
Published in Transactions on Machine Learning Research (09/2022)

Deep Learning for Bayesian Optimization of Scientific Prob-
lems with High-Dimensional Structure

Samuel Kim samkim@mit.edu
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Peter Y. Lu
Department of Physics
Massachusetts Institute of Technology

Charlotte Loh
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Jamie Smith
Google Research

Jasper Snoek
Google Research

Marin Soljačić soljacic@mit.edu
Department of Physics
Massachusetts Institute of Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= tPMQ6Je2rB

Abstract

Bayesian optimization (BO) is a popular paradigm for global optimization of expensive
black-box functions, but there are many domains where the function is not completely a
black-box. The data may have some known structure (e.g. symmetries) and/or the data
generation process may be a composite process that yields useful intermediate or auxiliary
information in addition to the value of the optimization objective. However, surrogate
models traditionally employed in BO, such as Gaussian Processes (GPs), scale poorly with
dataset size and do not easily accommodate known structure. Instead, we use Bayesian
neural networks, a class of scalable and flexible surrogate models with inductive biases, to
extend BO to complex, structured problems with high dimensionality. We demonstrate BO
on a number of realistic problems in physics and chemistry, including topology optimization
of photonic crystal materials using convolutional neural networks, and chemical property
optimization of molecules using graph neural networks. On these complex tasks, we show
that neural networks often outperform GPs as surrogate models for BO in terms of both
sampling efficiency and computational cost.

1 Introduction

Bayesian optimization (BO) is a methodology well-suited for global (as opposed to local) optimization of
expensive, black-box (e.g. derivative-free) functions and has been successfully applied to a wide range of
problems in science and engineering (Ueno et al., 2016; Griffiths & Hernández-Lobato, 2020; Korovina et al.,
2020) as well as hyperparameter tuning of machine learning models (Snoek et al., 2012; Swersky et al., 2014;
Klein et al., 2017; Turner et al., 2020; Ru et al., 2021). BO works by iteratively deciding the next data

1

https://openreview.net/forum?id=tPMQ6Je2rB

Published in Transactions on Machine Learning Research (09/2022)

point to label in order to maximize sampling efficiency and minimize the number of data points required to
optimize a function, which is critical in many contexts where experiments or simulations can be costly or
time-consuming.

However, in many domains, the system is not a complete black box. For example, certain types of high-
dimensional input spaces such as images or molecules have some known structure, symmetries and invari-
ances. In addition, the function may be decomposed into other functions; rather than directly outputting the
value of the objective, the data collection process may provide intermediate or auxiliary information from
which the objective function can be cheaply computed. For example, a scientific experiment or simulation
may produce a high-dimensional observation or multiple measurements simultaneously, such as the optical
scattering spectrum of a nanoparticle over a range of wavelengths, or multiple quantum chemistry properties
of a molecule from a single density functional theory (DFT) calculation. All of these physically-informed
insights into the system are potentially useful and important factors for designing surrogate models through
inductive biases, but they are often not fully exploited in existing methods and applications.

BO relies on specifying a surrogate model which captures a distribution over potential functions to incorpo-
rate uncertainty in its predictions. These surrogate models are typically Gaussian Processes (GPs), as the
posterior distribution of GPs can be expressed analytically. However, (1) inference in GPs scales cubically
in time with the number of observations and output dimensionality, limiting their use to smaller datasets or
to problems with low output dimensionality without the use of kernel approximations, and (2) GPs oper-
ate most naturally over continuous low-dimensional input spaces, so kernels for high-dimensional data with
complex structure must be carefully formulated by hand for each new domain. Thus, encoding inductive
biases can be challenging.

Neural networks (NNs) and Bayesian neural networks (BNNs) have been proposed as an alternative to GPs
due to their scalability and flexibility (Snoek et al., 2015; Springenberg et al., 2016). Alternatively, neural
networks have also been used to create continuous latent spaces so that BO with vanilla GPs can be more
easily applied (Kusner et al., 2017; Tripp et al., 2020). The ability to incorporate a variety of constraints,
symmetries, and inductive biases into BNN architectures offers the potential for BO to be applied to more
complex tasks with structured data.

This work demonstrates the use of deep learning to enable BO for complex, real-world scientific datasets,
without the need for pre-trained models. In particular:

• We take advantage of auxiliary or intermediate information to improve BO for tasks with high-
dimensional observations.

• We demonstrate BO on complex input spaces including images and molecules using convolutional
and graph neural networks, respectively.

• We apply BO to several realistic scientific datasets, including the optical scattering of a nanopar-
ticle, topology optimization of a photonic crystal material, and chemical property optimization of
molecules from the QM9 dataset.

We show that neural networks are often able to significantly outperform GPs as surrogate models on these
problems, and we believe that these strong results will also generalize to other contexts and enable BO to be
applied to a wider range of problems. We note that while our methods are based on existing methods, we use
a novel combination of these methods to tailor existing BO frameworks to real-world, complex applications.

1.1 Related Work

Various methods have been formulated to scale GPs to larger problems. For example, Bruinsma et al. (2020)
proposes a framework for multi-output GPs that scale linearly with m, where m is the dimensionality of
a low-dimensional sub-space of the data. Maddox et al. (2021a) uses multi-task GPs to perform BO over
problems with large output dimensionalities. Additionally, GPs have been demonstrated on extremely large
datasets through the use of GPUs and intelligent preconditioners Gardner et al. (2018); Wang et al. (2019)

2

Published in Transactions on Machine Learning Research (09/2022)

or through the use of various approximations Rahimi & Recht (2007); Wang et al. (2018); Liu et al. (2020);
Maddox et al. (2021b).

Another approach to scaling BO to larger problems is by combining it with other methods such that the
surrogate model does not need to train on the entire dataset. For example, TuRBO uses a collection
of independent probabilistic models in different trust regions, iteratively deciding in which trust region to
perform BO and thus reducing the problem to a set of local optimizations (Eriksson et al., 2019). Methods
such as LA-MCTS build upon TuRBO and dynamically learn the partition function separating different
regions (Wang et al., 2020).

GPs have been extended to complex problem settings to enable BO on a wider variety of problems. Astudillo
& Frazier (2019) decompose synthetic problems as a composition of other functions, and take advantage of
the additional structure to improve BO. However, the multi-output GP they use scales poorly with output
dimensionality, and so this approach is limited to simpler problems. This work has also been extended
Balandat et al. (2020); Maddox et al. (2021a). GP kernels have also been formulated for complex input
spaces including convolutional kernels (Van der Wilk et al., 2017; Novak et al., 2020; Wilson et al., 2016)
and graph kernels (Shervashidze et al., 2011; Walker & Glocker, 2019). The graph kernels have been used to
apply BO to neural architecture search (NAS) where the architecture and connectivity of a neural network
itself can be optimized (Ru et al., 2021).

Deep learning has been used as a scalable and flexible surrogate model for BO. In particular, Snoek et al.
(2015) uses neural networks as an adaptive basis function for Bayesian linear regression, which allows BO to
scale to large datasets. This approach also enables BO in more complex settings including transfer learning of
the adaptive basis across multiple tasks, and modeling of auxiliary signals to improve performance (Perrone
et al., 2018). Additionally, Bayesian neural networks (BNNs) that use Hamiltonian Monte Carlo to sample the
posterior have been used for single-task and multi-task BO for hyperparameter optimization (Springenberg
et al., 2016).

Another popular approach for BO on high-dimensional spaces is latent-space approaches. Here, an autoen-
coder such as a VAE is trained on a dataset to create a continuous latent space that represents the data.
From here, a more conventional optimization algorithm, such as BO using GPs, can be used to optimize
over the continuous latent space. This approach has been applied to complex tasks such as arithmetic ex-
pression optimization and chemical design (Kusner et al., 2017; Gómez-Bombarelli et al., 2018; Griffiths &
Hernández-Lobato, 2020; Tripp et al., 2020; Deshwal & Doppa, 2021). Note that these approaches focus on
both data generation and optimization simultaneously, whereas our work focuses on just the optimization
process.

Random forests have also been used for iterative optimization such as sequential model-based algorithm
configuration (SMAC) as they do not face scaling challenges (Hutter et al., 2011). Tree-structured Parzen
Estimators (TPE) are also a popular choice for hyper-parameter tuning (Bergstra et al., 2013). However,
these approaches still face the same issues with encoding complex, structured inputs such as images and
graphs.

Deep learning has also been applied to improve tasks other than BO. For example, active learning is a similar
scheme to BO that, instead of optimizing an objective function, aims to optimize the predictive ability of
a model with as few data points as possible. The inductive biases of neural networks has enabled active
learning on a variety of high-dimensional data including images (Gal et al., 2017), language (Siddhant &
Lipton, 2018), and partial differential equations (Zhang et al., 2019a). BNNs have also been applied to the
contextual bandits problem, where the model chooses between discrete actions to maximize expected reward
(Blundell et al., 2015; Riquelme et al., 2018).

2 Bayesian Optimization

2.1 Prerequisites

Now, we briefly introduce the BO methodology; more details can be found in the literature (Brochu et al.,
2010; Shahriari et al., 2015; Garnett, 2022). We formulate our optimization task as a maximization problem

3

Published in Transactions on Machine Learning Research (09/2022)

in which we wish to find the input x∗ ∈ X that maximizes some function f such that x∗ = arg maxx f(x).
The input x is most simply a real-valued continuous vector, but can be generalized to categorical variables,
images, or even discrete objects such as molecules. The function f returns the value of the objective y = f(x)
(which we also refer to as the “label” of x), and can represent some performance metric that we wish to
maximize. In general f can be a noisy function.

A key ingredient in BO is the surrogate model that produces a distribution of predictions as opposed to a
single point estimate for the prediction. Such surrogate models are ideally Bayesian models, but in practice,
a variety of approximate Bayesian models or even frequentist (i.e. empirical) distributions have been used.
In iteration N , a Bayesian surrogate model M is trained on a labeled dataset Dtrain = {(xn, yn)}N

n=1. An
acquisition function α then uses M to suggest the next data point xN+1 ∈ X to label, where

xN+1 = arg max
x∈X

α (x; M, Dtrain) . (1)

The new data is evaluated to get yN+1 = f(xN+1), and (xN+1, yN+1) is added to Dtrain.

2.2 Acquisition Function

An important consideration within BO is how to choose the next data point xN+1 ∈ X given the model M
and labelled dataset Dtrain. This is parameterized through the “acquisition function” α, which we maximize
to get the next data point to label as shown in Equation 1.

We choose the expected improvement (EI) acquisition function αEI (Jones et al., 1998). When the posterior
predictive distribution of the surrogate model M is a normal distribution N (µ(x), σ2(x)), EI can be expressed
analytically as

αEI(x) = σ(x) [γ(x)Φ(γ(x)) + ϕ(γ(x))] , (2)

where γ(x) = (µ(x) − ybest)/σ(x), ybest = max({yn}N
n=1) is the best value of the objective function so far,

and ϕ and Φ are the PDF and CDF of the standard normal N (0, 1), respectively. For surrogate models that
do not give an analytical form for the posterior predictive distribution, we sample from the posterior NMC
times and use a Monte Carlo (MC) approximation of EI:

αEI-MC(x) = 1
NMC

NMC∑
i=1

max
(

µ(i)(x) − ybest, 0
)

. (3)

where µ(i) is a prediction sampled from the posterior of M (Wilson et al., 2018). While works such as
Lakshminarayanan et al. (2017) fit the output of the surrogate model to a Gaussian to use Eq. 2 for
acquisition, this is not valid when the model prediction for y is not Gaussian, which is generally the case for
composite functions (see Section 2.4).

EI has the advantage over other acquisition functions in that the MC approximation (1) remains differentiable
to facilitate optimization of the acquisition function in the inner loop (i.e. the MC approximation of upper
confidence bound (UCB) is not differentiable and can result in ties) and (2) is inexpensive (i.e. naive
Thompson sampling for ensembles would require re-training a model from scratch in each iteration).

2.3 Continued Training with Learning Rate Annealing

One challenge is that training a surrogate model on Dtrain from scratch in every optimization loop adds
a large computational cost that limits the applicability of BO, especially since neural networks are ideally
trained for a long time until convergence. To minimize the training time of BNNs in each optimization loop,
we use the model that has been trained in the Nth optimization loop iteration as the initialization (also
known as a “warm start”) for the (N + 1)th iteration, rather than training from a random initialization. In
particular, we use the cosine annealing learning rate proposed in Loshchilov & Hutter (2016) which starts
with a large learning rate and drops the learning rate to 0. For more details, refer to Section A.3 in the
Appendix.

4

Published in Transactions on Machine Learning Research (09/2022)

2.4 Auxiliary Information

Typically we assume f is a black box function, so we train M : X → Y to model f . Here we consider the
case where the experiment or observation may provide some intermediate or auxiliary information z ∈ Z,
such that f can be decomposed as

f(x) = h(g(x)), (4)

where g : X → Z is the expensive labeling process, and h : Z → Y is a known objective function that can
be cheaply computed. Note that this is also known as “composite functions” (Astudillo & Frazier, 2019;
Balandat et al., 2020). In this case, we train M : X → Z to model g, and the approximate EI acquisition
function becomes

αEI-MC-aux(x) = 1
NMC

NMC∑
i=1

max
(

h
(

µ(i)(x)
)

− ybest, 0
)

. (5)

which can be seen as a Monte Carlo version of the acquisition function presented in Astudillo & Frazier
(2019). We denote models trained using auxiliary information with the suffix “-aux.” Because h is not
necessarily linear, h

(
u(i)(x)

)
is not in general Gaussian even if u(i) itself may be, which makes the MC

approximation convenient or even necessary.

3 Surrogate Models

Bayesian models are able to capture uncertainty associated with both the data and the model parameters
in the form of probability distributions. To do this, there is a prior probability distribution P (θ) placed
upon the model parameters, and the posterior belief of the model parameters can be calculated using Bayes’
theorem upon observing new data. Fully Bayesian neural networks have been studied in small architectures,
but are impractical for realistically-sized neural networks as the nonlinearities between layers render the
posterior intractable, thus requiring the use of MCMC methods to sample the posterior. In the last decade,
however, there have been numerous proposals for approximate Bayesian neural networks that are able to
capture some of the Bayesian properties and produce a predictive probability distribution. In this work,
we compare several different options for the BNN surrogate model. In addition, we compare against other
non-BNN baselines. We list some of the more notable models here, and model details and results can be
found in Section A.4.1 of the Appendix.

Ensembles combine multiple models into one model to improve predictive performance by averaging the
results of the single models Ensembles of neural networks have been reported to be more robust than other
BNNs (Ovadia et al., 2019), and we use “Ensemble” to denote an ensemble of neural networks with identical
architectures but different random initializations, which provide enough variation for the individual models
to give different predictions. Using the individual models can be interpreted as sampling from a posterior
distribution, and so we use Eq. 5 for acquisition. Our ensemble size is NMC = 10.

Other BNNS. We also compare to variational BNNs including Bayes by Backprop (BBB) (Blundell et al.,
2015) and Multiplicative Normalizing Flows (MNF) (Louizos & Welling, 2017); BOHAMIANN (Springenberg
et al., 2016); and NeuralLinear (Snoek et al., 2015). For BBB, we also experiment with KL annealing,
denoted by “-Anneal.”

GP Baselines. GPs are largely defined by their kernel (also called “covariance functions”) which determines
the prior and posterior distribution, how different data points relate to each other, and the type of data the
GP can operate on. In this work, we will use “GP” to refer to a specific, standard specification that uses a
Matérn 5/2 kernel, a popular kernel that operates over real-valued continuous spaces. To operate on images,
we use a convolutional kernel, labeled as “ConvGP”, which is implemented using the infinite-width limit
of a convolutional neural network (Novak et al., 2020). Finally, to operate directly on graphs, we use the
Weisfeiler-Lehman (WL) kernel as implemented by (Ru et al., 2021), which we label as “GraphGP”. The
WL kernel is able to operate on undirected graphs containing node and edge features making it appropriate
for chemical molecule graphs, and was used by Ru et al. (2021) to optimize neural network architectures in
a method they call NAS-BOWL. Additionally, we compare against “GP-aux” which use multi-output GPs
for problems with auxiliary information (also known as composite functions) (Astudillo & Frazier, 2019). In

5

Published in Transactions on Machine Learning Research (09/2022)

(a) (b)

GP BNN-aux

Layer thicknesses

𝒙 ∈ ℝ6

Objective

𝑦 ∈ ℝ

(c)
Layer thicknesses

𝒙 ∈ ℝ𝟔

Scattering spectrum

𝒛 ∈ ℝ201

Objective

𝑦 ∈ ℝ

(d)

𝑥1 𝑥3

𝑥2

Figure 1: (a) A cross-section of a three-layer nanoparticle parameterized by the layer thicknesses. (b) An
example of the scattering cross-section spectrum of a six-layer nanoparticle. (c) Whereas GPs are trained
to directly predict the objective function, (d) multi-output BNNs can be trained with auxiliary information,
which here is the scattering spectrum.

the Appendix, we also look at GPs that use infinite-width and infinite-ensemble neural network limits as the
kernel (Novak et al., 2020) as well as TuRBO which combines GP-based BO with trust regions (Eriksson
et al., 2019).

VAE-GP uses a VAE trained ahead of time on an unlabelled dataset representative of X . This allows us
to encode complex input spaces, such as chemical molecules, into a continuous latent space over which con-
ventional GP-based BO methods can be applied, even enabling generation and discovery of novel molecules
that were not contained in the original dataset. Here, we modified the implementation provided by (Tripp
et al., 2020) in which they use a junction tree VAE (JTVAE) to encode chemical molecules (Jin et al., 2018).
More details can be found in the Appendix.

Other Baselines. We compare against two variations of Bayesian optimization, TuRBO (Eriksson et al.,
2019) and TPE (Bergstra et al., 2013). We also compare against several global optimization algorithms that
do not use surrogate models and are cheap to run, including LIPO (Malherbe & Vayatis, 2017), DIRECT-L
(Gablonsky & Kelley, 2001), and CMA-ES.

We emphasize that ensembles and variational methods can easily scale up to high-dimensional outputs with
minimal increase in computational cost by simply changing the output layer size. Neural Linear and GPs
scale cubically with output dimensionality (without the use of covariance approximations), making them
difficult to train on high-dimensional auxiliary or intermediate information.

4 Results

We now look at three real-world scientific optimization tasks all of which provide intermediate or auxiliary
information that can be leveraged. In the latter two tasks, the structure of the data also becomes important
and hence BNNs with various inductive biases significantly outperform GPs and other baselines. For sim-
plicity, we only highlight results from select architectures (see Appendix for full results along with dataset
and hyperparameter details). All BO results are averaged over multiple trials, and the shaded area in the
plots represents ± one standard error over the trials.

4.1 Multilayer Nanoparticle

We first consider the simple problem of light scattering from a multilayer nanoparticle, which has a wide
variety of applications that demand a tailored optical response (Ghosh Chaudhuri & Paria, 2012) including
biological imaging (Saltsberger et al., 2012), improved solar cell efficiency (Ho et al., 2012; Shi et al., 2013),
and catalytic materials (Tang & Henkelman, 2009). In particular, the nanoparticle we consider consists of
a lossless silica core and 5 spherical shells of alternating TiO2 and silica. The nanoparticle is parameterized
by the core radius and layer thicknesses as shown in Figure 1(a), which we restrict to the range 30 nm to

6

Published in Transactions on Machine Learning Research (09/2022)

Figure 2: BO results for two different objective functions for the nanoparticle scattering problem. Training
with auxiliary information (where M is trained to predict z) is denoted with “-aux”. Adding auxiliary
information to BNNs significantly improves performance.

70 nm. Because the size of the nanoparticle is on the order of the wavelength of light, its optical properties
can be tuned by the number and thicknesses of the layers. The scattering spectrum can be calculated
semi-analytically, as detailed in Section A.1.1 of the Appendix.

We wish to optimize the scattering cross-section spectrum over a range of visible wavelengths, an example of
which is shown in Figure 1(b). In particular, we compare two different objective functions: the narrowband
objective that aims to maximize scattering in the small wavelength range 600 nm to 640 nm and minimize
it elsewhere, and the highpass objective that aims to maximize scattering above 600 nm and minimize it
elsewhere. While conventional GPs train using the objective function as the label directly, BNNs with
auxiliary information can be trained to predict the full scattering spectrum, i.e. the auxiliary information
z ∈ R201, which is then used to calculate the objective function, as shown in Figure 1(c,d).

BO results are shown in Figure 2. Adding auxiliary information significantly improves BO performance for
BNNs. Additionally, they are competitive with GPs, making BNNs a viable approach for scaling BO to
large datasets. In Appendix A.5, we see similar trends for other types of BNNs. Due to poor scaling of
multi-output GPs with respect to output dimensionality, we are only able to run GP-aux for a small number
of iterations in a reasonable time. Within these few iterations, GP-aux performs poorly, only slightly better
than random sampling. We also see in the Appendix that BO with either GPs or BNNs are comparable
with, or outperform other global optimization algorithms, including DIRECT-L and CMA-ES.

4.2 Photonic Crystal Topology

Next we look at a more complex, high-dimensional domain that contains symmetries not easily exploitable
by GPs. Photonic crystals (PCs) are nanostructured materials that are engineered to exhibit exotic optical
properties not found in bulk materials, including photonic band gaps, negative index of refraction, and
angular selective transparency (John, 1987; Yablonovitch, 1987; Joannopoulos et al., 2008; Shen et al.,
2014). As advanced fabrication techniques are enabling smaller and smaller feature sizes, there has been
growing interest in inverse design and topology optimization to design even more sophisticated PCs (Jensen
& Sigmund, 2011; Men et al., 2014) for applications in photonic integrated circuits, flat lenses, and sensors
(Piggott et al., 2015; Lin et al., 2019).

Here we consider 2D PCs consisting of periodic unit cells represented by a 32 × 32 pixel image, as shown
in Figure 3(a), with white and black regions representing vacuum (or air) and silicon, respectively. Because
optimizing over raw pixel values may lead to pixel-sized features or intermediate pixel values that cannot be
fabricated, we have parameterized the PCs with a level-set function ϕ : X → V that converts a 51-dimensional
feature vector x = [c1, c2, ..., c50, ∆] ∈ R51 representing the level-set parameters into an image v ∈ R32×32

that represents the PC. More details can be found in Section A.1.2 in the Appendix.

We test BO on two different data distributions, which are shown in Figure 3(b,c). In the PC-A distribution,
x spans ci ∈ [−1, 1] , ∆ ∈ [−3, 3]. In the PC-B distribution, we arbitrarily restrict the domain to ci ∈ [0, 1].
The PC-A data distribution is translation invariant, meaning that any PC with a translational shift will also

7

Published in Transactions on Machine Learning Research (09/2022)

(a)

(c)

(b)

(d)
BCNN-aux

Density of States

𝒛 ∈ ℝ500

Unit cell image

𝒗 ∈ ℝ32×32

Level set parameters

𝒙 ∈ ℝ51
Level set parameters

𝒙 ∈ ℝ51

GP

Objective

𝑦 ∈ ℝ
Objective

𝑦 ∈ ℝ

(e) (f)

Figure 3: (a) A 2D photonic crystal (PC). The black and white regions represent different materials, and the
periodic unit cells are outlined in red. Examples of PC unit cells drawn from the (b) PC-A distribution and
(c) the PC-B distributions. The PC-A data distribution is translation invariant, whereas unit cells drawn
from the PC-B distribution all have white regions in the middle of the unit cell, so the distribution is not
translation invariant. (d) Example of a PC density of states (DOS). (e, f) Comparison of the process flow
for training the surrogate model in the case of (e) GPs and (f) Bayesian Convolutional NNs (BCNN). The
BCNN can train directly on the images to take advantage of the structure and symmetries in the data, and
predict the multi-dimensional DOS.

be in the data distribution. However, the PC-B data distribution is not translation invariant, as shown by
the white regions in the center of all the examples in Figure 3(c).

The optical properties of PCs can be characterized by their photonic density of states (DOS), e.g. see Figure
3(d). We choose an objective function that aims to minimize the DOS in a certain frequency range while
maximizing it everywhere else, which corresponds to opening up a photonic band gap in said frequency
range. As shown in Figure 3(e,f), we train GPs directly on the level-set parameters X , whereas we train
the Bayesian convolutional NNs (BCNNs) on the more natural unit cell image space V. BCNNs can also be
trained to predict the full DOS as auxiliary information z ∈ R500.

The BO results, seen in Figure 4(a), show that BCNNs outperform GPs by a significant margin on both
datasets, which is due to both the auxiliary information and the inductive bias of the convolutional layers, as
shown in Figure 4(b). Because the behavior of PCs is determined by their topology rather than individual
pixel values or level-set parameters, BCNNs are much better suited to analyze this dataset compared to GPs.
Additionally, BCNNs can be made much more data-efficient since they directly encode translation invariance
and thus learn the behavior of a whole class of translated images from a single image. Because GP-aux
is extremely expensive compared to GP (500× longer on this dataset), we are only able to run GP-aux
for a small number of iterations, where it performs comparably to random sampling. We also compare to
GPs using a convolutional kernel (“ConvGP-NNGP”) in Figure 4(a). ConvGP-NNGP only performs slightly
better than random sampling, which is likely due to a lack of auxiliary information and inflexibility to learn
the most suitable representation for this dataset.

For our main experiments with BCNNs, we use an architecture that respects translation invariance. To
demonstrate the effect of another commonly used deep learning training technique, we also experiment with
incorporating translation invariance into a translation dependent (i.e. not translation invariant) architecture
using a data augmentation scheme in which each image is randomly translated, flipped, and rotated during
training. We expect data augmentation to improve performance when the data distribution exhibits the
corresponding symmetries: in this case, we focus on translation invariance. As shown in Figure 4(c), we
indeed find that data augmentation improves the BO performance of the translation dependent architecture
when trained on the translation invariant PC-A dataset, even matching the performance of a translation
invariant architecture on PC-A. However, on the translation dependent PC-B dataset, data augmentation
initially hurts the BO performance of the translation dependent architecture because the model is unable to

8

Published in Transactions on Machine Learning Research (09/2022)

(a) (b) (c) (d)

Figure 4: Three sets of comparisons for BO results on the (top row) PC-A and (bottom row) PC-B datasets.
(a) BNNs with inductive biases outperform all other GP baselines and the random baseline. Note that
GP-aux is comparable to random sampling. (b) The inductive bias of convolutional layers and the addition
of auxiliary information significantly improve performance of BCNNs. (c) Additional comparisons. (d) Data
augmentation boosts performance if the augmentations reflect a symmetry present in the dataset but not
enforced by the model architecture. “TI” refers to a translation invariant BCNN architecture, whereas “TD”
refers to a translation dependent architecture. “-augment” signifies that data augmentation of the photonic
crystal image is applied, which includes periodic translations, flips, and rotations.

quickly specialize to the more compact distribution of PC-B, putting its BO performance more on par with
models trained on PC-A. These results show that techniques used to improve generalization performance
(such as data augmentation or invariant architectures) for training deep learning architectures can also
be applied to BO surrogate models and, when used appropriately, directly translate into improved BO
performance. Note that data augmentation would not be feasible for GPs without a hand-crafted kernel as
the increased size of the dataset would cause inference to become computationally intractable.

4.3 Organic Molecule Quantum Chemistry

Finally, we optimize the chemical properties of molecules. Chemical optimization is of significant interest
in both academia and industry with applications in drug design and materials optimization (Hughes et al.,
2011). This is a difficult problem where computational approaches such as density functional theory (DFT)
can take days for simple molecules and are intractable for larger molecules; synthesis is expensive and time-
consuming, and the space of synthesizable molecules is large and complex. There have been many approaches
for molecular optimization that largely revolve around finding a continuous latent space of molecules (Gómez-
Bombarelli et al., 2018) or hand-crafting kernels to operate on molecules (Korovina et al., 2020).

Here we focus on the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), which consists of
133,885 small organic molecules along with their geometric, electronic, and thermodynamics quantities that
have been calculated with DFT. Instead of optimizing over a continuous space, we draw from the fixed pool
of available molecules and iteratively select the next molecule to add to Dtrain. This is a problem setting
especially common to materials design where databases are incomplete and the space of experimentally-
feasible materials is small.

We use a Bayesian graph neural network (BGNN) for our surrogate model, as GNNs have become popular
for chemistry applications due to the natural encoding of a molecule as a graph with atoms and bonds as
nodes and edges, respectively. For baselines that operate over continuous spaces (i.e. GPs and simple neural

9

Published in Transactions on Machine Learning Research (09/2022)

Molecule

SOAP descriptor

𝒙 ∈ ℝ7380
Molecule graph

𝑿 ∈ ℝ𝑚×𝑛, 𝑨 ∈ ℝ𝑚×𝑚,

𝑬 ∈ ℝ𝑚×𝑚×𝑠

GP BGNN-aux

DFT properties

𝒛 ∈ ℝ𝑛𝑧

Objective

𝑦 ∈ ℝ
Objective

𝑦 ∈ ℝ

Molecule

(a) (b) (c)

(d)

Figure 5: Quantum chemistry task and results. (a) The GP is trained on the SOAP descriptor, which is
precomputed for each molecule. (b) The BGNN operates directly on a graph representation of the molecule,
where atoms and bonds are represented by nodes and edges, respectively. The BGNN can be trained on
multiple properties given in the QM9 dataset. (c) BO results for various properties. Note that GraphEnsem-
ble is a type of BGNN. (d) Time per BO iteration on the GPU. (Note the logarithmic scale on the y-axis.)
GraphGP takes orders of magnitudes longer than BGNNs for moderate N .

networks), we use the Smooth Overlap of Atomic Positions (SOAP) descriptor to produce a fixed-length
feature vector for each molecule, as shown in Figure 5(a) (De et al., 2016; Himanen et al., 2020).

We compare two different optimization objectives derived from the QM9 dataset: the isotropic polarizability
α and (α − ϵgap) where ϵgap is the HOMO-LUMO energy gap. Other objectives are included in Appendix
A.5.4. Because many of the chemical properties in the QM9 dataset can be collectively computed by a single
DFT or molecular dynamics calculation, we can treat a group of labels from QM9 as auxiliary information
z and train our BGNN to predict this entire group simultaneously. The objective function h then simply
picks out the property of interest.

As shown in Figure 5(c), GraphGP and the BGNN variants significantly outperform GPs, showing that
the inductive bias in the graph structure leads to a much more natural representation of the molecule and
its properties. In the case of maximizing the polarizability α, including the auxiliary information improves
BO performance, showing signs of positive transfer. However, it does not have a significant impact on the
other objectives, which may be due to the small size of the available auxiliary information (only a handful of
chemical properties from the QM dataset) as compared with the nanoparticle and photonic crystal tasks. In
a more realistic online setting, we would have significantly more physically-informative information available
from a DFT calculation, e.g. we could easily compute the electronic density of states (the electronic analogue
of the auxiliary information used in the photonics task).

As seen in Figure 5(d), we also note that the GraphGP is relatively computationally expensive (15× longer
than GPs for small N and 800× longer than BGNNs for N = 100) and so we are only able to run it for a
limited N in a reasonable time frame. We see that BGNNs perform comparably or better than GraphGPs
despite incurring a fraction of the computational cost.

VAE-GP uses a modified version of the latent-space optimization method implementation provided by
Tripp et al. (2020). Rather than optimizing over a continuous latent space of the VAE, we feed the data
pool through the VAE encoder to find their latent space representation, and then apply the acquisition
function to the latent points to pick out the best unlabeled point to sample. We keep as many hyper-
parameters the same as the original implementation as possible, with the exception of the weighted re-

10

Published in Transactions on Machine Learning Research (09/2022)

training which we forgo since we have a fixed data pool that was used to train the VAE. This setup is
similar to GraphNeuralLinear in that a deep learning architecture is used to encode the molecule as a
continuous vector, although GraphNeuralLinear is only trained on the labelled data. The results for
this experiment show that VAE-GP performs worse than BNNs on two of the three objective functions we
tested and slightly better on one objective. We also note that the performance of VAE-GP depends very
heavily on the pre-training of the VAE, as choosing different hyper-parameters or even a different random
seed can significantly deteriorate performance (see Figure 15 in the Appendix).

5 Discussion

Introducing physics-informed priors (in the form of inductive biases) into the model are critical for their
performance. Well-known inductive biases in deep learning include convolutional and graph neural networks
for images and graph structures, respectively, which significantly improve BO performance. Another induc-
tive bias that we introduce is the addition of auxiliary information present in composite functions, which
significantly improves the performance of BO for the nanoparticle and photonic crystal tasks. We conjecture
that the additional information forces the BNN to learn a more consistent physical model of the system since
it must learn features that are shared across the multi-dimensional auxiliary information, thus enabling the
BNN to generalize better. For example, the scattering spectrum of the multilayer particle consists of mul-
tiple resonances (sharp peaks), the width and location of which are determined by the material properties
and layer thicknesses. The BNN could potentially learn these more abstract features, and thus, the deeper
physics, to help it interpolate more efficiently, akin to data augmentation (Peurifoy et al., 2018). Auxiliary
information can also be interpreted as a form of data augmentation. Indeed, tracking the prediction error on
a validation set shows that models with auxiliary information tend to have a lower loss than those without
(see Appendix A.5). It is also possible that the loss landscape for the auxiliary information is smoother
than that of the objective function and that the auxiliary information acts as an implicit regularization that
improves generalization performance.

Interestingly, GP-aux performs extremely poorly on the nanoparticle and photonic crystal tasks. One
possible reason is that we are only able to run GP-aux for a few iterations, and it is not uncommon for
GP-based BO to require some critical number of iterations to reach convergence especially in the case of
high-dimensional systems where the size of the covariance matrix scales with the square of the dimensionality.
It may also be possible that GP-aux only works on certain types of decompositions of functions and cannot
be applied broadly to all composite functions, as the inductive biases in GPs are often hard-coded.

There is an interesting connection between how well BNNs are able to capture and explore a multi-modal
posterior distribution and their performance in BO. For example, we have noticed that larger batch sizes
tend to significantly hurt BO performance. On the one hand, larger batch sizes may be resulting in poorer
generalization as the model finds sharper local minima in the loss landscape. Another explanation is that the
stochasticity inherent in smaller batch sizes allows the BNN to more easily explore the posterior distribution,
which is known to be highly multi-modal (Fort et al., 2019). Indeed, BO often underperforms for very
small dataset sizes N but quickly catches up as N increases, indicating that batch size is an important
hyperparameter which must be balanced with computational cost.

All our results use continued training (or warm restart) to minimize training costs. We note that re-initializing
M and training from scratch in every iteration performs better than continued training on some tasks
(results in the Appendix), which points to how BNNs may not sufficiently represent a multi-modal posterior
distribution or that continued training may skew the training distribution that the BNN sees. Future
work will consider using stochastic training approaches such as SG-MCMC methods for exploring posterior
distributions (Welling & Teh, 2011; Zhang et al., 2019b) as well as other continual learning techniques to
further minimize training costs, especially for larger datasets (Parisi et al., 2019).

When comparing BNN architectures, we find that ensembles tend to consistently perform among the best,
which is supported by previous literature showing that ensembles capture uncertainty much better than
variational methods (Ovadia et al., 2019; Gustafsson et al., 2020) especially in multi-modal loss landscapes
(Fort et al., 2019). Ensembles are also attractive because they require no additional hyperparameters and
they are simple to implement. Although training costs increase linearly with the size of the ensemble, this

11

Published in Transactions on Machine Learning Research (09/2022)

can be easily parallelized on modern computing infrastructures. Furthermore, recent work that aims to
model efficient ensembles that minimize computational cost could be an interesting future direction (Havasi
et al., 2020; Wen et al., 2020). NeuralLinear variants are also quite powerful and cheap, making them
very promising for tasks without high-dimensional auxiliary information. Integrating Neural Linear with
multi-output GPs is an interesting direction for future work. The other BNNs either require extensive
hyper-parameter tuning or perform poorly, making them difficult to use in practice. Additional discussion
can be found in Appendix A.5.5.

As seen in Appendix A.5.4, VAE-GP performs worse than our method on two of the chemistry objectives
and better on one objective. While latent-space optimization methods are often applied to domains where
one wants to simultaneously generate data and optimize over the data distribution, these methods can also be
applied to the cases in this work, where a data pool (e.g. QM9 dataset for the chemistry task) or separate data
generation process (e.g. level-set process for the photonic crystal task) is already available. In these cases, the
VAE is not used as a generative model, but rather as a way to learn appropriate representations. While latent-
space approaches are able to take advantage of well-developed and widely available optimization algorithms,
they also require unsupervised pre-training on a sizeable dataset and a suitable autoencoder model with
the necessary inductive biases. Such models are available in chemistry where there have been significant
development, but are more limited in other domains such as photonics. On the other hand, our method
is able to incorporate the data structure or domain knowledge in an end-to-end manner during training,
although future work is needed to more carefully evaluate how much of an advantage this is and whether it
depends on specific dataset or domain characteristics. For settings where we do not need a generative model,
it would also be interesting to replace the autoencoder with a self-supervised model (Hendrycks et al., 2019;
Loh et al., 2021) or semi-supervised model (Kingma et al., 2014) to create a suitable latent space.

6 Conclusion

We have demonstrated global optimization on multiple tasks using a combination of deep learning and
BO. In particular, we have shown how BNNs can be used as surrogate models in BO, which enables the
scaling of BO to large datasets and provides the flexibility to incorporate a wide variety of constraints, data
augmentation techniques, and inductive biases. We have demonstrated that integrating domain-knowledge
on the structure and symmetries of the data into the surrogate model as well as exploiting intermediate
or auxiliary information significantly improves BO performance, all of which can be interpreted as physics-
informed priors. Intuitively, providing the BNN surrogate model with all available information allows the
BNN to learn a more faithful physical model of the system of interest, thus enhancing the performance of
BO. Finally, we have applied BO to real-world, high-dimensional scientific datasets, and our results show
that BNNs can outperform our best-effort GPs, even with strong domain-dependent structure encoded in the
covariance functions. We note that our method is not necessarily tied to any particular application domain,
and can lower the barrier of entry for design and optimization.

Future work will investigate more complex BNN architectures with stronger inductive biases. For example,
output constraints can be placed through unsupervised learning (Karpatne et al., 2017) or by variationally
fitting a BNN prior (Yang et al., 2020). Custom architectures have also been proposed for partial differential
equations (Raissi et al., 2017; Lu et al., 2020), many-body systems (Cranmer et al., 2020), and generalized
symmetries (Hutchinson et al., 2020), which will enable effective BO on a wider range of tasks. The methods
and experiments presented here enable BO to be effectively applied in a wider variety of settings. There are
also variants of BO including TuRBO which perform extremely well on our tasks, and so future work will
also include incorporating BNNs into these variants.

We make our datasets and code publicly available at https://github.com/samuelkim314/DeepBO

Acknowledgements

The authors would like to acknowledge Rodolphe Jenatton, Thomas Christensen, Andrew Ma, Rumen Dan-
govski, Joy Zeng, Tin D. Nguyen, Charles Roques-Carmes, and Mohammed Benzaouia for fruitful conversa-
tions. The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for

12

https://github.com/samuelkim314/DeepBO

Published in Transactions on Machine Learning Research (09/2022)

providing HPC resources that have contributed to the research results reported within this paper. This work
is supported in part by the the National Science Foundation under Cooperative Agreement PHY-2019786
(The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/). This
research was also sponsored in part by the Department of Defense through the National Defense Science
& Engineering Graduate Fellowship (NDSEG) Program. This material is based upon work partly sup-
ported by the Air Force Office of Scientific Research under the award number FA9550-21-1-0317, as well
partly supported by the US Office of Naval Research (ONR) Multidisciplinary University Research Initiative
(MURI) grant N0 0014-20-1-2325 on Robust Photonic Materials with High-Order Topological Protection It
is also based upon work supported in part by the U.S. Army Research Office through the Institute for Sol-
dier Nanotechnologies at MIT, under Collaborative Agreement Number W911NF-18-2-0048. Research was
sponsored by the United States Air Force Research Laboratory and the United States Air Force Artificial
Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.
The views and conclusions contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the United States Air Force or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

References
Raul Astudillo and Peter Frazier. Bayesian optimization of composite functions. In International Conference

on Machine Learning, pp. 354–363. PMLR, 2019.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson, and
Eytan Bakshy. Botorch: a framework for efficient monte-carlo bayesian optimization. Advances in neural
information processing systems, 33:21524–21538, 2020.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter op-
timization in hundreds of dimensions for vision architectures. In International conference on machine
learning, pp. 115–123. PMLR, 2013.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

Wessel Bruinsma, Eric Perim, William Tebbutt, Scott Hosking, Arno Solin, and Richard Turner. Scalable
exact inference in multi-output gaussian processes. In International Conference on Machine Learning, pp.
1190–1201. PMLR, 2020.

Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel, and
Shirley Ho. Discovering symbolic models from deep learning with inductive biases. arXiv preprint
arXiv:2006.11287, 2020.

Sandip De, Albert P Bartók, Gábor Csányi, and Michele Ceriotti. Comparing molecules and solids across
structural and alchemical space. Physical Chemistry Chemical Physics, 18(20):13754–13769, 2016.

Aryan Deshwal and Jana Doppa. Combining latent space and structured kernels for bayesian optimization
over combinatorial spaces. Advances in Neural Information Processing Systems, 34, 2021.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global
optimization via local bayesian optimization. Advances in neural information processing systems, 32, 2019.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspective.
arXiv preprint arXiv:1912.02757, 2019.

Joerg M Gablonsky and Carl T Kelley. A locally-biased form of the direct algorithm. Journal of Global
Optimization, 21(1):27–37, 2001.

13

http://iaifi.org/

Published in Transactions on Machine Learning Research (09/2022)

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. arXiv
preprint arXiv:1703.02910, 2017.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. Advances in neural information processing
systems, 31, 2018.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022. in preparation.

Rajib Ghosh Chaudhuri and Santanu Paria. Core/shell nanoparticles: classes, properties, synthesis mecha-
nisms, characterization, and applications. Chemical reviews, 112(4):2373–2433, 2012.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Daniele Grattarola and Cesare Alippi. Graph neural networks in tensorflow and keras with spektral. arXiv
preprint arXiv:2006.12138, 2020.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for automatic
chemical design using variational autoencoders. Chemical science, 11(2):577–586, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable bayesian deep learning
methods for robust computer vision. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pp. 318–319, 2020.

Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, February 2019. URL https://doi.org/10.5281/zenodo.2559634.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew M Dai, and Dustin Tran. Training independent subnetworks for robust prediction.
arXiv preprint arXiv:2010.06610, 2020.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning can
improve model robustness and uncertainty. Advances in neural information processing systems, 32, 2019.

Lauri Himanen, Marc O. J. Jäger, Eiaki V. Morooka, Filippo Federici Canova, Yashasvi S. Ranawat, David Z.
Gao, Patrick Rinke, and Adam S. Foster. DScribe: Library of descriptors for machine learning in materials
science. Computer Physics Communications, 247:106949, 2020. ISSN 0010-4655. doi: 10.1016/j.cpc.2019.
106949. URL https://doi.org/10.1016/j.cpc.2019.106949.

Chung-I Ho, Dan-Ju Yeh, Vin-Cent Su, Chieh-Hung Yang, Po-Chuan Yang, Ming-Yi Pu, Chieh-Hsiung
Kuan, I-Chun Cheng, and Si-Chen Lee. Plasmonic multilayer nanoparticles enhanced photocurrent in
thin film hydrogenated amorphous silicon solar cells. Journal of Applied Physics, 112(2):023113, 2012.

Jilin Hu, Jianbing Shen, Bin Yang, and Ling Shao. Infinitely wide graph convolutional networks: semi-
supervised learning via gaussian processes. arXiv preprint arXiv:2002.12168, 2020.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger. Snapshot
ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of early drug
discovery. British journal of pharmacology, 162(6):1239–1249, 2011.

Michael Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and Hyunjik Kim.
Lietransformer: Equivariant self-attention for lie groups. arXiv preprint arXiv:2012.10885, 2020.

14

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.1016/j.cpc.2019.106949

Published in Transactions on Machine Learning Research (09/2022)

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International conference on learning and intelligent optimization, pp. 507–523.
Springer, 2011.

Jakob Søndergaard Jensen and Ole Sigmund. Topology optimization for nano-photonics. Laser & Photonics
Reviews, 5(2):308–321, 2011.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International conference on machine learning, pp. 2323–2332. PMLR, 2018.

John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade. Photonic Crystals:
Molding the Flow of Light (Second Edition). Princeton University Press, 2 edition, 2008. ISBN 0691124566.

Sajeev John. Strong localization of photons in certain disordered dielectric superlattices. Physical review
letters, 58(23):2486, 1987.

Steven G. Johnson. The nlopt nonlinear-optimization package, 2010. URL http://github.com/stevengj/
nlopt.

Steven G Johnson and John D Joannopoulos. Block-iterative frequency-domain methods for maxwell’s
equations in a planewave basis. Optics express, 8(3):173–190, 2001.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998. ISSN 1573-2916. doi:
10.1023/A:1008306431147. URL https://doi.org/10.1023/A:1008306431147.

Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. Physics-guided neural networks (pgnn):
An application in lake temperature modeling. arXiv preprint arXiv:1710.11431, 2017.

Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10:1755–1758,
2009.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning
with deep generative models. Advances in neural information processing systems, 27, 2014.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian optimization of
machine learning hyperparameters on large datasets. In Artificial Intelligence and Statistics, pp. 528–536.
PMLR, 2017.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schneider,
and Eric Xing. Chembo: Bayesian optimization of small organic molecules with synthesizable recom-
mendations. In International Conference on Artificial Intelligence and Statistics, pp. 3393–3403. PMLR,
2020.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning using
calibrated regression. In International conference on machine learning, pp. 2796–2804. PMLR, 2018.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder. In
International conference on machine learning, pp. 1945–1954. PMLR, 2017.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive un-
certainty estimation using deep ensembles. In Advances in neural information processing systems, pp.
6402–6413, 2017.

Zin Lin, Victor Liu, Raphaël Pestourie, and Steven G Johnson. Topology optimization of freeform large-area
metasurfaces. Optics express, 27(11):15765–15775, 2019.

Boyuan Liu, Steven G Johnson, John D Joannopoulos, and Ling Lu. Generalized gilat–raubenheimer method
for density-of-states calculation in photonic crystals. Journal of Optics, 20(4):044005, 2018.

15

http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://doi.org/10.1023/A:1008306431147

Published in Transactions on Machine Learning Research (09/2022)

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian process meets big data: A review
of scalable gps. IEEE transactions on neural networks and learning systems, 31(11):4405–4423, 2020.

Charlotte Loh, Thomas Christensen, Rumen Dangovski, Samuel Kim, and Marin Soljacic. Surrogate-
and invariance-boosted contrastive learning for data-scarce applications in science. arXiv preprint
arXiv:2110.08406, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural networks.
arXiv preprint arXiv:1703.01961, 2017.

Peter Y Lu, Samuel Kim, and Marin Soljačić. Extracting interpretable physical parameters from spatiotem-
poral systems using unsupervised learning. Physical Review X, 10(3):031056, 2020.

Wesley J Maddox, Maximilian Balandat, Andrew G Wilson, and Eytan Bakshy. Bayesian optimization with
high-dimensional outputs. Advances in Neural Information Processing Systems, 34, 2021a.

Wesley J Maddox, Samuel Stanton, and Andrew G Wilson. Conditioning sparse variational gaussian processes
for online decision-making. Advances in Neural Information Processing Systems, 34, 2021b.

Cédric Malherbe and Nicolas Vayatis. Global optimization of lipschitz functions. arXiv preprint
arXiv:1703.02628, 2017.

Han Men, Karen YK Lee, Robert M Freund, Jaime Peraire, and Steven G Johnson. Robust topology
optimization of three-dimensional photonic-crystal band-gap structures. Optics express, 22(19):22632–
22648, 2014.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and
Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In International
Conference on Learning Representations, 2020. URL https://github.com/google/neural-tangents.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. In Advances in Neural Information Processing Systems, pp. 13991–14002,
2019.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, and Cédric Archambeau. Scalable hyperparameter
transfer learning. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 6846–6856, 2018.

John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan G DeLacy, John D Joannopou-
los, Max Tegmark, and Marin Soljačić. Nanophotonic particle simulation and inverse design using artificial
neural networks. Science advances, 4(6):eaar4206, 2018.

Alexander Y Piggott, Jesse Lu, Konstantinos G Lagoudakis, Jan Petykiewicz, Thomas M Babinec, and
Jelena Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength
demultiplexer. Nature Photonics, 9(6):374–377, 2015.

Wenjun Qiu, Brendan G DeLacy, Steven G Johnson, John D Joannopoulos, and Marin Soljačić. Optimization
of broadband optical response of multilayer nanospheres. Optics express, 20(16):18494–18504, 2012.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

16

https://github.com/google/neural-tangents

Published in Transactions on Machine Learning Research (09/2022)

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical com-
parison of bayesian deep networks for thompson sampling. arXiv preprint arXiv:1802.09127, 2018.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture search
via bayesian optimisation with weisfeiler-lehman kernels. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=j9Rv7qdXjd.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166 billion
organic small molecules in the chemical universe database gdb-17. Journal of chemical information and
modeling, 52(11):2864–2875, 2012.

S Saltsberger, I Steinberg, and Israel Gannot. Multilayer mie scattering model for investigation of intracellular
structural changes in the nucleolus and cytoplasm. International Journal of Optics, 2012, 2012.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

Yichen Shen, Dexin Ye, Ivan Celanovic, Steven G Johnson, John D Joannopoulos, and Marin Soljačić.
Optical broadband angular selectivity. Science, 343(6178):1499–1501, 2014.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Yanpeng Shi, Xiaodong Wang, Wen Liu, Tianshu Yang, Rui Xu, and Fuhua Yang. Multilayer silver nanopar-
ticles for light trapping in thin film solar cells, 2013.

Aditya Siddhant and Zachary C Lipton. Deep bayesian active learning for natural language processing:
Results of a large-scale empirical study. arXiv preprint arXiv:1808.05697, 2018.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural networks
on graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3693–
3702, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25:2951–2959, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural networks. In
International conference on machine learning, pp. 2171–2180, 2015.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with
robust bayesian neural networks. Advances in neural information processing systems, 29:4134–4142, 2016.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian neural
networks. arXiv preprint arXiv:1903.05779, 2019.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

Wenjie Tang and Graeme Henkelman. Charge redistribution in core-shell nanoparticles to promote oxygen
reduction. The Journal of chemical physics, 130(19):194504, 2009.

The GPyOpt authors. GPyOpt: A bayesian optimization framework in python. http://github.com/
SheffieldML/GPyOpt, 2016.

17

https://openreview.net/forum?id=j9Rv7qdXjd
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

Published in Transactions on Machine Learning Research (09/2022)

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization in the
latent space of deep generative models via weighted retraining. Advances in Neural Information Processing
Systems, 33, 2020.

Ryan Turner, David Eriksson, Michael J. McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and Isabelle
Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter tuning:
Analysis of the black-box optimization challenge 2020. In NeurIPS, 2020.

Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi, and Koji Tsuda. Combo: an
efficient bayesian optimization library for materials science. Materials discovery, 4:18–21, 2016.

Mark Van der Wilk, Carl Edward Rasmussen, and James Hensman. Convolutional gaussian processes. arXiv
preprint arXiv:1709.01894, 2017.

Ian Walker and Ben Glocker. Graph convolutional gaussian processes. In International Conference on
Machine Learning, pp. 6495–6504. PMLR, 2019.

Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gordon Wilson.
Exact gaussian processes on a million data points. Advances in Neural Information Processing Systems,
32, 2019.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box optimiza-
tion using monte carlo tree search. Advances in Neural Information Processing Systems, 33:19511–19522,
2020.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian optimization
in high-dimensional spaces. In International Conference on Artificial Intelligence and Statistics, pp. 745–
754. PMLR, 2018.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings
of the 28th international conference on machine learning (ICML-11), pp. 681–688, 2011.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient ensemble
and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt, Jasper
Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes posterior in
deep neural networks really? arXiv preprint arXiv:2002.02405, 2020.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning. In
Artificial intelligence and statistics, pp. 370–378. PMLR, 2016.

James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for bayesian optimiza-
tion. Advances in Neural Information Processing Systems, 31:9884–9895, 2018.

Eli Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical review
letters, 58(20):2059, 1987.

Wanqian Yang, Lars Lorch, Moritz A Graule, Himabindu Lakkaraju, and Finale Doshi-Velez. Incorporating
interpretable output constraints in bayesian neural networks. arXiv preprint arXiv:2010.10969, 2020.

Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in physics-
informed neural networks for solving forward and inverse stochastic problems. Journal of Computational
Physics, 397:108850, 2019a.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical stochastic
gradient mcmc for bayesian deep learning. arXiv preprint arXiv:1902.03932, 2019b.

18

Published in Transactions on Machine Learning Research (09/2022)

Table 1: Summary of dataset dimensionalities. Note that alternate inputs for photonic crystal and organic
molecule datasets are binary images and molecule graphs, respectively.

Continuous input
dimension

Alternate input
dimension

Auxiliary
dimension

Nanoparticle scattering 6 N/A 201
Photonic crystal DOS 51 32 × 32 = 1024 500
Molecule quantum chemistry 480 9 + 9 × 9 + 9 × 9 = 171 9

A Appendix

A.1 Datasets

The dimensionalities of the datasets are summarized in table 1. The continuous input dimension for chemical
molecules refers to the SOAP descriptor. While the space of chemical molecule graphs in general do not
have a well-defined dimensionality as chemical molecules can be arbitrarily large and complex, we limit the
size of molecules by only sampling from the QM9 dataset, and can define the dimensionality as the sum of
the adjacency, node, and edge matrix dimensionalities.

The high dimensionalities of all of these problems make Bayesian neural networks well-suited as surrogate
models to enable scaling. Note that the nanoparticle scattering problem can be adjusted to be less or more
difficult by either changing the input dimensionality (i.e. the number of nanoparticle layers) or the auxiliary
dimension (i.e. the resolution or range of wavelengths that are sampled).

A.1.1 Nanoparticle Scattering

The multilayer nanoparticle consists of a lossless silica core surrounded by alternating spherical layers of
lossless TiO2 and lossless silica. The relative permittivity of silica is εsilica = 2.04. The relative permittivity
of TiO2 is dispersive and depends on the wavelength of light:

εTiO2 = 5.913 + 0.2441
10−6λ2 − 0.0803 (6)

where λ is the wavelength given in units of nm. The entire particle is surrounded by water, which has a
relative permittivity of εwater = 1.77.

For a given set of thicknesses, we analytically solve for the scattering spectrum, i.e. the scattering cross-
section σ(λ) as a function of wavelength λ, using Mie scattering as described in Qiu et al. (2012). The code
for computing σ was adapted from Peurifoy et al. (2018).

The objective functions for the narrowband and highpass objectives are:

hnb(z) =
∫

λ∈nb σ(λ) dλ∫
elsewhere σ(λ) dλ

≈
∑145

i=126 zi∑125
i=1 zi +

∑201
i=146 zi

(7)

hhp(z) =
∫

λ∈hp σ(λ) dλ∫
elsewhere σ(λ) dλ

≈
∑201

i=126 zi∑125
i=1 zi

(8)

where z ∈ R201 is the discretized scattering cross-section σ(λ) from λ = 350 nm to 750 nm.

A.1.2 Photonic Crystal

The photonic crystal (PC) consists of periodic unit cells with periodicity a = 1 au, where each unit cell is
depicted as a “two-tone” image, with the white regions representing silicon with permittivity ε1 = 11.4 and
black regions representing vacuum (or air) with permittivity ε0 = 1.

The photonic crystal (PC) structure is defined by a spatially varying permittivity ε(x, y) ∈ {ε0, ε1} over a
2D periodic unit cell with spatial coordinates x, y ∈ [0, a]. To parameterize ε, we choose a level set of a

19

Published in Transactions on Machine Learning Research (09/2022)

Fourier sum function ϕ, defined as a linear combination of plane waves with frequencies evenly spaced in
the reciprocal lattice space up to a maximum cutoff. Intuitively, the upper limit on the frequencies roughly
corresponds to a lower limit on the feature size such that the photonic crystal remains within reasonable
fabrication constraints. Here we set the cutoff such that there are 25 complex frequencies corresponding to
50 real coefficients c = (c1, c2, ..., c50).

Explicitly, we have

ϕ[c](x, y) = ℜ

{ 25∑
k=1

(ck + ick+25) e2πi(nxx+nyy)/a

}
, (9)

where each exponential term is composed from the 25 different pairs {nx, ny} with nx, ny ∈ {−2, −1, 0, 1, 2}.
We then choose a level-set offset ∆ to determine the PC structure, where regions with ϕ > ∆ are assigned to
be silicon and regions where ϕ ≤ ∆ are vacuum. Thus, the photonic crystal unit cell topology is parameterized
by a 51-dimensional vector, [c1, c2, ..., c50, ∆] ∈ R51. More specifically,

ε(x, y) = ε[c, ∆](x, y) =
{

ε1 ϕ[c](x, y) > ∆
ε0 ϕ[c](x, y) ≤ ∆

, (10)

which is discretized to result in a 32 × 32 pixel image v ∈ {ε0, ε1}32×32. This formulation also has the
advantage of enforcing periodic boundary conditions.

For each unit cell, we use the MIT Photonics Bands (MPB) software (Johnson & Joannopoulos, 2001) to
compute the band structure of the photonic crystal, ω(k), up to the lowest 10 bands, using a 32 × 32 spatial
resolution (or equivalently, 32 × 32 k-points over the Brillouin zone − π

a < k < π
a). We also extract the group

velocities at each k-point and compute the density-of-states (DOS) via an extrapolative technique, adapted
from Liu et al. (2018). The DOS is computed at a resolution of 20,000 points, and a Gaussian filter of kernel
size 100 is used to smooth the DOS spectrum. To normalize the frequency scale across the different unit
cells, the frequency is rescaled via ω

√
εavg → ωnorm, where εavg = 1

a2

∫ a

0
∫ a

0 ε(x, y) dx dy ≈ 1
(32)2

∑
i,j vi,j

is the average permittivity over all pixels. Finally, the DOS spectrum is truncated at ωnorm = 1.2 and
interpolated using 500 points to give z ∈ R500.

The objective function aims to minimize the DOS in a small frequency range and maximize it elsewhere. We
use the following:

hDOS(z) =
∑300

i=1 zi +
∑500

i=351 zi

1 +
∑350

i=301 zi

, (11)

where the 1 is added in the denominator to avoid singular values.

A.1.3 Organic Molecule Quantum Chemistry

The Smooth Overlap of Atomic Positions (SOAP) descriptor (De et al., 2016) uses smoothed atomic densities
to describe local environments for each atom in the molecule through a fixed-length feature vector, which
can then be averaged over all the atoms in the molecule to produce a fixed-length feature vector for the
molecule. This descriptor is invariant to translations, rotations, and permutations. We use the SOAP
descriptor implemented by DScribe (Himanen et al., 2020) using the parameters: local cutoff rcut = 5,
number of radial basis functions nmax = 3, and maximum degree of spherical harmonics lmax = 3. We use
outer averaging, which averages over the power spectrum of different sites.

The graph representation of each molecule is processed by the Spektral package (Grattarola & Alippi, 2020).
Each graph is represented by a node feature matrix X ∈ Rs×dn , an adjacency matrix A ∈ Rs×s, and an edge
matrix E ∈ Re×de , where s is the number of atoms in the molecule, e is the number of bonds, and dn, de are
the number of features for nodes and edges, respectively.

The properties that we use from the QM9 dataset are listed in Table 2. We separate these properties into
two categories: (1) the ground state quantities which are calculated from a single DFT calculation of the
molecule and include geometric, energetic, and electronic quantities, and (2) the thermodynamic quantities
which are typically calculated from a molecular dynamics simulation.

20

Published in Transactions on Machine Learning Research (09/2022)

Table 2: List of properties from the QM9 dataset used as labels
Property Unit Description

Ground State Quantities
A GHz Rotational constant
B GHz Rotational constant
C GHz Rotational constant
µ D Dipole moment
α a3

0 Isotropic polarizability
ϵHOMO Ha Energy of HOMO
ϵLUMO Ha Energy of LUMO
ϵgap Ha Gap (ϵLUMO − ϵHOMO)
⟨R2⟩ a2

0 Electronic spatial extent

Thermodynamic Quantities at 298.15 K
U Ha Internal energy
H Ha Enthalpy
G Ha Free energy
CV

cal
mol K Heat capacity

Algorithm 1 Bayesian optimization with auxiliary information
1: Input: Labelled dataset Dtrain = {(xn, zn, yn)}Nstart=5

n=1
2: for N = 5 to 1000 do
3: Train M : X → Z on Dtrain
4: Form an unlabelled dataset, Xpool
5: Find xN+1 = arg maxx∈Xpool

α (x; M, Dtrain)
6: Label the data zN+1 = g(xN+1), yN+1 = h(zN+1)
7: Dtrain = Dtrain ∪ (xN+1, zN+1, yN+1)
8: end for

The auxiliary information for this task consist of the properties listed in Table 2 that are in the same
category as the objective property, as these properties would be calculated together. The objective function
then simply picks out the corresponding feature from the auxiliary information. More precisely, for the
ground state objectives, the auxiliary information is

z =
[
A, B, C, µ, α, ϵHOMO, ϵLUMO, ϵgap, ⟨R2⟩

]
∈ R9,

and the objective functions are

hα(z) = z5

hα−ϵgap(z) = z5 − 6
191 − z8 − 0.02

0.6
where the quantities for the latter objective are normalized so that they have the same magnitude.

A.2 Bayesian Optimization and Acquisition Function

Our algorithm for Bayesian optimization using auxiliary information z is shown in Algorithm 1. This
algorithm reduces to the basic BO algorithm in the case where h is the identity function and Z = Y such
that we can ignore mention of z in Algorithm 1.

As mentioned in the main text, the inner optimization loop in line 5 of Algorithm 1 is performed by finding
the maximum value of α over a pool of |Xpool| randomly sampled points. We can see in Figure 6 that
increasing |Xpool| in the acquisition step tends to improve BO performance. Thus, there is likely further
room for improvement of the inner optimization loop using more sophisticated algorithms, possibly using the
gradient information provided by BNNs. Unless otherwise stated, we optimize the inner loop of Bayesian

21

Published in Transactions on Machine Learning Research (09/2022)

103 104 105

m = | pool|

0.156

0.157

0.158

0.159

0.160

0.161

0.162

y b
es

t

8x256
8x256-aux
16x512
16x512-aux

Figure 6: Effect of m = |Xpool| used in the inner optimization loop to maximize the acquisition function
on overall BO performance. ybest is taken from the narrowband objective function using the ensemble
architecture. The “aux” in the legend denotes using auxiliary information and the numbers represent the
architecture (i.e. 8 layers of 256 units or 16 layers of 512 units).

0 200 400 600 800 1000
N

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

y b
es

t

Narrowband

0 200 400 600 800 1000
N

0.150

0.152

0.154

0.156

0.158

0.160

0.162
Highpass

BBB-aux-restart
BBB-aux-norestart
Ensemble-aux-restart
Ensemble-aux-restart-cycle
Ensemble-aux-norestart
Ensemble-aux-norestart-cycle

Figure 7: Effect of restarting the BNN training from scratch in each BO iteration.

optimization to choose the next data point to label by maximizing EI on a pool of |Xpool| = 105 randomly
sampled points.

A.3 Continued Training

As mentioned in Section 2.3 of the main text, the BNN is ideally trained from scratch until convergence in
each iteration loop, although this comes at a great computational cost. An alternative is the warm restart
method of continuing the training from the previous iteration which enables the model’s training loss to
converge in only a few epochs. However, as shown in Figure 7, we have found that naive continued training
can result in poor BO performance. This is likely because (a) training does not converge for the new data
point Dnew = (xN+1, yN+1) relative to the rest of the data under a limited computational budget, resulting
in the acquisition function possibly labeling similar points in consecutive iterations, and (b) the BNN gets
trapped in a local minima in the loss landscape that is not ideal for learning future data points. To mitigate
this, we use the cosine annealing learning rate proposed in Loshchilov & Hutter (2016). The large learning
rate at the start of training allows the model to more easily escape local minima and explore a multimodal
posterior (Huang et al., 2017), while the small learning rate towards the end of the annealing cycle allows
the model to converge more easily. Note that the idea of warm restart is similar to “continual learning,”
which is an open and active sub-problem in machine learning research (Thrun, 1998; Parisi et al., 2019). In
particular, we re-train the BNN using 10 epochs.

A.4 Models and Hyperparameters

A.4.1 Additional Surrogate Models

Variational BNNs model a prior and posterior distribution over the neural network weights, but use some
approximation on the distributions to make the BNN tractable. In particular, we use Bayes by Backprop

22

Published in Transactions on Machine Learning Research (09/2022)

(BBB) (also referred to as the “mean field” approximation), which approximates the posterior over the
neural network weights with independent normal distributions (Blundell et al., 2015). We also compare
Multiplicative Normalizing Flows (MNF), which uses normalizing flows on top of each layer output for more
expressive posterior distributions (Louizos & Welling, 2017).

BOHAMIANN proposed to use BNNs in BO by using stochastic gradient Hamiltonian Monte Carlo
(SGHMC) to approximately sample the BNN posterior, combined with scale adaptation to adapt it for an
iterative setting (Springenberg et al., 2016).

NeuralLinear trains a conventional neural network on the data, but then replaces the last layer with
Bayesian linear regression such that the neural network serves as an adaptive basis for the linear regression
(Snoek et al., 2015).

TuRBO (trust region Bayesian Optimization) is a method that maintains M trust regions and performs
Bayesian optimization within each trust region, maintaining M local surrogate models, to scale BO to high-
dimensional problems that require thousands of observations (Eriksson et al., 2019). We use M = 1 and
M = 5, labelled as “TuRBO-1” and “TuRBO-5”, respectively.

TPE (Tree Parzen Estimator) is a method that instead of modeling p(y|x), models p(x|y) and p(y) for the
surrogate model and fits into the BO framework (Bergstra et al., 2013). The tree-structure of the surrogate
model allows it to define leaf variables only when node variables take particular values, which makes it well-
suited for hyper-parameter search (e.g. the learning rate momentum is only defined for momentum-based
gradient descent methods).

LIPO is a parameter-free algorithm that assumes the underlying function is a Lipschitz function and esti-
mates the bounds of the function (Malherbe & Vayatis, 2017). We use the implementation provided by the
dlib library (King, 2009).

DIRECT-L (DIviding RECTangles-Local) systematically divides the search domain into smaller and smaller
hyperrectangles to efficiently search the space (Gablonsky & Kelley, 2001). We use the implementation
provided by the NLopt library (Johnson, 2010).

CMA-ES (covariance matrix adaptation evolution strategy) is an evolutionary algorithm that samples new
data based on a multivariate normal distribution and refines the parameters of this distribution until reaching
convergence. We us the implementation provided by the pycma library (Hansen et al., 2019).

A.4.2 Implementation Details

Unless otherwise stated, we set NMC = 30. All BNNs other than the infinitely-wide networks are implemented
in TensorFlow v1. Models are trained using the Adam optimizer using the cosine annealing learning rate
with a base learning rate of 10−3 (Loshchilov & Hutter, 2016). All hidden layers use ReLU as the activation
function, and no activation function is applied to the output layer.

Infinite-width neural networks are implemented using the Neural Tangents library (Novak et al., 2020). We
use two different types of infinite networks: (1) “GP-” refers to a closed form expression for Gaussian process
inference using the infinite-width neural network as a kernel, and (2) “Inf-” refers to an infinite ensemble of
infinite-width networks that have been “trained” with continuous gradient descent for an infinite time. We
compare NNGP and NTK kernels as well as the parameterization of the layers. By default, we use the NTK
parameterization, but we also use the standard parameterization, denoted by “-std”.

We implement BO using GPs with a Matérn kernel using the GPyOpt library (The GPyOpt authors, 2016).
The library optimizes over the acquisition function in the inner loop using the L-BFGS algorithm.

LIPO (Malherbe & Vayatis, 2017) is implemented in the dlib library (King, 2009). DIRECT-L (Gablonsky &
Kelley, 2001) is implemented in the NLopt library (Johnson, 2010). CMA-ES is implemented in the pycma
library (Hansen et al., 2019).

23

Published in Transactions on Machine Learning Research (09/2022)

0 100 200 300 400 500
N

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

y b
es

t

Branin

Random
GP
Ensemble
BBB

0 100 200 300 400 500
N

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y b
es

t

Hartmann-6

Figure 8: BO results for the Branin and Hartmann-6 functions.

0 200 400 600 800 1000

0.1475

0.1500

0.1525

0.1550

0.1575

0.1600

0.1625

y b
es

t

Narrowband

0 200 400 600 800 1000
1.04

1.05

1.06

1.07

1.08

1.09
Highpass

Ensemble-aux
Ensemble
BBB-aux
BBB
Neural Linear
BOHAMIANN

0 200 400 600 800 1000
N

0.12

0.13

0.14

0.15

0.16

y b
es

t

0 200 400 600 800 1000
N

1.00

1.02

1.04

1.06

1.08 Ensemble-aux
LIPO
DIRECT-L
CMA

Figure 9: Additional optimization result curves for the nanoparticle scattering task. (Top) Various BNNs.
Note that results using auxiliary information are denoted by a solid line, while those that do not are denoted
by a dashed line. Also note that the y-axis is zoomed in to differentiate the curves. (Bottom) Various
non-BO algorithms. Ensemble-aux is replicated here for ease of comparison.

A.5 Additional Results

A.5.1 Test Functions

We test BO on several common synthetic functions used for optimization, namely the Branin and 6-
dimensional Hartmann functions. We use BNNs with 4 hidden layers and 256 units in each hidden layer,
where each hidden layer is followed by a ReLU activation function. Plots of the best value ybest at each BO
iteration are shown in Figure 8. As expected, GPs perform the best. Ensembles and BBB also perform com-
petitively and much better than random sampling, showing that deep BO is viable even for low-dimensional
black-box functions.

A.5.2 Nanoparticle Scattering

Detailed BO results for the nanoparticle scattering problem are shown in Table 3.

All the BNNs used for the nanoparticle scattering problem use an architecture consisting of 8 hidden layers
with 256 units each, with the exception of BOHAMIANN where we used the original architecture consisting
of 2 hidden layers with 50 units each. The infinite-width neural networks for the nanoparticle task consist
of 8 hidden layers of infinite width, each of which are followed by ReLU activation functions.

24

Published in Transactions on Machine Learning Research (09/2022)

Table 3: BO results for the nanoparticle scattering problem. ∗ denotes that ybest is measured at N = 100
due to computational constraints

Model Narrowband Highpass

ybest at N = 250 ybest at N = 1000 ybest at N = 250 ybest at N = 100

Mean SE Mean SE Mean SE Mean SE
GP 0.1606 0.0005 0.1621 0.0001 1.0839 0.0017 1.0851 0.0008
GP-aux ∗0.1541 0.0019 - - ∗1.0110 0.0234 - -
Ensemble 0.1558 0.0011 0.1607 0.0003 1.0729 0.0025 1.077 0.0021
Ensemble-aux 0.1578 0.0014 0.1593 0.0013 1.0783 0.0003 1.0822 0.001
BBB 0.1596 0.0006 0.1596 0.0006 1.0753 0.0005 1.0753 0.0005
BBB-aux 0.1601 0.001 0.1601 0.001 1.076 0.0028 1.076 0.0028
BBB-Anneal 0.1598 0.001 0.1611 0.0001 1.0813 0.0003 1.0821 0.0005
BBB-aux-Anneal 0.1613 0.0003 0.1619 0 1.0826 0.0008 1.0834 0.0005
MNF 0.15 0.0005 0.1547 0.0004 1.027 0.005 1.0312 0.0036
MNF-aux 0.1549 0.0014 0.1569 0.0006 0.9957 0.0168 1.028 0.0157
Neural Linear 0.1543 0.002 0.1579 0.0015 1.0798 0.0007 1.0836 0.0007
BOHAMIANN 0.1616 0.0001 - - 1.0717 0.0031 - -
Inf-NNGP 0.1541 0.0011 0.157 0.0009 1.055 0.0036 1.0653 0.0022
Inf-NTK 0.1536 0.0008 0.1571 0.001 1.041 0.004 1.0612 0.0011
Inf-NNGP-std 0.1551 0.0006 0.1598 0.0006 1.0615 0.0043 1.069 0.0018
Inf-NTK-std 0.1564 0.0006 0.1607 0.0001 1.0607 0.0039 1.0761 0.0014
GP-NNGP 0.1582 0.0007 0.1609 0.0001 1.0621 0.0027 1.0694 0.0019
GP-NTK 0.1573 0.001 0.1611 0.0001 1.0667 0.0032 1.0732 0.0012
GP-NNGP-std 0.1562 0.0008 0.1595 0.001 1.0615 0.0058 1.0718 0.0024
GP-NTK-std 0.1592 0.0011 0.1608 0.0002 1.0641 0.0033 1.0704 0.0017
TuRBO-1 0.1572 0.0017 0.1619 0.0011 1.0831 0.022 1.0871 0.0005
TuRBO-1 0.1605 0.0011 0.1619 0.0001 1.0867 0.0016 1.0890 0.0003
TPE 0.1561 0.0007 0.1615 0.0001 1.0517 0.0035 1.0794 0.0010
Random 0.1527 0.0008 0.1555 0.0006 1.0053 0.0063 1.0362 0.0047
LIPO 0.1604 0.0016 0.1619 0.0006 1.0792 0.0066 1.087 0.0034
DIRECT-L 0.1544 0 0.156 0 1.0777 0 1.0801 0
CMA 0.1424 0.0046 0.143 0.0048 1.059 0.0117 1.076 0.0127

25

Published in Transactions on Machine Learning Research (09/2022)

64 128 256
Layer width

1.0700

1.0725

1.0750

1.0775

1.0800

1.0825

1.0850

y b
es

t

layers4
layers4-aux
layers8
layers8-aux
layers16
layers16-aux

Figure 10: Comparison of ybest at N = 1000 for the nanoparticle narrowband objective function for a variety
of neural network sizes. All results are ensembles, and “aux” denotes using auxiliary information.

Figure 11: Examples of optimized nanoparticles and their scattering spectrum using the “Ensemble-aux”
architecture for the (a) narrowband and (c) highpass objectives. Orange shaded regions mark the range over
which we wish to maximize the scattering.

We also experiment with KL annealing in BBB, a proposed method to improve the performance of variational
methods for BNNs in which the weight of the KL term in the loss function is slowly increased throughout
training Wenzel et al. (2020). For these experiments, we exponentially anneal the KL term with weight
σKL(i) = 10i/500−5 as a function of epoch i when training from scratch; during the continued training, the
weight is held constant at σKL = 10−3.

KL annealing in the BBB architecture significantly improves performance for the narrowband objective,
although results are mixed for the highpass objective. Additionally, KL annealing has the downside of
introducing more parameters that must be carefully tuned for optimal performance. MNF performs poorly,
especially on the highpass objective where it is comparable to random sampling, and we have found that
MNF is quite sensitive to the choice of hyperparameters for uncertainty estimates even on simple regression
problems.

The different variants infinite-width neural networks do not perform as well as the BNNs on both objective
functions, despite the hyper-parameter search.

LIPO seems to perform as well as GPs on both objective functions, which is impressive given the computa-
tional speed of the LIPO algorithm. Interestingly DIRECT-L does not perform as well as LIPO or GPs on
the narrowband objective, and actually performs comparably to random sampling on the highpass objective.
Additionally, CMA performs poorly on both objectives, likely due to the highly multimodal nature of the
objective function landscape.

We also look at the effect of model size in terms of number of layers and units in Figure 10 for ensembles.
While including auxiliary information clearly improves performance across all architectures, there is not
a clear trend of performance with respect to the model size. Thus, the performance of BO seems to be
somewhat robust to the exact architecture as long as the model is large enough to accurately and efficiently
train on the data.

26

Published in Transactions on Machine Learning Research (09/2022)

Table 4: Various architectures for BNNs and BCNNs used in the PC problem. Numbers represent the number
of channels and units for the convolutional and fully-connected layers, respectively. All convolutional layers
use 3 × 3-sized filters with stride (1, 1) and periodic boundaries. “MP” denotes max-pooling layers of size
2 × 2 with stride (2, 2), and “AP” denotes average-pooling layers of size 2 × 2 with stride (1, 1). “Conv”
denotes BCNNs whereas “FC” denotes BNNs (containing only fully-connected layers) that act on the level-
set parameterization x rather than on the image v. “TI” denotes translation invariant architectures, whereas
“TD” denotes translation dependent architectures (i.e. not translation invariant).

Architecture Convolutional
Layers

Fully-connected
Layers

Conv-TI 16-MP-32-MP-64-MP-128-MP-256 256-256-256-256
Conv-TD 8-AP-8-MP-16-AP-32-MP-32-AP 256-256-256-256
FC n/a 256-256-256-256-256

Figure 12: Examples of optimized photonic crystal unit cells over multiple trials for (a) PC-A distribution
and (c) PC-B distribution. (b,d) Examples of the optimized DOS. Note that the DOS has been minimized
to nearly zero in a thin frequency range. Orange shaded regions mark the frequency range in which we wish
to minimize the DOS. All results were optimized by the “Ensemble-aux” architecture.

Examples of the optimized structures by the “Ensemble-aux” architecture are shown in Figure 11. We can
see that the scattering spectra peak in the shaded region of interest, as desired by the respective objective
functions.

A.5.3 Photonic Crystal

The BNN and BCNN architectures that we use for the PC task are listed in Table 4. The size of the “FC”
architectures are chosen to have a similar number of parameters as their convolutional counterparts. Unless
otherwise stated, all results in the main text and here use the “Conv-TI” and “FC” architectures for BCNNs
and BNNs, respectively.

The infinite-width convolutional neural networks (which act as convolutional kernels for GPs) in the PC task
consist of 5 convolutional layers followed by 4 fully-connected layers of infinite width. Because the pooling
layers in the Neural Tangents library are currently too slow for use in application, we increased the size of
the filters to 5 × 5 to increase the receptive field of each filter.

Detailed BO results for the PC problem are shown in Table 5. For algorithms that optimize over the
level set parameterization R51, we see that GPs perform consistently well, although BNNs using auxiliary
information (e.g. Ensemble-Aux) can outperform GPs. DIRECT-L and CMA perform extremely well on
the PC-A distribution but performs worse than GP on the PC-B distribution.

Adding convolutional layers and auxiliary information improves performance such that BCNNs significantly
outperform GPs. Interestingly, the infinite-width networks perform extremely poorly, although this may be
due to a lack of pooling layers in their architecture which limits the receptive field of the convolutions.

Examples of the optimized structures by the “Ensemble-aux” architecture are shown in Figure 12. The
photonic crystal unit cells generally converged to the same shape: a square lattice of silicon posts with
periodicity

√
2a.

27

Published in Transactions on Machine Learning Research (09/2022)

Table 5: Select BO results for the PC problem. ∗ denotes that ybest is measured at N = 130 due to
computational constraints. † denotes that ybest is measured at N = 750 due to computational constraints.

Model PC-A PC-B

ybest at N = 250 ybest at N = 1000 ybest at N = 250 ybest at N = 100

Mean SE Mean SE Mean SE Mean SE
GP 548 450 2109 448 781 394 3502 49
GP-aux ∗16 4 - - ∗9 1 - -
Ensemble 30 2 841 448 216 145 1318 465
Ensemble-aux 305 217 1310 509 2909 408 3633 130
ConvEnsemble 1140 471 2375 371 390 263 2070 505
ConvEnsemble-aux 2623 558 3468 120 3752 106 4002 92
BBB 75 31 350 207 704 502 780 485
BBB-aux 39 7 413 313 554 371 1605 544
ConvBBB 712 416 1486 490 928 600 930 599
ConvBBB-aux 2109 583 3124 43 1761 724 1928 711
NeuralLinear 1009 549 1235 481 685 488 2853 291
ConvNeuralLinear 1160 540 2524 479 1643 596 2722 647
Conv-Inf-NNGP 29 8 322 181 21 7 157 42
Conv-Inf-NTK 49 32 425 322 28 7 907 711
Conv-GP-NNGP 15 2 221 118 37 5 830 533
Conv-GP-NTK 20 10 194 139 34 12 85 45
Conv-Inf-NNGP-std 17 3 732 432 66 15 889 442
Conv-Inf-NTK-std 52 31 99 64 8 0 27 12
Conv-GP-NNGP-std 20 7 †101 59 100 55 †124 49
Conv-GP-NTK-std 13 5 †132 77 7 0 †686 575
Random 141 61 402 184 471 398 485 395
TuRBO-1 1150 638 4451 20 3865 289 4476 16
TuRBO-5 3738 92 4456 37 4128 49 4466 26
TPE 1001 648 3901 140 3045 571 4119 156
LIPO 940 1073 1280 1073 1837 1792 2266 1626
DIRECT-L 20 0 4351 1 8 0 2525 38
CMA 9 1 4078 126 10 3 1777 969

28

Published in Transactions on Machine Learning Research (09/2022)

(a)

(b)

Figure 13: (a) Various metrics tracked during BO of the PC-A dataset distribution on a validation dataset
of 1000 datapoints. (b) Uncertainty calibration curves measured at various points during BO. Note that the
calibration curve for GP-aux is only shown for N = 50, as it becomes computationally intractable for larger
N .

Validation Metrics

To explore more deeply why certain surrogate models perform well while others do not, we track various
metrics of the model during BO on a validation dataset with 1000 randomly sampled data points. In
particular, we look at the mean squared error (MSE), the mean absolute error (MAE), the negative log-
likelihood (NLL), and the calibration error on the PC-A data distribution. Results are shown in Figure
13(a).

The calibration error is a quantitative measure of the uncertainty of the model, which is important for the
performance of BO as the acquisition function uses the uncertainty to balance exploration and exploitation.
Intuitively, we expect that a 50% confidence interval contains the correct answer 50% of the time. In
particular, we use the forecast calibration as proposed by Kuleshov et al. (2018), which is an extension of
the calibration error proposed by Guo et al. (2017) to regression tasks:

cal(F1, y1, ..., FT , yT) =
m∑

j=1
(pj − p̂j)2

where Fj is the CDF of the predictive distribution, pj is the confidence level, and p̂j is the empirical frequency.
We choose to measure the error along the confidence levels pj = (j − 1)/10 for j = 1, 2, ..., 11. The CDF
Fj(yj) an be analytically calculated for models that have an analytical predictive distribution. For models
that do not have an analytical predictive distribution, we use the empirical CDF:

F (y) = 1
n

n∑
i=1

1µ(i)≤y

where 1 is the indicator function. We also plot the calibration, {(pj , p̂j)}M
j=1, in Figure 13(b). Perfectly

calibrated predictions correspond to a straight line.

Figure 13 shows that the infinite neural network kernel (NTK) has the highest prediction error, which is
likely a contributing factor to its poor BO performance. Interestingly, vanilla GPs have the lowest MSE, so
the prediction error is not the only indicator for BO performance. Looking at the calibration, the infinite
neural network kernel has the highest calibration error, and we see from Figure 13(b) that it tends to be

29

Published in Transactions on Machine Learning Research (09/2022)

0 200 400
N

80

100

120

140

160

y b
es

t

0 200 400
N

0.2

0.4

0.6

0.8
gap

0 200 400
N

0.3

0.4

0.5

0.6

gap

GP
GraphEnsemble-aux
BBB FC
NeuralLinear
VAE-GP

Figure 14: Additional BO results for several different objective functions on the chemistry dataset. GP and
GraphEnsemble-aux curves are replicated from the main text for convenience.

Table 6: BO results for the four different quantum chemistry objective functions. ∗ denotes that ybest is
measured at N = 100 due to computational constraints.

ybest at N = 500

Model ϵgap −ϵgap α α − ϵgap

Mean SD Mean SD Mean SD Mean SD
GP 0.41 0.04 −0.10 0.02 101.08 1.05 0.29 0.07
GraphGP ∗0.62 0.00 ∗ − 0.10 0.02 ∗131.99 14.59 ∗0.24 0.03
Ensemble 0.62 0.00 −0.08 0.00 86.56 0.31 0.28 0.00
Ensemble-aux 0.62 0.00 −0.10 0.02 83.86 4.45 0.13 0.05
GraphEnsemble 0.62 0.00 −0.10 0.00 143.53 0.00 0.49 0.00
GraphEnsemble-aux 0.62 0.00 −0.10 0.00 143.53 0.00 0.49 0.00
GraphBBB 0.38 0.01 −0.11 0.01 94.46 1.16 0.25 0.01
GraphBBB-FC 0.62 0.00 −0.10 0.00 135.64 13.67 0.39 0.14
GraphNeuralLinear 0.62 0.00 −0.09 0.01 143.53 0.00 0.46 0.09
VAE-GP 0.62 0.06 - - 123.33 13.02 0.61 0.34
VAE-GP-2 - - - - 110.84 16.68 0.56 0.35
VAE-GP-latent128 - - - - 154.66 35.96 0.40 0.10
VAE-GP-latent128-beta0.001 - - - - 133.66 13.25 0.42 0.13
VAE-GP-latent32 - - - - 114.83 14.64 0.53 0.38
Random 0.38 0.02 −0.11 0.03 105.19 7.87 0.29 0.07

overconfident in its predictions. GPs have a higher calibration error than the ensemble neural network
methods, and tends to be significantly underconfident in its predictions. GP-aux has higher validation loss,
calibration error, and NLL than most, if not all, of the other methods, which explain its poor performance.

The ensemble NN methods tend to be reasonably well-calibrated. Within the ensemble NNs, the "-aux"
methods have lower MSE and calibration error than their respective counterparts, and ConvEnsemble-aux
has the lowest NLL calibration error out of all the methods, although interestingly Ensemble-aux seems to
have the lowest MSE and MAE out of the ensemble NNs.

These results together show that calibration of Bayesian models is extremely important for use as surrogate
models in BO.

A.5.4 Organic Molecule Quantum Chemistry

The Bayesian graph neural networks (BGNNs) used for the chemical property optimization task consist of 4
edge-conditioned graph convolutional layers with 32 channels each, followed by a global average pooling oper-
ation, followed by 4 fully-connected hidden layers of 64 units each. The edge-conditioned graph convolutional
layers Simonovsky & Komodakis (2017) are implemented by Spektral Grattarola & Alippi (2020).

More detailed results for the quantum chemistry dataset are shown in Table 6 and Figure 14. The archi-
tecture with the Bayes by Backprop variational approximation applied to every layer including the graph

30

Published in Transactions on Machine Learning Research (09/2022)

0 100 200 300 400 500
N

80

100

120

140

160

y b
es

t

0 100 200 300 400 500
N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
gap

VAE-GP
VAE-GP-2
VAE-GP-latent128
VAE-GP-latent128-beta0.001
VAE-GP-latent32

Figure 15: Additional BO results for VAE-GP using different pre-trained VAEs.

convolutional layers (“BBB”), performs extremely poorly, even worse than random sampling in some cases.
However, only making the fully-connected layers Bayesian (“BBB-FC”) performs surprisingly well.

Ensembles trained with auxiliary information (“Ensemble-aux”) and neural linear (“NeuralLinear”)
perform the best on all objective functions. Adding auxiliary information to ensembles helps for the α
objective function, and neither helps nor hurts for the other objective functions. Additionally, BNNs perform
at least as well or significantly better than GPs in all cases. GPs perform comparably or worse than random
sampling in several cases.

As noted in the main text, the performance of VAE-GP depends on the quality of the pre-trained VAE, as
shown in Figure 15. The VAE-GP benchmark uses the same pre-trained VAE, and “VAE-GP-2” refers to
the same method using a different random seed for the VAE. Even with the exact same method, VAE-GP-2
performs significantly worse on both objective functions. We also increase the latent space dimensionality
from 52 to 128 in the “VAE-GP-latent128” benchmark, which performs even worse on the α − ϵgap
benchmark although it performs significantly better on the α benchmark. We also adjust the learning rate
momentum to β = 0.001 in “VAE-GP-latent128-beta0.001”, and the latent space dimensionality to 32 in
“VAE-GP-latent32”. There is no clear trend with the different hyper-parameters, which may point to the
random seed of the VAE pre-training being a greater factor in BO performance than the hyper-parameters.

Validation Metrics

As in Appendix A.5.3, we track the MSE, NLL, and calibration error during optimization on the chemistry
task. Results are shown in Figure 16. The various metrics correlate with the respective methods’ peformances
during BO. For example, VAE-GP has an extremely high MSE and calibration error on the α objective, where
it performs poorly, but has an MSE and calibration error more comparable with that of other methods as
well as an extremely low NLL on the α − ϵgap objective, where it performs extremely well. Likewise, the
metrics for GraphGP are very high on the α − ϵgap objective, where it performs poorly. GraphEnsemble
tends to be among the better methods in terms of these metrics, which translates into good BO performance.

A.5.5 Additional Discussion

BBB performs reasonably well and is competitive with or even better than ensembles on some tasks, but it
requires significant hyperparameter tuning. The tendency of variational methods such as BBB to underesti-
mate uncertainty is likely detrimental to their performance in BO. Additionally, Sun et al. (2019) shows that
BBB has trouble scaling to larger network sizes, which may make them unsuitable for more complex tasks
such as those in our work. BOHAMIANN performs very well on the nanoparticle narrowband objective and
comparable to other BNNs without auxiliary information on the nanoparticle highpass objective. This is
likely due to its effectiveness in exploring a multi-modal posterior. However, the need for SGHMC to sample
the posterior makes this method computationally expensive, and so we were only able to run it for a limited
number of iterations using a small neural network architecture.

Infinitely wide neural networks are another interesting research direction, as the ability to derive infinitely
wide versions of various neural network architectures such as convolutions, and more recently graph con-

31

Published in Transactions on Machine Learning Research (09/2022)

102

103

104

MSE

10 2

10 1

100

Calibration error

107

108

109

1010

1011

1012

NLL

0.0

0.2

0.4

0.6

0.8

1.0

p

Calibration Curve

0 100 200 300 400
N

10 2

2 × 10 2

3 × 10 2

4 × 10 2

ga
p

0 100 200 300 400
N

10 1

100

0 100 200 300 400
N

107

109

1011

0.00 0.25 0.50 0.75 1.00
p

0.0

0.2

0.4

0.6

0.8

1.0

p

Ideal
GraphGP
Ensemble
GraphEnsemble
VAE-GP

Figure 16: (a) Various metrics tracked during BO of the PC-A dataset distribution on a validation dataset
of 1000 datapoints. (b) Uncertainty calibration curves measured at various points during BO.

volutional layers (Hu et al., 2020) could potentially bring the power of GPs and BO to complex problems
in low-data regimes. However, we find they perform relatively poorly in BO, are quite sensitive to hyper-
parameters (e.g. kernel and parameterization), and current implementations of certain operations such as
pooling are too slow for practical use in an iterative setting. In particular, BO using an infinite ensemble of
infinite-width networks performs poorly compared to normal ensembles, suggesting that the infinite-width
formulations do not fully capture the dynamics of their finite-width counterparts.

Non-Bayesian global optimization methods such as LIPO and DIRECT-L are quite powerful in spite of their
small computational overhead and can even outperform BO on some simpler tasks. However, they are not
as consistent as BO, performing more comparably to random sampling on other tasks. CMA-ES performs
poorly on all the tasks here. Also, like GPs, these non-Bayesian algorithms assume a continuous input space
and cannot be effectively applied to structured, high-dimensional problems.

A.6 Compute

All experiments were carried out on systems with NVIDIA Volta V100 GPUs and Intel Xeon Gold 6248
CPUs. All training and inference using neural network-based models, graph kernels, and infinite-width
neural network approximations are carried out on the GPUs. All other models are carried out on the CPUs.

32

	Introduction
	Related Work

	Bayesian Optimization
	Prerequisites
	Acquisition Function
	Continued Training with Learning Rate Annealing
	Auxiliary Information

	Surrogate Models
	Results
	Multilayer Nanoparticle
	Photonic Crystal Topology
	Organic Molecule Quantum Chemistry

	Discussion
	Conclusion
	Appendix
	Datasets
	Nanoparticle Scattering
	Photonic Crystal
	Organic Molecule Quantum Chemistry

	Bayesian Optimization and Acquisition Function
	Continued Training
	Models and Hyperparameters
	Additional Surrogate Models
	Implementation Details

	Additional Results
	Test Functions
	Nanoparticle Scattering
	Photonic Crystal
	Organic Molecule Quantum Chemistry
	Additional Discussion

	Compute

