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Abstract

Genomic predictions can help breeders select desirable plant traits, improving crop
yields and resilience. However, data collection for developing these prediction models is
expensive. Using low-cost auxiliary data that exhibit correlation with desired traits can
reduce costs and ultimately improve prediction accuracy. Although such data are abundant,
identifying meaningful auxiliary candidates is time-consuming. To this end, we propose a
transfer learning mechanism on Gaussian processes to search for potential good candidates
via Bayesian optimization. Our results demonstrate promising transferability, paving a
new way for efficient searching with a parsimonious sample size.
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1 Introduction

Genomic predictions enable biologists to identify plants with desirable traits early in the
growing season, eliminating the need to wait for trait observation. Precise selections can
boost crop yield and strengthen resilience to climate change and pest infestations. Collecting
data for these predictive models is a costly endeavor, often requiring scientists to bring
individual plants into a lab. To reduce costs, high throughput data are used in place
of measuring the trait of interest. For example, scientists favor plants with better water
absorption. It is known that the degree of water absorption is correlated with the wavelength
spectrum of crops (Roberts et al., 2018). Hence, an efficient way to collect data is to fly
a drone mounted with a hyperspectral imaging sensor to measure the wavelengths emitted
from each crop.

Quantifying the appropriate wavelength spectra that correlate with the desired genet-
ics hinges on two factors (Fernandes et al., 2023). Firstly, understanding the correlation
between the wavelength(s) and the desired trait: r(w, t). Secondly, assessing the amount
of variance in the wavelength(s) w and the trait t of the crop cohorts attributed to ge-
netics: h(w) and h(t). Unraveling these relationships is non-trivial because they fluctuate
depending on the current crop cohort. Each of these factors can be amalgamated into a
metric called “co-heritability.” To address the expense associated with sorting through var-
ious wavelengths, we take Bayesian optimization approach (Azam et al., 2023), which can
effectively reduce the number of wavelength(s) considered.

In this paper, we focus on identifying wavelength ratios that have the highest co-
heritablity with the desired trait. As shown in Figure 1, we observe that different traits
can have similar co-heritability properties. To this end, we can reduce the search cost by
transferring the knowledge learned from one set of traits and the corresponding wavelength
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Figure 1: An illustration of the search space of co-heritabilities of nitrogen area (upper left),
specific leaf area (upper right), plsr nitrogren area (lower-left), and plsr specific
leaf area (lower-right) for each wavelength ratio w1

w2
. The orange highlights the

top-1% of the search space in the crop Sorghum.

spectrum to another set. This work presents preliminary results showing that transfer learn-
ing of good wavelength ratios is possible for different phenotypes. Additionally, we address
the issue of scalability of such models.

2 Preliminary

We begin with formally introducing the concept of co-heritability, Bayesian optimization,
and transfer learning.

Co-heritability Heritability h : T → R is a function that measures the portion of the
population variance of a trait t ∈ T explained by genetic factors (Hill and Mackay, 2004),
opposed to environmental factors. Traits with high heritability can have their genetic
components predicted with greater reliability, this measure is desirable for plant biologists
during genomic selection. Co-heritability f : W × T → R is a measure that combines the
heritability of two traits and their Pearson correlation r between the two traits (Janssens,
1979; Fernandes et al., 2023):
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f(w, t) = h(w)× h(t)×
√

r(w, t). (1)

For the context of this paper, we fix the desired trait and vary ratios of hyperspectral
reflectance, namely the ratio of the wavelength.

Bayesian Optimization (BO) BO is a technique for global optimization of expensive,
black-box functions. The goal of such methods is to solve the following optimization prob-
lem:

x∗ = argmax
x∈X

f(x). (2)

BO utilizes a probabilistic surrogate model to estimate f , then adaptively select the
next data point, ensuring that we extract the maximum information from each experiment.

In this work, we wish to find the spectra with the optimal co-heritability. The derivative
over the co-heritability function is non-trivial. Furthermore, the computation of each co-
heritability value demands ∼ 0.2 seconds, a potentially sluggish process contingent upon
the granularity and scale of the hyperspectral data. Given these challenges, treating co-
heritability as a black-box within a BO framework becomes a pragmatic approach.

Transfer Learning Transfer learning is a technique where a model trained on one task
is repurposed or fine-tuned for another related task. It is particularly helpful if data is
expensive or scarce, as it leverages knowledge gained from previous task(s) to improve
performance on the target task. From Figure 1, we observe the similarities between the
co-heritabilities for two target phenotypes. Although the peaks (in orange) do not exactly
line up, the search spaces show similarity in shape. We wish to leverage such similarities.

3 Experiment

In this section, we attempt to train a multi-task model for predicting co-heritability of
wavelength ratio jointly on four different tasks. This experiment will prove that positive
transfer is possible in predicting co-heritability of wavelength ratios.

Our dataset comprises 869 Sorghum Lines from two growouts near the University of
Illinois Urbana-Champaign. In our experiment, we consider four target traits 1) Nitrogren
Area (narea) 2) Specific Leaf area (sla) 3) PLSR Nitrogren Area (pn) 4) PLSR Specific
Lead area (ps). The auxiliary trait consists of wavelength ratios (w1/w2) spectrography
ranging from 350nm–2500nm. Using these traits, co-heritability can be calculated between
the target and wavelength ratios using a Linear Mixed Effects (LMER) model using the
lme4 package in R.

In our experiment, we perform (vanilla) Gaussian process regression on 500–3000 data
points. At every step, points are uniformly sampled from each task. The validation set
comprises 1000 uniformly sampled points, distinct from the training set. The Gaussian
process employs a mixed kernel. This kernel combines Matèrn-kernel(s) for the continuous
variable (wi), i.e., wavelength pairs and a categorical kernel(s) for discrete variables (ti),
i.e., the trait:

K((w1, t1), (w2, t2)) = Kmat1(w1,w2) +Kcat1(t1, t2) +Kmat2(w1,w2) ·Kcat2(t1, t2). (3)
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Each kernel consists of one or more hyperparameters. These hyperparameters are tuned
by minimizing the marginal log-likelihood using the L-BFGS-B minimizer in sciPy.

In Figure 2, with 3000 data points, a consistent trend emerges: the validation loss
steadily decreases across all tasks as the dataset size grows for each task. This reduction in
mean squared error indicates that, on average, the training data from various tasks jointly
improve the performance of all tasks. Furthermore, as depicted in Figure 3, we present the
Gaussian Process model acquired after training on N = 3000 points. The resemblance of
these plots to those in Figure 1 provides assurance that a robust Gaussian Process model
is indeed being cultivated.

Figure 2: Vanilla GP trained on four target traits with increasing training points.

4 Conclusion & Future Work

We perform inference to find the posterior predictive distribution, conditioned on data from
four different phenotypes. Our preliminary results suggest positive transfer when learning
co-heritabilities of different target traits with hyperspectral traits. However, fully confirming
this transfer effect necessitates a more careful investigation of the transfer between specific
phenotypes. Subsequently, we wish to extend this testing to more phenotype(s) and more
crops to further understand the utility and practicality of such methods.

Our current tests are on 3000 points. The challenge lies in scaling up this transfer effect
to the potentially large-scale dataset, which contains up to 3 million data points. We plan
to leverage a stochastic gradient method for the Gaussian process method (SDD)(Lin et al.,
2023) to expedite the fitting procedure. This method is provably efficient and estimates
the kernel regression parameters with the stochastic gradient descent by optimizing the
dual objective. SDD requires domain knowledge to select the kernel’s hyperparameter. To
ensure the applicability of these hyperparameters across all phenotypes, we presume that an
optimal hyperparameter obtained from Maximum Likelihood Estimation (MLE) remains
stable with an increase of training data. Our proposed methodology involves randomly
selecting a batch of 1000 points for each phenotype, and training a vanilla GP on a total
of 4000 data points to ascertain the hyperparameters. We plan to run these experiments in
the future.
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Figure 3: Multitask Gaussian process posteriors after training on N = 3000 points.

The next stage of this project aims at minimizing the number of wavelengths for which
co-heritability is calculated. To accomplish this objective, we can employ our multi-task
Gaussian process as a surrogate function in the Bayesian optimization process.
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