Bidirectional Transformer

The encoder is designed to jointly capture the spatial detail of the high-resolution PAN input and the
spectral content of the coarser MS input. To this end, we adopt a bidirectional dilation transformer
architecture with parallel spatial and spectral branches [[12]. In the spatial branch, the PAN image is
concatenated with the MS image after upsampling (bicubic interpolation to PAN resolution), then
passed through an initial convolutional block that increases the channel dimensionality. This is
followed by a cascade of Dilated Spatial Self-Attention (D-Spa) modules. Analogously, the spectral
branch processes the original low-resolution MS image with its own convolutional block, followed by
Grouped Spectral Self-Attention (G-Spe) modules. Each branch thus produces a hierarchy of feature
maps at progressively deeper levels. By operating in a bidirectional, multi-scale fashion, these two
branches extract complementary representations of the two inputs that can later be fused.

Specifically, we implement a dual-branch design: (i) a spatial branch applies 3 D-Spa layers with
dilation rate 2 and 8 attention heads, and (ii) a spectral branch uses same 3 G-Spe layers and 8
attention heads with 8 x8 non-overlapping spatial groups (i.e. window size is 8 x8). Two branches
operate in parallel and are fused to generate a unified latent representation for the following radiance
estimation. Each D-Spa module implements spatial attention over a dilated neighborhood. Concretely,
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the input feature map is linearly projected (via 1x1 convolutions or fully-connected layers) into
query, key, and value tensors for each attention head. Instead of attending to a contiguous local
window, D-Spa applies a fixed “hollow” window defined by a dilation rate. This dilation enlarges
each token’s receptive field without introducing additional parameters or sliding computations. In the
spectral branch, each G-Spe module performs channel self-attention in a grouped manner over the
spatial domain. The input feature map is first partitioned into a fixed number of spatial groups (i.e.
non-overlapping patches). After processing all groups independently, their outputs are concatenated
to reform the full feature map. This grouped design retains the dense channel connectivity and
content-aware nature of spectral attention while focusing each operation on a local region, enabling
the model to learn fine-grained spectral correlations within every area of the image.

Opverall, the multi-level outputs from the D-Spa and G-Spe branches form a hierarchical representation,
which is fused through feature integration and progressive upsampling to produce a unified high-
resolution spectral-spatial representation. The enriched spectral-spatial feature map is then fed to
inform the radiance estimation.

A.3.4 Implementation and Training Details

The implementation of our proposed PINO uses PyTorch 2.1.0 and Python 3.10 on an Ubuntu 20.04.6
OS, with training conducted on an NVIDIA RTX 4090 GPU. A two-stage training strategy is adopted,
with optimization performed using the Adam algorithm (with parameters 3; = 0.9 and 33 = 0.999)
[31]. In the first stage, the encoder is trained independently using a learning rate of 0.0002 to
minimize a composite loss function consisting of the MAE loss and the structural similarity index
loss (L1 + as1 Lssim, Wwhere ag; = 0.1). The encoder is trained for 100, 600, and 2000 epochs on the
WV3, GF2, and CAVE datasets, respectively. In the second stage, the entire framework is tuned with
a learning rate halved from the first stage, optimizing a loss composed of MAE and histogram loss
(L1 + asoLpist, where ago = 0.01). This stage is conducted over 200 epochs for WV3 and GF2,
and 2000 epochs for CAVE.

WV3 Dataset GF2 Dataset

WV2 Dataset

’:' m z":' ‘

“FusionNet  GPP Fourmer ~ HFIN  HOIF  PanMamba

Figure 8: The visual results (odd rows) and the corresponding mean absolute error (MAE) maps
(even rows) of all compared DL-based methods on reduced-resolution samples from the GF2, WV3
and WV2 sensors, respectively.
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Figure 9: The visual results (odd rows) and the corresponding HQNR maps (even rows) of all
compared DL-based methods on full-resolution samples from the GF2, WV3 and WV2 sensors,

respectively.

Fusformer DHIF PSRT 3DT-Net DSPNet QIS DCT MIMO PINO

Figure 10: The visual results (odd rows) and the corresponding mean absolute error (MAE) maps
(even rows) of all compared DL-based methods on two CAVE x4 testing samples.
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A.4 More Visualization Results on Pansharpening Benchmarks

To further illustrate the visual effectiveness of our proposed PINO framework, we provide additional
pansharpening examples on reduced- and full-resolution samples from the WV3, GF2 and WV2
datasets. As shown in Figure[8]and[9] we compare PINO with all DL-based methods presented in the
main paper using RGB visualization and corresponding error maps.

On reduced-resolution samples (Figure 8], our method exhibits clearer spatial textures and more
faithful spectral appearance, especially in vegetation and urban structures. More importantly, the
associated MAE maps reveal lower error distributions across most spatial regions, suggesting superior
spectral-spatial consistency. On full-resolution benchmarks (Figure[9), PINO produces significantly
sharper images with better preservation of high-frequency details, while achieving lower distortion in
HQNR maps compared to competing baselines. These results confirm the robust performance of our
method not only under supervised conditions but also in realistic, label-free scenarios.

A.5 Visualization Results on Cave Dataset

We further evaluate the proposed framework on the CAVE hyperspectral dataset to verify its perfor-
mance on multispectral-hyperspectral image fusion task. As shown in Figure[I0] we visualize the
fused results and corresponding error maps for two representative CAVE x4 testing samples.

Figure 11: The visualized high-resolution PAN images (odd rows) and estimated radiance field
(even rows) on 5 reduced-resolution samples and 5 full-resolution samples from the WV3 sensor,
respectively. Please zoom in for more details.

Our method demonstrates high fidelity in reconstructing both spatial structures and spectral pro-
files, with MAE maps revealing minimal residuals across regions of varying complexity. Unlike
competing methods, PINO effectively retains subtle spectral variations while preserving spatial
continuity, particularly in edge-rich and texture-sensitive areas such as printed text, fabrics, and
natural surfaces. These observations validate the versatility of our physics-informed design when
extended to multispectral-hyperspectral image fusion task.

A.6 Visualization of Learned Radiance Field and Spectral Responsivity

To qualitatively assess the spectral fidelity and physical interpretability of the proposed PINO
framework, we visualize both the learned radiance field and the corresponding spectral responsivity
functions. These visualizations aim to demonstrate how effectively the model captures the intrinsic
characteristics of the spectral imaging process.
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Figure 12: The visualized high-resolution PAN images (odd rows) and estimated radiance field
(even rows) on 5 reduced-resolution samples and 5 full-resolution samples from the GF2 sensor,
respectively. Please zoom in for more details.

Figure 13: The visualized high-resolution PAN images (odd rows) and estimated radiance field
(even rows) on 5 reduced-resolution samples and 5 full-resolution samples from the WV2 sensor,
respectively. Please zoom in for more details.
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Figure 14: The visualized high-resolution RGB images (first row) and estimated radiance field
(second row) on 5 test samples from the CAVE dataset, respectively. Please zoom in for more details.
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Figure 15: The learned spectral responsivity curves across various spectral bands and different
datasets. Left: five bands from the WV3 dataset; Right: four bands from the GF2 dataset.

Figures [} [T2] [T3] and[14] present visualizations of the learned radiance field on both reduced- and
full-resolution test samples from the WV3, GF2, WV2 datasets, and test samples from CAVE x4
dataset. The radiance field is rendered based on the indexed spatial coordinates and wavelengths
(randomly sampled). Compared to the input PAN image, the learned radiance map preserves fine
spatial details while modulating them with wavelength-dependent structures. This highlights the
capacity of PINO to simultaneously resolve high-frequency textures and continuous spectral variation.

Complementing this, Figure [T5]illustrates the learned spectral responsivity curves on the WV3 and
GF2 datasets (for better visualization, we select five bands for WV3). Each curve represents the
model’s learned responsivity over the wavelength domain for a specific sensor band. Notably, the
curves exhibit band-specific shapes similar to real sensor characteristics. This indicates that the
model successfully internalizes the spectral selectivity imposed by sensor filters, despite learning
these responsivity functions purely from data, without explicit supervision.

Together, these results validate the model’s capacity to approximate the underlying physical formation
of sensor measurements through implicit neural modeling. The radiance field captures the latent
spectral-spatial structure of the scene, while the learned responsivity functions align closely with real-
world sensor profiles. Such physically grounded representations offer both enhanced interpretability
and robust generalization across varying sensor domains.

24



NeurlIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide clear claims in the abstract and introduction for our paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
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* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The detailed information is provided in the main paper and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We will open-source the related code after potential acceptance, and we include
detailed instructions in the supplemental material to reproduce the experimental results.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the split of dataset is followed the convention in Pansharpening community
and we add the necessary citation. The details of hyperparameters are discussed and provided
in the main paper and appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the results of commonly used metrics in the pansharpening
community.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of our implementation and employed computer resources
in the main paper and appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We will open-source our code after potential acceptance.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper aims to design better pansharpening algorithms on the public
datasets.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We added necessary citations when we use related public datasets or
codes/models for baselines.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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