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ABSTRACT

The lack of theoretical results for Layer Normalization and feedforward Hessians
has left a gap in the study of Transformer optimization landscapes. We address
this by deriving explicit second-order expressions for these components, thereby
completing the Hessian characterization of full Transformer blocks. Our results
generalize prior self-attention analyses and yield estimations for the role of each
sublayer in curvature propagation. We demonstrate how these Hessian structures
inform both convergence dynamics and the empirical scaling laws governing large-
model performance. Further, we propose a Taylor-expansionbased framework for
analyzing loss differences to quantify convergence trajectories. By extending Hes-
sian theory to the full Transformer architecture, this work establishes a new foun-
dation for theoretical and empirical investigations of optimization in large-scale
deep learning.

Keywords: Transformer Hessians, Layer Normalization, Scaling laws, Convergence dynamics,
Loss landscape, Optimization geometry.

1 INTRODUCTION
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Figure 1: Overview of our observations. Part (a) shows the loss function landscape, which is a
surface in the parameters space, and how it changes as the dataset size increases. Part (b) shows the
schematic view of a proposed method — carry out an analysis of a Transformer’s Hessian, which
greatly impacts on a loss landscape convergence, leading to a sample size determination framework.

Transformers Vaswanief all (2017) have revolutionized deep learning, achieving state-of-the-art per-
formance across natural language processing Devlin_ef all (2019); Brown ef all (Z020), computer
vision Dosovitskiy et al] (2021)); Wu_ef-all (2020), Their empirical success is underpinned by pre-
dictable improvements in model quality with increased dataset size, as described by neural scaling
laws Kaplan et all (2020); Hoffmann ef all (20727); Bahriefall (2024)). However, many domains, such
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as medical imaging Poulain_ef all (2Z027) and scientific discovery Jumper et all (2021, face severe
data constraints where acquiring additional samples is costly or infeasible Chenef-all (20025). This
tension necessitates a rigorous theoretical understanding of how dataset size shapes the optimization
landscape and influences training dynamics.

Existing theoretical analyses of Transformer optimization landscapes are incomplete. While re-
cent studies have derived Hessian expressions for self-attention mechanisms Ormaniec ef all (2024);
Zhang et al] (2024), the full Transformer blockincluding LayerNorm and feed-forward networks
(FFNs)lacks a comprehensive theoretical characterization Noci“ef all (2027); Zhang et al] (Z0253).
These components critically influence optimization dynamics, such as gradient flow and conver-
gence rates Nociefall (2027); [Yang et all (2024), and generalization behavior [Zhang et all (Z025h);
Csordas_ef-all (2021). Without a complete curvature analysis, our understanding of Transformer
training dynamics, convergence properties, and scaling behavior remains limited Forf_and Jasfrzeh:
ski (2019).

In this work, we provide the first complete theoretical analysis of the Hessian for full Transformer
blocks, extending beyond prior self-attention analyses Drmaniecef all (Z024); [Zhang et all (2024) to
include explicit second-order expressions for LayerNorm and FFNs. Our analysis derives rigorous
bounds on how the loss landscape evolves with dataset size, offering a novel framework for under-
standing landscape stabilization in Transformers. These results have implications for optimization
challenges (e.g., vanishing gradients Hochreifer (IT99R)), scaling laws (e.g., compute-optimal train-
ing Kaplan et all (P0201); Hoffmann ef"all (20077)), and critical batch size estimation McCandlish
ef-all (ZOTX); Zhang et all (Z0250).

Contributions. Our main contributions are:

* We derive the first full Hessian expressions for Transformer blocks, including explicit treat-
ment of LayerNorm and FFNS, filling a critical gap in prior analyses.

» We establish theoretical bounds on the loss landscapes evolution with dataset size, provid-
ing a rigorous framework for understanding landscape stabilization.

* We validate our theoretical predictions through experiments on Vision Transformers,
demonstrating practical relevance across data regimes.

Our work bridges theoretical deep learning and practical Transformer deployment, enabling new in-
sights into optimization difficulties, efficient scaling strategies, and future theoretical investigations
of large-scale deep learning.

Outline. The rest of the paper is organized as follows. In Section D, we review related work, cate-
gorizing existing research into key topics and highlighting their main contributions. Section B intro-
duces the notation and presents preliminary calculations essential for our analysis. In Section B, we
derive theoretical bounds for the norm of the Hessian matrix and the norm of the difference between
loss functions. Section B provides an empirical study validating these theoretical results. Section B
discuss and summarize our findings, offering insights and conclusions. Additional experiments are
in Appendix A and proofs of theorems are included in Appendices B-D.

2 RELATED WORK

Geometry of Neural Network Loss Landscapes Foundational studies characterize neural loss ge-
ometry via Hessians, including class-aligned high-curvature directions Forf_and Tasfrzehski (2019),
random-matrix perspectives on spectra and optimization Pennington et all (?(1T’7), and connectivity
and double-descent phenomena Garipov et all (P0IR); Singh et al] (2027); Draxler_ef-all (Z019);
Nguyen et al] (2Z017), with flattening observed at large learning rates Wang et al] (Z023). Our work
complements this line by showing how curvature of Transformer blocks changes with dataset size,
providing explicit second-order bounds that formalize landscape stabilization under data growth.
This links classical geometric insights to a data-scaling axis that was previously qualitative.

Hessian-Based Analysis and Generalization Prior Hessian analyses for fully connected and convo-
lutional networks reveal spectral structure and low effective rank with implications for convergence
and smoothness Kiselev_and Grabovoy (2024); Meshkov_efall (2074). We extend these ideas to
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Transformers by deriving explicit LayerNorm/FFN second derivatives and blockwise spectral-norm
bounds, thereby closing a missing piece in second-order geometry for this architecture.

Loss Landscapes in Transformers While Transformers Vaswani ef all (Z017) have inspired curva-
ture analyses focused on attention Drmaniec ef all (2024) and studies of sample complexity, gen-
eralization, and stagewise dynamics Zhang et al] (Z025R); Cicef-all (2023); Hoogland et al] (Z0275),
a full-block second-order treatment has remained incomplete. We provide the missing LayerNor-
m/FFN Hessians and assemble a complete blockwise Hessian for a Transformer layer, aligning
theory with empirical curvature structure. This enables a principled account of how Transformer
curvature evolves with data and training.

Dataset Size and Loss Landscape Convergence Work on compute-optimal scaling and sample-
related flatness highlights the importance of balancing data and model size Hoffmann ef-all (20127);
Wui“ef-all (2017), and visualization tools hint at stabilization thresholds without theory Xie ef all
(P074). Building on Hessian frameworks from other architectures Kiselev_and Grabovoy (2024);
Meshkov_ef all (20174) and attention derivatives Ormaniec ef all (2074), we derive a second-order
bound that decays as 1/k. This yields actionable diagnostics for curvature-aware training and data
budgeting in Transformers.

3 PRELIMINARIES

We adopt row-wise vectorization vec,(-) from Ormaniec ef all (2024); Nocief all (2027). For a
matrix-valued function N : RP*? — R7"*9 differentiable w.r.t. weight matrices W; € RP:*X%

and W] c RijqJ, the Jacobian is 867‘}1\\117 = % € Rnpriqi, and the Hessian block is

ON
°N . Oveer(mw;) (nd-piq;) xp;q; i i
W, OW, "= Bvec, (W,)T © R 7495, Key properties (e.g., for products, Kronecker, inverses,

Hadamard powers) are detailed in Appendix B.

Let fw(-) denote a neural network (here, a Self-Attention layer or full Transformer block) with
parameters w € ). Given a twice-differentiable loss I(-,-), the per-sample loss is I;(w) :=

I(fw(xi),y:). The empirical loss over L = k samples is Li(w) = ¢ Zle I;(w), with Hessian
HO (w) = § 502, Vali(w).

Assumption 1. At local minimum w*, VLy_1(w*) = VL, (w*) = 0.

Our study on the feasibility of this assumption is in Appendix A7

Consider input embeddings X € RE*4v A single-head Self-Attention layer outputs

F(X) = A(X)XWy, (1)
where A (X) = softmax (WQT‘%T‘XT) and Wq, Wk € Rdv*dx W, e Rdv>dv,
Full Transformer block is:

LayerNorm (LayerNorm(X + F(X)) + FFN(LayerNorm(X + F(X)))) 2)

where FFN(+) is a fully connected block with a non-linear activation within it. LayerNorm for an in-
put matrix U € R™* is LayerNorm(U), ; = ~; 2= 4 3, where j; = L Y Uiy, of =

1 2121 (Ui j — p1)*. More details on a transformer block are in Section B2,
Assumption 2. For input matrices to LayerNorm (e.g., X + F(X), Y + FFEN(Y)), the per-row

variances satisfy min; o2 > 0.

It’s a technical assumption for the proof part simplification and numerical stability. The same ef-
fect can be achieved by adding some positive constant to the denominator, but it makes calculations
harder. In our case this assumption is required for X + F(X) and Y + FFN(Y), defined in Trans-
former block B.

We use mean-squared error loss: [(-, Target) = ﬁ || - —Target||%. Hessians decompose via Gauss-
Newton: for composite Ly o fyy,

0*(Lro fu)  Ofw (_)Ta%ck
OW,0W; oW, 0f2

() g O+ (SO 8T ) g O O
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4 METHOD

In this section, we derive generalized Hessian expressions for the self-attention layer and extend
them to a full transformer block, leveraging these to analyze the convergence of the loss function
surface as the dataset size increases. Our approach builds on the theoretical framework of Drmanied
efall (20724, adapting and generalizing their results.

4.1 HESSIAN OF THE SELF-ATTENTION LAYER

We begin by analyzing the Hessian of a single self-attention layer with parameters w =
{Wq,Wg, Wy} as defined in Equation M. The empirical loss is defined as:Cy(w) =

3 Zle I(F(X;), Target,), where [(F(X,), Target,) is a Loss function defined above.

The Hessian of £, with respect to the parameters w is:

=R e

where Hj(w) is a hessian of the Self-Attention block for w being a pair of matrices from
{Wq, Wk, Wy} It can decomposed using the Gauss-Newton approximation B:

0?1
OW,;0W ; OW;

with H,, as the outer-product Hessian and Hy as the functional Hessian. The results for this decom-
position can be calculated according to Theorems 3.1-3.2 from Ormaniec ef all (2074).

H® (w) = V2 Ly (w

?r\*—‘
?’r\*-‘

Hy(W;, Wj) = H,(W;, W;) + H;(W;, W),

Hessian’s norm estimation

Next, we introduce a theorem for estimation the spectral norm (Definition M) of the Hessian for a
single Self-Attention block.

Theorem 1. Let || - |2 be a spectral matrix norm, then for a single Self-Attention layer we have

[H (w2 < M

where
2L

M = 3max <|X§7
dy

8 12 -
m”WKH%”WngHXHg + m\/ min(L, dy ) (L||X[|2|Wv |2 + || Target||2) [W |2 Wk [|51X]13,
4 min(L, dy)

FIIWvH 2| W x| |12 + N (LIX|2|[ Wl + || Target|l2) [W i |12 X3,

8
m||WK||2||WQ\\2||wv||2||xn2+
Ay/min(L,dv) (X | Wy ls + | Target]|) P V-
W 3L||W \)\% X — X
+ Loy /i IWlls (BLIW i 2 Wl XI5 + S 1X5)

The proof is provided in Appendix T

4.2 HESSIAN OF THE TRANSFORMER BLOCK

A transformer block extends the self-attention layer with a feed-forward network (FFN), residual
connections, and layer normalization. The output is:

Y = LayerNorm(X + F(X)) 4)
Z = LayerNorm(Y + FEN(Y)), (5)
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where FFN(Y) = O'(YW1 + bl)WQ + by, with W, € Rded“, W, € Rd“de, b, € Rdﬂ,
by € R%, and o as the activation (e.g., ReLU). The LayerNorm(X) operation is defined as follows.
For an input matrix X € REX4v | we compute:

1. Feature-wise mean and variance:

1 & 1 &
i=— > Xij 2= — Xij— i)
1 dv; g o dv;( i — i)

2. Normalized output with learnable parameters v, 8 € R™:
X5 — Mi
Voi
The parameters are w = {Wg, Wg, Wy, Wi, Wy, by, by, 7, 5}, where y and § are the scale

and shift parameters of LayerNorm. For simplicity in Hessian analysis, one may assume -y and 3
are fixed (e.g., v = 1, 8 = 0), though they are typically learnable.

Theorem 2 (Jacobian of LayerNorm). Let X € RL*4 | Define

LayerNorm(X); j = 7, - + ;-

° ol/2 P
M(X) =X - £X14, 1], 0(X) = A= (M(X)*?14,)"%, P(X) = diag™ (o(X)).

Then the Jacobian of
LayerNorm(X) = P(X)M(X)
with respect to X is

L om) — (2(x) @ La,) (Taay — 20 © Ly xa)) + (1 & MOOT) X,

Theorem 3 (Hessian of LayerNorm). Ler LayerNorm(X) = P(X)M(X) with Jacobian
mgw =P®I1; )G+ (Ir @ MTH, where G = (ILdV — ﬁ(IL ® 1dv><dv)) is constant

and H = g—i as in Theorem Q. The Hessian is

0%LayerNorm 9?M S APX)®1,,)
— oz~ (PX)® L) @ L) ooz + (lay ©GT) ————=
0°P oI, ®MT)
oxz + Loy OHT) =50,

+
+ (I eM")®I4,)

2
where where %TI‘Q = 0, and other terms as derived in the proof.

Proofs and detailed versions for Theorems B-B are provided in Appendices T2 - C3.

Before providing calculations for the whole Transformer Block we need to introduce an activation

function matrix derivative.

Lemma 1 (ReLU derivative and Hessian). Let X € R™*"™, almost everywhere the following holds:
OReLU(X) 9?ReLU(X)

=0.
0X 0X2

= diag(vec, (Lix>01)),

The proof is in the Appendix D.

Thus, we calculate the derivatives and the Hessian of the proposed Transformer block representation
B with respect to a square norm Loss, where we put by 2 = 0 in FEN block for simplicity of
subsequent calculations and use ReLU as an activation layer.

Theorem 4 (Transformer block derivative). For Transformer block from B with S =
ReLU(YW1)W3 +7Y and Z = LayerNorm(S):

9Z _ (B, 1e{1,2}
oW, 7 sy Gi, i€{K,Q,V}

oz 0s 0s oY
where Jz = 35, Bi = 5w, Jsv = gy Gi = gw;-
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More detailed of the theorem and it’s proof can be found in Appendix C4.

Theorem 5 (Hessian of the Transformer block B). The Hessian blocks of the Transformer output Z
w.r.t. parameters (W, W ;) are

y L
H = 2 —(J,0L,)¢&; + (I, ®B] ) HyB, 6)
= oW, )+ (luay BT H2B,
with €; = 5 (R%-), 37 = Linenom®) g, Pleveon(S) g By = 25 where

S:=ReLUYW;)W2+Y
More detailed version of the theorem and the proof can be found in Appendix C3.

2
We note that the theorem above is responsible for the % part from the Hessian of the Loss
i J

function decomposition B. Therefore, the whole Transformer Hessian can be represented as:

P(LoZ) 0Z 9L IZ oL (i)

= — Z(Z()) ®1,,, | HY 7
avviawj avvi azQ 8W7 (8Z( ( )) & plqi) tr ’ ( )
where £(-) = || - —Target||3, it’s second derivative is —Lﬁv ,and %(Z()) can be calculated similarly

to R, from Theorem 3.2 Ormaniec ef all (2024), thus, RY, = vec,(Z — Target) ' ® I,,,, while

i m
0Z 9Z 2J)

(irg) -
W, aw, are from Theorem @ and Hy, ™’ is from Theorem B.

Therefore the transformer-block square-norm can be estimated according to the theorem

Theorem 6 (Spectral-norm estimate of the Transformer Hessian). Let HE;J ) denote the (1,7)-
th block of the Transformer Hessian from equation I3, where i,j5 € {1,2, K,Q,V} and n; =
dim(W;). Then, for each pair (i, j),

IHE |, < 13zl12 €502 + 1Bz [1Hz]l2 [IB;]2. ®)

Jé) Jois] oS
where 5” = 67“71(87\7\71) and Bi = oW, "

Explicit expressions for each bound are stated in the proof.
Furthermore, estimation for the whole transformer Hessian can be calculated as:

Let Hy, be the full Hessian arranged as a my X ny block-matrix with blocks HEi’j ), where my, =

ny = 5 (indexed by {1,2, K,Q,V'}). Then

2 07 0Z -
H, |, < R ||o|[HLS7 |, ) . 9
Fiulle < v mox (2l e + IR ©
Since mp = ny, = 5, we get |Hy,||2 < 5 max; ;(-- - ). We denote this estimation as M,,.

The proof is provided in Appendix 8.

4.3 CONVERGENCE OF THE LOSS FUNCTION SURFACE

Similarly to Kiselev_and Grabovoy (2024) let us use second-order Taylor approximation for the
mentioned above loss functions at w*. We suppose that decomposition to the second order will be
sufficient to study local behavior. The first-order term vanishes because the gradients VL (w*) and
V Li+1(w*) are zero according to Assumption [:

Lilw) % Ly(w) + 3 (w — w) THO () (w — w°), (10)

where we denoted the Hessian of £, (w) with respect to parameters w at w* as H(®) (w*).

Next, we consider difference of losses |£y11(w) — L (w)| while increasing the sequence length.
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Theorem 7 (Convergence of Self-Attention and Transformer Blocks). For a single self-attention
block and a single transformer block B under the conditions that the loss function is bounded 0 <
[(fw~ (%:),y:) < L, and the individual Hessians are bounded, the following holds:

2L M |w— w3
— <
[Crpr(w) = Lx(W)] < 775 R

where for the self-attention block M can be directly calculated from Theorem Wl and for the trans-
former block M = M,, is calculated according to Theorem H.

It’s worth noting that M in the theorem above is not a constant in terms of increasing the sequence
length k, as soon as M as in a function of || X||2 which changes during described process. For more
details see Appendix C1l and 4.

The proof is provided in Appendix C2.

5 EXPERIMENTS

Lx  Transformer Block
To verify our theoretical estimates we conduct a comprehensive em- T
pirical study. We follow the same Transformer architecture we used { L }_
p . Lo . ayerNorm
in the main part of the paper, which is essentially post-norm (Lay-
erNorm is after Self-Attention/FeedForward). [

. . . . . . FeedForward }
In particular, we consider an image classification task, implement-

ing the Vision Transformer (ViT) architecture similar to [Dosavifd .
(2020), see Figure D. Input image is patchified with linear e }'
projection and then goes to Transformer Encoder, which contains L t

Transformer Blocks, while its outputs is averaged to obtain classifi- Self-Attention }
cation logits. :

Hessian entries visualization. In this part we use a single Trans-
former block, which we train on a MNIST (P0T2) dataset { Embedded Patches }
(see M). Firstly, we put just one batch from a train dataloader
to the initialized model and calculate the exact Hessian using Figure 2: Transformer archi-
curvlinops Python package for an efficient Hessian linear op- tecture we use in our experi-
erator calculation. Visualizing it in a log-scale, in Figure B we em- ments

phasize the heterogenity in the magnitues of the entries.

dataset | patchsize hiddendim ffdim num blocks
MNIST 4 16 64 1
CIFAR-100 4 128 512 8

Table 1: Vision Transformer (ViT) architectures hyperparameters we use in our experiments

Hessian

Hessian (Self-Attention)

Logarithmic absolute entries

-6

Figure 3: Hessian entries visualization for an initialized model with one Transformer Block. We
see the entire magnitudes’ heterogeneity, while the Values corresponding blocks have larger values.


https://curvlinops.readthedocs.io/en/latest/
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We train the model for a number of epochs, obtaining pretty high accuracy on a validation dataset
(>50%), and then visualize the Hessian’s entries again, see Figure B. One can see that each of the
Hessian’s blocks becomes more magnituted, however the Values-Values block exhibits the highest
one.

Hessian

Hessian (Self-Attention)

b
Logarithmic absolute entries

Figure 4: Hessian entries visualization for a model trained for a number of epochs with one Trans-
former Block. We see the entire magnitudes’ heterogeneity, while the Values-Values corresponding
block has the largest values.

This experiment shows exactly how the entire Transformer’s Hessian is organized, which allows
us to investigate each block part of it separately. In Appendix BT we continue this experiment by
providing Parameters blocks changing over training epochs figures.

Further, we calculate the matrices” norms and their Hessians’ norms, and show them in Figure B

Parameters norm Hessians norm
5.5 —— Queries 401 — Queries
—— Keys 35{ —— Keys
5.0 —— Values —— Values
—— LayerNorm 300 — LayerNorm
4.5 —— FeedForward 25] —— FeedForward
4.0 20
3.54 15
3.01 10
5
2.59
—— 0
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 5: Parameters’ blocks norms and their Hessians’ norms, calculated exactly on one batch
containing 128 examples from the MNIST training dataset.

Results show that the highest magnitude corresponds to the Keys and Values, while the other blocks
exhibit much smaller absolute entries.

Loss landscape convergence. To further deep inside the dependence between loss function and its
Hessian, we conduct and experiment corresponding to Theorem [. Here we employ the other model
configuration on a CIFAR-100 (P009) dataset. Compared to similar one for a MNIST
dataset, this model have 8x more Transformer blocks and also 8x wider hidden layers. During
traning, it is also trained for a number of epochs to achieve >50% Accuracy on a validation dataset.
The results are in Figure B. The experiment setup is as follows:

1. Train the model until convergence and save the parameters w* (model checkpoint);

2. Start from the empty dataset, add data batch-by-batch and calculate mean loss value over
the seen batches;

3. Calculate the absolute difference according to |Ly1(W) — L (W)].
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Our code is available at https://anonymous.4open.science/r/transtormer
hessians/

6 DISCUSSION AND CONCLUSION

Loss landscape convergence

This work fills a key gap in the second-order
analysis of Transformers by deriving explicit Ja-
cobians and Hessians for LayerNorm and FFN
in the vec, numerator-layout, and integrating
them into a full block-level curvature decom-
position. Theorems -3 and B-8 yield end-
to-end expressions that are compatible with
Kronecker structure and commutation identi-
ties, while Theorems [ and B provide spectral-
norm bounds that connect curvature to input
statistics, LayerNorm scales, and architectural T T To5
hyperparameters. A direct consequence is a # samples
block-heterogeneous Hessian: Value- and Key-

related terms dominate through softmax deriva-  Figure 6: Absolute loss difference vs. the num-
tives and input-dependent operators, FEN cur-  per of training samples in the dataset, plotted in
vature is controlled by the piecewise linearity of Jog-log scale. The blue line represents the EMA
ReLU, and LayerNorm contributes via per-row  of a desired dependency, while the gray one corre-
variance. The empirical results (e.g., Figures B sponds to the linear trend.

and B) match these predictions, with Values - Values blocks exhibiting the largest magnitudes after
training.

= = =
o o o
1 L !

Absolute losses difference

H
S
&

Jun
O it
w

The second-order Taylor expansion in Theorem [ gives a compact convergence inequality,
|Lkr1(W) — Le(w)| < 2L/(k + 1) + M||w — w*||3/(k + 1), where M is provided by our
Hessian bounds. This establishes a 1/(k 4 1) decay of the local discrepancy between successive
empirical objectives when curvature is controlled, and explains the observed stabilization of the loss
landscape with increasing data. The loglog trend in Figure B follows this prediction, supporting the
claim that increasing data size stabilizes the local geometry of the Transformer objective. Finally,
the block-wise structure motivates curvature-aware training through per-block adaptation of learn-
ing rates, weight decay, or preconditioning, and provides a mechanistic rationale for switching from
data scaling to model scaling near curvature stationarity, consistent with compute-optimal policies
Kaplan et al] (2020); Hoffmann_ef all (Z027).

The analysis is local and assumes a shared minimizer for consecutive dataset sizes (Assumption ).
The present theoretical derivation focuses on a single-head, post-normalization transformer block un-
der the mean-squared error loss. While extensions to multi-head attention, masking, and positional
encodings are technically feasible within the established calculus, they are omitted for brevity. It
should be emphasized that the underlying framework naturally generalizes to the cross-entropy loss,
a generalization that has been explicitly validated in our experimental section. A primary direction
for future work involves extending this analysis to deep, multi-layer transformer architectures.
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223 A APPENDIX / SUPPLEMENTAL MATERIAL

650

651 A.1 PARAMETERS BLOCKS CHANGING OVER TRAINING EPOCHS.
652

Here we continue the previous experiments, expanding the plots into separate parameters blocks
653 entries changing. Again, we employ the MNIST’s dataset version of our model (Figure M). We log
654 the matrices entries, norms, and Hessians during the first 1000 training steps. As we can see on
655 Figures [, R, B, [, .
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A.2 ASSUMPTIONS VALIDATION

In this section we provide experimental validation of the assumptions stated in the text. Since
Assumption D is technical, we focus on empirically validating Assumption [I.

Assumption 1 (zeroing gradients)

4.0 —— mean
std

0.51

102 103 10 10° 106
# samples

Figure 12: Validation of Assumption [

Figure 2 presents the corresponding results, indicating that while Assumption [ can be relaxed, its
validity increases with longer sequence lengths (i.e., a larger number of samples).

B APPENDIX / MATRIX CALCULUS PRELIMINARIES

B.1 BASIC MATRIX OPERATIONS PROPERTIES

First, we define the notations and rules that we actively use in the text.

Definition 1 (Matrix Norms). For a matrix A € R™*":

|All2 = o1 (Spectral norm, largest singular value)
m n r
lAllF = Z Z la;;|%2 = ZU? (Frobenius norm)
i=1 j=1 i=1
m
Al = max Y |ag] (Maximum absolute column sum)
1<j5n &
n
Al = max Y |ay]| (Maximum absolute row sum)
1<i<m < 1
=
[|A [ max = n}s}x |aij] (Element-wise maximum, not a submultiplicative norm)
)

Definition 2 (Vectorization and Element-wise Operations). Let A be a matrix and v be a vector.

* vec,.(A) denotes the row-wise vectorization of matrix A.

* A°“ denotes the element-wise a-power of matrix A, i.e., (A°);; = (Ay;)“.
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* diag(v) creates a diagonal matrix with vector v on its main diagonal.
Property 1 (Relation between vec and vec,.). Let A € R™*™. The row-wise vectorization operator
vec, and the standard column-wise vectorization operator vec are related by the transpose:

vec,(A) = vec(AT)

Definition 3 (Commutation Matrix). The commutation matrix K,,, , € R™" ™" is the unique
matrix such that for any matrix A € R™*"™ the following holds

K, nvec(A) = vec(AT)

Using Property W, we immediately have the relationship:

vee,(A) = K, pvec(A) and vec(A) = K, ,vec, (A)
since Ky Ko = L.

From Magnus and Neudeckert (T988) we utilize the property

Property 2 (Row-wise vectorization of matrix product). Let X, A, B be matrices with appropriate
dimensions, then

vec,(AXB) = (A ® BT )vec, (X)
Property 3 (Row-wise vectorization of Hadamard product). Let A, B € R™*", Then

vec, (A o B) = diag(vec,.(A))vec,.(B)

where o denotes the Hadamard (element-wise) product. This result follows directly from Magnus
and Neudeckei ([988), where the similar result was obtained for column-wise vectorization.

Proposition 1 (Identification Theorem for Row-wise Vectorization). Let F : R™*™ — RP'? pe a
differentiable matrix-valued function of a matrix X € R"™*™. [f the differential of F' can be written
as

dvec,.(F(X)) = J - dvec,.(X)

for some matrix J € RPI*™™ that does not depend on dX. Then J is the Jacobian matrix of the
transformation from X to F(X) with respect to row-wise vectorization. We denote this as:

OF(X)  Ovec,(F(X))

oX T O(vee,(X))T J

This is the vec, analogue of the fundamental Identification Theorem from Magnus and Neudeckeit
(T988) for column-wise vectorization.

Property 4 (Element-wise division). Let A € R™*" be a matrix and b € R™*! be a vector. Then

Sfor matrix C € € R™*", where ¢; j = a;jJ is fulfilled that

C = diag~ ' (b)A

Proposition 2 (Spectral norm of 1 . ; matrix). Let A = 11«1, (a matrix full of 1). Then its spectral
norm is

[Alls =L

Proof. Using basic Linear Algebra properties, we obtain tr(A) = L and rank(A) = 1 =
dim(Im(X)). Therefore, using dim(Im(X)) 4+ dim(Ker(X)) = L, we get dim(Ker(X)) = L — 1.
Thus, for ¢ € {2,... L} we get \; = 0 and for \y = L. Then, the only non-null singular value of
the matrix A is v L2 = L. Thus, we obtain that ||A||s = L, according to Definition . O
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B.2 MATRIX-VALUED FUNCTIONS DERIVATIVE PROPERTIES

Next, we introduce the properties for calculating the matrix-valued function derivative.
Property 5 (Matrix-Product derivative). Let X, A, B be matrices with appropriate dimensions, then
0AXB
0X

where A and B have no dependence on X.

=A®BT

Detailed proof of this statement can be found in Singh et al] (Z021).
Property 6 (Kronecker-Product derivative). Let X € R"*% and Y € RP*". Then

IX®Y
IX®Y) I, 0Ky ®L) (I ® vec,Y),
0X '
and analogously
XY
% =1, 0K,,®1) (vec,X®1,.).

The detailed proof is in Ormaniec ef all (2024).
From the properties above, we derive calculations for special cases which we use in this paper.

Proposition 3 (Matrix-valued functions multiplication derivative). Let A(X) € RP*" and B(X) €
R"*49 be matrix-valued functions of the matrix X, then

OA (X)B(X)
aX

0B OA
=(A®L) e+ (I, ®BT) X

Proof. First, we apply a classic chain-rule for calculation a derivative of a complicated function and
then combine it with Property B

OA(X)B(X) OABOB  JABOA 0JABIL 0B 0L ABOA

9X B oX | 9A 09X 0B 0X | 0A oX
- OB L 0A
f(A®Iq)ﬁ+(Ip®B )ﬁ

O

Proposition 4 (Matrix-valued functions Kronecker product derivative). Ler A(X) € R"*? and
B(X) € RP*" be matrix-valued functions of the matrix X, then

0A(X) ® B(X)
oX

0B 0A
= (In ® Kp7q ® I'r) ((VGCTA (9 IpT) 87X + (Inq ® VeCrB) aX_)

Proof. First, we apply a classic chain rule for calculating the derivative of a complicated function
and then combine it with Property B

JAX)®B(X) 9A®BIB  JA@BOIA
X T OB 9X OA 90X

0B
=I,9K,,®L) (vec,A®1,,) X +

0A
(I, 9K, 1) (I, ® vec,B) X =
0B OA
=TI, ®K,,®I,) ((VeCrA ®I,) X + (I,q ® vec,B) 8X>
O

Next, we develop the operations that we introduced above and derive calculations using vec, nota-
tion as we do in this paper.
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Proposition 5 (Derivative of the invert matrix). For an invertible square matrix D € R"*", the
derivative of its inverse is
oD~ !
oD

=-D'gD .

Proof. This is a standard result in matrix calculus. The differential identity
dD™ ') =-D!'(@D)D!

operator and using the property O yields

vec,(—D71 (dD)D™!) = (=D ' @ D™ ")vec,(dD)

By the definition and the identification theorem from Property [ we obtain

~ Ovec, D!

vec,(dD™1) = dvec. D vec,.(dD)
Comparing two results we get % =(-D'eD™ ")
O
Proposition 6 (Derivative of diag(-)). For v € RLX1, the derivative of the diagonalization map is
odi
1;75(‘/) = (el ®er ... eL®eL)>

where e; are the standard basis vectors in RE.

roof. efinition D, diag(v) places entry v; at position (¢,7) of the resulting diagonal matrix.
p By Definition B, diag(v) pl y positi , 1) of th Iting diagonal i

The derivative of diag(v) w.r.t. v; is the elementary matrix E;; = e;e,| that has one in position (4, 7)
and zeros elsewhere.

Applying the row-wise vectorization operator, we obtain

vee,(E; ;) =e; ®e;

by the standard Kroneckervec identity D.

Stacking across ¢ = 1, ..., L, the Jacobian becomes
odi
1;7%(\/) = (el e ... eL®eL)>

O

Proposition 7 (Derivative of the Hadamard square). For a matrix A € R™*", the derivative of the

elementwise square is
8A02

0A

= 2 - diag(vec, (A)).

Proof. By Definition B, (A°?)ij = (Aij)?. Differentiating elementwise gives d(A°2) = 2A o dA.
Applying the vec,. operator and using Property B, we obtain

vec, (d(A°?)) = 2diag(vec,(A))vec,(dA)

By the identification theorem from Property [, this implies

OA°?  dvec,(A°?)

9A ~ Ovec,(A) = 2 - diag(vec,(A))

which establishes the result. ]
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Proposition 8 (Derivative of the Hadamard root). For A € R™*"™ with positive entries, the deriva-
tive of the elementwise square root is

dA°3 . 1, ol
A 1 diag 1(Vecr (A)).

Proof. Similarly to the proof of Proposition [, we obtain d(A°!/?) = %Aofl/ 2 o dA Thus, writing
in vectorized form gives
OA°3 B dvec, (A°?) 1 1

DA = Dvee, (A) 2 diag (veer®(A).

Proposition 9 (Transposed Matrix derivative). Let A € R™*", then the following holds:

OAT
0A

= Kn,m

Proof. Combining a similar property from Magnus and Neudecket (T98R) for column-wise vector-
ization with the column-row connection rule [ and B we obtain the theorem statement. O

B.3 MATRIX NORM PROPERTIES

Similarly to Pefersen and Pedersen (P017) we introduce a matrix norms table comparison.

Property 7 (Matrix norm inequalities). Let A € R™*™  Then the following inequalities hold
between different matrix norms:

x| [[Allmax Al Al |Allz [|A[lF

A ]| max 1 1 1 1
Al m m  Jm  Jm
Al | » = NN
[Allz | Vmn  yno Vm 1
JAlr | vmr  va o Jm Vd
where d = rank(A). The table should be read as: for any two norms || - | x and || - ||y,
IAlx < JAlly
where c is the constant found at the intersection of row X and columnY .
Property 8 (Matrix sum norm). Let A and B be matrices from R™*"™, then
A + Bl < [[All2 + [|B]2 (11)

Property 9 (Kronecker product norm). Let A € R™*™ and B € RP*Y, then the following holds

A @Bz = [[All2[IBll2
Property 10 (Matrix product norm). Let A € R™*™ and B € R™"*9, then the following holds

[ABJ2 < [|A[l2]|B]2

The properties above can be found in Magnus and Neudeckei (T9RE).
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Property 11 (Block-matrix norm inequality). Let A € R™*" be a block-matrix, each block of
which is a matrix B; j, thus the following holds

[All2 < Vimm max B,

Note, if matrix A is block-diagonal, then the strict equality holds || A||2 = max ||B; ;|2

Property 12 (Transposed matrix norm). Let A € R™*", then
1A]lz = [[AT]]2

C APPENDIX / PROOFS OF THE THEOREMS

C.1 PROOF OF THEOREM [

Proof. From Lemma A.3 Nociefall (2027) and using Properties [ and @

0A 1 1 1
— _ < _
l 8TH2 LHIL||2HIL L1L><LH2 <7

Here we used that %1 Lx I 18 a projection matrix, therefore Iy, — %1 Lx L 18 a projection matrix and
it’s norm is ||Iy, — %leLHg <1.

Next we estimate the Z; norm, utilizing the same Properties [0 and B

1Z4]]2 < |1 ®XT||2|| H X @ Xl < ||X||2 XI5 = HXH%

where we used Property 2 for | X ||z = || X T ||z.
Now we calculate estimations for the outer-product Hessian part.

But before that we estimate ||Al|2. This block itself is a row-wise softmax matrix. Thus, each
element A; ; < 1. Next we use Property @ and obtain ||A|max < [|All2 € VLL||A|max =

L||Al|;maz < L. Therefore, the |Mi]l2 = [|AX]|2 < L||X]|2.
Thus, the ||H,(W;, W;)||2 is estimated below:

2 2 2L
H,(Wy, Wy) ML 31 < ——[|A[BIX[3 < ——L*[X]3 = —=|X]3
dv Ldv dV

I < o

Ho(Weo, Wo)ll2 <l (Lay @ W)Z] (I, @ Wy W) Zi(Ig, ® W)z

Ldydg
< WklBIZ B W2 < o Wl B W 3 X =
= Ldydg " Kh2iet VQ—de Kl vilzpzlil2 =
2
= Wkl Wy [3X]I$
2
H,(Wy, W < —= M| @ W 2| Z1 2]/ Ta, ® W
[H,(Wy Q)HQ_LdV\/@” 1 vl2llZ1l2|Ta, xll2
2
— LIX[s|W X3 (W
< Tdo F X2 | sz X113 W k|2
- W ||| Wk [[]|X
= Tdo FH vzl Wl X3
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HO ) S
[HL(Wo, Wil < 7

2
L3dydx

[(Ta, ® Wi)Z{ (I ® Wy W) Z1 (W @ Iy, )Kdg, dv |2

Wi ll2Wall2|[ W [I3]1X]3

where we use Properties [, B and ||Kg, a4, ||2 = 1, because K,,, ,, is a commutation matrix from
Definition B.

Next we derive functional-part estimation. First we provide analysis for R,,, = vec,(F(X) —

Target)” ® I,, from Theorem 3.2 from Ormaniec ef all (2024). Since vec,(-) is a vectorization

procedure ||vec, (F(X) — Target)||> = ||F(X) — Target||r < /rank(F(X) — Target)|F(X) —

Target||» according to Property @. Therefore, we obtain

IRl < /rank(F(X) — Target)||F(X) — Target||s < v/rank(F(X) — Target)([|A||2[| X2 Wy |2 + | Target||2)

< /rank(F(X) — Target) (L[ X[ W || + | Target||2)

where we used Properties [, B

Next we estimate the shuffling matrix norm, utilizing standard properties
I1Sll2 = [[(Tay @ Kay av)(vecr(Lay ) @ Tay )|z < [lvec,(Lay )2 = |[Lay [[F = Vdv

Next challenging part is computing bounds for || 2 8T2 2 |2. In Lemma C1 from Drmaniec ef all (2024)
the a block form of this expression is provided:

0%A,; T LL o T T LxL
W =A;, (2Ai,:Ai): +E; - diag(A;.) —ejA; — A e, ) € R¥*%,
where EX- i =€ ej € REXE therefore it contains only one non-zero element that equals 1 in (5, j)

position. Addmonally, it’s explicitly said that the second derivative of the row-wise softmax has a
%A,

block-diagonal structure. Thus, we use block matrix Property [: H W

T2 = max; j H

Thus, we conduct ||%||2 estimation. As we stated before A, ; < 1. Now HAi’;Az—'l;HQ. as

soon as A; . is arow in a softmax matrix, values in it sum up to 1. Thus, we can use the vector-matrix
inequalities to obtain: [[A; . A |lo < [[A;[3 < [JA;. |7 = 1. After that we conduct |E" |2 =
leje/ [l2 < 1. Then we estimate ||diag(A.; .)||2. For diagonal matrices we can easily obtaln that
|diag(A;.)|2 = max A;; < 1. Next we estimate ;A and A;.e] norms: the matrices e; A,
and Ai’:e;r are rank-1 matrices with only one non-zero row and one non-zero column respectively,
containing elements of A, .. Their spectral norms can be estimated ||A; .||2 < 1.

Therefore, we provide an estimation:
0%A

In this way we can easily obtain the ||Z5||2 estimation
92A

|1Zofz = || (I @ XT @ XT ©XT) (0°A/0T?) (X @ X) |2 < X3 || T2 ||2 < 6]X[3
After that, we proceed to the estimation of the functional Hessian norms.
[He(Wy, Wy)[[2 =0
2
[Hi (W, Wo)ll2 = mHRdvdK (I ® Wy @ Loy, @ W) Zo (Ia, © W) o,
2
S Tdvdne [Ray a2l Wy [|2[[Wk 2| Z2|2[| W k]2
2
< LdvdKG\/rank(F(X) — Target)(L|| X2 [ Wy |2 + || Target||2) [ W ||| W [[5]|X]|3 =
= dVdK Vrank(F(X) — Target)(L|| X |2 W |2 + | Target||2) [ W [|2[|W x[|3]|X]|3
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2
Hi(Wy, Wg)ll2 = ————=I[Rg (It ®S) Z1 (s, ® W) [|2 <
IH:(Wy, Wo)lle = 75—2=IRa, (1o @8) Z1 (Tay © W) 2 <

2
< — ||Ry Sl|2]|Z W <
—Ldv\/@” a 1212/ Z1 |2 Wk |2 <

2 1
P k(F(X) — Target)(L||X|l2||W ||z + || Target||2)\/dv — | X]||2||W =
_Ldvm\/ran( (X) — Target) (L[| X||2[[ Wy ||2 + || Target||2) vLH 5[[W k2

2y/rank(F(X) — Target) \
= L|| X2l W Target||»)||W X
L2y dr (LIX[|2l' W ||z + || Target[|2) || W ||| X3

[Hi(Wq, Wg)|| <

2
Ty d IRayar (I @ Wy @1, @ W) Zo (W ®1a,) Kaje ay |2+

Ldv *HRdV (IL & WT & Idv) (Zl by Idv) S® IdKH2 <

< LdVdK v/rank(F(X) — Target) (L||X||2[| Wy > + HTargetHz)HWv||2||WK||2||WQH26HXH§+

+ Ldvrx/rank — Target) (L[| X||2[[Wy ||z + | Target|; )HWsz IXI3+/d

_ 2/rank(F(X) — Target)(L||X||2||[ Wy |2 + || Target| s)
Ldyvdydi

dv
(BLIW il Walla XI5 + 21 3).

Wy |2

Therefore we can obtain the final hessian estimation according to Property [, where we used number
of block equal to 3 from {K,Q,V}:

H(W,;, W.)|l» <3 H,(W,;, W H; (W, W,
[E(W: W)l <3 max - (IF(We, W)l + [ Hy (W W)l

And now after substituting results :
[H(Wi, W)z <

2L
< 3max <||X|§,
dy

2

Ddvde IWk5IWv 3 HXH2+ \/rank — Target) (L|| X ||2[Wy |2 + || Target|[2) [ W |2 Wk |5 XI5,
2 \/ rank(F(X) — Target) 3
Wy |2 [[W k2| X L|IX||2|W [|2 + || Target||2) || W & ||| X]|3,
Ty ﬁll vl Wkl2I X3 + NG (LIX|2[[Wy |2 + || Target||2) Wk [|2[| X]|2
2
— W W W lI2)1X|8
LgdvdKll k|l2(Woll2lWv 3] X3+
+ 2y/rank(F(X) — Target) (L[| X||2| Wy ||> + | Target|/)

dy
W 3L|W W XI5+ —=|X|I2
Ly Vdody l v||2( W kll2[|Wall2l| X[ 7 | 2)>

The obtained expression we denote as M. The obtained inequalities can be simplified by
rank(F(X) — Target) < min(L, dy ). That ends the proof. O

C.2 PROOF OF THEOREM [

Theorem 8 (Detailed version of Theorem D). Let X € REX4V | Define

M(X) =X - £X14, 1], 0(X) = A= (M(X)**14,)"%, P(X) = diag™ (o(X)).
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Then the Jacobian of
LayerNorm(X) = P(X)M(X)

with respect to X is

0 LayerNorm(X o
a—x() = (PX)@1Ln,) (Lo, — 2 (L @ Loy wa)) + (I © M(X)T)%'
Moreover,
oP

X \/7( D @D~ ) (e1®er, ..., e Rer) (diag_l(vec}n/z(Mwldv))(IL®1;—V)diag(vecr(M))g—l\)g),

with D = diag(o(X)).
Proof. We represent LayerNorm layer as
LayerNorm(X) = P(X)M(X)

where P(X) = D!, where D = diag(o(X)) and M(X) = (X—u(X)1, ) according to Property
a.

Using the matrix-product derivative rule from Property B we obtain:

OdLayerNorm(X) oM +, 0P
— W =PX)®ILs ) s+ I M
X (P(X) @ Tay) s + (L@ MT) 5
Let’s start with %—1\)2[. Using simple matrix calculus properties we can obtain M(X) = (X —

w(X)1y )= (X— ﬁdeV 1;,)=(X- $X1dvxdv)~ Thus, the derivative is

87]_\/[ _ G(X — ﬁX]-dvxdv)
oxX 0X

1
7(IL ® 1dv de)

= (I I;,) —
(Ir®14,) dy

Next, we calculate the a)P; First, we start with the transformation of o(X) expression. We can

1

ol
rewrite it in the matrix terms o(X) = (7= (X — p(X)1,,)%%14,)°2 = ﬁ (M(X)*%14, ) 2
Here, oa operation is element-wise a-powering from Definition D

Therefore, we can apply chain rule and get

OP _ 9D! ddiag(o(X)) 0o (X)
oX 0D  9o(X) oX

Therefore, by utilizing Properties [, B and B we can find

9o(X) 1 97°% 0 0Q
0X  dy or 0QoX’

Here 7 = Q- 1, and Q = MP°2. Thus, we can continue calculations and obtain

00(X) 1 97°10Q- 14, OM?OM
oX  Jdy Or 9Q OM 99X

oM

dlag 1(V6Ci% (7)1 ® 1],)2 - diag(vec,(M)) —— X

rz

1 ol oM
= \/Tivdiagfl(veo,é (M- 1g4,)) - (I, ® 1] ) - diag(vec,(M

)ax
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Therefore, by applying B and B for the first and second multiplier, we obtain

opP 1 _1 T
ﬁ—ﬁ(_D ®D )(61®el 6L®eL)'
. —1 o3 02 T . oM
diag™" (vec,” (M°* - 1q4,)) - (Ir ® 1) ~dlag(vec,.(M))a—X
Therefore, we found the first derivative of the LayerNorm function:
OLayerNorm(X) oM -+, 0P
—ax - PX)®14 )= X +(I oM )8X
8M
~ (P(X) ® Luy) 5 +
1 _ _
+@ M) o (-D oD ) (er@er ... er@er):
- o—1 o3 02 T . OM
- | diag™ " (vec, > (M - 14,,)) - (I ® 15,,) -dzag(vecr(M))ﬁ

where M(X) = (X = #=X14, xay ), P(X) = diag™" (o(X)) and 5 = (I, ® Is,) — 7~ (I, ®
1dv de)
That ends the proof.

C.3 PROOF OF THEOREM B

. 2LayerN
Proof. Now, we calculate the second derivative Z-&<iom

property B, we obtain:

9°LayerNorm 0°M
# = ((P(X)@1ay) ®1ray) 53z + (ILdV ® (

. Using the matrix product derivative
X ox

o*P oP oI, @MT)
T il N I e S A
+(IreM )®1Ldv)8X2+<ILdV®(aX) ) X

3M)T> IPX)®1a,)

P - 2
Here, we have P € REXE, M € RExdv 98 ¢ RldvxLdy IR ¢ RE > Ldy

Next, we can easily obtain, using Properties B, B:

*M _
ox2
IP(X)©1,) OP@I)OP op
ox  — op ox _ r@Keeol) e evel) Gy
oI, M) oI, @M')oM' oM oM
X = N oM 87X = (IL & KdV7L ® IL) (VeCT<IL) 0 ILdv) Kdv Loy X

Now, we analyze the second-order derivative of the P matrix. To derive correct calculations we
need to write the dimensions of each multiplier in the calculated first derivative out. Matrix D is a
diag(o (X)), the size of vector o/(X) is L x 1, therefore, D € R“*L and the part (-D ' @D~ ") €

RL*XL?, Next, we note that the size of each basis vector e; is L x 1, thus we obtain e; ®e; € RL*x1
and (e1 Qe; ... eL®eL) € RE*L | As we discussed earlier, M(X) € REX4V then M1y, €

Ol . . . .
RZ*!, and we can derive the size of diag ™" (vec, > (M°? - 14,,)), which is L x L. Next multipliers

are (Ip ® 17 ) € RE*E4Y and diag(vec,(M)) € RE4v*E4v  The last one is %X , which we have

already calculated, it’s size is Ldy x Ldy . Therefore, the whole derivative BP is from RL**Ldv
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)
We start with 3% =
multiplier.

Zi=A1(X) - Bi(X), where A; = (-D~'®D~") and By is the other
Therefore, using Property B we obtain
*P 1 0A(X)-By(X) 1

~ L A one) By
oxX2 ~ Jdy X T Vdy eI

8A1

0A,
X

(ILz & BT>

Now we focus on calculating %+ on the current step. Utilising the rule @ we can simply get:

0A, _0(-D®D"T) 4+, 0-D71
X X — (L ® Ko ©11) (L @ vee, (D7) - St
oD~

+ (vee, (DY) @1;2) - X

. . . . . . . . — -1
By using the transposed matrix and the invert matrix derivative properties 8, B, we obtain: 2 3]?( =
9-D~' 9D _ -1 -T) 9D oD~ T _ 9D~ T HD ' HD _ 1
b g% = (D7'®D7T) G2 and %5~ = G5 P59k = Koo (-D'@ D7) 3.

where we the g—g as we calculated earlier, while computing the first LayerNorm’s derivative is

o = (el®e1 eL®eL) (diag_l(vec;)%(MO2 1qy)) - I ®17) .diag(vecr(M))%—I;(/I)

And now we proceed to the calculations of the remaining part derivative.

We first assign new A, and B, for clear calculations. We have B; = (e1 ®e ... erL®

eL) (diagil(vecg%(Mo2 1qy)) - I ®17) ~diag(vecr(M))aa—1;g) and we assign new Ao and

new By as Ay = diagil(vec;% (M*2-14,,)), By = (I, ®17] ) -diag(vec,(M)) M 5x and we denote
E= (el ®e; ... eL® eL). Thus, B; = EA3B,

While E is a constant matrix we can apply the simplified matrix product derivative rule B and obtain

3B1 . 8EA2B2 8A2B2 - (E o1 ) 8A2B2
0X ~ 9(A.By) 0X Ldv) X
0B, 0A
— (B0 L) (A2 @ Tua) G52 + (1 0 B S )

Now, we introduce the last A3 and Bj a551gnment We represent By as B, = JA3Bg3, where
J=(I,®1]). Az = diag(vec,(M)) and B3 = ax

Similarly to the previous step we firstly apply simplified matrix product derivative rule @ and get

8B2 8JA3B3 6A3B3 6A3B3
= = (J ® ILdv)
X ~ 9(AsB;) 0X oX
0B3 0A;
=JoI As;®I + (1 B;
( ®Ldv)<( 3® Ldv)aX (Iray ® )8X>
Where both Jacobian matrices can be found easily < 9 = 8diag(\ée§"(M)) = &g‘zf,()v ) 8ve§'1'\'/(IM) o
Where we have already calculated adgzg ()v ) — (el ®e; ... er®e L) according to the property
E here e; € REAv X1 additionally M is simply 1.4, . As for 252 for current B it is 252 =

=0

dX2

The last step in our analysis is putting every part of our calculations together. In our notation we can
simplify the expression
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0’P 1 0B 0A4

—=— (A1 ®I — I B]) ——

oxz = gz M OTa) 5 + (e ©By) 5
where %];1 s %";(1 B, and it’s definitions A1, B, are given above.

The last step in the proof is simply combining all together and substituting all calculated derivatives
into the LayerNorm’s Hessian.

That ends the proof. O

C.4 PROOF OF THEOREM @

Theorem 9 (More detailed version of Theorem B). The Transformer block is defined in B

The derivative 6’9—V‘Z,i is as follows.
Forie {1,2}:
0Z  OLayerNorm(FFN(Y)+Y) O(FFN(Y) +7Y)
oW, O(FFN(Y)+7Y) OW; ’
where

O(FFN(Y)+Y) {(IL ® W3 ) diag(vec, (Lix>o0})) (Y ®14,,), fori=1

OW; J(le) ® 14, fori=2"
and aw}’g?’;;’;g%ﬁg*‘w can be calculated following Theorem B and is explicitly given in the proof

Forie {K,Q,V}:
0Z  OLayerNorm(FFN(Y)+Y) O(FFN(Y) +Y) 0Y

oW, O(FFN(Y) +7Y) oY OW,’
where
O(FFN(Y)+Y) .
Yy = (I, ® W3 ) diag(vec, (1ix=0y)) (I @ W{ ) + (I, ®14,),
and 8‘9—‘}2 = dw’g](\’;r(r;’(()l? +(§3+X) 85‘53( ) with 85\% ) is calculated according to Lemma A.2 from Noci
et-all (P01272) and 6“”651(\]122”;(()1? +(§8+X) is calculated according to Theorem D.

Proof. It’'s worth noting that in our notation X € RIXdv Y ¢ RIxXdv W, ¢
R *dss ReLU(YW1) € RL*%7 Wy € Rirsxdv,

We consider the Transformer block as it’s defined in B, explicitly:

Y = LayerNorm(F(X) + X),
Z = LayerNorm(FFN(Y) +Y),

‘We derive calculations for the first derivative of the whole transformer block %.

Fori € {1,2}:
0Z  OLayerNorm(FFN(Y) +Y) O(FFN(Y) +Y)
OW,; O(FFN(Y) +Y) OW;

where

8(FFN(Y) + Y) 8(FFN(Y)) _ 8ILO'(YW1)W2L1V
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Therefore, using Property B:

9. 8ILU(YW1)W21dV

fori = W, =o(YW) @1y,
fori =1 Lo (YW1)Woly,  90(YW1)Ws5 00 (YW,) YW,
oW = oYW OYW, oW,
do(YW
= (I, W3) 9o(YW1) (I, ® W7)

IYW;

According to Lemma [, we obtain

. GILU(le)WQIdV

fori =1 W = (I, ® W, ) diag(vec, (1ix=0})) (Y ® 14;,)

Thus for 7 € {1, 2} the following holds:

OFFN(Y)+Y)  [(I, ® W3 ) diag(vec,(Lix>0})) (Y ®1g4,,) ,fori =1
6Wl - 0(YW1)®IdV,fori:2

and the whole Transformer block derivative can be calculated as:

w {3L3y3?5;£§$$¥)+Y) (I ® W) diag(vee: (1ix>0y)) (Y @ Ly, ) for i = 1

IW; 5Lay3§’;’;ﬁ(§?’§§”>a(le ) @ 1g,,fori =2

where according to Theorem &

OLayerNorm(FFN(Y) +Y) oM
ENY) 1Y) PENY)+Y)olay)

BFEN(Y) +Y)

1
+(IL®MT)\/7(7D*1®D*T)<e1®e1 eL®eL)-
v

. (diag_l(vec;fé(M02 1q,)) - I ®17) ~diag(vecT(M))6(FFI\18(&1\/{I)+Y)>
where M(FFN(Y) +Y) = ((FEN(Y) +Y) — 2 (FEN(Y) +Y) 14, xay ), P((FEN(Y) +Y)) =

diag™ ' (o(FFN(Y) +Y) and % =IL®1,)— %(IL ® 14, xdy )» and here o is simply
calculated according to the LayerNorm definition.

Next, we derive calculations for i € {K,Q,V'}

0Z  OLayerNorm(FFN(Y)+Y) O(FEN(Y) +Y) 9Y
oW, I(FFN(Y) +Y) oY OW;

Utilizing Property B and Lemma [Il, we obtain:

O(FFN(Y)+Y) _ OFFN(Y) 0Y _ OFFN(Y) (YW1 )W,

oY oY +87Y— Y +(IL®Idv):T+(IL®IdV):
do(YW 1) YW,
=(LoWs) oy oy T ely) =

(I, ® W, ) diag(vec, (1ix=03)) (I @ W{ ) + (I, ® 14,)
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and for calculating % we use Lemma A.2 from Nacief all (20272):

a(‘?;v = softmax (W) X®I1g,
88\7\2 = (I, o WyX") 3713[ (X %/)CZLKWK) ,
where:
% = blockdiag <881\€Er)
and (%‘;‘I‘fr = diag(A;) — A;A, where A, is the i-th row of A in a column vector format. Finally,
under the uniform-attention assumption it simplifies to:

0A 1 1
R 1
oM n L® (IL i L><L>

Additionally, we can easily expand the result on W g, where we apply the property H, therefore:

oF ot DA [ (XWo ® X)Kay ay
oW, — L@ WyX0) o ( Ja !

Thus % can be calculated as follows:

JY  OJLayerNorm(F(X) + X)  JLayerNorm(F(X) + X) 0F(X)

OW, oW, B I(F(X) + X) OW,
where 3812“5\3? ) is calculated according to Lemma A.2 from Nocief-all (Z027), which we mentioned
earlier above and 6Laye§?§g§ﬂg+x) is calculated according to Theorem D.
Substituting the expressions ends the proof. O

C.5 PROOF OF THEOREM B

Theorem 10 (Detailed version of Theorem B). Let X € REX4v Y ¢ REXdv W, € Riv>dss,
W, € RS W, Wy € R XAK, Wy, € RVX4V | Define

S(Y, W, W) =c(YW)W, +Y € RExdv, Z = LayerNorm(S) € RE*dv
and abbreviate (according to Theorems B-3):

_ OLayerNorm(S)
B 9S

:: 0? LayerNorm(S) ¢ R(EdV)*xLdy

Iz 0s?

c RLCZV X Ldy , HZ

Let further
D,, := diag(vec, (1yw,>0y)) € RF4/sxEdss

from Lemma [0

Define the residual-Jacobian

oS
Jgy = W = (IL ®W2T)DU(IL ®W1T) + (IL ®Idv) c RLdeLdV7

and for the first residual Y = LayerNorm(F(X) + X), set

_ JLayerNorm(F(X) + X)

Jy = 0? LayerNorm(F(X) + X) ¢ R(Ldv)*xLdy
IF(X) +X)

RLdVXLdV Hy =
< Y A(F(X) + X)?
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calculated by Theorems B-B.
Denote parameter sizes
ni Zdvdff, nQdede, annKZdvdK, Tlvzd%/.

Let the attention-side Jacobians (from Theorem B, can be calculated according to Noci et all (Z022))
be
OF

T OWy

(9F e RLdV XnQ GK = aF

, c RLdV XNk .
W OW i

GV . c RLdV ><7LV7 GQ =

Fori € {1,2} and k € {K,Q,V}, define first-layer Jacobians

oS n
B, = WL (I, ® W, )D, (Y ®@1,4,,) € REv>m,
S
By = =o(YW,) ® Iz, € RFV>m
2= oW, C (YWy)®1s, € ;
S
By = = Jsy Jy Gy € REAV>nk,
k W, sy Jy Gy
Then the Hessian blocks of the Transformer output Z w.r.t. parameters (W;, W ;) are
i 0%Z
H{ 7 = TW.OW. (Jz©1L,)&; + (ILa, ® B ) HZB, (12)
i J
with o s
i f— R(Ldv-ni)xnj .
8= 5w, (awi> <

The second Jacobians &;; for all pairs (i, j) are given almost everywhere by:

1) Pure-FFN pairs:
&1 = O(LdVAnl)xnlv §22 = O(Ldv~712)><n27
&2 = (I @ Kay a;; @1, ) (Ing,; ® vee,(Ia,)) (Dy (Y ®14,,)) ,

€1 = (1L@ W3 ) D, (I ® Ky ay ®14,,) (Inay @ veer(Ia,,)) -
Both €15 and €21 are (Ldy -n1) X ng and (Ldy -ng) X ny respectively. They agree almost everywhere
when pre- and post-composed in equation [2A (see symmetry discussion).

2) FFNattention pairs (k € {K,Q,V'}):
&= (1, @ WJ)D, ®L,,) (I, © K, .0y ©1a,,) (Inay @ vee,(1g,,)) Ty Gr),
Eor = (I ® Kay a;; ®1ay) (Ina,, @ veer(Iay,)) (Dol ® W/)JyGy).
Dimensions: &1}, € RLdv-m)xn gpg Eor € R(Ldv n2)xn,
3) Pure-attention pairs (k,{ € {K,Q,V}):

€re = Jsy ®1L,) [(Iray ® G ) (Hy Ge) + Iy @ L,) ®re]

where ®pp = giw’; e REAv-n)xne gre second derivatives of the attention map F w.r.t. its weights.

The exact values are calculated in Lemma O basing on the results from Ormaniec_et all (P024). All
matrices are dimensionally consistent: &,y € RV k) xne,

Finally, the Hessian block equation [2 has size HE:’j) € RLdv-ni)xn;,
Moreover, all mixed blocks are symmetric almost everywhere:

Héi’j) = Hgl) a.e.,
because (i) the only nonlinearities with potentially nonzero second differential are LayerNorm (han-
dled by Hz,Hy which are symmetric by construction in Theorem B) and ReLU (whose Hessian
is zero a.e., Lemma M), and (ii) all remaining mappings are multilinear in the parameters; thus,

by repeated applications of Proposition B and Proposition B, the mixed-partials commute almost
everywhere.
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Proof. We differentiate the Jacobian from Theorem B using Proposition B (matrix-product deriva-
tive), Proposition B (Kronecker-product derivative), Proposition B, the Identification Theorem [, and
Lemma (0.

Step 1. Forany i € {1,2, K, Q, V' } we have

0Z
oW,

— JZ Bi7 JZ c RLdVXLdV7

where B, := % is given casewise by

B =(I,®@W;)D, (Y®I,,) e REV*™M - By = o(YW;) ® 14, € RV,

By, = Jsy Jy G, € REAv>n ke{K,Q,V},

with Jgy = % =1, ® WQT)DU(IL & WlT) + (1,1, € REdvxLdv g, ¢ REdvxLdv apd
Gy, as in Theorem B. By Proposition B and Theorem 3 we obtain the Hessian block

0*Z 0B;
=Jz01L,)&; + (e, ® B )HzB;, &ij:

= R(Ldv-ni)xnj'
IW,0W, aw,; ©

Step 2: First-level Jacobians B; (dimensions). From Theorem A and Lemma [:
B, =(I,®W,;)D,(Y® I,,) € RV ™M By = o(YW,) © 1y, € REWV*ne,
where D, € RLdffXLdff’ (Y ® Idff) c Rldsrxdvdsr For k € {K, Q, V},
B, = Jgy Jy G € REdvxne,

Step 3: Second Jacobians &;; for all pairs.

3.1) Pure-FFN pairs. - (1,1): By depends on W only through o(YW7), whose Hessian is zero
a.e. by Lemma [, while YW} is linear in W (Property B). Hence £&1; = 0 with the stated size.

- (2,2): By is linear in Wy (Property B), hence €20 = 0.

- (1,2): Differentiate Bo = 0(YW;) ® I, w.r.t. Wy. Using Proposition B for 8()(;7??() with
X=0(YWp)andY =1,,, we get

0B, dvec, (c(YWr))

67“71 = (IL & Kdv,dff & Idv) (ILdff & VeCT(Idv)) IW, .

By Lemma [ and Property B, W =D, (Y ®14,,). Thus

1

€12 = (IL ® Kdv,dff ® Idv) (ILdff ® VeCT’(Idv)) (DU (Y ® Idff)) N

- (2,1): Differentiate By = (I, ® W3 ) D, (Y ® I4,,) w.r.t. W. Using Proposition B on the left
factor (I, ® W3 ) and Proposition B plus Proposition 8 for its derivative, we obtain

dvec,(By) dvec, (I, @ W)
OWy OW '
By Proposition B and Proposition B,

dvec, (I, ® WJ)
OW,

= (T4, © (Y ©14,,)"D]))

= (I ® Kay L ® La;,) (veer(I) ® Loy a;, ) Kay -
Collecting,
b= (IL® W;—) D, (IL ® Ky ay ®1ay,) (Iay ® VeCT(Idff)) )

which is the stated form. (Both £15 and &5; are consistent and coincide almost everywhere when
inserted into equation [2; see symmetry below.)
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3.2) FFNattention pairs (1, k), (2, k) with k € {K,Q,V}. - (1,k): By = (IL@W, )D,(Y®Iy,,).

Almost everywhere 86% = 0 by Lemma 0. Hence only the last factor varies with Wy. Using

Proposition B (with the first factors constant a.e.), and the chain rule through Y:
ovec, (Y ®@1a,,)  (O(Y ®@1a,,)Y\ Ovec,(Y)
OW,, N oY oWy
By Proposition B with X =Y and Y = 14, ,
8(Y (%9 Idff)
oY

Also %TECY) = Jy G}, (Theorem B and Theorem B). Therefore

Eir=(I,@W;)D,®1L,,) (I ®Ka, .4y ©1a,,) (Iray @ vee,(Ig,,)) (JyGy).

= (IL ® Kapay © Idff) (ILdv ® VeCT(Idff)) .

- (2,k): By = 0(YW;) ® 1. Differentiating the Kronecker product w.r.t. its first factor and
applying the chain rule through Y,

&, = (IL ®Kdv,dff ®Idv) (ILdff ®VeCT(Idv)) (DU(IL ®WI)JYGI¢) ,

where we used Property B to write % =1I;, ® W/ and Lemma [ for 886(8) =D,.
3.3) Pure-attention pairs (k, ¢) with k,¢ € {K,Q,V}. We start from By, = Jgy Jy G. Almost

everywhere 2J5¥ = 0 because D,, is piecewise constant (Lemma [). Therefore,

oY
dvec,(By) dvee,(Jy Gy)
OW, oW,
by Proposition B. Again by Proposition B with A(-) = Jy and B(+) = Gy,
dvec,.(Jy Gy) dvec, (Jy)
0w, oW,

By Theorem B and the Identification Theorem I, BV%V‘SY) = Hy Gy. Thus

€e = Jsy @1, [(Iray, ® G ) (HyGy) + (Jy @ L) ] -

It remains to specify @y, := g‘c,;v’z . Using the explicit G, from Theorem B and only Proposition B,

Proposition B, and Proposition B, we obtain the forms stated in the theorem. Under the uniform-
attention simplification (so % is a constant matrix), Gy does not depend on Wqo, Wi, Wy ; Gg
does not depend on W; G does not depend on Wi ; hence @yy = Pyg = Pyx = Pgg =
® ik = 0; and the remaining mixed terms are given by differentiating the Kronecker factors using

Proposition B and the transpose dependence using Proposition B, exactly as written.

= (JY (29 Ink)@kz + (ILdV ® Gg)

Step 4: Symmetry of mixed partials. All nonlinearities that could obstruct symmetry are ReLU and
LayerNorm. ReLU has zero Hessian almost everywhere (Lemma [), so its contribution to second
differentials vanishes a.e. LayerNorm Hessians H; and Hy are the derivatives of Jacobians w.r.t.
their inputs and enter symmetrically (Theorem B). All remaining mappings are multilinear in param-
eters and matrices independent of (W;, W ); therefore, by repeated applications of Proposition B

and Proposition B, the mixed partials commute, giving Héij ) = Hg ) almost everywhere.

This completes the proof. O

C.6 PROOF OF THEOREM B

Proof. We start from the block formula equation I[2:
Ht(;:’j) = (JZ & Ini) gij + (ILdV ® Bj) HZ Bj.

Applying the matrix sum norm (Property B) and the product norm (Property ) together with the
Kronecker product norm (Property B) yields

L7, < 113288 |, 1605 2+ [ Teay @B ||, IELZ ]2 By ll2 = 1322 1€ la+1B: 2 [ ELz12 B2,
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establishing equation B.

It remains to provide explicit operator-norm estimates for ||B;||2 and ||€;;||2 used inside equation B.
We rely on Properties [0, B, B, @, [, and the commutation properties (Definition B). Throughout

we use | K,,.n|l2 = 1 for commutation matrices, and the identities ||vec, (Is)|2 = |[Tallr = Vd
(Property @) and ||I,,2 = 1.

As we’ve already shown in CI:
0A 1
gzl =<z
OTll2 = L
1 1
1Zall> = [I(Tr © X7) (9A/0T) (X @ X)[l> < [IX[l2 7 X5 = Z[1XI3
0?A
oT?
[All2 < VLL [|Almax = L.
Therefore ||AX|]2 < ||A]l2||X]l2 < L||X||2 (Property ).

We also use the attention curvature blocks ®;, from Lemma D. Using Properties [, B and the
bounds on ||Z1 |2, || Z2]|2 above, we have (again similarly to CI)

H82A

< < 5”
||, <6 IZal < X3

|, <6z,

|®vyi2 =0,
1800z < o W2 [Wlls | Zall2 [Will2 <~ [ Wy o[ Wi |23
QQ27LdVdK vile Kll2 [|42]2 KQdevdK vilz K2 2
2 2
® < ——— 1. @S2 [|Z1]]2 |Tay @ Wk|l2 < ———e||W X||3,
Pvalls < o= 1 © Sl 1o [Tay © Wil < Zr—aee [ W] X
2 2
P < A%% A%% Z W + —[|W Z S
IPanlls < 25 W Wikl 22l [Wolla + o= [W [ 1Zal2 8]
12 2 .
< — W w W X5+ ——ou |[W X||3,
< e Wl Wil [ Wl X + 5= [ W 1] X1

and ||® k|| is analogous by symmetry (Definition B and || K, ,,||2 = 1), while || @y |2, | Pxv |2
match ||®y |2 up to swapping roles.

Next we estimate each || B;||2 and ||&;;]|2.
A) Bounds for ||B;||2.

-B; = I, @ Wy)D, (Y ® Ia,,) (Theorem B; Lemma M). Using Properties 8, [0, [2, and
HDUHQ S 1’

IBill2 < 12 ® Wy [l2 | Dol [[Y @ g, [l = [Wall2 [[Y |- (13)
-Bs = 0(YW,) ® I, (Theorem B), hence
[Bzll2 = [[o(YW1)[2 (14)
by Property B.
-Fork € {K,Q,V}: By = Jsy Jy G (Theorem B), so
Billz < [Tsy ll2 [Ty (2 [ Grll2 (15)

(Property ). Here Jsy = (I ® W3 )D, (I ® W] ) + (I, ® I, ) implies

1Tsvll2 < 11 @ W3 [|l2[[Doll2 [T @ W |2 + [T @ Igy 2 = [Wall2 [Will2 +1,  (16)
by Properties B, M, B, [, and | D, |2 < 1.
Furthermore, using the attention-Jacobian forms (Theorem H) and Properties [, B:

1
Lv/dk

1
Gy 2 < LIIX]2, |Gol2 < \W% W X3, |G < ——|W \W% X||3.
[Gvll2 < LI[X]l2, [|[Ggll2 < Wy [|2 Wk 2] X3, [ KHz_L@II V2 Well2lIX][2

7)
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B) Bounds for [|§;;||2. Using the explicit formulas from Theorem B, Properties B, [, @, and
Kl = 1:

B.1 Pure-FFN pairs:

112 =0, (18)
[€22]]2 = 0, (19)
[€12]l2 < 1L ® Kay a;, @ Lay |2 [Tra,, @ veer(Lay )2 [|Do 2 [[Y @ La; |2
=1-|jvec,(Ia, )|l2 - 1+ Y|z = Vdv [[Y|l2, (20)
1€21ll2 < 1Tz @ W3 [[2 (Do l2 T2 ® Kayp ay @ Lay,ll2 [Tray © vee,(Tay,)|l2
= [[Wall2- 11 [vec,(Ta,,)|l2 = /dss [[Wall2. 21)

B.2 FFNattention pairs (k € {K,Q,V}):
[€1kll2 < |1 ® W3 )Do @ I, [|2 [T ® Ka; .0y ® Tay, |2 1TLay @ vee, (L, )ll2 [Ty [l2 |Grll2

SWallg-1-1-+/dgy - [Ty |2 |Grlle = V/dys [Wall2 [Ty |2 |Grll2, (22)
[€nll2 < 11 @ Kaya,, @ Lay |2 1L, @ vee,(Ta, )2 [Doll2 (12 @ W (|2 | Ty [l2 |Gll2
dyv - 1-[[Will2 - [Jyll2 - |Gkllz = Vv [Will2 [Ty 2 [|Gll2- (23)

B.3 Pure-attention pairs (k, ¢ € {K,Q,V}):

& = (Tsv @1, | (Tuay © GI)(Hy Go) + (Jy @ L, )@
Thus, by Properties [, B,
€kellz < 135y 12 (1Tzay G Iz [y 12 [Gello+ Ty 12 [ @nellz) = 195y 12 (G2 By 2 [Gella-+ 1Ty [l | @l )
(24)

C) Substituting into the block estimate equation B. For each pair (4, j), we substitute the corre-
sponding ||&;;]|2 from equation [Requation 24 and the ||B;||2 from equation [Pequation M3 (with
equation @, equation [7) into

B, < 13202 15112 + [Bill2 [Hz 2 1B
This yields, for example:
[V, < 132012 -0+ [Bul3[Hzlle < [Hzlls (IWall2lY[2)%,
B2, < 19202 Vay [ Y|z + [Hz ]l (W22l Y ]12) o (YW 1)),
IHOM |, < 13202 /s [[Wall2 [Ty ll2 [Gllz + 1Bzl (IWall2 Y l2) (1Tsy 2113y |2 Gll2),
B, < 132012 13y 2 (I Glz Iy 12 1Gella + 13y 12 |[@ell2)

+ [Hzllz (T syll2Iy ll2[Gll2) (1Tsy 2| Ty 2] Gell2),

etc., where we then use equation [[8, equation 4, and the || ®¢||2 bounds above to turn each right-
hand side into explicit functions of L, dy, dys¢, dx, and the spectral norms of X and the weight
matrices.

In the estimations above we calculate ||'Y ||z and ||S||2 according to Proposition I and both Hz and
Hy can be estimated by Lemma B with appropriate inputs and assumptions of oy;,, and o,

O

C.7 PROOF OF THEOREM [1

Proof.

1

_ < -
Ln (W) = L(w)] < =

I(fw (Xk11) Ys1)

k
Z w* Xz +

w\H

32



Under review as a conference paper at ICLR 2026

1 k
2 Hk+1(w*)—%ZHi(w*)

i=1

2

First Term

The first term is the difference in loss values at the optimal parameters w*:

k
1
(£ (Xk+1 Yk+1 % Z:

Assume the loss function I(fy+(x;),y;) is bounded, i.e., 0 < I(fy-(x;),y:) <

1
constant. Then: - [(f+ (Xx11),Yk4+1) < L, - — Zle I(fw=(x:),y:) < L.

k
Therefore
L
I(fo (Xkt1) Yit1) % Z: fo (x4), <L+ L=2L.
Thus, the contribution of the first term is:
1 1 2L
—— (£ (X5 — . < —
k+1 (fo= (Xkt1)s Yr41) k; wr (X:), F o

Second Term

The second term involves the difference in Hessians:

o
||Hk+1 %Z

2

L, where L is a

where Hy, 1 (w*) = V2 1(fw+ (Xx11),Yrr1) is the Hessian of the loss for the (k + 1)-th sample,

1
and z Zle H,(w*) = Hy(w*) is the Hessian of Ly, the empirical loss over the first k£ samples.

Rewrite the expression:

pv\H

-

w\r—‘

Hpp1(w*) — Hp(W") = Hg1(w

k
Evaluate the norm using the triangle inequality:

1 k

< [ Hpga (W)l + T
2

%l

w\H

HHk+1
i=1

Assume the individual Hessians are bounded, i.e., |H;(w*)||, < M for some constant M.

w) |, < 30 [Hi(w)ll, < kM.

[Hgp(w)ll; <

Thus:

i=1

33
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MJrE kM =M+ M =2M.

1 k
HHk+1 EZ:

The contribution of the second term is:

2

1 2 1 2 MHW_W*Hg
- — w2 IH. N - Hy(wH)|, < ——— —wrlRop = 2 W 2
iy I B () ~ B )y < g e W

Combining both terms:

2L M||w—w*[3
L - L < .
[Lrir(w) = La(w)| < .2 P

D ADDITIONAL THEORETICAL PROPERTIES

Lemma 2 (Attention second derivatives ® from functional Hessian). Consider single-head scaled
dot-product attention

1
F(X)=A(T)XWy, T = \/TXWQW;XT,
K

with X € RLXW W4 Wi € RWvXdx Wy, € RIV*4V_ The attention map A(-) applies row-
wise softmax. We use row-wise vectorization vec,(-) and the commutation matrices K., » from
Definition B.

Define the generalized functional Hessian blocks (following Ormaniec et all (20174) in our vec,
convention) by
olL,) 2F

P OW,0W

where p;q; is the size of W ; (e.g. poqq = dvdk), and ﬂ € REXAv s the loss gradient.

H¢(W;, W;) = (&5

Specializing to the squared-error loss {(F) = 3||F — Target||%., one has = F — Target and

the row-wise contraction matrix
R,, := vec, (F(X) - Target)T ®1, € Rmx(mldv)
Then for i € {V,Q, K} with n; := p;q;, the functional Hessian blocks can be factorized as

O0°F

R(Lant) an .
IW,OW,;

H;(W;,W;) = R, ®&;5, &=

In particular, the model-curvature blocks ®;; (to be used in the Transformer Hessian) are obtained
from the corresponding expressions in (Ormaniec_et all, 2024, Thm. 3.2) by removing the left con-
traction R,,,.

We now list the explicit blocks needed in our derivation. Define the fixed reshaping operator

S := (Idv & Kdv7dv) (VeCrIdv ® Idv) c R xdy
and the softmax-derivative operators
0%’A

BTZ (X@X) e RLd%/Xd?/7

Z, = (1,©X7)(0A/OT)(X®X) € REv*4 7, .— (I,oX eX @X )

where 2 6T2 A denotes the (row-wise) softmax second derivative tensor arranged compatibly with vec,
and Kronecker products as above, and 71 is the (first-order) softmax derivative linear operator
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used in Ormaniec_et all (P0724) (we keep the exact form as defined there; its size ensures dimensional
consistency below).

Then the pure attention second derivatives (model curvature) are:

Qvy = OLay-d2)xdz s

2
o0 = —— (LW @1y, @ Wi) Zy (Lo, @ W) € R dvdiixdvdic,
Ldyd

= 2 2
P —— (I ®8S) Z; (14, ® W e RLdv-dy)xdvdi
vQ l/dv\/@ ( L ) 1 ( dv K)

Pox = Ldydx (I oWy @l @ W) Zy (Wo @ La,) Kag ay
2
b (e ©WI B L) (B1814,) S84, € R,

Moreover, by symmetry of second derivatives, ®rq equals Pqor with Wq, W swapped and
commutation adjusted by K. . (Definition B). Analogous symmetric relations give ®qv and ® v
Sfrom @y q.

Proof. By definition of the generalized functional Hessian in Drmaniec ef all (2024),
0’F

Hi (W, W)) = (55 ® L) TWOW.
i J

For squared-error loss, g—f; yields the contraction R,,,, defined above; hence H¢(W,;, W;) =
R, ®;; with ®;; = %. The explicit forms for Hy in (Ormaniec_ef all, 2024, Thm. 3.2)
then imply the above formulas for ®;; by simply removing the leading contraction R.,,,. O

Lemma 3 (ReLU derivative and Hessian). Let X € R™*"™ almost everywhere the following holds:

OReLU(X) . 9?ReLU(X)
T = dlag(VeCT(]_{)(>0}))7 T =0.
Proof. We start with the elementwise definition of the ReLU function:
ReLU(z) = max(0, x).
Thus, for each entry x;; of X € R™*", we have
1 ifz;; >0
3 ReL i 9 ’
eLU(zy) _ ) if ) < 0,
axij

undefined (subgradient in [0,1]) if z;; = 0.

For the scalar case = € R, the nondifferentiable set is {0}, which is a measure-zero subset of R. For
the matrix case, we identify X € R™*" with a point in R™". The nondifferentiable set is

N = U{X e R™m*" Tij = O}
4,J

Each set {z;; = 0} is a hyperplane of codimension 1 in R™", and therefore has Lebesgue measure
zero. Since N is a finite union of such hyperplanes, N also has measure zero. Thus, ReLU is
differentiable almost everywhere in R™*",

At differentiable points (X ¢ N), applying row-wise vectorization and the identification theorem
from Proposition [ yields

vec,(dReLU(X)) = diag(vec,(1ix>0y)) vec,(dX),
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using Property B for the indicator matrix treated as a Hadamard multiplier and Property B for the
diagonal form. Therefore,
OReLU(X)

e = diag(vec, (Lix>0}))-

Since the Jacobian is piecewise constant (its entries depend only on the sign of x;;), its differential
vanishes almost everywhere:

OReLU(X)
d{ ————=]=0 X .
(P) o o
Hence the Hessian is zero almost everywhere:
9’ReLU(X) _o
0X? -
This completes the proof. O

Proposition 10 (Spectral-norm estimates for Y and S = Y + FFN(Y)). Let X € RE*dv Y =
LayerNorm(F(X) + X) € REXV and

FFN(Y) = U(le)WQ, W, € RdVdef7 W, € Rdffxdv7
and set S =Y + FFN(Y) € REXV. Then the following spectral-norm bounds hold:

1Yz < IY][r = vLdy, (25)
IFEN(Y)[l2 < y/min(L, dyy) [[Y]]2 [[Wal[2 [[W2ll2, (26)

I < ¥l + [FEN(Y) 2 < VEdy (14 \/min(L,dpg) [Wills [Wall). @7)

Proof. We proceed using only the properties stated in the preliminaries.
1) Bound for ||Y||2. By the LayerNorm definition (Theorem D), write

Y = P(S0) M(So), So :=F(X) +X,
where M(Sg) = So — 7-Sol4, 1, and P = diag™* (o) with o = \/%(M”l)"lﬂ applied row-
wise. For any row 4, denote m; the i-th row of M and o; = ﬁ |lm;]|2. Then the i-th row of Y is
yi =m;/o;, 50

[ |13 [ 13
ly:lls = = = dy.
' o} (1/dv) [lmy]13

Hence every row of Y has Euclidean norm +/dy . Therefore,

L
1Y%= lyill3=Ldv, so [[Y]r=+Ldv.

i=1
By the norm inequality || A2 < || A r (Property @), we obtain equation 23.
2) Bound for ||FFEN(Y)||2. We estimate step-by-step using only matrix norm properties.
First,
IFFN(Y)||2 = ||ReLU(YW1)Walls < |[ReLU(YW1)|2 [|[Wal|2 (Property IO).
Next, use || - [|[2 < || - || 7 (Property @) to get
IReLU(YW1)||2 < ||[ReLU(YW1)|| F.

By Definition [, || - ||% is the sum of squares. Entrywise o(-) satisfies 0 < o(a) < |a|, hence
o(a)? < a? for each entry a € R. Therefore,

lo(YW1)|[r < [[YW,]F.
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Using the inequality || - || < v/d|| - ||2 with d = rank(-) from Property @ (row X = || - || -, column

Y = - ||2), we obtain
||YW1||F S \/ rank(YWl) ||YW1||2
Since YW € RL*477 rank(YW;) < min(L,dys). Thus

[YWi|[p < /min(L,dss) [YWill2 < \/min(L,dss) [ Y][2 [Wil[2  (Property [).
Collecting,
IFEN(Y)l[2 < [o(YW1)||7 [Walls < /min(L, dsr) [[Y][2 [Will2 [Wll2,
which is equation 8.

3) Bound for ||S||2. By the sum-norm inequality (Property B),
[S[l2 = Y + FEN(Y)[l2 < [[Y|l2 + [[FFN(Y) 2.

Substituting equation 23 and equation 2@ yields equation 7. O
Lemma 4 (LayerNorm derivative and Hessian norm estimation). Let X € R™*™  Layer-
Norm derivative J1n(X) = %&m(x) is calculated according to Theorem Q and its Hessian

H n(X) = % is calculated as in Theorem B. Then, the following estimation holds:

1 1X3
HJLN(X)HQ = Guin + \/503

min

X X2 31X3
ool B 1 7) ¢ JUE L

min min min

(28)

IN

2, where M(X) = X (I, — 11,1])

where oyin denotes min || M;
K

Proof. We rely only on the properties established in the preliminaries and on Theorems 2-3.
1) LayerNorm Jacobian structure and bound. By Theorem @ (with L —m, dy —n),
Jin(X) = (P®I )G + (L, ® M) H,
where G =1,,,,, — %(Im ® lyxn), H= ax’ and P = diag™ 1(cr). Using Properties B, I, B,
[318(X) 2 < [P © Lull2 1G]l2 + [T © M [lo [Elll2 = [Pll2 G 12 + M2 [EL]2-
We now bound each factor:

- |G|z < 1 since 11,4, is a projection, hence ||I,, — 21,4, 2 < 1 and Kronecker preserves the
spectral norm bound (Properties [, B, Proposition ).

-[[Pll2 = D~ |2 = 1/0min, where D = diag(o).

- [IM[|2 < [|X]|2, because M(X) = X (I, — +1,,1,)) and the right factor is a projector with norm
< 1 (Property [M).

- For |H||]2 = H g—§ ,» Theorem B plus Propositions B, B, [, B and Properties [T, B give (see the same
chain as in Theorem D):

|2], < = IDteD- Tugﬂdlag (vees!/2(M1,)) | 11T 2 diag(vee, M)z || 55

oM
X ’2'

Using [D~* @D~ T[|2 = [[D7}[j3 = Olly = 7 \/12 e Trom

[T ® 17]l2 = /n, [[diag(vec, (M ||2 = [Mllmax < [Mll2 (Property @), and || 55
(projection), we obtain

1

x> <

1 1 IXlz
Hl, < : i |M
|| H2 ngrz‘xlin \/ﬁamin || || \/>Umm
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Collecting the bounds gives equation PR:

1 X2 1 X113
Jin(X) |2 < -1 X]|s - = .
R R Rl = =
2) LayerNorm Hessian structure and bound. From Theorem B (with m, n), using %ZXI\QI =0
oP®I,) 0P oI, @MT")
_ T n T T m
Hin(X) = Tnn®G ) X + ((Im oM )® Imn) X2 +ITnn®@H ") —ax
We bound the three terms separately with Properties [T, B.
(i) First term. By Proposition B,
(P®I, oP
% = (Im & Kn,m 02y In) (Im2 & Vecr( L)) X’
therefore
IPIL,) IIXllz [1X|2
T n
w067 B < 1t 0o 1 22 =17 e~ K

(ii) Second term. Using ||L,, @ M T || = ||M||2 < HXH2 and the bound below for H% )

H((Im @MT)® ax2 H X2 H8X2H

We now bound H Xz H2 following the same chain as in the proof of Theorem B: write ‘9—P =

ﬁAl(X) E B;(X) and differentiate using Property [0, while bounding the factors with Propo—
sitions B, B, [, B and Properties [, @, @. This yields
5. <
0X?2

3
= X[l + —— | X]3.

mm min

Therefore,

(92P H |XH2 L3I
aXQ 5 .

mln " O min

|(@omMNe

(iii) Third term. By Proposition B and Proposition B,

T - (Im ® Kn,m ® Im) (VeCT(Im) ® Im") ﬁ’

SO

O EMON| < 51 fvec, (1) T o | | = P - o IRl

Lnn@HT :
H( “ ) X 2 m1n \/ﬁ O-rdnin

Summing (i)(iii) with Property B yields equation D9:
X X3 3X3 m || X 1IX]l2 X3 3X3

3 3 5 3 - 3 5 :
O min \/ﬁ Omin " O%min \/ﬁ O min Umln \/ﬁ Omin " Omin

This completes the proof. O

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the course of this work, a Large Language Model (LLM) served as a general-purpose assistant for
text drafting and coding tasks. Its application facilitated the initial generation of code snippets and
the formulation and subsequent simplification of natural language explanations to ensure smooth
reading. Every piece of content produced with LLM assistance underwent careful scrutiny, editing,
and validation by the authors to guarantee its correctness and originality. The authors bear sole
responsibility for all material presented herein.
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