
Published as a conference paper at ICLR 2023

WINERT: TOWARDS NEURAL RAY TRACING FOR
WIRELESS CHANNEL MODELLING AND DIFFEREN-
TIABLE SIMULATIONS

Tribhuvanesh Orekondy, Kumar Pratik, Shreya Kadambi, Hao Ye,
Joseph Soriaga, Arash Behboodi
Qualcomm AI Research∗

ABSTRACT

In this paper, we work towards a neural surrogate to model wireless electro-
magnetic propagation effects in indoor environments. Such neural surrogates pro-
vide a fast, differentiable, and continuous representation of the environment and
enables end-to-end optimization for downstream tasks (e.g., network planning).
Specifically, the goal of the paper is to render the wireless signal (e.g., time-
of-flights, power of each path) in an environment as a function of the sensor’s
spatial configuration (e.g., placement of transmit and receive antennas). NeRF-
based approaches have shown promising results in the visual setting (RGB image
signal, with a camera sensor), where the key idea is to algorithmically evaluate
the ‘global’ signal (e.g., using volumetric rendering) by breaking it down in a se-
quence of ‘local’ evaluations (e.g., using co-ordinate neural networks). In a similar
spirit, we model the time-angle channel impulse response (the global wireless sig-
nal) as a superposition of multiple paths. The wireless characteristics (e.g., power)
of each path is a result of multiple evaluations of a neural network that learns
implicit ray-surface interaction properties. We evaluate our approach in multi-
ple indoor scenarios and demonstrate that our model achieves strong performance
(e.g., <0.33ns error in time-of-flight predictions). Furthermore, we demonstrate
that our neural surrogate whitens the ‘black-box’ wireless simulators, and thus
enables inverse rendering applications (e.g., user localization).

1 INTRODUCTION

Realistic simulations of physical processes are vital to many scientific and engineering disciplines.
In this paper, we focus on simulation of wireless electromagnetic (EM) signals within a propagation
environment. The physics of such EM wave propagation between a transmit and receive point
are analytically given by Maxwell equations: the transmitted wave undergoes different interactions
with the environment (e.g., reflection), and the receiver gets the wave through multiple paths with
different time-of-flights and powers, and from different directions. However, solving the Maxwell
equations with boundary conditions requires in-depth knowledge of the propagation environment,
hence classically modelling EM propagation is intractable for most engineering applications.

Existing techniques make such simulations tractable by trading-off accuracy for speed. At one
end of the spectrum, such simulations are represented in a statistical sense where a probabilistic
model roughly captures the marginalized distribution over time-of-flights, gains and direction of
transmit-receive paths. However, this level of accuracy is insufficient for designing systems that
efficiently operate in high frequency bands. This motivates solutions at the other end of the spectrum:
wireless ray tracing simulators. Given a detailed CAD representation of the environment along with
the material properties, and numerous wireless configuration parameters (e.g., placement of a base
station), the simulators generate resulting propagation characteristics.

Although wireless ray tracing simulators are appealing, there are a few drawbacks. First, they are
generally slow, which poses a bottleneck for closed-loop design pipelines, as wireless configura-
tions cannot be quickly mapped to propagation characteristics. Second, because they are non-

∗Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc

1

Published as a conference paper at ICLR 2023

differentiable, they are not amenable with inverse physical design formulations, for example op-
timizing base station placement with the simulator in the optimization loop. Third, they usually
require additional fine-tuning with real data as they are not data-driven. Calibrating them with real-
world measurements is non-trivial and tedious. Fourth, they cannot generally inter-operate with
probabilistic frameworks which have the advantage of better dealing with epistemic uncertainties.
We believe neural surrogates provide a natural solution to circumvent many of these drawbacks of
classical ray tracing simulators.

In this work, we propose a neural wireless simulator (‘WiNeRT’) by building on recent advances in
scenes representation as continuous-function neural networks (Sitzmann et al., 2019; Tancik et al.,
2020; Mildenhall et al., 2020). In particular, central to our approach is learning a network to model
ray-surface interactions, i.e., the network transforms an incident wireless ray to an attenuated out-
going ray. By shooting out a number of rays and evaluating the network at relevant spatial regions
in the environment, we estimate the wireless characteristics as a set of transmit-receive paths, each
path encodes attributes such as time-of-flight and gain. Our approach also addresses some unique
technical challenges posed by the non-visual wireless modality, such as dealing with sparse high-
dimensional time-angle measurement signals.

We demonstrate that our neural wireless simulator reasonably renders the wireless propagation as-
pects by evaluating on two datasets which captures 50-100 m2 indoor propagation scenes. Interest-
ingly, we find that the 3D-structure-aware implicit formulation is a strong inductive bias and helps
generalization to significant inference-time distributions shifts. Finally, we demonstrate the poten-
tial of our differentiable forward model in solving inverse problem by tackling the user localization
problem after posing it as an inverse rendering problem. Our results indicate that simulator physics
for specified environments can be ‘distilled’ into neural surrogates and thereby presenting first steps
towards closed-loop design pipelines of wireless communication systems.

2 RELATED WORK

Physics-based Neural Simulations. There exists a wide body of literature to model physi-
cal processes using advances in neural networks (Djeumou et al., 2022; Karniadakis et al., 2021;
Raissi et al., 2017). As simulating physical processes can be expensive and can also present non-
differentiable ‘black-box’ in design pipelines, recent literature addresses how to work towards neural
surrogates, such as for particle simulation (Sanchez-Gonzalez et al., 2020), mesh simulations (Pfaff
et al., 2020), design of particle accelerators (Shirobokov et al., 2020), and inverse kinematics (Sun
et al., 2021). In this paper, we are particularly interested in a specific physical process – wireless
EM-wave propagation. Although this has received limited recent attention (Xia et al., 2020) in a 3D-
oblivious setting, it is unclear whether these extend to complex configurations. Consequently, in this
work, we work towards the first 3d-structure-aware surrogates for wireless ray tracing simulation.

Neural Channel Modelling. Although propagation channel modeling has been a central topic in
wireless communication (Jakes & Cox, 1994; Lee, 1982; Rappaport et al., 2022), there has been a
recent trend for fully data-driven models. The main paradigm of these activities is to use machine
learning to learn complex distributions, model non-linearities and have differentiable simulators.
These works can be categorized as statistical channel models where the channel input-output re-
lation is modelled as a conditional probability distribution. Many works leverage recent advances
in generative modelling and use models like generative adversarial networks (GANs) (Goodfellow
et al., 2014) or variational autoencoders (VAEs) (Kingma & Welling, 2013) to learn the channel
model (O’Shea et al., 2019; Ye et al., 2018; Yang et al., 2019; O’Shea et al., 2019; Orekondy et al.,
2022; Ye et al., 2020; Dörner et al., 2020). In contrast to these works, our approach inscribes within
ray tracing channel modeling paradigm, where wireless propagation is precisely modelled by trac-
ing wireless rays, however, unlike classical ray tracers, our model is able to blend in the elements of
statistical modeling and is trainable directly on field data. To the best of our knowledge, this work
is the first differentiable neural ray tracer for wireless channel modelling.

Neural Scene Representations. Representing scenes (or more generally signals) has been widely
studied in literature, such as encoding the signal in the latent space of a generative model (Kingma
& Welling, 2013; Goodfellow et al., 2014). A more recent link of work encodes the signal in the pa-
rameters of a co-ordinate MLP (Park et al., 2019; Sitzmann et al., 2020; Tancik et al., 2020; Fathony

2

Published as a conference paper at ICLR 2023

17Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade Secrets

𝐱!"
𝐱#"

render$(⋅)

Launch
𝐾 rays

per ray 𝐮!

𝑓$𝐮!
(#) 𝑓$

𝐮!
(%)

𝑓$
… Aggregate

𝐾 rays𝐮!
(&)

𝐡'
Ray marching

Floor layout 𝐅
𝐱#"

𝐱!"Spatial
co-ordinates

Figure 1: Approach Overview. We learn a forward simulator renderθ(·) that maps an environment config-
uration to a wireless channel hi. Here, hi is a set of wireless propagation paths between xtx-xrx (green rays in
right image), each path encoding certain channel attributes e.g., path gain.

et al., 2020), thereby mapping co-ordinates (e.g., spatial, temporal) to the signal intensity values
(e.g., pixel intensity, amplitude). In a specific case where the signal is a 2D RGB image, recent
works (Schwarz et al., 2020; Niemeyer & Geiger, 2021; Mildenhall et al., 2020) show promising
results by additionally employing image-based differentiable rendering paradigms (Drebin et al.,
1988; Liu et al., 2019) to recover 3D properties of the scene. Inspired by this idea, our work
neurally represents a wireless scene by tackling a set of orthogonal challenges, such as dealing
with sparse high-dimensional signals and particularly modelling reflection and transmission effects.
Consequently, we work towards the first 3D-aware neural ‘wireless’ scene representation model.

3 APPROACH

In this section, we begin with some preliminaries to the subsequent formulation of the neural wire-
less ray tracing problem. We then provide an initial overview of our approach in Sec. 3.1 and then
dive deeper into specific technical aspects of wireless ray marching in Sec. 3.2.

Preliminaries: Wireless Channels Scattering, reflection and diffraction are among the main effects
in electromagnetic propagation. A general mathematical description of a wireless channel, seen as
linear time varying system, is given by its impulse response Tse & Viswanath (2005); Rappaport
(1996). A general model can be written as (Samimi & Rappaport, 2016):

h(t,Θ,Φ) =
∑
k

ak(t)δ(t− τk(t))δ(Θ−Θk(t))δ(Φ−Φk(t)) (1)

where ak(t) is the complex gain, τk(t) is the delay (time-of-flight) of path k, Θk(t) is azimuth
and elevation angle of departure (AoD), and Φk(t) is azimuth and elevation angle of arrival (AoA).
Going forward, we use ϕk = (Θk,Φk) as a shorthand to collectively represent all angles. Intu-
itively equation 1, represents each path as a dirac function in time-angle space. The task of channel
modeling can, therefore, be reduced to predicting channel attributes (ak(t), τk(t),ϕk(t)) for a given
environment map, and a transmit and receive location. See Sec. A.1 for a detailed discussion.

Forward Model: renderθ. The general goal of our forward model is to run a wireless ray
simulation given a certain configuration of the propagation environment. More specifically, as shown
in Figure 1, the model takes three configuration parameters as input: a 3D representation of the
environment F and the spatial co-ordinates of the transmitter xtx and receiver xrx devices. The
model predicts the wireless scene as:

ĥ = {u}Kk=1 = {(ak, τk,ϕk)}Kk=1 = renderθ(xtx,xrx,F) (2)
where the output is a variably-sized set of K paths. Each path uk encodes three channel attributes:
gain ak, time-of-flight τk and angles ϕk. With these predicted channel attributes, we can obtain a
time-angle impulse response (the ‘channel’) to characterize the wireless propagation effects.

Key Idea: Implicit Representation Network fθ. Our approach recursively constructs the channel
by using a learnt function fθ : F ×u

(r)
k 7→ u

(r+1)
k As shown in Figure 1, given an initial ray u

(r=0)
k ,

we model the final state as an evaluation of interactions that the ray undergoes with the environment
F . Intuitively, fθ models the local interaction of any given ray k either in free-space, or in particular
when it is incident on an interacting surface. In the latter case of ray-surface interaction, we leverage
a co-ordinate MLP to predict the transformation (e.g., attenuation, rotation) to the incident ray.

Representing Environment F . We primarily focus on indoor propagation environments in this
paper, where the environment is a 3D geometric representation. Specifically, we consider the envi-
ronment represented as a 3D mesh composed of F faces and V vertices, where each face corresponds

3

Published as a conference paper at ICLR 2023

6Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

Ray-Triangle
intersection

Environment Mesh 𝐅

𝐱!
(#$%)

𝐝!
(#)

Ray-Surface
interaction

𝑓!"

𝐝!
(#$%)

𝑎!
(#$%)

New complex gain

New direction Reception/
Termination?

𝐱#'

𝜗(𝐅)

𝑟 ≔ 𝑟 + 1

Free-space
Interaction

𝑓!#
𝐮!
(#,-)

𝐮!
(#) =

𝐱!
(#)

𝐝!
(#)

…

𝐮!
(#,.)

Ray Learnable Non-learnable

no

yes

Figure 2: Renderer: Ray Marching Steps. At each step r of the simulation, we learn the transformation
introduced on a ray u

(r)
k e.g., reflection off a particular surface. The final transformation is a result of learnt

(green blocks) and non-learnable (blue blocks) evaluations.

to some surface on a wall. We consider a mesh structure with two subtleties: (a) we represent walls
as a flattened polygon and thereby do not explicitly consider its thickness; and (b) we do not encode
materials of the corresponding wall faces, but rather learn the properties implicitly from data.

3.1 OVERVIEW: NEURAL RENDERING

In this section, we present an overview of the three steps in our approach (as shown in Fig. 1).

Ray Launching. We begin by shooting out a fixed set of K rays from the transmitter location
x
(r=0)
k := xtx(∀k). We launch the rays omni-directionally from the transmitter co-ordinate, agnostic

to the environment and location of the receiver location. Direction d
(r=0)
k of each ray is oriented in

the direction of a unique vertex of a ico-sphere centered at xtx. We use the number of sub-divisions
of the ico-sphere to trade-off between computational complexity and accuracy.

Ray Marching. The crux of our approach involves ‘marching’ the ray and accounting for inter-
actions (e.g., transmission) with various surfaces of the environment. A key aspect here is using a
neural network to make local evaluations: mapping an incident ray with some direction and power
to an updated outgoing attenuated ray. The neural network is hence tasked to learn a complex non-
linear characterization of the surface materials at a spatial co-ordinate. We further elaborate on the
ray marching procedure in the next section.

Ray Aggregation and Reception. Of the K rays launched from the ray launching step, we are
now interested in the subset of the rays that impinges on the receiver. We model the reception
sphere with a specific radius, which can be tuned to achieve a desired level of precision. To mitigate
double-counting of received rays, we filter rays by associating them with a unique interaction path.

3.2 RAY MARCHING

We now dive deeper into the ray marching step, which tracks the evaluation of each ray as it propa-
gates in the environment and hits various surfaces. We walk through the steps as shown sequentially
in Fig. 2. We begin with a set of geometric rays u(r=0)

k , originating at the transmitter co-ordinate
xtx. In addition to the channel attributes of each ray (see Eq. 2), we also consider in this section an
additional set of meta-attributes (e.g., origin xk, direction dk) that helps us with the ray marching
steps (elaborated in Sec. A.2).

Ray-Environment Intersections. For each ray, we evaluate its first interaction with the environ-
ment (e.g., first wall it hits). Representing the ray geometry as p(t) = x

(r)
k + td

(r)
k , we are primarily

interested in a solution t > 0 for which the ray is incident on some surface. This location helps us
determine the relay (i.e., new origin) x(r+1)

k for the subsequent step.

Ray-Surface Interaction. While the previous step solves for where the ray is incident in the
environment, a crucial next step is determining attributes of the outgoing ray as a result of this
interaction. We specifically focus on determining two attributes in this step: the new direction d

(r+1)
k

and gain a
(r+1)
k . Popular non-neural simulators, such as Remcom (2022), look-up frequency-

4

Published as a conference paper at ICLR 2023

dependent material properties (e.g., conductivity, permittivity) at the incidence point from standard
databases (ITU-R P.2040-2) to calculate the attributes of the outgoing ray. However, it is unclear
how to calculate the attributes with imprecise knowledge of the surfaces (e.g., unknown thickness
and material types of each layer in a wall) or when the material properties of a layer have not
been previously empirically analyzed. Our solution is to instead predict the attributes using learnt
network as a function of the incident location x

(r+1)
k and direction d

(r)
k (see f1

θ in Fig. 2). The
ray-surface interaction network f1

θ used in our experiments is a ReLU MLP with 3 layers (with 64-
hidden units). Similar to NeRF (Mildenhall et al., 2020), we split the network into learning incident
direction-independent and dependent features by concatenating direction d

(r)
k with bottlenecked

outputs of the penultimate layer in the network (See Sec. A.3 fore more details). The network
predicts an attenuation factor s and a rotation matrix A (4-dim Euler-Rodrigues parameterization),
which is then used to determine the updated gain (a(r+1)

k = sa
(r)
k) and direction (d(r+1)

k = Ad
(r)
k).

Reception/Termination check. For some special cases, we halt ray marching for a subset of
rays. Namely, when ray k impinges on a reception sphere of a pre-specified radius (30cm in our
experiments). This prevents a future version of the already received ray being potentially incorrectly
received at a future iteration. In addition, for computation reasons, we also terminate ray marching
if the ray exits the region of interest (e.g., ray exiting the environment).

Free-space interaction. While the previous steps modeled the interaction of material properties of
the environment on wireless propagation, we now switch focus to free-space. In this case, we model
propagation of a ray using the empirically-adjusted Friis’ Equation: Pr(d) = PtG

(
d0

d

)λ
(d ≥ d0)

which represents the power at the received at the receive antenna Pr as a function of the power fed
into transmitting antenna Pt, and the distance travelled by the ray d. We learn the remaining scalar
parameters G (antenna gain constant), λ (attenuation factor), and d0 (reference distance).

3.3 TRAINING

Over the previous sections, we walked through our approach on predicting a channel ĥ =
renderθ(xtx,xrx,F). We train the model in a supervised setting, with ground-truth time-angle
impulse response measurements. Importantly, we rely only on final measurements (i.e., at r = R)
for training and do not use any intermediate information (e.g., interaction data through a ray tracer).

Set-based Channel Loss. We compare two sets of multi-path channels: predictions ĥ = {ûk}Kk=1

and ground-truth h = {ul}Ll=1 to provide a supervisory signal for training. We evaluate the set-
based loss as: Lchan(h, ĥ) =

∑
l d(ul, ûΠ(l)), which has two key ideas: (a) correspondence Π: we

associate each ground-truth path ul with a predicted path ûk = Π(l). To perform such an associa-
tion, we use direction-of-departure information and thereby pair paths launched in approximately the
same direction; and (b) inter-path distance d(ul, ûk): to compare two paths, we use mean square er-
ror for scalar-valued attributes (e.g., time-of-flights) and cosine distances between angular-attributes
(e.g., direction of arrival). For the latter, we represent angles as unit vectors in cartesian coordinates.

Training and Implementation Details. We train our approach for 100 epochs using Adam opti-
mizer with a learning rate of 10−3. We found it crucial to not aggregate rays (Sec. 3.1) in the training
steps, as it led to vanishing gradients due to negligible number of rays that contributed towards gra-
dient updates. We model the reception sphere as a fixed-sized sphere of radius 30cm. Additional
implementation details are provided in Sec. C.4.

4 EXPERIMENTAL RESULTS

In this section, we discuss experimental analysis of our neural simulator approach. We begin by dis-
cussing the preliminaries: the choice of datasets and the evaluation metrics to compare simulations.
The section concludes by discussing overall performances and highlights certain benefits of neural
simulations, such as running controllable simulations outside of training conditions.

5

Published as a conference paper at ICLR 2023

4.1 EXPERIMENTAL SETUP: DATASETS, EVALUATION METRICS, AND BASELINES

We train and evaluate our algorithm using ground-truth data from wireless ray tracing packages.
We collect two datasets, where each dataset contains channel measurements (i.e., gains, time-of-
flights, angles) for different distributions of environments (e.g., floor layout). We keep the wireless
configuration fixed to using omni-directional antennas at both the transmitter and receiver operating
at a 3.5GHz carrier frequency. Now we further elaborate on the datasets used in our experiments.

Dataset 1: WI3ROOMS. We create a synthetic dataset which gives us greater control over many
aspects over the generation process. Using a 10m×5m×3m hull, we randomly synthesize interior
brick walls such that the eventual configuration consists of three rooms inter-connected with 1m
doorways. We import the environment into an open-source wireless propagation toolbox (Amiot
et al., 2013) and collect 41.6K channels, of which ∼37% of measurements are used for training.

Dataset 2: WIINDOOR. We use the indoor floorplans from the RPLAN dataset (Wu et al., 2019),
which is popularly used to model indoor scenes (Nauata et al., 2020; 2021; Para et al., 2021). These
layouts represent real-world single floor houses, with 4-8 rooms and 65-120m2 areas. Each floorplan
is further accompanied with room semantics such as whether a certain area is a living room, bed
room, bathroom, etc. We use these semantics to selectively sample transmit/receiver locations (e.g.,
locations are not outside the boundary) and to determine wall materials (e.g., external facing walls
are bricks, where as internal facing walls are dry plaster walls). We use a commercial ray tracer
Remcom ‘Wireless Insite’ (Remcom, 2022) with ray tracer X3D to collect measurements in the
RPLAN environment. Similar to the earlier dataset, we collect 42.5K measurements, of which
∼36% are used to train the model.

Train and Test Regimes. For the training dataset, we collect measurements by sampling transmitter
(‘Tx’) from ∼10 locations (XY plane at an elevation of 2.8m) and similarly, receiver (‘Rx’) from
60×30 locations (but with elevation of 2m). We then create three challenging test sets (see Fig. A2
for an illustration) with novel Tx-Rx locations: (a) Checkerboard : where train and test Rx locations
form a checkerboard pattern on the same XY plane at 2m elevation; (b) Generalization-z: where
we move the test Rx locations in (a) to a novel elevation (z=1.0m for ThreeRooms and z=2.5m for
RPLAN); and (c) Generalization-diag: where we sample test Rx locations on a diagonal XYZ plane.
Such regimes let us validate the generalization performance under distribution shifts.

Evaluation Metrics. We consider three evaluation metrics to evaluate our approach: (i) Overall
prediction error (‘Overall’): We follow a similar formulation as our loss (Sec. 3.3) with one
key difference – we find correspondences Π by solving a linear-sum assignment problem. The
eventual error aggregates all attributes relevant for the path (e.g., gain, angles). Intuitively, this
measures the distance between two sets (sets of multi-dim paths in our case), using a similar metric
common in set prediction tasks (Fan et al., 2017; Zhang et al., 2019). (ii) Geometry prediction
error (‘Geometry’): We follow a formulation similar to (i), but now focus on two specific features
that captures the geometrical accuracy of the path – time-of-flight and angles at departure and arrival.
Intuitively, this metric measures whether the predicted rays take the same GT route between the
transmit and receive co-ordinates. (iii) Average Delay Time - MAE (‘AvgDelay’): We average the
time-of-flights τk per path of the channel, weighted by its linear power p(ak). We report the mean
absolute error of average delays between the predicted and ground-truth channel attributes.

Baselines. We propose two reference baselines (i) k-NN (with k=1): which predicts the channel,
given the closest match to the input spatial co-ordinates in terms of Euclidean distance (ii) MLP:
A geometry-oblivious MLP regressor with 3-hidden layers, each with 128 units. We train the MLP
using the same loss as WiNeRT. Additional details of the baselines are provided in Sec. C.4.

4.2 OVERALL RESULTS

In this section, we present the overall qualitative and quantitative results of our approach. We com-
plement the overall performances with additional analysis in the next section.

Quantitative Results. We report the quantitative results for the two datasets (column groups) and
three test sets (row groups) in Table 1. We observe from the table: (a) by focusing on the overall
errors, we find WiNeRT generally outperforms all baselines, with a significant average decrease of

6

Published as a conference paper at ICLR 2023

WI3ROOMS WIINDOOR

Overall Geometry AvgDelay Overall Geometry AvgDelay

checkerboard
kNN 0.232 0.212 2.238 0.412 0.396 2.484
MLP 0.287 0.330 2.051 0.373 0.399 1.745
WiNeRT 0.202 0.087 2.029 0.237 0.207 1.546

gen-z
kNN 0.253 0.226 2.033 0.424 0.428 2.487
MLP 0.297 0.350 1.797 0.388 0.421 1.969
WiNeRT 0.217 0.084 1.522 0.285 0.250 1.839

gen-diag
kNN 0.252 0.213 2.118 0.380 0.251 1.377
MLP 0.312 0.322 1.889 0.390 0.315 1.513
WiNeRT 0.229 0.085 1.792 0.369 0.170 0.828

Table 1: Quantitative Results. Comparing errors of our approach (WiNeRT) with baselines, over two datasets
(column groups) and three test regimes (row groups). Lower values are better and the lowest errors are in bold.

7Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

WiNeRTMLPkNN

To
ta

l R
ec

ei
ve

P

ow
er

 (d
B

)

GT

𝐱!"

Figure 3: Receive Powers. By fixing the transmit location (xtx, red cross), we measure the receive power
(color at each point; in dB) predicted at each location in WI3ROOMS dataset. kNN and MLP suffer from
memorization and falsely predict highest receive powers around phantom transmit locations (purple star).

-0.071 points compared to kNN and -0.085 with MLP; (b) WiNeRT is especially strong in capturing
the geometry (e.g., 59-63% drop in errors w.r.t second best on WI3ROOMS) of the environment,
which can be likely attributed to a strong inductive bias enforced by decoupling global rendering
from local evaluations; (c) Although WiNeRT has reasonable performance in capturing the average
delays, the performance gap here (e.g., 1-15% reduction in errors on WI3ROOMS) is not especially
large compared to other metrics. We attribute this to contributions from ‘false positive’ rays with
non-negligible power arising from our dense ray-launching technique. (d) The contributions of false
positives can be mitigated by using a more sophisticated ray launching technique. For instance,
by piggybacking on ray launch directions from GT channels, we can significantly improve perfor-
mances across all metrics e.g., from 1-15% error reduction to 15-20% reduction in average delays
on WI3ROOMS; (e) Overall, we attribute the underperformance of the baselines to poor generaliza-
tion performance. For instance, in Figure 3, we illustrate the receive powers (in dB) predicted by
all approaches in WI3ROOMS, for some placement of the transmitter (red cross in top-right room).
We observe in this particular case that the high-power areas in the kNN and MLP baselines are
predicted for a false phantom location (purple star), which roughly corresponds to a transmitter
location in training set. This contrasts predictions by WiNeRT where the high-power areas are cor-
rectly concentrated around the transmitter location. As a result, we find that simple baselines find it
challenging to generalize to new unseen spatial co-ordinates at inference time.

Qualitative Results. We complement the previous quanitative discussions with observations drawn
from qualitative analysis. WiNeRT particularly helps for this analysis, as we can recovert interme-
diate ray-environment interaction information. From qualitative examples shown in Fig. 4(a, b), we
draw some observations: (a) WiNeRT surprisingly learns ray-surface interactions implicitly, with-
out any direct supervision. For instance, we observe multiple reflected paths between Tx and Rx;
(b) we also find that our predictions (red rays) are generally consistent with the underlying simula-
tion process (green rays) e.g., reflections from adjacent walls, floor and ceiling; and (c) we notice
WiNeRT sometimes predicts false positives (e.g., above xtx in Fig. 4b), which we attribute to dense
omni-directional ray launching.

4.3 ANALYSIS

In the previous section, we evaluated the overall performance of WiNeRT and found promising
results. Now, we take a closer look at our approach and investigate generalization benefits.

7

Published as a conference paper at ICLR 2023

14Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

𝐱!"

𝐱#"

𝑦

𝑥

𝑧

Prediction
GT

(a) WI3ROOMS

16Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

𝑦

𝑥
𝑧

𝐱!"

𝐱#"

Prediction
GT

(b) WIINDOOR

15Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

𝑦

𝑥

𝑧

Novel env

Prediction
GT

(c) WI3ROOMS (novel F)

Figure 4: Qualitative results. (a, b) Evaluation on WiNeRT on the environment seen during training. (c) We
use the previously trained model and re-render on a re-configured floormap F .

17Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

(a) Ray-surface interactions (b) Attenuation: Reflection (c) Attenuation: Transmission

Train set
Test set

Figure 5: Evaluating Ray-surface interaction MLP. We display a cut-out of the 3ROOMS represented as a
wireframe, with a specific focus on a particular wall. (a) We find a train-test distribution shift of ray-surface
incidence points (b, c) Evaluation of the MLP at various incidence points.

What does the ray-surface interaction learn? We begin by investigating the ray-surface network
(f1

θ in Fig. 2) in isolation. The network is tasked to map an incident ray (gain ain, direction din) to an
outgoing ray (aout, dout). To accurately make this prediction, the network needs to learn direction-
and material-dependent properties at the incident location xinc, which poses two challenges. First,
the network does not have explicit supervision to learn these properties. Rather, the network needs
to implicitly learn these properties by optimizing over a number of channel measurements. Second,
specific to our case, the measurements collected involve sparse ray-surface interactions i.e., in prac-
tise we cannot expect for paths in the training measurements to interact densely with all possible
surfaces. For instance, consider Fig. 5a, which show the incident points xinc for a particular wall
(black edges) that we recover from the underlying ray tracing tool. Here, we observe that the implicit
training set interactions (red markers; never used during our training) are localized to a ∼50cm band
(15% area of the wall). However, at test-time, the network is tasked to generalize to interactions
for a different distribution of incidence points (purple markers). In spite of the challenges we find
the ray-surface network associates meaningful information to surface co-ordinates. For instance, we
show the attenuation factor predicted for the reflected (Fig. 5b) and transmitted co-ordinates (Fig.
5c) for rays arriving from a fixed xtx co-ordinate (placed at x=8m). We find that the network learns
a smooth material- and direction-dependent function over the surface. Over the next experiments,
we exploit these locally learnt properties and evaluate WiNeRT rendering in novel scenarios.

Controllable synthesis: Predicting in Novel Environment Configurations. The previous exper-
iments focused on evaluating approaches for novel locations of transmit and receive co-ordinates
at simulation time. Now, we consider novel test-time environments by simulating approaches on
re-configured layouts F ′ of the train-time environment F , such as by randomly editing placement
of interior walls. Overall, we find that WiNeRT remarkably extrapolates to the reconfigured envi-
ronment, with the overall error unchanged with WiNeRT (0.202 on F vs. 0.203 on F ′; more results
in Table A2). Furthermore, by observing the results qualitatively in Figure 4c, we find the predicted
interactions remain consistent with the ground-truth simulated rays in novel environment configura-
tions. This is particularly appealing as for simulation use-cases which require modelling dynamic
objects (e.g., moving vehicle), as WiNeRT allows re-configuring environment without retraining.

Controllable synthesis: Simulating Higher-order Interactions. In this experiment, we evaluate
the ability of approaches to generalize to different numbers of interactions (denoted by r in Sec.
3) at inference time. With WiNeRT, we have the ability to control the number of interactions at

8

Published as a conference paper at ICLR 2023

test-time (i.e., by unrolling fθ for fewer or more steps). We briefly summarize our observations here
(see Table A4 for more details). WiNeRT exhibits promising results: while the baselines struggle
with a simpler task of lower-order interactions (e.g., 0.22-0.58 overall errors at r=0), WiNeRT’s
performance improves (from 0.20 to 0.12). A better performance is natural in this particular setting,
since the model is required to perform an easier task than original (predicting only line-of-sight
component). For higher-order interactions, we observe performances of all approaches degrades,
but WiNeRT outperforms the baselines. In particular, even at r = 3, we find the geometric-errors of
WiNeRT (0.27) comparable to baselines in their originally trained setting (r=1, 0.21-0.33 errors).

How fast are the simulations? We investigate the wall-clock simulation times of WiNeRT and
baselines and compare them with wireless ray tracers. In the specific case of WiNeRT, we have some
control over the time-accuracy trade-offs at test-time by varying the density of initial rays launched
(see Sec. 3.1). Overall, we find that WiNeRT demonstrates speed-ups of 11-22× over PyLayers and
6-22× over Wireless Insite. While the baselines are even faster (538-687× with MLP and 79-97×
with kNN), it is achieved at the price of higher errors and poor generalization capabilities (Sec. 4.2).
Overall, we find WiNeRT presents reasonable time-accuracy trade-offs compared to baselines. See
Sec. C.2 for additional details.

Exploiting differentiability: User Localization via inverse (differentiable) rendering. Over the
previous sections we focused on forward simulations. Now, we study a proof-of-concept for lever-
aging our differentiable simulator for inverse problems, such as for user localization: determining
user location xrx from an observed channel hobs. We solve for xrx, by performing gradient on spa-
tial coordinate xukn

rx that minimizes the channel loss renderθ(xtx,x
ukn
rx ,Fi). This is possible with

WiNeRT, since we can backpropagate through the neural simulation of the channel. We evaluate
over 100 test examples and find encouraging results, with a median error of 0.58m in WI3ROOMS
(a 150m3 volume) and 1.21m in WIINDOOR (a 300m3 volume). See Sec. C.4 for more details.

5 CONCLUSION, LIMITATIONS, AND BROADER IMPACT

In this paper, we proposed the first neural forward model for wireless ray tracing-based simula-
tions. Such models are particularly appealing as they help alleviate some drawbacks of classical
non-neural simulators (e.g., better handling model-measurement mismatches, non-differentiability).
Towards this goal, we proposed WiNeRT which tasks an MLP to learn how surfaces in a 3D environ-
ment influence propagation of wireless rays, such as by predicting attenuation factor of a reflective
component. Overall, we find promising results indicating neural simulators closely capture propa-
gation effects. As neural simulators are additionally differentiable, we further show that they can be
used to optimize inverse problems such as user localization.

Limitations and Future Work. This paper presents the first step towards realizing a neural sur-
rogate for simulating propagation of wireless rays. While we find promising results – in terms of
empirically mimicking the simulator’s performance while simultaneously reducing complexity –
many important steps remain to realize our over-arching goal of differentiable wireless ray tracing.
Our approach is designed to capture linear effects of the channel in line with standards (3GPP TR
38.901; ITU-R P.2040-2) and extending to non-linear effects (e.g., amplifier saturations) remains an
open-problem. Additionally, while our focus is primarily reflection and transmission properties of
ray-surface interactions (capturing majority of receive power) which are increasingly relevant for
high-frequency transmissions, other properties (e.g., scattering, diffraction) require investigation to
model simulations across a wider radio-frequency spectrum. Finally, our surrogate’s performance is
currently upper-bounded by the underlying simulator’s performance, motivating studies into learnt
calibration of the surrogate model with real-world measurement data to bypass simulation accuracy.

Broader Technical Impact. Although our paper focuses on neural simulation of EM waves in
the radio-frequency spectrum (0.5-100 GHz), we believe working towards this goal complements
research in non-radio modalities as well. For instance, to model propagation of acoustic signals
in spatial environments, estimating material-dependent ray-surface interactive properties remains
a challenging problem and the proposed research direction potentially complements existing tech-
niques. More generally, we believe that as radio signals require modelling both ray (e.g., reflection)
and physical optic (e.g., interference, diffraction) properties, advances here are intertwined with
many modalities across the EM spectrum (e.g., audio, visual).

9

Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we take a number of steps. On the dataset side, we use either publicly
available indoor layouts (e.g., RPLAN) or synthetically generate layouts with known random seeds
(0 and 10 in our case). We further elaborate on the simulation settings to recreate our dataset in
Section 4.1 and Section B. We plan to release the simulated data measurements. On the implemen-
tation side, we provide specific training details in Section C.4 and further elaborate on the detailed
architecture in Section A.3.

ETHICS STATEMENT

The data used in our paper corresponds to simulated data of physical processes (EM wave propa-
gation). Since this does not involve any human subjects or personally identifiable information, we
believe there is no conflict in this regard.

ACKNOWLEDGEMENT

We thank Hanno Ackermann for discussions and feedback on the paper. We additionally thank nu-
merous colleagues for insightful discussions: Thomas Hehn, Fabio Valerio Massoli, Maziar Raissi,
Afshin Abdi, June Namgoong, Taesang Yoo, and Akash Doshi.

REFERENCES

3GPP TR 38.901. Study on channel model for frequencies from 0.5 to 100 ghz. Standard, 3GPP,
Valbonne, FR, March 2022.

Nicolas Amiot, Mohamed Laaraiedh, and Bernard Uguen. Pylayers: An open source dynamic
simulator for indoor propagation and localization. In ICC, 2013.

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Neural networks with
physics-informed architectures and constraints for dynamical systems modeling. In Learning for
Dynamics and Control Conference. PMLR, 2022.

Sebastian Dörner, Marcus Henninger, Sebastian Cammerer, and Stephan ten Brink. Wgan-based au-
toencoder training over-the-air. In IEEE International Workshop on Signal Processing Advances
in Wireless Communications, 2020.

Robert A Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. SIGGRAPH, 1988.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
struction from a single image. In CVPR, 2017.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
In ICLR, 2020.

Andrew S. Glassner. An introduction to ray tracing. Morgan Kaufmann, 1989.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Fumio Ikegami, Tsutomu Takeuchi, and Susumu Yoshida. Theoretical prediction of mean field
strength for urban mobile radio. IEEE Transactions on Antennas and Propagation, 39(3):299–
302, 1991.

ITU-R P.2040-2. Effects of building materials and structures on radiowave propagation above about
100 mhz. Standard, International Telecommunication Union, Geneva, CH, September 2021.

William C. Jakes and Donald C. Cox. Microwave mobile communications. Wiley-IEEE press, 1994.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, June 2021.

10

Published as a conference paper at ICLR 2023

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

William C. Y. Lee. Mobile communications engineering. McGraw-Hill, 1982. ISBN 978-0-07-
037039-5.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. In ICCV, 2019.

J.W. McKown and R.L. Hamilton. Ray tracing as a design tool for radio networks. IEEE Network,
5(6):27–30, November 1991.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, and Yasutaka Furukawa. House-
gan: Relational generative adversarial networks for graph-constrained house layout generation.
In ECCV, 2020.

Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi Cheng, and Yasutaka
Furukawa. House-gan++: Generative adversarial layout refinement network towards intelligent
computational agent for professional architects. In CVPR, 2021.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative
neural feature fields. In CVPR, 2021.

Tribhuvanesh Orekondy, Arash Behboodi, and Joseph B Soriaga. Mimo-gan: Generative mimo
channel modeling. In IEEE ICC, 2022.

Timothy J O’Shea, Tamoghna Roy, and Nathan West. Approximating the void: Learning stochastic
channel models from observation with variational generative adversarial networks. In ICNC,
2019.

Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas J Guibas, and Peter Wonka. Generative layout
modeling using constraint graphs. In CVPR, 2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In CVPR,
2019.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Theodore S. Rappaport. Wireless communications: principles and practice, volume 2. prentice hall
PTR New Jersey, 1996.

Theodore S Rappaport, Kate A Remley, Camillo Gentile, Andreas F Molisch, and Alenka Zajić.
Radio Propagation Measurements and Channel Modeling. Cambridge University Press, 2022.

Remcom. Wireless insite, 2022. URL https://www.remcom.com/
wireless-insite-em-propagation-software.

Mathew K. Samimi and Theodore S. Rappaport. 3-D millimeter-wave statistical channel model for
5G wireless system design. IEEE Transactions on Microwave Theory and Techniques, 64(7):
2207–2225, 2016.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In ICML, 2020.

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields
for 3d-aware image synthesis. NeurIPS, 2020.

11

https://www.remcom.com/wireless-insite-em-propagation-software
https://www.remcom.com/wireless-insite-em-propagation-software

Published as a conference paper at ICLR 2023

Sergey Shirobokov, Vladislav Belavin, Michael Kagan, Andrei Ustyuzhanin, and Atilim Gunes Bay-
din. Black-box optimization with local generative surrogates. In NeurIPS, 2020.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. NeurIPS, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. NeurIPS, 2020.

Xingyuan Sun, Tianju Xue, Szymon Rusinkiewicz, and Ryan P Adams. Amortized synthesis of
constrained configurations using a differentiable surrogate. NeurIPS, 2021.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. NeurIPS, 2020.

David Tse and Pramod Viswanath. Fundamentals of wireless communication. Cambridge university
press, 2005.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srini-
vasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields. In CVPR,
2022.

Joram Walfisch and Henry L. Bertoni. A theoretical model of UHF propagation in urban environ-
ments. IEEE Transactions on antennas and propagation, 36(12):1788–1796, 1988.

Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang Liu. Data-driven
interior plan generation for residential buildings. ACM Transactions on Graphics (TOG), 38(6):
1–12, 2019.

William Xia, Sundeep Rangan, Marco Mezzavilla, Angel Lozano, Giovanni Geraci, Vasilii Semkin,
and Giuseppe Loianno. Millimeter wave channel modeling via generative neural networks. In
2020 IEEE Globecom Workshops, 2020.

Yang Yang, Yang Li, Wuxiong Zhang, Fei Qin, Pengcheng Zhu, and Cheng-Xiang Wang.
Generative-adversarial-network-based wireless channel modeling: Challenges and opportunities.
IEEE Communications Magazine, 2019.

Hao Ye, Geoffrey Ye Li, Biing-Hwang Fred Juang, and Kathiravetpillai Sivanesan. Channel agnostic
end-to-end learning based communication systems with conditional gan. In IEEE Globecom
Workshops, 2018.

Hao Ye, Le Liang, Geoffrey Ye Li, and Biing-Hwang Juang. Deep learning-based end-to-end wire-
less communication systems with conditional gans as unknown channels. IEEE Transactions on
Wireless Communications, 2020.

Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. Deep set prediction networks. NeurIPS,
2019.

12

Published as a conference paper at ICLR 2023

Appendix

A APPROACH

A.1 BUILDING CHANNEL MODELS

This section accompanies the text in Section 3.

Channel models are defined either in a statistical way by defining a distribution over channel at-
tributes or in deterministic way using ray tracing. Statistical channel models are inadequate for
applications involving positioning, sensing and challenges of communication at higher frequencies
(e.g., mmWave at 30-300 GHz (Rappaport et al., 2022)). Inspired by similar techniques in com-
puter graphics (Glassner, 1989), traditional ray tracing approaches (see for example (McKown &
Hamilton, 1991; Ikegami et al., 1991; Walfisch & Bertoni, 1988)) approximate propagation of elec-
tromagnetic waves by modeling interactions of each ray with objects in its paths. These interactions
include for example reflection, diffraction and penetration. Although this is more efficient than
solving Maxwell equations, ray tracing methods need a detailed knowledge of the environment and
are generally slow for prototyping. They generally utilize hard coded and mathematically tractable
models for example knife-edge model for diffraction (Lee, 1982; Rappaport, 1996). These abstrac-
tions suffer from mismatches and require occasional tedious fine-tuning and calibration with real
data. Improving these models while remaining tractable for rapid simulation rounds is not straight-
forward. Finally, they are non-differentiable and cannot be integrated into a closed loop design
pipeline. We plan to tackle these issues by building a neural surrogate of a physics-based wireless
ray tracer in this paper.

A.2 REPRESENTING RAY ATTRIBUTES

We represent the k-th ray (among K rays) at the r-th iteration of rendering as u
(r)
k . For notation

convenience, we drop the sub- and super-script for the rest of the section. We characterize the
wireless ray analogous to the concept of an optical ray (such as with geometric direction, intensity).
In additional to the wireless attributes (see Equation 2), we further include meta-level attributes
that helps us propagate and render the eventual ray received at the receiver co-ordinate xrx. We
briefly describe these attributes here and elaborate on how they are obtained or updated over the
next sections. The ray contains the attributes:

u =
(a τ ϕ x d ts trx ρrx σupd σrx)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
(a) Channel Attributes (b) Ray Geometry (c) State

which as shown can be grouped into three categories: (a) Wireless Channel Attributes. Exactly as
discussed earlier in the section (see Equation 2), it contains the attributes to construct the wireless
channel time-angle impulse response (Equation 1) (b) Ray Geometry. We additionally include
geometrical representation of the ray, which helps us determine how to propagate the ray through
the environment. Specifically, we represent the geometry of the ray using the line equation: p(t) =
x + td, where x is the origin and d is a unit-vector encoding the ray direction. We are interested
in two particular solutions of t in this equation: ts for which the ray intersects with a surface (mesh
face in our case) and trx for which the ray is tangential to a sphere around some receiver of radius
ρrx. (c) Ray state. To help with subsequent updates to the ray at future iterations, we track two
binary variables. σupd denotes whether the ray has to be updated in the next iteration. σrx denotes
whether the ray has impinged on a reception sphere of a predefined radius.

A.3 RAY MARCHING: DETAILS

Ray-Environment Intersections. For each ray, we are interested in their first interaction with
the environment (e.g., first wall it hits, impinging on the receiver). For this, we are interested in
the solutions to the line equation representing the geometry of the ray: p(t) = x

(r)
k + td

(r)
k . In

particular, we are interested in two solutions of t: (a) Ray-Face intersection. The smallest value of
t > 0 for which p(t) lies on a surface (a triangular mesh face in our case). For this, we perform ray-
triangle intersections with each face in the environment and find the corresponding solution t = ts.

13

Published as a conference paper at ICLR 2023

7Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

Spatial
MLP Dirc.

MLP
𝐛!= sdf(𝐱"

#$% , 𝐱&')

𝐧$
𝐯$

𝐬$
𝝆$𝐝%

(')
𝑎%
(')*)= 𝐬$𝑎%

(')

𝐀 = Γ(𝝆$) 𝐝%
(')*) = 𝐀𝐝%

(')

∈ 𝑆𝑂(3)

New complex gain

New direction

𝐟! = face 𝐱"
#$%

Surface normal

Figure A1: Ray-surface interaction network f1
θ

This helps us estimate the new relay location: x(r+1)
k = x

(r)
k + tsd

(r)
k (a) Ray-Rx intersection. In

parallel, we are also interested in positive solutions of t for which the ray hits the receiver if it were
modeled as a sphere of radius ρrx. In this case, we obtain the value of t as the projection of xrx on
p(t):

trx = max(0, (xrx − x
(r)
k) · d(r)

k) (3)

ρrx = ||(xrx − x
(r)
k)− trxd

(r)
k || (4)

Consequently, at the end of ray-environment, we analytically estimate the first intersections of the
ray with both the environment and (potentially) the receiver.

Ray-Surface Interaction. If the ray u
(r)
k (originating at x(r)

k and travelling in direction d
(r)
k)

hits a wall at x(r+1)
k (as estimated in the previous step), we are now interested in characterizing the

outgoing ray with origin at x(r+1)
k . Specifically, we are interested in estimating the new direction

d
(r+1)
k (does the ray penetrate the wall? or reflect?) and the corresponding change in gain that

arises (i.e., loss of power, change of phase). This is a complex problem and typically requires in-
depth knowledge of the surface (e.g., which material) as well as it’s specific EM properties (e.g.,
frequency-dependent effects). Our solution is to instead learn these properties by associating spatial
regions in the environment with EM-specific properties. Towards this, we delegate the association
to a neural network show in Figure A1. The key idea is to associate spatial co-ordinates (or sets
of co-ordinates, given by face on which they lie) with EM properties. We achieve this by mapping
spatial properties (e.g., face corresponding to x

(r+1)
k) to EM properties (e.g., gain factor).

Specifically, our neural network is:

vi = spatial net(fi,ni, bi) (5)
si,ρi = directional net(vi,di) (6)

which consists of a spatial net to encode EM properties specific to a spatial region, but inde-
pendent of the incidence direction. This network takes as inputs the one-hot encoding of the face fi

on which the relay point x(r+1)
k lies and the surface normal vector at that point ni. In addition, we

also provide the network a 3-dim conditioning vector of signed distances

bi = (sdf(xtx,fi), sdf(xrx,fi), sdf(x(r+1)
k ,fi)) (7)

where sdf(x,f) is the signed distance function between co-ordinate x and face f . We find it cru-
cial to condition the network on these values to help predict EM-properties for relevant outgoing
components (e.g., reflective, transmission).

The output of the network is a gain factor si, such that the new gain of the ray u
(r+1)
k is

a
(r+1)
k = sia

(r)
k . Since the gain magnitudes can be represented in either linear or logarithmic scale,

we predict both additive and multiplicative factors of the gain in practise (a(r+1)
k = si,1a

(r)
k + si,2).

In parallel, the network also predicts the rotation a ray incident with direction d
(r)
k on fi undergoes.

We characterize rotations using a 4-dim rotation ρi using Euler-Rodrigues parameterization. This
parameterization encodes the axis of rotation and about which d

(r)
k rotates by angle ϑ. We repre-

sent the rotation by a 3×3 SO(3) matrix A and the new outgoing direction of ray k is given by
d
(r+1)
k = Ad

(r)
k

Reception/Termination check. For some special cases, we halt ray marching for a subset of
rays. Namely, when ray k impinges on a reception sphere of radius under ϱ meters. This prevents

14

Published as a conference paper at ICLR 2023

Figure A2: Train and test regimes: We consider disjoint subsets of train (blue markers; identical in all figures)
and test (orange markers) co-ordinates of transmit and receive locations.

a future version of the ray being potentially being incorrectly received once again. In addition, for
computation reasons, we also terminate ray marching if the ray exits the region of interest (e.g., ray
exiting the environment).

Free-space interaction. While the previous steps modeled the interaction of material properties of
the environment on wireless propagation, we now switch focus to free-space. In this case, we model
propagation of a ray using the empirically-adjusted Friis’ Equation:

Pr(d) = PtK

(
d0
d

)λ

, d ≥ d0 (8)

which represents the power at the received at the receive antenna Pr as a function of the power fed
into transmitting antenna Pt and the distance travelled by the ray d. We learn the remaining scalar
parameters K (constant representing of antenna gains), λ (wavelength of signal), and d0 (reference
distance).

B DATASET: ADDITIONAL DETAILS

B.1 TRAIN AND TEST REGIMES

Figure A2 accompanies the text in Section 4.1.

B.2 SIMULATION FOR WIINDOOR DATASET: DETAILS

We created 3 different floor-plans in Wireless Insite where 2D floor-plans layout and semantic labels
of each room are picked from House GAN++ dataset and mapped into a 3D layout where the scale
and dimensions are determined based on practical floor-plan scenarios. All layouts are scaled to
10m×10m with ceiling height at 3m. All the inner walls and floor materials are layered dielectrics
with specific permittivity, conductivity & roughness. These have finite reflection and transmission
coefficients. The reflection coefficient is corrected if the surface is not smooth while the transmission
coefficients are unaffected by surface roughness.

Materials. Propagation characteristics are naturally affected by the medium and we create a dataset
with fairly diverse set of materials. Layered dielectric with two layers separated by free-space of
89cm is chosen for all inner walls and the outer-walls were made of thicker materials of concrete.
Doors were created using free space except the balcony door which was created using glass with
a small thickness. The balcony walls were laid out using brick walls. The propagation factor and
index of reflection are functions of the permittivity (ϵ) and conductivity (σ) of medium. In Table
Table A1, we present the relative permittivity and conductivity.

Antenna and Transceiver configuration. Omnidirectional beam patterned antenna with polariza-
tion perpendicular to the z axis is setup for all receive and transmit antennas. Location, Orientation
of the antenna are set relative to global reference such that they are rotated about the z axis by 90deg
and placed at a height of 2.8m. All antennas employ the same configuration with no transmission
loss.

15

Published as a conference paper at ICLR 2023

thickness(cm) permittivity ϵ conductivity σ (S/m)

Layered drywall(1,3) 1.3 2.8 0.013
Brick 12.5 4.44 0.0001
Concrete 30 5.31 0.015
Glass 3 2.4 0

Table A1: Material properties

Overall Geometry Avg. Delay

kNN 0.264 0.288 1.479
MLP 0.280 0.378 1.191

WiNeRT 0.203 0.114 1.297

Table A2: Quantitative results. For a trained ap-
proach evaluated on a reconfigured floormap F ′

15Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

𝑦

𝑥

𝑧

Novel env

Prediction
GT

Table A3: Qualitative results

Simulation. We currently run the simulation using the shoot and bounce model where a geometric
path is drawn from every point on the transmitter field pattern to the receive point. This also includes
transmission through surfaces allowing it to model transmittance and reflection. Rays are first traced
from the source points with the rays reflecting specularly from the building walls. The rays that hit
building walls are reflected specularly and continue to be traced up to the maximum number of
reflections and transmissions.

The spatial separation of rays is set to 0.75◦. The geometric path traced by the ray undergoes upto 6
specular reflection and 3 transmittance with path loss threshold set to -70dBm.

Total received power of all paths is determined as the sum of time averaged power of group of
correlated paths. A set of ray paths that interact with similar set of faces and follow nearly same
path are defined as group.

C EVALUATION: ADDITIONAL DETAILS

C.1 CONTROLLABLE SYNTHESIS: GENERALIZATION TO RECONFIGURED FLOORMAPS

Table A2 accompanies the discussions in Section 4.3, where we evaluate a WiNeRT model trained
in one environment F and evaluated in a reconfigured environment F ′.

C.2 CONTROLLABLE SYNTHESIS: LOWER- AND HIGHER-ORDER INTERACTIONS

See Table A4, which accompanies the discussions in Section 4.3.

Overall (DoD) Geometry Avg. Delay

#interactions r 0 1∗ 2 3 0 1∗ 2 3 0 1∗ 2 3

kNN 0.22 0.33 0.50 0.55 0.31 0.21 0.29 0.33 1.30 2.24 2.96 3.40
MLP 0.58 0.46 0.61 0.67 0.34 0.33 0.37 0.41 0.98 2.05 2.93 3.48
WiNeRT 0.12 0.25 0.44 0.51 0.00 0.09 0.21 0.27 0.03 2.03 2.43 2.8

Table A4: Low- and Higher-Order Interactions. We vary the number of ray-surface interactions (denoted
by r) for a model trained using single-order interactions (r=1, denoted by * in the table).

16

Published as a conference paper at ICLR 2023

0.16 0.18 0.20 0.22 0.24 0.26 0.28
Error (Overall)

10 3

10 2

10 1

100

Si
m

ul
at

io
n

tim
e

(s
ec

on
ds

)

ideal

wi3Rooms
Simulator (PyLayers)
WiNeRT
WiNeRT (Oracle ray launch)
MLP
kNN

0.20 0.25 0.30 0.35 0.40
Error (Overall)

10 3

10 2

10 1

100

Si
m

ul
at

io
n

tim
e

(s
ec

on
ds

)

ideal

wiIndoor
Simulator (Insite)
WiNeRT
WiNeRT (Oracle ray launch)
MLP
kNN

Figure A3: Simulation Time. Comparing wall-clock time vs. accuracy performances of our approach (WiN-
eRT) against baselines (MLP, kNN) and wireless ray tracing softwares (PyLayers and Insite). The ‘Oracle ray
launch’ variant, which utilizes known ray launch directions at test-time, indicates an approximate performance
upper-bound of our approach.

C.3 SIMULATION TIME

In Sections 4.2 and 4.3, we found our proposed approach WiNeRT achieves reasonable performance
compared with non-differentiable and non-neural simulator packages. Additionally, we demon-
strated that WiNeRT is capable of generalization (e.g., to novel elevations, to re-configured floor-
plans) and can be used for inverse problems. In this section, we additionally discuss run-time per-
formance of WiNeRT and compare against baseline approaches as well as the simulator package.

Experimental Setup. The end-goal of the experiment is to analyze the simulation time (specifi-
cally wall-clock times) of the proposed WiNeRT approach and contrast it against both the simulator
softwares (PyLayers, Wireless Insite) and proposed baselines (MLP, kNN). We first remark that the
implementations fundamentally vary between the approaches and hence an ideal wall-clock timing
comparison is not possible. For instance, some approaches (WiNeRT, MLP, kNN) use a PyTorch
implementation which can be run on GPU whereas the wireless ray tracing simulation packages
are either proprietary (e.g., Wireless Insite) or developed exclusively for CPU (e.g., PyLayers) and
thereby limiting the choice of hardware on which they can be run. Nonetheless, we keep sim-
ulation settings consistent when possible: by running the exact simulations used for the overall
results (setting ‘checkerboard’; see Section 4.1) and furthermore estimating wall-clock times per
simulation (batch size of 1) over N individual simulations with a maximum of 1 reflection and
transmission (i.e., r=1). For all approaches, we report only the mean simulation time over the mul-
tiple simulations, as we found the variances low (σ2 ≤ 3.5× 10−3). When possible, we also report
corresponding accuracy (‘overall prediction error’; see Sec. 4.1). We evaluate PyTorch-based imple-
mentations (WiNeRT, MLP, kNN) over N =∼ 8K simulations using pretrained models (specifically
the ones for reporting 1) on a Nvidia A100 GPU. In the case of WiNeRT, we are able to control
time-accuracy trade-off to some degree at test-time by varying the number of launched rays K (see
‘Ray Launching’ in Sec. 3.1) as a function of the number of subdivisions of the ico-sphere. We
choose 1-5 sub-divisions and additionally an ‘oracle ray’ launch strategy to depict a lower-bound on
the time-accuracy values.

Results. We present the time-accuracy in Figure A3 and observe: (i) WiNeRT (orange mark-
ers) is significantly faster than the simulators (blue line), demonstrating speed-ups of 11-22× over
PyLayers (Amiot et al., 2013) and 6-22× over Wireless Insite (Remcom, 2022). Although the simu-
lators are approximately an upper-bound on the accuracy, we find that WiNeRT can make reasonable
trade-offs on accuracy to boost simulation times in certain scenarios; (ii) The baselines we propose
in this paper (MLP and kNN) are even faster. MLP (green marker) is the fastest with speed-ups of
538-687×, which can be largely attributed to a simple architecture (3-layer ReLU MLP with 128
hidden units). kNN (red marker) is the second fastest with 79-97× speed-ups over the simulators.

17

Published as a conference paper at ICLR 2023

0 2 4 6 8
Localization error (in m)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

wi3Rooms (Median = 0.58 m)
wiIndoor (Median = 1.21 m)

Figure A4: User Localization. We backpropagate through our trained forward model to solve for the position
of the receiver.

While these baselines offer much faster simulation times, their generalization capabilities remain
unclear as they suffer from memorization (see discussion for Fig. 3).

C.4 USER LOCALIZATION VIA INVERSE RENDERING

In this section, we provide additional details to complement the discussion on the user localization
experiment in Section 4.3. For the user localization task, the problem is to determine user location
xrx from an observed channel hobs. We solve for xrx, by performing gradient on spatial coordinate
xukn

rx that minimizes the channel loss renderθ(xtx,x
ukn
rx ,Fi). This is possible with WiNeRT, since

we can backpropagate through the neural simulation of the channel. We optimize for xrx using SGD
with momentum (lr=0.01, momentum=0.9, 2000 iterations) with two additional considerations: (a)
we constrain xrx to lie in valid ranges (positive, upper-bounded by xmax) by clamping the values
at each iteration; and (b) to prevent solutions in local minimas, we take the result which yields the
minimum loss over five random initializations of xrx. We present the CDF of localization errors over
100 test examples in A4

D IMPLEMENTATION: ADDITIONAL DETAILS

In this section, we provide additional implementation details and hyperparameter choices of ap-
proaches discussed in the paper.

D.1 WINERT

Architecture: Ray-surface Interaction f1
θ . We follow an MLP architecture (see Figure A1) simi-

lar to NeRF approaches (Mildenhall et al., 2020; Verbin et al., 2022). We decompose the parameters
into view-independent (‘spatial MLP’) and view-dependent (‘directional MLP’) sets. Given a ray
incident at a spatial co-ordinate xk in direction dk, the spatial MLP (2 hidden layers, 64 units) takes
three inputs: (a) the face fi (1-hot index) on which xk lies; (b) the surface normal ni of face fi;
and (c) a 3d vector of signed-distance values between the face and xtx, xrx, and xk. We find (c)
provides information (e.g., xtx and xrx on the same side of wall) to condition the network to predict
attributes related to either reflection or transmission components. The directional MLP (1 hidden
layer, 64 units) takes two inputs: (i) a 32-dim bottleneck vector produced by the spatial MLP; and
(ii) a 3-dim unit vector representing the incidence direction dk. The final output are scaling and
additive co-efficients s for the gain magnitude (i.e., a(r+1)

k = s1a
(r)
k + s2) and 4-dim parameters

ρi for rotation (based on Euler-Rodrigues formulation). The rotation parameters ρi are mapped to a
3×3 rotation matrix A = Γ(ρi) to transform the incident to outgoing ray dk := Adk.

Renderer: Ray Launching. In the first step of the renderer, we launch K rays from co-ordinate
xtx uniformly in all directions. To achieve this, we center a ico-sphere with 5 sub-divisions and

18

Published as a conference paper at ICLR 2023

choose as directions the vectors from xtx towards the ico-sphere vertices (10.2K vertices with 5
sub-divisions). Since we know the exact co-ordinates between xtx and xrx, we manually include the
line-of-sight direction resulting in a total of K rays.

Renderer: Ray Marching. The core step of the renderer is ray marching (detailed in Figure 2).
We elaborate on technical implementation details step-by-step using as reference Figure 2. We
drop sub- and super-scripts for rest of the paragraph for notational convenience. (a) Ray-Triangle
intersection: For a given ray p = o+ td, we are interested in the minimum finite solution of t > 0
for which the ray intersects with each face of the mesh. For some face with coordinates (a, b, c),
this entails solving for t such that p = o+ td = αa+ βb+ γc (under constraints α + β + γ = 1
and 0 ≤ α, β, γ ≤ 1). We calculate valid solutions using Cramer’s rule for all faces in the mesh and
only consider (if one exists) the minimum positive solution corresponding to the first ray-triangle
intersecting point. (b) Ray-Surface interaction: Given the solution from the previous step (i.e., on
which spatial co-ordinate the ray is incident on the surface), we are now interested in estimating the
outgoing ray from that co-ordinate. For this, we leverage an MLP that maps incident gain, direction,
and certain face properties to outgoing gain and direction. More details of this MLP are discussed
above under the ‘Architecture: Ray-surface Interaction’. (c) Reception/Termination: Per ray, we
stop ray marching steps if it is either received (hits a reception sphere of fixed size of 30cm) or leaves
the region of interest (e.g., penetrates exterior wall is shot into infinity). In other cases, we continue
with ray marching steps.

Renderer: Ray Aggregation. At the end of ray marching steps (over R iterations), we determine
the final state of the K rays. We are now interested in a small subset of these K rays that is received
at a receiver at fixed co-ordinate xrx. Note that we perform these steps only at test-time. The ray
aggregation as a result involves two steps: (a) Ray Filtering: where we determine the subset of rays
that arrives at xrx by modelling the receiver as a sphere of fixed radius of 30cm; and (b) Preventing
double counting: we find duplicate rays arrive at xrx due to a combination of a non-infinitesimally
sized reception sphere and a high density of launched rays. We cull such duplicates by grouping
rays based on a unique interaction sequence (i.e., IDs of faces it intersects with) and choosing the
ray of the shortest length in each group.

Optimization. We perform gradient-descent steps on learnable parameters using Adam with a
learning rate of 0.001 with batch size of 1. We observed large gradients (possibly due to single-
batch) and hence clip gradient values to 100 during training. The model is trained for 100 epochs
and we pick the checkpoint with lowest validation error during training.

D.2 BASELINES

MLP. The MLP baseline extends ideas presented in Tancik et al. (2020); Sitzmann et al. (2020),
where a simple MLP is used to map co-ordinates to the signal (e.g., pixel co-ordinate to RGB values).
In our paper, the MLP directly maps the spatial co-ordinates xtx and xrx to channel hi. The MLP
contains 3 hidden layers, each with 128 hidden units and ReLU activation. The core idea here is to
implicitly learn the geometry of the environment (floormap F), which is common to all train and test
examples. Note that in contrast to previous works, this model does not use positional embeddings
nor sinusoidal activations, as our initial experiments indicated they learn high-frequency artifacts
that is not typically present in our datasets (the wireless channels).

kNN. The kNN baseline (with k=1) works as so: for a given test-example (xtx,xrx) we find the
spatially closest training example argmini ||xtx −xtx

train
,i ||2 + ||xrx +xrx

train
,i ||2 and predict channel

hi.

19

	Introduction
	Related Work
	Approach
	Overview: Neural Rendering
	Ray Marching
	Training

	Experimental Results
	Experimental Setup: Datasets, Evaluation Metrics, and Baselines
	Overall Results
	Analysis

	Conclusion, Limitations, and Broader Impact
	Approach
	Building Channel Models
	Representing Ray Attributes
	Ray Marching: Details

	Dataset: Additional Details
	Train and Test Regimes
	Simulation for wiIndoor Dataset: Details

	Evaluation: Additional Details
	Controllable Synthesis: Generalization to Reconfigured Floormaps
	Controllable Synthesis: Lower- and Higher-order Interactions
	Simulation Time
	User Localization via Inverse Rendering

	Implementation: Additional Details
	WiNeRT
	Baselines

