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ABSTRACT

The discovery of symbolic governing equations is a central goal in science, yet it
remains a formidable challenge, in particular for graph dynamical systems where
the network topology further shapes the system behavior. While artificial intelli-
gence offers powerful tools for modeling these dynamics, the field lacks a rigor-
ous, comparative benchmark to assess the true scientific utility of the discovered
laws. This work establishes the first rigorous benchmark for this task, moving be-
yond simple fitting metrics to evaluate discovered laws on their long-term stability
and, critically, their out-of-distribution generalization to unseen graph topologies.
We introduce the Graph Kolmogorov-Arnold Network (GKAN-ODE), an archi-
tecture tailored for this domain, and propose a structure-aware symbolic regres-
sion method to leverage its inherent interpretability. Across a suite of synthetic
and real-world graph dynamical systems, we demonstrate that symbolic models
extracted from neural architectures, particularly our GKAN-ODE, achieve state-
of-the-art performance and generalize to unseen networks, significantly surpass-
ing existing baselines. This work presents the first systematic benchmark in this
domain, clarifying the expressivity-interpretability trade-offs and offering a path-
way from observational data to fundamental physical understanding, providing a
critical new tool for data-driven discovery in network science.

1 INTRODUCTION

The pursuit of scientific knowledge is undergoing a profound transformation, driven by the conflu-
ence of vast datasets and sophisticated computational tools. In this “Fourth Paradigm” of science
(Hey et al.,|2009), Artificial Intelligence (Al) promises not only to accelerate discovery but to fun-
damentally change its nature (Wang et al., 2023). The vision extends beyond creating models with
high predictive accuracy; the true frontier lies in developing Al that can help us understand the
world, unveiling the underlying principles and causal mechanisms that govern complex phenomena
(Camps-Valls et al, [2023). This ambition, however, is often hindered by the “black-box” nature
of deep learning models, whose internal workings are largely opaque, creating a barrier between
computational power and human understanding (Rudin, [2019).

This is challenging especially in the study of graph dynamical systems (Barrat et al., |2008). These
systems, where entities interact with each other according to a network structure, are ubiquitous in
science, from gene regulatory networks and neural circuits to the spread of epidemics and social
dynamics (Barabasi, [2013). While we can often observe their evolution, the fundamental laws gov-
erning their behavior frequently remain unknown and are heavily dependent on the specific graph
instance. Our central objective is to move beyond mere simulation by discovering the symbolic,
governing Ordinary Differential Equations (ODEs) that dictate their evolution directly from obser-
vational data.

Symbolic Regression (SR) (Makke & Chawla, [2024) emerges as the natural instrument for this task.
While traditional evolutionary algorithms and modern sparsity-based frameworks have laid crucial
groundwork, the advent of deep learning has opened new possibilities. Neural Networks (NNs), with
their ability to approximate arbitrary nonlinear functions, can learn the underlying dynamics with
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high fidelity. However, this expressivity typically comes at the cost of interpretability, requiring a
separate, post-hoc SR step to distill symbolic knowledge from the opaque models (Cranmer} |2023)).

Despite these advances, a critical gap persists in the literature. The landscape of neural-based equa-
tion discovery for graph dynamics is fragmented, with various approaches proposed but no system-
atic, comparative assessment of their performance in different conditions. Researchers seeking to
apply these powerful tools lack a clear reference on which architecture to choose, how to imple-
ment it, and how to evaluate the scientific plausibility of the discovered equations. Furthermore,
the potential of a novel and interpretable-by-design architecture like Kolmogorov-Arnold Networks
(KANSs) by Liu et al.[(2025) remains unexplored in this field, despite their demonstrated potential
for scientific discovery in other domains (Liu et al., |2024; [Koenig et al.,[2024).

This paper aims to fill this gap. We present a rigorous, comparative study designed to unveil the
actual performance of neural-based models for equation discovery on graph dynamical systems.
Our contributions are fourfold:

1. We provide a rigorous and reproducible benchmark of state-of-the-art methods, includ-
ing a leading sparse regression algorithm and Multilayer Perceptron-based architectures
(MLPs). By making our code and experimental setup publicly available, we establish a
firm baseline for future research [[]

2. We introduce the Graph KAN-ODE (GKAN-ODE), a novel adaptation of Kolmogorov-
Arnold Networks for graph dynamics. We enhance the standard architecture with
hyperparameter-free multiplicative nodes to better capture physical interactions and pro-
pose a principled, structure-aware Spline-Wise symbolic regression algorithm to distill
faithful formulas directly from KAN architectures.

3. We conduct extensive experiments on both synthetic systems with known ground truths,
and challenging real-world epidemic data. Our evaluation hinges on a stringent long-term
trajectory rollout metric, which assesses the stability of the discovered laws that goes
beyond simple one-step prediction accuracy. Moreover, we demonstrate that the learned
symbolic models generalize effectively to out-of-distribution settings on unseen scenar-
ios, highlighting their robustness and scientific plausibility.

4. We offer a critical analysis of the expressivity-interpretability trade-off. By comparing
the symbolic equations extracted from different architectures, we provide practical obser-
vations for researchers, clarifying how model choice impacts the complexity and scientific
plausibility of the discovered laws.

This work, therefore, serves as both a methodological contribution and a comprehensive benchmark
guide, aiming to equip the scientific community with the tools and insights needed to turn observa-
tional data into a fundamental understanding of complex systems.

2 RELATED WORKS

2.1 SYMBOLIC REGRESSION FOR SCIENTIFIC DISCOVERY

Symbolic regression is a methodology for discovering mathematical expressions from data. Unlike
standard regression, which fits parameters to a predefined model, SR searches the space of possible
expressions fgy s € F to find one that optimally balances predictive accuracy and simplicity.
Formally, a SR method takes a dataset of input—output pairs {(x, y) | y = f(«)} and gives a symbolic

approximation of f,i.e., SR : {(z,y)} — fsr =~ f.

Historically, this field was dominated by evolutionary methods like Genetic Programming (GP)
(Schmidt & Lipson, 2009} (Cranmer, [2023)), which, while powerful, often faces scalability chal-
lenges. A prominent alternative is the Sparse Identification of Nonlinear Dynamics (SINDy) frame-
work (Brunton et al., [2016)), which recasts equation discovery as a sparse regression problem over
a library of candidate functions. For network systems, TPSINDy extends this by modeling the
system’s dynamics as a two-part sparse regression problem, finding separate expressions for the
self-dynamics and interaction components (Gao & Yan, 2022).

'Anonymized code available at https:/anonymous.4open.science/r/Kan-for-Interpretable-Graph-
Dynamics-4499/README.md
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2.2 DEEP LEARNING FOR EQUATION DISCOVERY ON GRAPHS

One of the first attempts to leverage NNs to learn analytical expressions was the development
of equation learner (EQL) networks (Martius & Lampert, 2017), in which non-linear activation
functions are replaced by primitive functions, analogously to SR. Another remarkable work is Al-
Feynman (Udrescu et al., 2020), an algorithm that combines SR and NN fitting with a suite of
physics-inspired techniques, that outperformed previous benchmarks. A pivotal contribution by
Cranmer et al.| (2020) showed that Graph Neural Networks (GNNs) can effectively learn the dy-
namics of physical systems of particles, and their learned latent representations can then be distilled
into symbolic expressions via post-hoc SR. The recent Learning Law of Changes (LLC) framework
(Hu et al.} |2025)) advances this approach for graph dynamical systems. It employs separate MLPs to
model the self-dynamics and interaction terms (with an explicit multiplication bias) and then parses
them into symbolic form using a pre-trained transformer. Their results demonstrate significant per-
formance gains over prior SR techniques for network dynamics, establishing a key state-of-the-art
contribution. However, these methods rely on standard MLPs, whose opaque nature complicates the
extraction of interpretable symbolic forms, necessitating a model-agnostic, post-hoc SR step.

2.3 KOLMOGOROV-ARNOLD NETWORKS: A PATH TOWARDS INTERPRETABILITY

KANs (Liu et al} [2025) have a fundamentally different architecture than MLPs: they place learn-
able, univariate activation functions, parametrized as splines ¢, on the network’s edges, while nodes
simply perform summation. This design shifts complexity from matrix multiplications and nonlinear
activations to a set of univariate functions that can be individually visualized, analyzed, and sym-
bolically regressed. Further technical details can be found in the original paper or in the Appx.
The potential of KANs for scientific discovery has been demonstrated in learning PDE solutions
(Liu et al., 2024) and discovering physical laws in dynamical systems without explicit interaction
structure (Koenig et al. 2024). However, to our knowledge, KANs have not yet been applied to
discover the governing equations of graph dynamical systems, where network topology drives the
evolution of node states over time. Their use has been limited to other graph-based tasks (Bresson
et al.| 20235)), not the specific challenge of discovering underlying temporal dynamics.

3 METHODS

This section details our proposed framework for equation discovery. We first establish the formal
context for our work, defining graph dynamical systems. Next, we describe the general neural train-
ing pipeline, then introduce our Graph KAN-ODE (GKAN-ODE) architecture, and finally outline
the symbolic regression procedures and evaluation protocol.

3.1 MATHEMATICAL FORMULATION AND NOTATION

The systems under investigation are graph dynamical systems, or dynamical processes on complex
networks. Such a system is defined by a graph G = (V, ), where V is a set of N nodes (or
components) and £ a set of edges representing their interactions. The state of each node i € V
at time ¢t € {0,...,T} is described by a vector x;(t) € R?, while the whole system state is
defined as X(¢) € RN¥*? The graph topological structure can be represented by the adjacency
matrix A € RNV where each entry denotes the connection strength between nodes 7 and j,
and A;; =0 <= e;; ¢ £. As in related works, we focus on graphs with static topology, where
V¢ A(t) = A, and in a time-invariant context in which the temporal dynamics of a node x;(t) are
described by an autonomous ODE:

dXi
dt

= f (xi, {xj}jen) =% Vi, €]

where A (7) denotes the neighborhood of node i. For clarity, we will omit the explicit time de-
pendence of x;(t) hereafter, unless when denoting data points. Following the principle of uni-
versality in network dynamics (Barzel & Barabasi, 2013) for pairwise interactions, the governing
function f can be decomposed into two fundamental components: an intrinsic, self-dynamics func-
tion H : RY — RY, and an interaction function G : R x R? — R? that aggregates effects from
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neighboring nodes. The dynamics of any node ¢ can thus be expressed as:

N
Xi = H(Xl) +ZA” G(Xi,Xj). (2)
j=1
The primary objective of this work is to discover the symbolic forms of both H and G from discrete-
time observations {X(¢)}7_ . Models and estimated quantities are denoted with a hat, e.g., H,X;.

3.2 LEARNING DYNAMICS ON GRAPHS WITH NEURAL MODELS

Our primary data consists of time series of graph states {X(¢)}~_,, representing discrete measure-
ments of an underlying continuous process. As a prerequisite for learning, we require an estimate
of the instantaneous rate of change, the time derivative X(t). We compute a numerical value of the
time derivative for each node x; using the five-point stencil method (Gao & Yan, [2022), a choice
that balances accuracy with robustness to noise in the observational data. This yields a correspond-
ing sequence of derivative evaluations {X(t)}7_,. We then train a neural framework to learn the
mapping from the system’s state X (¢) to its derivative X(t). Following the decoupled formulation
in Eq.[2] we parameterize the self-dynamics H and interaction dynamics G with two distinct neural
networks, H and G respectively. The models are trained via gradient descent to minimize the Mean
Absolute Error (MAE) loss function between the numerically estimated derivatives X(t) and the

model’s predictions X (t) over the entire training set.

3.3 GRAPH KOLMOGOROV-ARNOLD NETWORKS FOR ODE DISCOVERY

We propose and assess a novel approach, the GKAN-ODE framework, where functions H and G
are parameterized by distinct KANs. In line with the principle that physical laws are often sparse
(Brunton et all 2016), we include the KAN-specific L' sparsity penalty (Liu et al.| (2025) and

Appx. i to encourage both H and G networks to prune inactive splines.

To better capture the multiplicative relationships common in physical dynamics, we further enhance
the standard KAN architecture. While prior work has introduced dedicated multiplication layers be-
tween KAN layers (Liu et al.,[2024)), this adds structural hyperparameters requiring prior knowledge
or extensive tuning. To circumvent this, we propose a more integrated extension where multiplica-
tion occurs within each KAN layer. Specifically, for a KAN layer with d,,,; output neurons, we des-
ignate half [d,,:/2] as standard additive nodes and the remaining | d,,:/2] as multiplicative nodes.
This design allows the model itself, guided by data and sparsity, to learn the appropriate functional
form (additive, multiplicative, or a combination) without additional hyperparameters. Our empirical
findings, detailed in Appx.[A.T0] confirm that sparse training effectively prunes multiplicative nodes
when the dynamics are purely additive and retains them when they are essential, leading to improved
performance over the original architecture.

3.4 SYMBOLIC REGRESSION PROCEDURES

Once a neural model is trained, we extract symbolic formulas using two distinct strategies: a model-
agnostic, black-box approach and a structure-aware, white-box approach exclusive to KANs.

3.4.1 BLACK-BOX SYMBOLIC REGRESSION

A black-box SR method takes data and a model as input, and produces symbolic expressions ap-
proximating the model predictions. Notably, this procedure treats the models as opaque functions,
making it applicable to any machine learning method. In our case, given the trained neural net-
works H and G, we first generate input-output pairs by performing a forward pass over the training

data: {x;(t), H(xi(t))}, and {(x;(t),x;(t)), G(x:(t),x;(t))} for all interacting pairs. We then fit a
separate SR model to each set to obtain symbolic expressions H sr and G SR:

SR({x, H(x)}) = Hsr, SR({(xs,%;), G(xs,%;)}) = Gsr. 3)

The final symbolic model of the full ODE, fsr & X;, is constructed by composing these two
discovered expressions according to the governing structure of Eq.
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3.4.2 SPLINE-WISE SYMBOLIC REGRESSION FOR KANS

The architecture of KANs enables a more granular and transparent approach: instead of regressing
on the network’s aggregate output, we can distill expressions from its elementary components, i.e.,
the univariate spline activations ¢. To fully leverage the transparent structure of KANs, we propose a
novel Spline-Wise (SW) symbolic regression algorithm for KAN-based models, that systematically
converts a trained KAN into a fully symbolic equation. While drawing inspiration from prior work
(Liu et al., [2025)), our procedure incorporates a principled trade-off between expression complexity
and accuracy. The procedure is as follows:

1. Affine Function Fitting. Given a trained KAN, let S be the set of all its spline activa-
tions after pruning. For each spline ¢ € S, we test its fit against a library F of candidate
univariate symbolic functions. For each candidate function f € F, we find the optimal
affine transformation parameters 6} , = (a, b, c,d) by non-linear least squares, that mini-
mize the squared error between the spline’s output and the transformed candidate function,
fo(x;0) =a- f(b-x + c) + d, over a training set.

2. Complexity-Penalized Function Selection. For each spline, we must now select the best
symbolic representation from the fitted candidates. We search for the function fy(z;67% ;)
that minimizes a penalized error, balancing approximation accuracy with structural com-
plexity. Specifically, let I" be a range of regularization hyperparameters. For each ¢ € S
and v € I', we search for the function f € F that minimizes:

[} =arg gcneig [MSE (¢(x), f(x; 0% 4)) 4+~ - Complexity(f, 07 ;)] 4)

where MSE is the Mean Squared Error, and Complexity/( f, 9}7 ¢) denotes the structural
complexity of f, defined as the amount of its operators.

3. Pareto-Optimal Formula Selection. The previous step yields a set of |T'| candidate sym-
bolic functions for each spline, representing a Pareto front of accuracy versus complexity.
We automatically select the optimal function for each spline f by identifying the expres-
sion with the highest performance-complexity score, defined as the negative gradient of the
log-MSE with respect to complexity (Cranmer;, 2023). Its maximum isolates the point at
the Pareto curve where the gain in accuracy for an increase in complexity is the highest.

4. Symbolic Model Reconstruction. Finally, we replace each spline ¢ in the trained KANs H
and G with its selected symbolic counterpart f - By composing these elementary functions

according to the KANS’ architectures, we reconstruct the complete symbolic formula fgyy,
following the structure of Eq.

The pseudo-code algorithm of the above procedure can be found in Appx. while in Appx.
we show that this approach achieves a more favorable trade-off between accuracy and formula com-
plexity than the SR method proposed by KAN’s authors.

3.5 EVALUATION METRIC

The ultimate test of a discovered dynamical law is its ability to forecast the system’s evolution.
Our primary performance measure is therefore the MAE between ground-truth trajectories and pre-
dictions obtained by numerically integrating the learned symbolic dynamics. Formally, given a
sequence of observations {X(¢)}L_,, let Hgpr and Ggr be the extracted symbolic formulas. Since
they describe the structure of an ODE, we can integrate them over any time interval [to, t,,,] C [0, 7T]:

tm N
Xi(tm) = xi(to) +/ [HSR(fCi(t)) + ZAij GSR(fii(t)vf(j(t))} dt. 5)
to j=1
Our assessment begins from a given set of initial conditions X (to) from a test trajectory, which are
then used to integrate the symbolic model via Eq. [5] for all subsequent time steps, resulting in a
predicted trajectory {X(t)}igto +1- We then compute the trajectory mean absolute error, MAE;,
between the ground-truth observations and predictions:
N tm N
CDimt 2l xi(t) — %i(1)]

MAE,,; = :
o N(tm —to—1) ©
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This integration is autoregressive, meaning prediction errors at one step are propagated into the
next. Consequently, even minor inaccuracies in the discovered equations can compound over time,
making the MAE,; a stringent and comprehensive test of a model’s long-term accuracy and stability.
Furthermore, this metric does not rely on prior knowledge of the true governing equations, thereby
making it more suitable for real-world scenarios.

4 EXPERIMENTAL DESIGN

This section outlines the empirical framework for assessing equation discovery methods in graph
dynamical systems, detailing the models, datasets, and evaluation metrics for performance, sym-
bolic accuracy, and generalization. The Appendices and source code offer further information on
dataset generation, model implementation, optimization, SR algorithms, and hyperparameters, en-
suring scientific reproducibility and fairness.

4.1 MODELS UNDER ASSESSMENT

We rigorously and fairly assess a set of distinct state-of-the-art methodologies for inferring the gov-
erning equations of dynamical systems on graphs. In addition to the proposed GKAN-ODE model,
we test three other approaches: our own implementation of a GMLP-ODE model, the neural ar-
chitecture of LLC, and the TPSINDy algorithm. The GMLP-ODE serves as the direct MLP-based
counterpart of GKAN-ODE, where the two KANs are replaced by MLPs and allow for a controlled
comparison between the two architectures. LLC is included as a state-of-the-art neural baseline,
notable for an MLP-based architecture that explicitly introduces multiplication in the network’s

structure for G in a manner conceptually similar to GKAN-ODE. Unlike these neural approaches,

TPSINDy directly learns sparse symbolic expressions for H and G from data and represents the
leading non-neural approach. For the neural architectures, we utilize SR procedures to extract inter-
pretable equations. As black-box SR, the GP-based tool PySR (Cranmer, [2023) is employed, and
the resulting symbolic models are labeled with the suffix “+GP”. Similarly, SW fitting applied to
our proposed model is referred to as GKAN-ODE+SW.

4.2 INFERENCE ON SYNTHETIC DYNAMICAL SYSTEMS

We first evaluate the models’ capacity to recover the precise symbolic form of known dynamics. To
this end, we utilize four canonical network dynamical systems, chosen to represent a diverse range
of nonlinearities common in scientific models (Barzon et al.l [2024): Kuramoto oscillators (KUR),
epidemic spreading (EPID), biochemical (BIO) and population (POP) dynamics. We generate these
synthetic datasets by integrating the models on a fixed Barabasi—Albert (Barabasi & Albert, |1999)
network, chosen for its scale-free topology representative of many real-world systems. To eval-
uate robustness against measurement uncertainty, we also create noisy variants of these systems
by adding white noise to node states at each time step, under different signal-to-noise ratio (SNR)
levels. For all experiments with this setting, models are trained on the first 80% of the temporal
observations, with the remaining 20% reserved for validation and hyperparameter tuning.

A crucial component of our methodology is the rigorous selection of the final symbolic model. Rec-
ognizing that models may overfit to a specific network instance, and that both the GP-based and the
SW fitting procedures are sensitive to hyperparameters, we design a robust validation framework.
We generate an additional validation set by simulating the same dynamics on a new graph with a
different topology and initial conditions. For each candidate symbolic formula produced by the SR
algorithms, we compute the trajectories rollout error (Eq.[6) on this out-of-distribution (OOD) vali-
dation set. The symbolic model achieving the lowest MAEy.; is selected as the definitive expression
representing the underlying ODE. Extending the related works, we aim at assessing the generaliza-
tion of trained models and extracted equations in a novel context: a final fest set that includes three
unique simulations, each with distinct graph topologies and random initial conditions. We report
the MAE,; averaged over these three test trajectories for both models and formulas, indicating their
generalization beyond the training domain.
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4.3 INFERENCE ON REAL-WORLD EMPIRICAL DATA

To assess performance on a task with unknown ground truth, we utilize the empirical dataset of
epidemic dynamics from |Gao & Yan, which captures the early, pre-intervention spreading of the
HINI1, SARS, and COVID-19 outbreaks across the global airline network. We train the neural
models on the COVID-19 dataset and extract symbolic representations. As a true OOD validation
set is unavailable, we select the symbolic expression that yields the lowest MAE,; on the training
data itself. This procedure discovers a single, homogeneous equation describing the global average
dynamics. To account for country-specific variations, we then fine-tune the coefficients of this dis-
covered symbolic structure for each node, following the idea proposed in prior works (Gao & Yan,
2022; Hu et all 2025) and detailed in Appx.[A.T3] Our evaluation focuses on the generalizability
of the discovered laws. We investigate whether the symbolic structures learned from COVID-19,
with only coefficient fine-tuning, can effectively model HIN1 and SARS outbreaks. For final model
assessment, we utilize the long-term trajectory rollout metric, MAEy.,;, and compare it with previous
studies using a short-term, single-step prediction metric, MAE,,;, which relies on the Euler method
with ground-truth data rather than prior model predictions, emphasizing short-term accuracy and
reducing long-term instability impacts.

5 RESULTS AND DISCUSSION

5.1 COMPARATIVE PERFORMANCE ON SYNTHETIC SYSTEMS

Our first key finding, illustrated in Fig. [T] (left), is the superior performance of neural-based archi-
tectures over the sparse regression baseline, TPSINDy. The neural models, both before and after
symbolic distillation, consistently yield more accurate and stable long-term trajectory rollouts, as
measured by the MAE,;. TPSINDy correctly identifies the KUR dynamics, arguably due to its ex-
pressiveness of periodic functions, yet it fails on the other cases. This discrepancy arises because the
predefined function libraries do not contain the necessary terms, and since the method is not compo-
sitional, it cannot learn them. Conversely, neural-based approaches combined with SR can overcome
these limitations by composing complex, nested equations starting from a restricted library of uni-
variate functions and simple binary operators. Among the neural approaches, the models derived
from our GKAN-ODE architecture demonstrate remarkable efficacy, and its black-box (GKAN-
ODE+GP) symbolic model is consistently among the top performers, achieving the lowest rollout
error. While the LLC architecture also performs well, in particular versus its GMLP-ODE counter-
part, the GKAN-based models frequently exhibit lower mean error and smaller variance across all
time steps (Appx. [A.§). Beyond raw performance, GKAN-ODE models are also more parameter-
efficient than the baselines: Fig. [1] (right) provides a clear visualization of the trade-off between
performance (MAE,;) and the number of parameters. The figure promotes once more GKAN-ODE
as the most promising choice for efficient equation discovery on graph dynamical systems.

5.2 SYMBOLIC DISCOVERY AND INTERPRETABILITY

As shown in Tab. [I] the black-box GKAN-ODE+GP procedure demonstrates exceptional capability
in recovering the ground-truth dynamics, successfully extracting (up to algebraic transformations)
the exact symbolic form of the governing equations for all four synthetic systems. The discovered
structures are identical to the ground truth, and the fitted coefficients are remarkably precise, vali-
dating the entire pipeline from neural training to symbolic distillation. The structure-aware GKAN-
ODE+SW approach offers a more direct window into the model’s inner workings. Detailed in Tab.
this method also successfully identifies the correct underlying dynamics. For the BIO system, it re-
trieves slightly different coefficients, while for the KUR system it discovers a phase-shifted sine
function which is mathematically equivalent to the ground truth. For more complex dynamics like
EPID or POP, the SW method sometimes yields expressions with additional, small-coefficient terms.
This reflects a trade-off: while the GP approach imposes a stronger global simplicity prior to find the
most compact formula, the SW approach provides a more faithful, granular representation of what
the individual splines have learned from the data, including minor, data-driven nuances. Both out-
comes are valuable forms of interpretation. The equations extracted by TPSINDy, GMLP-ODE+GP
and LLC+GP, along with their discussion, can be found in Appx.
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Figure 1: Performance comparison on synthetic dynamics. (Left) Comparison of test MAE,,; for
both models and the inferred equations. (Right) Test MAE,; and number of parameters of the
trained neural-based models and TPSINDy (whose parameters are defined by its symbolic function
library). Values are averaged on three test graphs and the standard deviation is reported as errors
bars.

When dealing with dynamics with observation noise, neural models are still able to recover com-
petitive expressions under low noise conditions (SNR = 70 dB). However, at higher noise levels
(SNR < 50 dB), all models tend to degenerate. More details are available in Appx. [A.TT]

Table 1: Ground-truth and discovered symbolic equations fgp for the four synthetic dynamical
systems learned by the best-validated GKAN-ODE+GP model and rounded to four decimal places.
The structural complexity matches between ground-truth and learned models: it is 5 for KUR and
POP, and 6 for EPID and BIO.

Dataset Ground-Truth Equation GKAN-ODE+GP Discovered Symbolic Expression

KUR 2+ 50, Aijsin(z; — ;) 1.9992 + 3, A;;(—0.5005 - sin(z; — x;))

EPID —%.’Ei + % Zj Aij(l - J?i)l'j —0.4997 - x; + Zj A,‘j(.ﬁj . (0.5001 —0.5002 - CL’l))
.3

POP —3Ti+ Y, Ai 3 —0.4999 - z; + 3 A4;;(0.2000 - %)

Table 2: Best-validated Spline-wise symbolic formulas fgy and their structural complexity for the
GKAN-ODE+SW model on the four synthetic dynamical systems.

Dataset GKAN-ODE+SW Discovered Symbolic Expressions Complexity
KUR 1.9991 + zj A;;(—0.5005 - sin(—0.9992 - z; + 0.9995 - z; + 3.1373)) 8
EPID —0.4988 - z; + Zj A;;(—0.4961 - z;z; + 0.4970 - ; — 0.0022 - z; 4+ 0.0018) 10
BIO —0.5000 - x; + 1.0001 + Zj A;;(—0.4899 - x;x;) 6
POP —0.2862x; — 0.1744 tanh(1.4270x; — 0.0779) — 0.0122 16

+3°, Ay (0.147422 + 0.006622 + 0.0204z;)

5.3 DISCOVERY IN REAL-WORLD EPIDEMIC DYNAMICS

In this scenario, the symbolic equations derived for the global average dynamics are reported in
Appx [A12] The models yield diverse functional forms, with TPSINDy favoring a logistic-like
interaction, while neural architectures learn more complex nonlinearities. This scenario further
highlights the critical trade-off between model expressivity and interpretability. Notably, the GKAN-
ODE+GP model distills a particularly simple and plausible law, suggesting a linear self-term with an
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exponential growth interaction from neighbors. In contrast, the GKAN-ODE+SW method produces
a significantly more complex, but fully transparent, expression by directly translating the KAN’s
internal splines. This presents a choice for domain experts: pursuing the simplest explanatory model
(via GP) or analyzing a more faithful, albeit complex, representation of the neural-learned dynamics
(via SW). Both are valid pathways to scientific discovery, serving different analytical goals.

Key evaluation rests on the models’ stability over time and generalization to unseen data. Fig. 2]
contrasts the discovered equations’ performance on the COVID-19 test set against their adaptability
to HINI and SARS dynamics after tuning coefficients. While TPSINDy is competitive in single-
step forecasting (MAE,)), it leads to catastrophic error accumulation in long-term trajectory rollouts
(MAEy,;). Conversely, all neural-derived laws, and in particular GKAN-ODE models, exhibit strong
long-term stability and generalization, crucial for identifying scientific models in complex systems.
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Figure 2: Performance comparison of the symbolic formulas of Tab.|13|averaged on the COVID,
HINI, SARS datasets. Both MAE,; (top) and MAE,, (bottom) are computed on the complete
(left) and test (right) datasets.

6 CONCLUSION

This paper rigorously assesses the most prominent Al methods of equation discovery for graph dy-
namical systems to reveal their true performance. Our findings establish that our proposed GKAN-
ODE models significantly outperform sparse regression and MLP-based baselines. KAN-based
models further demonstrate a superior balance of predictive accuracy, parameter efficiency, and an
architecture inherently amenable to interpretation.

A key contribution of this work lies in the distillation of symbolic knowledge from these models.
We have shown how a model-agnostic symbolic regression can effectively recover the ground-truth
equations. In parallel, our novel Spline-Wise fitting algorithm provides a transparent and truthful,
albeit more granular, symbolic representation of KANs’internal logic. This presents a valuable
choice for researchers: a pragmatic path to the most parsimonious symbolic law, or a more detailed,
faithful representation of what the model has actually learned from the data.

By establishing a reproducible benchmark and advocating for evaluation based on long-term, out-
of-distribution generalization, this work aims to serve as a practical reference and open-source con-
tribution for the interdisciplinary scientific community working on complex systems. It clarifies
the state-of-the-art and promotes a human-in-the-loop paradigm where Al acts as a powerful col-
laborator that generates plausible, testable hypotheses, thereby augmenting human intuition and
understanding. Future research should focus on adapting such models for time-dependent systems
and with evolving topology, as well as developing tools for dealing with noisy and more complex
real-world systems. Ultimately, this study confirms the viability of interpretable neural architec-
tures as powerful tools for the scientific community in the quest to understand the fundamental laws
governing complex systems.
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