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ABSTRACT

The discovery of symbolic governing equations is a central goal in science; yet, it
remains a formidable challenge, particularly for graph dynamical systems, where
the network topology further shapes the system behavior. While artificial intelli-
gence offers powerful tools for modeling these dynamics, the field lacks a rigorous
comparative benchmark to assess the true scientific utility of the discovered laws.
This work establishes the first rigorous benchmark for this task, moving beyond
simple fitting metrics to evaluate discovered laws based on their long-term stability
and, critically, their out-of-distribution generalization to unseen graph topologies.
We introduce the Graph Kolmogorov-Arnold Network (GKAN-ODE), an archi-
tecture tailored for this domain, and propose a structure-aware symbolic regres-
sion method to leverage its inherent interpretability. Across a suite of synthetic
and real-world graph dynamical systems, we demonstrate that symbolic models
extracted from neural architectures, particularly our GKAN-ODE, achieve state-
of-the-art performance and generalize to unseen networks, significantly surpass-
ing existing baselines. This work presents the first systematic benchmark in this
domain, clarifying the expressivity-interpretability trade-offs and offering a path-
way from observational data to fundamental physical understanding, providing a
critical new tool for data-driven discovery in network science.

1 INTRODUCTION

The pursuit of scientific knowledge is undergoing a profound transformation, driven by the conflu-
ence of vast datasets and sophisticated computational tools. In this “Fourth Paradigm” of science
(Hey et al., 2009), Artificial Intelligence (AI) promises not only to accelerate discovery but also to
fundamentally change its nature (Wang et al., 2023). The vision extends beyond creating models
with high predictive accuracy; the true frontier lies in developing AI that can help us understand the
world, unveiling the underlying principles and causal mechanisms that govern complex phenomena
(Camps-Valls et al., 2023). This ambition, however, is often hindered by the “black-box” nature
of deep learning models, whose internal workings are largely opaque, creating a barrier between
computational power and human understanding (Rudin, 2019).

This is challenging, especially in the study of graph dynamical systems (Barrat et al., 2008). These
systems, where entities interact with each other according to a network structure, are ubiquitous in
science, from gene regulatory networks and neural circuits to the spread of epidemics and social
dynamics (Barabási, 2013). While we can often observe their evolution, the fundamental laws gov-
erning their behavior frequently remain unknown and are heavily dependent on the specific graph
instance. Our central objective is to move beyond mere simulation by discovering the symbolic
governing Ordinary Differential Equations (ODEs) that dictate their evolution directly from obser-
vational data.

Symbolic Regression (SR) (Makke & Chawla, 2024) emerges as the natural instrument for this task.
While traditional evolutionary algorithms and modern sparsity-based frameworks have laid crucial
groundwork, the advent of deep learning has opened new possibilities. Neural Networks (NNs), with
their ability to approximate arbitrary nonlinear functions, can learn the underlying dynamics with
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high fidelity. However, this expressivity typically comes at the cost of interpretability, requiring a
separate post-hoc SR step to distill symbolic knowledge from the opaque models (Cranmer, 2023).

Despite these advances, a critical gap persists in the literature. The landscape of neural-based equa-
tion discovery for graph dynamics is fragmented, with various approaches proposed but no system-
atic comparative assessment of their performance under different conditions. Researchers seeking
to apply these powerful tools lack a clear reference for which architecture to choose, how to im-
plement it, and how to evaluate the scientific plausibility of the discovered equations. Furthermore,
the potential of a novel and interpretable-by-design architecture like Kolmogorov-Arnold Networks
(KANs) by Liu et al. (2025) remains unexplored in this field, despite their demonstrated potential
for scientific discovery in other domains (Liu et al., 2024; Koenig et al., 2024).

This paper aims to fill this gap. We present a rigorous, comparative study designed to unveil the
actual performance of neural-based models for equation discovery on graph dynamical systems.
Our contributions are fourfold:

1. We provide a rigorous and reproducible benchmark of state-of-the-art methods, includ-
ing a leading sparse regression algorithm and Multilayer perceptron-based architectures
(MLPs). By making our code and experimental setup publicly available, we establish a
firm baseline for future research 1.

2. We introduce the Graph KAN-ODE (GKAN-ODE), a novel adaptation of Kolmogorov-
Arnold Networks for graph dynamics. We enhance the standard architecture with
hyperparameter-free multiplicative nodes to better capture physical interactions and pro-
pose a principled, structure-aware Spline-Wise symbolic regression algorithm to distill
faithful formulas directly from KAN architectures.

3. We conduct extensive experiments on both synthetic systems with known ground truths
and challenging real-world epidemic data. Our evaluation hinges on a stringent long-term
trajectory rollout metric, which assesses the stability of the discovered laws that go be-
yond simple one-step prediction accuracy. Moreover, we demonstrate that the learned sym-
bolic models generalize effectively to out-of-distribution settings in unseen scenarios,
highlighting their robustness and scientific plausibility.

4. We offer a critical analysis of the expressivity-interpretability trade-off. By comparing
the symbolic equations extracted from different architectures, we provide practical obser-
vations for researchers, clarifying how model choice impacts the complexity and scientific
plausibility of the discovered laws.

This work, therefore, serves as both a methodological contribution and a comprehensive benchmark
guide, aiming to equip the scientific community with the tools and insights needed to turn observa-
tional data into a fundamental understanding of complex systems.

2 RELATED WORKS

2.1 SYMBOLIC REGRESSION FOR SCIENTIFIC DISCOVERY

Symbolic regression is a methodology for discovering mathematical expressions from data. Unlike
standard regression, which fits parameters to a predefined model, SR searches the space of possible
expressions fSYM ∈ F to find one that optimally balances predictive accuracy and simplicity.
Formally, a SR method takes a dataset of input–output pairs {(x, y) | y = f(x)} and gives a symbolic
approximation of f , i.e., SR : {(x, y)} 7→ f̂SR ≈ f .

Historically, this field was dominated by evolutionary methods like Genetic Programming (GP)
(Schmidt & Lipson, 2009; Cranmer, 2023), which, while powerful, often face scalability challenges.
A prominent alternative is the Sparse Identification of Nonlinear Dynamics (SINDy) framework
(Brunton et al., 2016), which recasts equation discovery as a sparse regression problem over a library
of candidate functions. For network systems, TPSINDy extends this by modeling the system’s
dynamics as a two-part sparse regression problem, finding separate expressions for the self-dynamics
and interaction components (Gao & Yan, 2022).

1Anonymized code is available at https://anonymous.4open.science/r/Kan-for-Interpretable-Graph-
Dynamics-4499/README.md
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2.2 DEEP LEARNING FOR EQUATION DISCOVERY ON GRAPHS

One of the first attempts to leverage NNs to learn analytical expressions was the development of
equation learner (EQL) networks (Martius & Lampert, 2017), in which non-linear activation func-
tions are replaced by primitive functions, analogous to SR. Another remarkable work is AI-Feynman
(Udrescu et al., 2020), an algorithm that combines SR and NN fitting with a suite of physics-inspired
techniques that outperformed previous benchmarks. A pivotal contribution by Cranmer et al. (2020)
showed that Graph Neural Networks (GNNs) can effectively learn the dynamics of systems of par-
ticles, and their learned latent representations can then be distilled into symbolic expressions via
post-hoc SR. The recent Learning Law of Changes (LLC) framework (Hu et al., 2025) advances this
approach for graph dynamical systems. It employs separate MLPs to model the self-dynamics and
interaction terms (with an explicit multiplicative bias) and then parses them into symbolic form us-
ing a pre-trained transformer. Their results demonstrate significant performance gains over prior SR
techniques for network dynamics, establishing a key state-of-the-art contribution. However, these
methods rely on standard MLPs, whose opaque nature complicates the extraction of interpretable
symbolic forms, necessitating a model-agnostic, post-hoc SR step.

2.3 KOLMOGOROV-ARNOLD NETWORKS: A PATH TOWARDS INTERPRETABILITY

KANs (Liu et al., 2025) have a fundamentally different architecture than MLPs: they place learn-
able, univariate activation functions, parameterized as splines ϕ, on the network’s edges, while nodes
simply perform summation. This design shifts complexity from matrix multiplications and nonlinear
activations to a set of univariate functions that can be individually visualized, analyzed, and sym-
bolically regressed. Further technical details can be found in the original paper or in the Appx. A.1.
The potential of KANs for scientific discovery has been demonstrated in learning PDE solutions
(Liu et al., 2024) and discovering physical laws in dynamical systems without an explicit interaction
structure (Koenig et al., 2024). However, to our knowledge, KANs have not yet been applied to
discover the governing equations of graph dynamical systems, where network topology drives the
evolution of node states over time. Their use has been limited to other graph-based tasks (Bresson
et al., 2025), not to the specific challenge of discovering underlying temporal dynamics.

3 METHODS

This section details our proposed framework for equation discovery. We first establish the formal
context for our work by defining graph dynamical systems. Next, we describe the general neu-
ral training pipeline, then introduce our Graph KAN-ODE (GKAN-ODE) architecture, and finally
outline the symbolic regression procedures and evaluation protocol.

3.1 MATHEMATICAL FORMULATION AND NOTATION

The systems under investigation are graph dynamical systems or dynamical processes on complex
networks. Such a system is defined by a graph G = (V, E), where V is a set of N nodes (or
components) and E is a set of edges representing their interactions. The state of each node i ∈
V at time t ∈ {0, . . . , T} is described by a vector xi(t) ∈ Rd, while the whole system state is
defined as X(t) ∈ RN×d. The graph topological structure can be represented by the adjacency
matrix A ∈ RN×N , where each entry denotes the connection strength between nodes i and j,
and Aij = 0 ⇐⇒ eij /∈ E . As in related works, we focus on graphs with static topology, where
∀ t A(t) = A, and in a time-invariant context in which the temporal dynamics of a node xi(t) are
described by an autonomous ODE:

dxi

dt
= f

(
xi, {xj}j∈N (i)

)
= ẋi ∀ t, (1)

where N (i) denotes the neighborhood of node i. For clarity, we will omit the explicit time depen-
dence of xi(t) hereafter, unless when denoting data points. Following the principle of universal-
ity in network dynamics (Barzel & Barabási, 2013) for pairwise interactions, the governing func-
tion f can be decomposed into two fundamental components: an intrinsic self-dynamics function
H : Rd → Rd and an interaction function G : Rd × Rd → Rd that aggregates effects from neigh-
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boring nodes. The dynamics of any node i can thus be expressed as:

ẋi = H(xi) +

N∑
j=1

Aij G(xi,xj). (2)

The primary objective of this work is to discover the symbolic forms of both H and G from discrete-
time observations {X(t)}Tt=0. Models and estimated quantities are denoted with a hat, e.g., Ĥ, x̂i.

3.2 LEARNING DYNAMICS ON GRAPHS WITH NEURAL MODELS

Our primary data consist of time series of graph states {X(t)}Tt=0, representing discrete measure-
ments of an underlying continuous process. As a prerequisite for learning, we require an estimate
of the instantaneous rate of change, the time derivative Ẋ(t). We compute a numerical value of the
time derivative for each node xi using the five-point stencil method (Gao & Yan, 2022), a choice
that balances accuracy with robustness to noise in the observational data. This yields a correspond-
ing sequence of derivative evaluations {Ẋ(t)}Tt=0. We then train a neural framework to learn the
mapping from the system’s state X(t) to its derivative Ẋ(t). Following the decoupled formulation
in Eq. 2, we parameterize the self-dynamics H and interaction dynamics G with two distinct neural
networks, Ĥ and Ĝ, respectively. The models are trained via gradient descent to minimize the Mean
Absolute Error (MAE) loss function between the numerically estimated derivatives Ẋ(t) and the

model’s predictions ˆ̇X(t) over the entire training set.

3.3 GRAPH KOLMOGOROV-ARNOLD NETWORKS FOR ODE DISCOVERY

We propose and assess a novel approach, the GKAN-ODE framework, where functions Ĥ and Ĝ
are parameterized by distinct KANs. In line with the principle that physical laws are often sparse
(Brunton et al., 2016), we include the KAN-specific L1 sparsity penalty (Liu et al. (2025) and
Appx. A.1) to encourage both Ĥ and Ĝ networks to prune inactive splines.

To better capture the multiplicative relationships common in physical dynamics, we further enhance
the standard KAN architecture. While prior work has introduced dedicated multiplication layers be-
tween KAN layers (Liu et al., 2024), this adds structural hyperparameters, requiring prior knowledge
or extensive tuning. To circumvent this, we propose a more integrated extension where multiplica-
tion occurs within each KAN layer. Specifically, for a KAN layer with dout output neurons, we des-
ignate half ⌈dout/2⌉ as standard additive nodes and the remaining ⌊dout/2⌋ as multiplicative nodes.
This design allows the model itself, guided by data and sparsity, to learn the appropriate functional
form (additive, multiplicative, or a combination) without additional hyperparameters. Our empirical
findings, detailed in Appx. C.3, confirm that sparse training effectively prunes multiplicative nodes
when the dynamics are purely additive and retains them when they are essential, leading to improved
performance over the original architecture.

3.4 SYMBOLIC REGRESSION PROCEDURES

Once a neural model is trained, we extract symbolic formulas using two distinct strategies: a model-
agnostic, black-box approach and a structure-aware, white-box approach exclusive to KANs.

3.4.1 BLACK-BOX SYMBOLIC REGRESSION

A black-box SR method takes data and a model as input and produces symbolic expressions ap-
proximating the model predictions. Notably, this procedure treats the models as opaque functions,
making it applicable to any machine learning method. In our case, given the trained neural net-
works Ĥ and Ĝ, we first generate input-output pairs by performing a forward pass over the training
data: {xi(t), Ĥ(xi(t))} and {(xi(t),xj(t)), Ĝ(xi(t),xj(t))} for all interacting pairs. We then fit a
separate SR model to each set to obtain symbolic expressions ĤSR and ĜSR:

SR({x, Ĥ(x)}) = ĤSR, SR({(xi,xj), Ĝ(xi,xj)}) = ĜSR. (3)

The final symbolic model of the full ODE, fSR ≈ ẋi, is constructed by composing these two
discovered expressions according to the governing structure of Eq. 2.

4
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3.4.2 SPLINE-WISE SYMBOLIC REGRESSION FOR KANS

The architecture of KANs enables a more granular and transparent approach: instead of regressing
on the network’s aggregate output, we can distill expressions from its elementary components, i.e.,
the univariate spline activations ϕ. To fully leverage the transparent structure of KANs, we propose
a novel Spline-Wise (SW) symbolic regression algorithm for KAN-based models that systematically
converts a trained KAN into a fully symbolic equation. While drawing inspiration from prior work
(Liu et al., 2025), our procedure incorporates a principled trade-off between expression complexity
and accuracy. The procedure is as follows:

1. Affine Function Fitting. Given a trained KAN, let S be the set of all its spline activa-
tions after pruning. For each spline ϕ ∈ S, we test its fit against a library F of candidate
univariate symbolic functions. For each candidate function f ∈ F , we find the optimal
affine transformation parameters θ∗f,ϕ = (a, b, c, d) by non-linear least squares that mini-
mize the squared error between the spline’s output and the transformed candidate function
fϕ(x; θ) = a · f(b · x+ c) + d over a training set.

2. Complexity-Penalized Function Selection. For each spline, we must now select the best
symbolic representation from the fitted candidates. We search for the function fϕ(x; θ

∗
f,ϕ)

that minimizes a penalized error, balancing approximation accuracy with structural com-
plexity. Specifically, let Γ be a range of regularization hyperparameters. For each ϕ ∈ S
and γ ∈ Γ, we search for the function f ∈ F that minimizes:

f∗
ϕ,γ = argmin

f∈F

[
MSE

(
ϕ(x), fϕ(x; θ

∗
f,ϕ)

)
+ γ · Complexity(f, θ∗f,ϕ)

]
(4)

where MSE is the Mean Squared Error, and Complexity(f, θ∗f,ϕ) denotes the structural
complexity of f , defined as the amount of its operators.

3. Pareto-Optimal Formula Selection. The previous step yields a set of |Γ| candidate sym-
bolic functions for each spline, representing a Pareto front of accuracy versus complexity.
We automatically select the optimal function for each spline f∗

ϕ by identifying the expres-
sion with the highest performance-complexity score, defined as the negative gradient of the
log-MSE with respect to complexity (Cranmer, 2023). Its maximum isolates the point at
the Pareto curve where the gain in accuracy for an increase in complexity is the highest.

4. Symbolic Model Reconstruction. Finally, we replace each spline ϕ in the trained KANs Ĥ
and Ĝ with its selected symbolic counterpart f∗

ϕ . By composing these elementary functions
according to the KANs’ architectures, we reconstruct the complete symbolic formula fSW ,
following the structure of Eq. 2.

The pseudo-code algorithm of the above procedure can be found in Appx. A.4, while in Appx. C.4
we show that this approach achieves a more favorable trade-off between accuracy and formula com-
plexity than the SR method proposed by KAN’s authors.

3.5 EVALUATION METRIC

The ultimate test of a discovered dynamical law is its ability to forecast the system’s evolution.
Our primary performance measure is, therefore, the MAE between ground-truth trajectories and the
predictions obtained by numerically integrating the learned symbolic dynamics. Formally, given a
sequence of observations {X(t)}Tt=0, let ĤSR and ĜSR be the extracted symbolic formulas. Since
they describe the structure of an ODE, we can integrate them over any time interval [t0, tm] ⊆ [0, T ]:

x̂i(tm) = xi(t0) +

∫ tm

t0

[
ĤSR

(
x̂i(t)

)
+

N∑
j=1

Aij ĜSR

(
x̂i(t), x̂j(t)

)]
dt. (5)

Our assessment begins with a given set of initial conditions X(t0) from a test trajectory, which are
then used to integrate the symbolic model via Eq. 5 for all subsequent time steps, resulting in a
predicted trajectory {X̂(t)}tmt=t0+1. We then compute the trajectory mean absolute error, MAEtraj,
between the ground-truth observations and predictions:

MAEtraj =

∑N
i=1

∑tm
t=t0

|xi(t)− x̂i(t)|
N(tm − t0 − 1)

. (6)
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This integration is autoregressive, meaning that prediction errors at one step are propagated into
the next. Consequently, even minor inaccuracies in the discovered equations can compound over
time, making the MAEtraj a stringent and comprehensive test of a model’s long-term accuracy and
stability. Furthermore, this metric does not rely on prior knowledge of the true governing equations,
thereby making it more suitable for real-world scenarios.

4 EXPERIMENTAL DESIGN

This section outlines the empirical framework for assessing equation discovery methods in graph
dynamical systems, detailing the models, datasets, and evaluation metrics for performance, sym-
bolic accuracy, and generalization. The Appendices and source code offer further information on
dataset generation, model implementation, optimization, SR algorithms, and hyperparameters, en-
suring scientific reproducibility and fairness.

4.1 MODELS UNDER ASSESSMENT

We rigorously and fairly assess a set of distinct state-of-the-art methodologies for inferring the gov-
erning equations of dynamical systems on graphs. In addition to the proposed GKAN-ODE model,
we test three other approaches: our own implementation of a MLP-ODE, a GMLP-ODE model,
the neural architecture of LLC, and the TPSINDy algorithm. The MLP-ODE is a simple baseline
that models node dynamics ẋi relying solely on the local state xi, effectively ignoring neighbor
interactions and quantifying the specific contribution of topological information to the discovery
process. The GMLP-ODE serves as the direct MLP-based counterpart of GKAN-ODE, where the
two KANs are replaced by MLPs, allowing for a controlled comparison between the two architec-
tures. LLC is included as a state-of-the-art neural baseline, notable for its MLP-based architecture
that explicitly introduces multiplication in the network’s structure for Ĝ in a manner conceptually
similar to GKAN-ODE. Unlike these neural approaches, TPSINDy directly learns sparse symbolic
expressions for Ĥ and Ĝ from data and represents the leading non-neural approach. For the neural
architectures, we utilize SR procedures to extract interpretable equations. As a black-box SR, the
GP-based tool PySR (Cranmer, 2023) is employed, and the resulting symbolic models are labeled
with the suffix “+GP”. Similarly, the SW fitting applied to our proposed model is referred to as
GKAN-ODE+SW.

4.2 INFERENCE ON SYNTHETIC DYNAMICAL SYSTEMS

We first evaluate the models’ capacity to recover the precise symbolic form of known dynamics. To
this end, we utilize four canonical network dynamical systems, chosen to represent a diverse range
of nonlinearities common in scientific models (Barzon et al., 2024): Kuramoto oscillators (KUR),
epidemic spreading (EPID), biochemical (BIO), and population (POP) dynamics. We generate these
synthetic datasets by integrating the models on a fixed Barabási–Albert (Barabási & Albert, 1999)
network, chosen for its scale-free topology, which is representative of many real-world systems. To
evaluate robustness against measurement uncertainty, we also create noisy variants of these systems
by adding white noise to node states at each time step under different signal-to-noise ratio (SNR)
levels. For all experiments with this setting, models are trained on the first 80% of the temporal
observations, with the remaining 20% reserved for validation and hyperparameter tuning.

A crucial component of our methodology is the rigorous selection of the final symbolic model. Rec-
ognizing that models may overfit to a specific network instance, and that both the GP-based and the
SW fitting procedures are sensitive to hyperparameters, we design a robust validation framework.
We generate an additional validation set by simulating the same dynamics on a new graph with a
different topology and initial conditions. For each candidate symbolic formula produced by the SR
algorithms, we compute the trajectory rollout error (Eq. 6) on this out-of-distribution (OOD) vali-
dation set. The symbolic form achieving the lowest MAEtraj is selected as the definitive expression
representing the underlying ODE. Extending the related works, we aim to assess the generalization
of trained models and extracted equations in a novel context: a final test set that includes three
unique simulations, each with distinct graph topologies and random initial conditions. We report
the MAEtraj averaged over these three test trajectories for both models and formulas, indicating

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

their generalization beyond the training domain. A detailed visualization of the entire experimental
pipeline is provided in Appx. B.2.

4.3 INFERENCE ON REAL-WORLD EMPIRICAL DATA

To assess performance on a task with unknown ground truth, we utilize the empirical dataset of
epidemic dynamics from Gao & Yan, which captures the early pre-intervention spread of the H1N1,
SARS, and COVID-19 outbreaks across the global airline network. We train the neural models on
the COVID-19 dataset and extract symbolic representations. As a true OOD validation set is unavail-
able, we select the symbolic expression that yields the lowest MAEtraj on the training data itself. This
procedure discovers a single homogeneous equation describing the global average dynamics. To ac-
count for country-specific variations, we then fine-tune the coefficients of this discovered symbolic
structure for each node, following the ideas proposed in prior works (Gao & Yan, 2022; Hu et al.,
2025) and detailed in Appx. B.3. Our evaluation focuses on the generalizability of the discovered
laws. We investigate whether the symbolic structures learned from COVID-19, with only coefficient
fine-tuning, can effectively model H1N1 and SARS outbreaks. For final model assessment, we uti-
lize the long-term trajectory rollout metric, MAEtraj, and compare it with previous studies using a
short-term, single-step prediction metric, MAEeul, which relies on the Euler method with ground-
truth data rather than prior model predictions, emphasizing short-term accuracy and reducing the
impacts of long-term instability.

5 RESULTS AND DISCUSSION

5.1 COMPARATIVE PERFORMANCE ON SYNTHETIC SYSTEMS

Our first key finding, illustrated in Fig. 1 (left), is the superior performance of neural-based archi-
tectures over the sparse regression baseline, TPSINDy, and topology-agnostic baselines. MLP-ODE
suffers from catastrophic error accumulation across most dynamics, demonstrating that the govern-
ing laws are inextricably linked to the specific network topology and cannot be resolved by simple
curve-fitting or mean-field approximations. The graph-aware neural models, both before and after
symbolic distillation, consistently yield more accurate and stable long-term trajectory rollouts, as
measured by the MAEtraj. TPSINDy correctly identifies the KUR dynamics, arguably due to its
expressiveness in periodic functions; however, it fails in the other cases. Notably, on the EPID
and POP datasets, the naive MLP-ODE yields lower rollout errors than TPSINDy. This counter-
intuitive result highlights a critical limitation of restricted sparse regression: while TPSINDy is not
compositional and fails by identifying incorrect interaction terms that lead to diverging trajecto-
ries, the MLP-ODE learns an approximated function that remains numerically stable. Conversely,
neural-based approaches combined with SR can overcome these limitations by composing com-
plex, nested equations starting from a restricted library of univariate functions and simple binary
operators. Among the neural approaches, the models derived from our GKAN-ODE architecture
demonstrate remarkable efficacy, and its black-box (GKAN-ODE+GP) symbolic model is consis-
tently among the top performers, achieving the lowest rollout error. While the LLC architecture
also performs well, particularly compared to its GMLP-ODE counterpart, the GKAN-based models
frequently exhibit lower mean error and smaller variance across all time steps (Appx. C.1). Beyond
raw performance, GKAN-ODE models are also more parameter-efficient than the baselines: Fig. 1
(right) provides a clear visualization of the trade-off between performance (MAEtraj) and the num-
ber of parameters. The figure promotes GKAN-ODE once more as the most promising choice for
efficient equation discovery in graph dynamical systems.

5.2 SYMBOLIC DISCOVERY AND INTERPRETABILITY

As shown in Tab. 1, the black-box GKAN-ODE+GP procedure demonstrates exceptional capability
in recovering the ground-truth dynamics, successfully extracting (up to algebraic transformations)
the exact symbolic form of the governing equations for all four synthetic systems. The discovered
structures are identical to the ground truth, and the fitted coefficients are remarkably precise, vali-
dating the entire pipeline from neural training to symbolic distillation. The structure-aware GKAN-
ODE+SW approach offers a more direct window into the model’s inner workings. Detailed in Tab. 2,
this method also successfully identifies the correct underlying dynamics. For the BIO system, it re-
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Figure 1: Performance comparison on synthetic dynamics. (Left) Comparison of test MAEtraj for
both models and the inferred equations. (Right) Test MAEtraj and number of parameters of the
trained neural-based models and TPSINDy (whose parameters are defined by its symbolic function
library). Values are averaged on three test graphs and the standard deviation is reported as errors
bars.

trieves slightly different coefficients, while for the KUR system, it discovers a phase-shifted sine
function that is mathematically equivalent to the ground truth. For more complex dynamics like
EPID or POP, the SW method sometimes yields expressions with additional small-coefficient terms
or minor parameter deviations (e.g., < 1%). While numerically small, these deviations can accu-
mulate during autoregressive integration, leading to a higher MAEtraj . However, in the context
of scientific discovery, this result remains a success: the method effectively isolates the correct
governing structure. The precise calibration of these coefficients can subsequently be handled by
standard parameter estimation techniques, making the SW output a highly actionable starting point
for physical modeling. While the GP-based approach acts as a surrogate model seeking the simplest
approximation of the network’s output, the SW method offers a faithful, white-box translation of the
network’s internal logic. This provides a stronger form of interpretability than standard attribution
scores: it establishes a direct and global mapping between input features and dynamical behavior
(i.e., explicitly identifying how a neighbor’s state xj drives dynamics). As shown in Appx.C.4, our
proposed SW algorithm not only recovers valid symbolic forms but also achieves a significantly bet-
ter accuracy-complexity trade-off than the original KAN symbolic regression method, effectively
filtering out redundant complexity while retaining the model’s structural insights. The equations
extracted by TPSINDy, GMLP-ODE+GP, and LLC+GP, along with their discussion, can be found
in Appx. C.2.

When dealing with dynamics that involve observation noise, neural models are still able to recover
competitive expressions under low noise conditions (SNR = 70 dB). However, at higher noise levels
(SNR ≤ 50 dB), all models tend to degenerate. More details are available in Appx. C.5.

Table 1: Ground-truth and discovered symbolic equations fSR for the four synthetic dynamical
systems learned by the best-validated GKAN-ODE+GP model and rounded to four decimal places.
The structural complexity matches between ground-truth and learned models: it is 5 for KUR and
POP, and 6 for EPID and BIO.

Dataset Ground-Truth Equation GKAN-ODE+GP Discovered Symbolic Expression

KUR 2 + 1
2

∑
j Aij sin(xj − xi) 1.9992 +

∑
j Aij(−0.5005 · sin(xi − xj))

EPID − 1
2xi +

1
2

∑
j Aij(1− xi)xj −0.4997 · xi +

∑
j Aij(xj · (0.5001− 0.5002 · xi))

BIO 1− 1
2xi − 1

2

∑
j Aijxixj −0.5006 · xi + 1.0002 +

∑
j Aij(−0.4998 · xixj)

POP − 1
2xi +

∑
j Aij

x3
j

5 −0.4999 · xi +
∑

j Aij(0.2000 · x3
j )

8
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Table 2: Best-validated Spline-wise symbolic formulas fSW and their structural complexity for the
GKAN-ODE+SW model on the four synthetic dynamical systems.

Dataset GKAN-ODE+SW Discovered Symbolic Expressions Complexity
KUR 1.9991 +

∑
j Aij(−0.5005 · sin(−0.9992 · xi + 0.9995 · xj + 3.1373)) 8

EPID −0.4988 · xi +
∑

j Aij(−0.4961 · xixj + 0.4970 · xj − 0.0022 · xi + 0.0018) 10
BIO −0.5000 · xi + 1.0001 +

∑
j Aij(−0.4899 · xixj) 6

POP
−0.2862xi − 0.1744 tanh(1.4270xi − 0.0779)− 0.0122
+
∑

j Aij(0.1474x
3
j + 0.0066x2

j + 0.0204xj)
16

5.3 DISCOVERY IN REAL-WORLD EPIDEMIC DYNAMICS

In this scenario, the symbolic equations derived for the global average dynamics are reported in
Appx. D.1. The models yield diverse functional forms, with TPSINDy favoring a logistic-like inter-
action, while neural architectures learn more complex nonlinearities. This scenario further highlights
the critical trade-off between model expressivity and interpretability. Notably, the GKAN-ODE+GP
model distills a particularly simple and plausible law, suggesting a linear self-term with an expo-
nential growth interaction from neighbors. In contrast, the GKAN-ODE+SW method produces a
significantly more complex but fully transparent expression by directly translating the KAN’s inter-
nal splines. This presents a choice for domain experts: pursuing the simplest explanatory model (via
GP) or analyzing a more faithful, albeit complex, representation of the neural-learned dynamics (via
SW). Both are valid pathways to scientific discovery, serving different analytical goals.

Key evaluation rests on the models’ stability over time and their generalization to unseen data.
Fig. 2 contrasts the performance of the discovered equations’ on the COVID-19 test set against
their adaptability to H1N1 and SARS dynamics after tuning the coefficients. While TPSINDy is
competitive in single-step forecasting (MAEeul), it leads to catastrophic error accumulation in long-
term trajectory rollouts (MAEtraj). Conversely, all neural-derived laws, and in particular GKAN-
ODE models, exhibit strong long-term stability and generalization, which are crucial for identifying
scientific models in complex systems.

Figure 2: Performance comparison of the symbolic formulas of Tab. 15 averaged on the COVID,
H1N1, SARS datasets. Both MAEtraj (top) and MAEeul (bottom) are computed on the complete
(left) and test (right) datasets.

6 CONCLUSION

This paper rigorously assesses the most prominent AI methods of equation discovery for graph dy-
namical systems to reveal their true performance. Our findings establish that our proposed GKAN-
ODE models significantly outperform the sparse regression and MLP-based baselines. KAN-based

9
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models further demonstrate a superior balance of predictive accuracy, parameter efficiency, and an
architecture inherently amenable to interpretation.

A key contribution of this work lies in the distillation of symbolic knowledge from these models.
We have shown how a model-agnostic symbolic regression can effectively recover the ground-truth
equations. In parallel, our novel Spline-Wise fitting algorithm provides a transparent and truthful,
albeit more granular, symbolic representation of KANs’internal logic. This presents a valuable
choice for researchers: a pragmatic path to the most parsimonious symbolic law or a more detailed,
faithful representation of what the model has actually learned from the data.

By establishing a reproducible benchmark and advocating for evaluation based on long-term, out-
of-distribution generalization, this work aims to serve as a practical reference and open-source con-
tribution for the interdisciplinary scientific community working on complex systems. It clarifies the
state-of-the-art and promotes a human-in-the-loop paradigm where AI acts as a powerful collabo-
rator that generates plausible, testable hypotheses, thereby augmenting human intuition and under-
standing. Future research should focus on adapting such models for time-dependent systems with
evolving topology, as well as developing tools for dealing with noisy and more complex real-world
systems. Ultimately, this study confirms the viability of interpretable neural architectures as pow-
erful tools for the scientific community in the quest to understand the fundamental laws governing
complex systems.
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Albert-László Barabási. Network science. Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 371(1987):20120375, 2013.
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A METHODOLOGICAL DETAILS

A.1 KOLMOGOROV-ARNOLD NETWORK (KAN) BACKGROUND

Kolmogorov-Arnold Networks (KANs), proposed by Liu et al. (2025), are a specific type of neural
network that has been recently proposed as a valid alternative to Multi-Layer Perceptrons (MLPs).
Whereas MLPs are inspired by the universal approximation theorem, KANs are inspired by the
Kolmogorov-Arnold representation theorem (Kolmogorov, 1961; Braun & Griebel, 2009), which
states that if f : [0, 1]d → R is a multivariate continuous function on a bounded domain, then it can
be written as:

f(x) = f(x1, x2, ..., xd) =

2d+1∑
q=1

Φq

(
d∑

p=1

ϕq,p(xp)

)
, (7)

where ϕq,p : [0, 1] → R, Φq : R → R. In other words, f can be reduced to a suitably defined
composition of univariate functions, where the composition only involves simple addition. The
underlying idea of KANs is to substitute the weights and fixed activation functions of MLPs with
learnable univariate activation functions on edges and sum aggregation on nodes.

The general definition of a KAN layer ΦΦΦl with din-dimensional input and dout-dimensional output
consists of a matrix of univariate functions:

ΦΦΦl =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,din

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,din

(·)
...

...
. . .

...
ϕl,dout,1(·) ϕl,dout,2(·) · · · ϕl,dout,din(·)

 (8)

where ϕl,j,i represents the learnable activation function applied to the ith-feature of the input of
the jth-neuron at layer l. After computing all the din · dout activation values, the output of the lth

layer xl ∈ Rdout is obtained by summing along the first dimension of the matrix described in Eq. 8.
Stacking multiple KAN layers results in an architecture with a shape represented by an integer array:

[d0, d1, ..., dL],

where dl represents the number of neurons in the lth-layer and d0 = |x|. Each univariate function
in Eq. 8 has trainable parameters that can be learned through backpropagation and gradient descent.
Specifically, they are defined as splines with residual activations.

KANs are usually trained with a sparsity loss, which is an adaptation of the L1 norm of MLPs.
However, this norm is directly defined on the learned activation functions. Formally, the L1 norm of
an activation function ϕ is given by the average magnitude over its Np inputs, that is:

|ϕ|1 ≡ 1

Np

Np∑
s=1

|ϕ(x(s))|. (9)

Then, the L1 norm of a KAN layer ΦΦΦ with din inputs and dout outputs is defined as:

|ΦΦΦ|1 ≡
din∑
i=1

dout∑
j=1

|ϕi,j |1, (10)

that is, the sum of L1 norms of all the activation functions in ΦΦΦ. Furthermore, an entropy term is
added to the loss definition:

S(ΦΦΦ) ≡ −
din∑
i=1

dout∑
j=1

|ϕi,j |1
|ΦΦΦ|1

log

(
|ϕi,j |1
|ΦΦΦ|1

)
. (11)

Then, the final training loss Ltotal is given by the prediction loss Lpred plus the L1 and entropy
regularization aggregated over all the layers:

Ltotal = Lpred + λ

(
µ1

L∑
l=1

|ΦΦΦl|1 + µ2

L∑
l=1

S(ΦΦΦl)

)
, (12)
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Table 3: Hyperparameter ranges of the MLPs in the GMLP-ODE models

Hyperparameter Values
Hidden dimensions [8, 64]
Activation function {relu,softplus,tanh}
Dropout probability [0.0001, 0.5]
Hidden layers {1, 2}
Learning rate [0.0005, 0.05]
Batch size {16, 32, 64}

where µ1, µ2, and λ are hyper-parameters that determine the impact of the corresponding loss terms.

One of the key characteristics of KANs is that they can be used to perform symbolic regression.
Specifically, once the model is trained, it is possible to prune inactive neurons by looking at their
spline activation magnitudes and then fixing the remaining activation functions to symbolic formu-
las (e.g., sin, cos) so that the whole model can be described through a symbolic representation.
This process enhances interpretability, as it overcomes the black-box nature typical of deep-learning
models by providing, as output, a human-readable mathematical formulation of the learned function.
Refer to the original paper for further details on the pruning and regression procedures.

A.2 TECHNICAL IMPLEMENTATION

We implemented the model under consideration using Python 3.12.0, Pytorch 2.3.1, and PyG 2.3.1.
For hyper-parameter tuning, we employed the Optuna package (Version 4.3.0). The Spline-Wise
fitting procedure relies on the curve fit method from the scipy library for solving the non-
linear least squares problem, while for the GP-based SR algorithm, we used PySR 1.5.5. We utilized
the dopri5 solver from the torchdiffeq library as a numerical integrator for computing the
rollout metric MAEtraj, setting atol = rtol = 10−5 for all models.

A.3 HARDWARE SETUP

We carried out the experiments on a Google Cloud g2-standard-48 virtual machine, equipped
with 48 vCPUs based on the Intel Cascade Lake CPU architecture and 192 GB of system memory.
The setup was further accelerated by 4 NVIDIA L4 GPUs.

A.4 SPLINE-WISE SYMBOLIC REGRESSION ALGORITHM

Algorithm 1 describes the proposed Spline-Wise symbolic fitting procedure of KAN-based models.
To ensure parsimony, in line 10, the coefficients with magnitudes below a threshold (ϵ) are pruned
before complexity is computed. For example, the expression x3 + 10−5x2 is considered to have a
complexity of 1, not 4. As a measure of complexity, we use the count ops function from sympy
library, which measures the number of operations an expression contains.

A.5 HYPERPARAMETERS SPECIFICATIONS

This section lists the search spaces of the employed hyperparameters in the experimental analysis.
Model selection is performed using the Optuna package, optimizing the MAE over 35 trials for
synthetic dynamics, over 70 trials for dynamics with noise, and over 100 trials for COVID-19 data.
All neural architectures are optimized using Adam for 1000 epochs with early stopping and patience
parameters of 200 for synthetic dynamics and 300 for the real-world COVID dataset. Tabs. 3, 4 and
5 detail the hyperparameter ranges used for the neural-based models. For TPSINDy, we consider
the default libraries of symbolic functions provided by the authors in the original implementation,
including polynomial, trigonometric, fractional, and exponential terms.

Model selection of GP-based and Spline-Wise SR methods is performed via grid search according
to the hyperparameter grids specified in Tabs. 6, 7, respectively.
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Table 4: Hyperparameter ranges of the MLPs in the LLC models, where λ denotes the regularization
parameter of the penalized loss function minimized during training.

Hyperparameter Values
Hidden dimensions [8, 64]
Activation function {relu,softplus,tanh}
Hidden layers {1, 2}
Learning rate [0.0005, 0.05]
Batch size {16, 32, 64}
Regularization λ [0.0, 0.01]

Table 5: Hyperparameter ranges of the KANs in the GKAN-ODE models.

Hyperparameter Values
Grid size [5, 20]
Spline order [1, 3]
Range limit [−10, 10]
Hidden dimensions [1, 6]
Regularization λ [10−6, 1.0]
Learning rate [0.0005, 0.05]
µ1 [0.1, 1.0]
µ2 [0.1, 1.0]
Batch size {16, 32, 64}

Table 6: Hyperparameter grid for the PySR algorithm.

Hyperparameter Values
Number of iterations {50, 100, 200}
Model selection {Score,Accuracy}
Binary operators [+,−, ∗, /]
Symbolic library F [exp, sin, neg, square, cube, abs,

tan, tanh, ln, zero]

Table 7: Hyperparameter grid of the Spline-wise fitting algorithm. The Model selection parameter
is used at line 28 of Algorithm 1, and defines whether to choose the function with the highest score
(thus favoring simpler equations) or with the lowest log loss (thus favoring accuracy).

Hyperparameter Values
Spline pruning threshold ρ {0.01, 0.05, 0.1}
Coefficient pruning threshold ϵ {0.001, 0.01, 0.1}
Model selection {Score,Log loss}
Γ [10−5, 10−4, 10−2, 10−1, 1]
Symbolic library F [identity, square, cube, exp, abs,

sin, cos, tan, tanh, ln, zero ]
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Algorithm 1 Spline-wise Symbolic Regression for KAN

Require: Splines S, function library F , regularization grid Γ, training data (x, y), coefficient prun-
ing threshold ε, spline pruning threshold ρ

Ensure: Selected symbolic function f∗
ϕ for each ϕ ∈ S and final symbolic formula fSW

1: Spruned = pruning(S, ρ)
2: for each spline ϕ ∈ Spruned do
3: Collect inputs Xϕ and outputs Yϕ from training data
4: Resultsϕ = [·]
5: for each γ ∈ Γ do
6: best state = (·)
7: best L = ∞
8: for each candidate function f ∈ F do
9: Fit affine parameters θ∗f,ϕ = (a, b, c, d)

10: Prune negligible coefficients < ε from f

11: Compute predictions Ŷf,ϕ = fϕ(Xϕ; θ
∗
f,ϕ)

12: MSE = 1
|Xϕ|

∑
(Yϕ − Ŷf,ϕ)

2

13: c = Complexity(f, θ∗f,ϕ)
14: L = MSE + γ · c
15: ℓ = log(MSE)
16: if L < best L then
17: best state = (f, θ∗f,ϕ, c, ℓ)
18: end if
19: end for
20: Append best state to Resultsϕ
21: end for
22: Sort Resultsϕ by complexity c
23: scores = [ Resultsϕ[0][f ], 0 ]
24: for each consecutive pair (c1, ℓ1), (c2, ℓ2) do
25: ∆ = (ℓ2 − ℓ1)/(c2 − c1)
26: Append −∆ to scores
27: end for
28: Select f∗

ϕ = function with highest score
29: end for
30: Combine all f∗

ϕ according to KAN’s additive/multiplicative structure
31: Build final symbolic formula fSW

32: return {f∗
ϕ}, fSW

B EXPERIMENTAL SETUP AND DATASETS

B.1 SYNTHETIC DATASET GENERATION AND REPRODUCIBILITY PROTOCOLS

Tab. 8 shows the general equations of the studied synthetic dynamical systems, while Tab. 1
reports the considered instantiations. Preliminary experiments with different dynamic parame-
ters—provided they are physically consistent—did not yield significant differences in terms of the
models’learning capabilities; hence, we set their magnitude to plausible values considered in the
literature (Barzon et al., 2024; Gao & Yan, 2022). The datasets are generated by numerically in-
tegrating these models with the Runge–Kutta method of order 5, implemented in the solve ivp
function from the scipy library, using absolute and relative tolerances of 10−12 to ensure high nu-
merical precision. We simulate the dynamics on a Barabási–Albert (Barabási & Albert, 1999) graph
with 70 nodes and an attachment parameter m = 3, saving the solutions at T = 2000 regularly
spaced time steps. We report in Tab. 9 the set of parameters to reproduce dataset generation.
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Table 8: General equations of the considered dynamical processes.

Dynamics Equation dxi/dt

KUR ω +K
∑

j Aij sin(xj − xi)
EPID −µxi + β

∑
j Aij(1− xi)xj

BIO α− δxi − κ
∑

j Aijxixj

POP −rxb
i + σ

∑
j Aijx

a
j

Table 9: Parameters to reproduce the creation of the synthetic datasets.

Dynamics Initial condition TStart TEnd

KUR Uniform [0, 2π] 0 1
EPID Uniform [0, 1] 0 2
BIO Uniform [0, 1] 0 1
POP Uniform [−1, 1] 0 10

For the KUR dynamics, oscillator phases are initialized uniformly in [0, 2π] to cover the full angular
domain. For EPID and BIO dynamics, node states are chosen in [0, 1] to represent normalized con-
centrations or infection probabilities. For POP, instead, we chose to initialize nodes in the interval
[−1, 1] to better expose the effect of the polynomial term xa, as including both positive and negative
values yields richer trajectories. Regarding the temporal horizons TStart TEnd, we set them to allow
each dynamic to display its full evolution.

The intermediate validation set used to tune the hyper-parameters of the SR algorithms is obtained
by simulating the dynamics on an additional Barabási–Albert graph with 100 nodes and the same
attachment parameter used for the training graphs. The graphs used to generate the three OOD test
sets are a BA graph with 70 nodes (analogous to the one used for training but initialized with a
different random seed), a Watts–Strogatz small-world graph with 50 nodes, and an Erdős–Rényi
random graph with 100 nodes and an edge probability of 0.05. For validation and test datasets, we
simulate the dynamics for T = 1000 steps.

All data-generating code, along with its random seeds, is provided in the codebase.

B.2 EXPERIMENTAL PIPELINE OVERVIEW

To provide a clear visual guide to our evaluation framework, Fig. 3 illustrates the overall process for
training, symbolic distillation, and evaluation of all models. This pipeline is designed to assess not
only the accuracy of the discovered equations but, more importantly, their long-term stability and
generalization capabilities on unseen data, which are critical for establishing scientific utility.

B.3 REAL-WORLD DATASET AND PREPROCESSING

The considered empirical datasets are based on the epidemiological spread of infectious diseases
(SARS, COVID, H1N1), modeled by the worldwide airline network of human mobility between
different countries, where each entry of the weighted adjacency matrix represents the traffic volume
across regions. Refer to Gao & Yan (2022) for additional details. Regarding the COVID dataset, we
normalize the values to the range (−1, 1) using a MinMax scaler. The scaler is fitted only on the
training set (the first 80% of the data) to prevent data leakage. We perform the same pre-processing
steps for the H1N1 and SARS datasets before fine-tuning the coefficients of the learned symbolic
formulas using neural models. During the evaluation phase, the same scaler is applied to transform
the predicted values back to the original scale.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 3: Overview of the experimental pipeline for model training, symbolic distillation, and eval-
uation. The process is sequential and designed to ensure rigorous validation of the discovered equa-
tions on out-of-distribution (OOD) data. The numbered steps are as follows: given a synthetic
graph dynamical system generator, (1) a neural network architecture (e.g., GKAN-ODE, GMLP-
ODE, LLC) is trained on one graph instance (trained on the first 80%, validated on the rest) to learn
the underlying dynamics. (2) The trained and best-validated neural network is then used for sym-
bolic knowledge distillation of its underlying components, H and G, as in Eq. 3. This can be a
model-agnostic, black-box approach like Genetic Programming (GP) that approximates the model’s
input-output behavior, or a structure-aware, white-box approach like our Spline-Wise (SW) method
for KANs. (3) The candidate symbolic equations generated by the SR modules move to the eval-
uation phase. (4) For model selection, the symbolic formulas are evaluated on a dedicated OOD
validation dataset with a different graph topology. We select the formula and its corresponding SR
hyperparameters that yield the best long-term trajectory rollout performance, as measured by the
MAEtraj metric. (5) The single best symbolic model from the validation step proceeds to the final
testing phase. (6) For the final performance assessment, the selected model is evaluated on a sepa-
rate OOD testing dataset, which contains dynamics on diverse and unseen graph topologies. (7) The
resulting averaged MAEtraj score on the test set serves as the definitive metric for comparing the
generalization and scientific plausibility of the discovered governing laws across all methods.

C ADDITIONAL RESULTS AND ABLATION STUDIES

C.1 DETAILED PERFORMANCE ANALYSIS (MAE TIME EVOLUTION)

Fig. 4 shows the test MAEtraj over time obtained by the assessed models, including both the trained
neural-based architectures and the distilled symbolic expressions. We can observe that, on EPID,
BIO, and POP dynamics, GKAN-based models maintain the lowest error consistently over time,
while for KUR, TPSINDy achieves the best performance.

C.2 SYMBOLIC EXPRESSIONS EXTRACTED FROM SYNTHETIC DATASETS

We show in Tab. 10 the learned symbolic expression from the four synthetic datasets by the GMLP-
ODE+GP, LLC+GP, and TPSINDy methods. Despite the two neural-based models successfully
extracting the correct formulas’ structures, the coefficients are slightly different from the ground
truth, leading to a higher MAEtraj than GKAN-ODE+GP on every dynamics, as shown in Fig. 1.
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Figure 4: Evolution of test MAEtraj over time for each assessed model on synthetic dynamics. Values
are averaged over the three test sets.

Table 10: Learned symbolic expressions and their complexities across models and synthetic datasets.

Model Dataset Learned Expression Complexity

GMLP-ODE + GP

KUR 2.0009 +
∑

j Ai,j(−0.4971 · sin(xi − xj)) 5
EPID −0.4990 · xi +

∑
j Ai,j(0.4976 · xj · (1.0000− xi)) 6

BIO −0.4970 · xi + 0.9987 +
∑

j Ai,j(−0.4989 · xixj) 6
POP −0.4998 · xi +

∑
j Ai,j(0.1973 · x3

j ) 5

LLC + GP

KUR 1.9995 +
∑

j(−0.4986 · sin(xi − xj)) 5
EPID −0.5012 · xi +

∑
j Ai,j(xj · (0.5005− 0.5003 · xi)) 6

BIO −0.4971 · xi + 0.9977 +
∑

j Ai,j(−0.4992 · xixj) 6
POP −0.4973 · xi +

∑
j Ai,j(0.1962 · x3

j ) 5

TP-SINDy

KUR 2.0000 +
∑

j Ai,j(0.4994 · sin(xj − xi)) 5
EPID −0.5679 +

∑
j Ai,j(0.2084 · exp(xj − xi)) 4

BIO 0.8670 +
∑

j Ai,j(−0.7113 · xixj) 4
POP −0.0162 +

∑
j Ai,j(0.0400 · xj + 0.0031 · sin(xj)) 5

C.3 ABLATION STUDY: IMPACT OF MULTIPLICATIVE NODES IN GKAN-ODE

The architecture of a KAN layer with the proposed multiplicative enhancement is depicted in
Fig. 5. In Fig. 6, we show the performance of GKAN-ODE models without multiplicative nodes
(GKAN-ODE (no mult)) on the synthetic datasets. Despite the comparable or slightly worse
MAETraj error of GKAN-ODE(no mult), formulas extracted with GP are comparable to those ob-
tained by GKAN-ODE. However, it is evident that the Spline-Wise fitting is unable to recognize the
multiplicative term in EPID and BIO dynamics.

C.4 ABLATION STUDY: COMPARISON WITH ORIGINAL KAN SYMBOLIC REGRESSION

We compare the proposed algorithm for the Spline-Wise symbolic fitting with the original one in-
troduced by the authors of KANs. Tab. 11 shows the complexity and MAEtraj of the best-validated
symbolic expressions inferred by the original SW method, named GKAN-ODE+OSW. The results
show that such a method is able to extract formulas that achieve very low MAEtraj, especially on
EPID and BIO dynamics, but with very high structural complexity (thus making them less inter-
pretable). In contrast, as shown in Fig. 1 and Tab. 2, our proposed approach consistently achieves
a more favorable trade-off between accuracy and interpretability, maintaining low MAEtraj while

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Multiply

Figure 5: Representation of a KAN layer with the proposed multiplication enhancement (red) for a
two-dimensional input (d = 2). ϕ are interpretable univariate splines.

Figure 6: Performance comparison between GKAN-ODE models with and without multiplicative
nodes.
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yielding much more compact symbolic expressions. The hyperparameter grid employed for validat-
ing the original SW algorithm is shown in Tab. 12.

Table 11: Test MAEtraj and structural complexity of the best-validated symbolic formulas extracted
from the GKAN-ODE model. GKAN-ODE+OSW refers to the formulas obtained with the Orig-
inal Spline-Wise algorithm, while GKAN-ODE+SW and GKAN-ODE+GP refer to the proposed
Spline-Wise and Genetic Programming approaches. Values are averaged on three test graphs and
the standard deviation is reported.

Model Dataset Complexity MAEtraj

GKAN-ODE+OSW

KUR 8 1.43 · 10−3 ± 2.39 · 10−4

EPID 49 1.40 · 10−4 ± 1.53 · 10−5

BIO 81 5.96 · 10−5 ± 4.82 · 10−6

POP 24 1.56 · 10−2 ± 8.28 · 10−3

GKAN-ODE+SW

KUR 8 1.63 · 10−3 ± 7.67 · 10−5

EPID 10 3.27 · 10−4 ± 1.27 · 10−5

BIO 6 2.84 · 10−3 ± 3.17 · 10−4

POP 16 5.41 · 10−3 ± 1.00 · 10−3

GKAN-ODE+GP

KUR 5 4.81 · 10−4 ± 2.46 · 10−5

EPID 6 3.22 · 10−5 ± 4.69 · 10−6

BIO 6 3.35 · 10−5 ± 1.91 · 10−6

POP 5 1.75 · 10−5 ± 1.44 · 10−6

Table 12: Hyperparameter grid of the original Spline-Wise fitting algorithm.

Hyperparameter Values
Spline pruning threshold ρ {0.01, 0.05, 0.1}
Grid range {(−10, 10), (−5, 5)}
Weight simple {10−5, 0.3, 0.7, 0.9}
Symbolic library F [identity, square, cube, exp, abs,

sin, cos, tan, tanh, ln, zero ]

C.5 ROBUSTNESS ANALYSIS: OBSERVATIONAL NOISE

In the data-generating process, independent Gaussian noise is added to the node states at each time
step under three different signal-to-noise ratio (SNR) levels expressed in decibels (dB): 70 dB, 50
dB, and 20 dB. The performance of the assessed models in this setting is depicted in Fig. 7. The
methods are robust to noise up to 50 dB of SNR, particularly neural models, even though the quality
of the expressions degrades with increasing levels of noise. This is further exacerbated by the fact
that we are estimating numerical derivatives, which are highly sensitive to noise and can amplify
small fluctuations in the data.
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Figure 7: Performance of the extracted symbolic expression across various levels of SNR for each
synthetic dataset. Missing values of TPSINDy are due to numerical divergences.

Furthermore, we adopted a more systematic anti-noise mechanism following the methodology pro-
posed by Rudy et al. (2017). Specifically, rather than computing derivatives directly on the noisy
observations, we perform a local polynomial interpolation of order P = 3 on the node states x(t).
The time derivatives ẋ(t) are then computed from these smoothed polynomial proxies. This ap-
proach acts as a low-pass filter, preserving the underlying dynamics while suppressing the noise
that typically destabilizes equation discovery algorithms. We evaluated this mechanism on the BIO
dataset under the same signal-to-noise ratio conditions used in the main analysis. The results, re-
ported in Table 13, demonstrate that this preprocessing step effectively stabilizes the performance of
neural-based architectures. All neural models combined with symbolic regression (GP or SW) main-
tain trajectory errors in the order of 10−3 even at high noise levels (20 dB). In contrast, the baseline
TPSINDy fails to recover accurate dynamics, exhibiting errors an order of magnitude higher (10−2),
further highlighting the superior robustness of the proposed neural-symbolic pipeline in processing
noisy data.

Table 13: Test MAEtraj (Mean ± Std) on the BIO dataset with noisy inputs, utilizing 3rd-order
polynomial interpolation for robust derivative estimation.

Model 70 dB 50 dB 20 dB

GKAN-ODE+GP 3.62× 10−3 ± 2.25× 10−4 1.24× 10−3 ± 1.55× 10−5 3.45× 10−3 ± 3.11× 10−4

GKAN-ODE+SW 1.56× 10−3 ± 2.22× 10−4 2.59× 10−2 ± 2.89× 10−3 2.18× 10−3 ± 3.21× 10−4

GMLP-ODE+GP 1.45× 10−3 ± 1.59× 10−4 1.56× 10−3 ± 1.10× 10−4 1.94× 10−3 ± 1.40× 10−4

LLC+GP 1.34× 10−3 ± 2.28× 10−4 1.66× 10−3 ± 2.60× 10−4 2.74× 10−3 ± 1.91× 10−4

TPSINDy 8.13× 10−2 ± 1.97× 10−2 8.20× 10−2 ± 5.02× 10−3 8.90× 10−2 ± 4.70× 10−3

C.6 ROBUSTNESS ANALYSIS: DERIVATIVE ESTIMATION METHOD

To ensure that the superior performance of GKAN-ODE models is not an artifact of the specific nu-
merical differentiation technique employed (i.e., the five-point stencil method), we conducted an ab-
lation study using the Central Finite Difference method. We focused this analysis on the BIO dataset
to evaluate model sensitivity to the quality of the target derivatives Ẋ(t). The results, presented in
Tab. 14, demonstrate the robustness of our proposed approach. While the absolute magnitudes of
the MAEtraj shift slightly due to the lower approximation order of the central difference method
compared to the five-point stencil, the relative ranking of the models remains consistent with the
main experimental results. Specifically, the GKAN-ODE framework (both the neural model and the
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distilled symbolic forms) continues to achieve the lowest trajectory error, consistently outperform-
ing GMLP, LLC, and TPSINDy baselines. The SW symbolic model derived from GKAN-ODE
achieves a lower error (7.42 × 10−4) than the black-box symbolic expression extracted from the
MLP counterpart (1.00 × 10−3). Finally, TPSINDy continues to exhibit significantly higher error
(2.54×10−2), confirming its struggle with long-term stability in this setting. These findings suggest
that the performance gains reported in this work are driven by the GKAN-ODE architecture’s ability
to correctly capture the underlying graph dynamics, rather than sensitivity to the data pre-processing
pipeline.

Table 14: Performance comparison on the BIO dataset using the Central Finite Difference method
for derivative estimation. The GKAN-ODE models maintain their superior performance ranking,
with the interpretable GKAN-ODE+SW outperforming the GMLP-ODE+GP baseline.

Model Test MAEtraj

GKAN-ODE 8.49 · 10−5 ± 8.65 · 10−6

GKAN-ODE+GP 3.74 · 10−5 ± 1.35 · 10−6

GKAN-ODE+SW 7.42 · 10−4 ± 9.79 · 10−5

GMLP-ODE 3.61 · 10−4 ± 1.75 · 10−5

GMLP-ODE+GP 1.00 · 10−3 ± 8.34 · 10−5

LLC 2.33 · 10−4 ± 9.61 · 10−6

LLC+GP 1.41 · 10−4 ± 2.98 · 10−5

TPSINDy 2.54 · 10−2 ± 3.00 · 10−3

D SUPPLEMENTARY INFORMATION FOR REAL-WORLD EPIDEMIC
DYNAMICS

D.1 DISCOVERED EQUATIONS FOR EPIDEMIOLOGICAL SPREADING

Table 15: Symbolic expressions extracted from COVID-19 data as global dynamics, before country-
specific fine-tuning. The LLC equation is re-derived from scratch, as the original work does not
report all necessary coefficients needed for reproduction.

Model Discovered Symbolic Expression Complexity

TPSINDy a · xi + b ·
∑

j Aij 1/(1 + e−(xj−xi)) 7
LLC+GP a · tanh(xi + b) + c ·

∑
j Aij((xi − xj) · e−xj ) 7

GMLP-ODE+GP a · ln(xi + b) +
∑

j Aij ln(tan(xi + c)2 + d) 9
GKAN-ODE+GP axi + b+

∑
j Aij (c · exj ) 5

GKAN-ODE+SW
a · tanh

(
b · tanh(cxi + d) + e

)
− f · tanh

(
gx3

i + hx2
i − ixi − j

)
+ k

+
∑

j Aij

(
l · tanh(mxi − n)− o · tanh(pxj − q)− r

) 30

D.2 PROTOCOL FOR COUNTRY-SPECIFIC COEFFICIENT FINE-TUNING

To account for the heterogeneity of real-world epidemic dynamics, we fine-tune the coefficients of
the generic symbolic structures discovered by neural-based models (detailed in Tab. 15) for each
node. Specifically, we replace scalar constant terms in the symbolic equations with trainable pa-
rameters and optimize them via gradient descent. The optimization is performed by retraining the
expressions on each node’s data using the first 80% of observations, with the subsequent 10% for
validation, and leaving the final 10% for testing. Note that the LLC equation (and subsequent fine-
tuning) is re-derived from scratch, as the original work does not report all the necessary coefficients
needed for reproduction. Instead, the TPSINDy formula is the one provided in the original paper.
However, for a fair comparison with neural-based equations, we re-executed the fine-tuning algo-
rithm used in the TPSINDy paper only on the first 90% of observations. This leads to a set of
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coefficients very similar to the original one, but which does not depend on the entire dataset, which
is crucial when evaluating the generalization capabilities of a ML model.

D.3 ADDITIONAL TRAJECTORY PLOTS

In Figs. 8 and 9, we show the performance of the learned symbolic expressions on COVID-19
data from Canada, Brazil, Turkey, and Serbia. Fig. 8 presents the predicted trajectories obtained
through autoregressive integration, while Fig. 9 illustrates the results from short-term integration.
As suggested by the performance comparison depicted in Fig. 2, neural-based models are able to
capture the epidemiological spreading in both scenarios, while TPSINDy struggles in long term
predictions.

Figure 8: Predicted trajectories obtained by the long term (autoregressive) integration of the learned
equations on COVID-19 data of Canada, Brazil, Turkey and Serbia.
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Figure 9: Predicted trajectories obtained by the short term integration of the learned equations on
COVID-19 data of Canada, Brazil, Turkey and Serbia.
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