
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLOSING THE CURVATURE GAP: FULL TRANS-
FORMER HESSIANS AND THEIR IMPLICATIONS FOR
SCALING LAWS

Anonymous authors
Paper under double-blind review

ABSTRACT

The lack of theoretical results for Layer Normalization and feedforward Hessians
has left a gap in the study of Transformer optimization landscapes. We address
this by deriving explicit second-order expressions for these components, thereby
completing the Hessian characterization of full Transformer blocks. Our results
generalize prior self-attention analyses and yield estimations for the role of each
sublayer in curvature propagation. We demonstrate how these Hessian structures
inform both convergence dynamics and the empirical scaling laws governing large-
model performance. Further, we propose a Taylor-expansionbased framework for
analyzing loss differences to quantify convergence trajectories. By extending Hes-
sian theory to the full Transformer architecture, this work establishes a new foun-
dation for theoretical and empirical investigations of optimization in large-scale
deep learning.

Keywords: Transformer Hessians, Layer Normalization, Scaling laws, Convergence dynamics,
Loss landscape, Optimization geometry.

1 INTRODUCTION

w∗

Lk(w)

Lk+1(w)

(a) Loss landscape convergence

H(k)(w∗) =
d2

dw2

LayerNorm

FeedForward

LayerNorm

Self-Attention

(b) Hessian-based Transformer analysis

Figure 1: Overview of our observations. Part (a) shows the loss function landscape, which is a
surface in the parameters space, and how it changes as the dataset size increases. Part (b) shows the
schematic view of a proposed method — carry out an analysis of a Transformer’s Hessian, which
greatly impacts on a loss landscape convergence, leading to a sample size determination framework.

Transformers Vaswani et al. (2017) have revolutionized deep learning, achieving state-of-the-art per-
formance across natural language processing Devlin et al. (2019); Brown et al. (2020), computer
vision Dosovitskiy et al. (2021); Wu et al. (2020), Their empirical success is underpinned by pre-
dictable improvements in model quality with increased dataset size, as described by neural scaling
laws Kaplan et al. (2020); Hoffmann et al. (2022); Bahri et al. (2024). However, many domains, such

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

as medical imaging Poulain et al. (2022) and scientific discovery Jumper et al. (2021), face severe
data constraints where acquiring additional samples is costly or infeasible Chen et al. (2025). This
tension necessitates a rigorous theoretical understanding of how dataset size shapes the optimization
landscape and influences training dynamics.

Existing theoretical analyses of Transformer optimization landscapes are incomplete. While re-
cent studies have derived Hessian expressions for self-attention mechanisms Ormaniec et al. (2024);
Zhang et al. (2024), the full Transformer blockincluding LayerNorm and feed-forward networks
(FFNs)lacks a comprehensive theoretical characterization Noci et al. (2022); Zhang et al. (2025a).
These components critically influence optimization dynamics, such as gradient flow and conver-
gence rates Noci et al. (2022); Yang et al. (2024), and generalization behavior Zhang et al. (2025b);
Csordás et al. (2021). Without a complete curvature analysis, our understanding of Transformer
training dynamics, convergence properties, and scaling behavior remains limited Fort and Jastrzeb-
ski (2019).

In this work, we provide the first complete theoretical analysis of the Hessian for full Transformer
blocks, extending beyond prior self-attention analyses Ormaniec et al. (2024); Zhang et al. (2024) to
include explicit second-order expressions for LayerNorm and FFNs. Our analysis derives rigorous
bounds on how the loss landscape evolves with dataset size, offering a novel framework for under-
standing landscape stabilization in Transformers. These results have implications for optimization
challenges (e.g., vanishing gradients Hochreiter (1998)), scaling laws (e.g., compute-optimal train-
ing Kaplan et al. (2020); Hoffmann et al. (2022)), and critical batch size estimation McCandlish
et al. (2018); Zhang et al. (2025c).

Contributions. Our main contributions are:

• We derive the first full Hessian expressions for Transformer blocks, including explicit treat-
ment of LayerNorm and FFNs, filling a critical gap in prior analyses.

• We establish theoretical bounds on the loss landscapes evolution with dataset size, provid-
ing a rigorous framework for understanding landscape stabilization.

• We validate our theoretical predictions through experiments on Vision Transformers,
demonstrating practical relevance across data regimes.

Our work bridges theoretical deep learning and practical Transformer deployment, enabling new in-
sights into optimization difficulties, efficient scaling strategies, and future theoretical investigations
of large-scale deep learning.

Outline. The rest of the paper is organized as follows. In Section 2, we review related work, cate-
gorizing existing research into key topics and highlighting their main contributions. Section 3 intro-
duces the notation and presents preliminary calculations essential for our analysis. In Section 4, we
derive theoretical bounds for the norm of the Hessian matrix and the norm of the difference between
loss functions. Section 5 provides an empirical study validating these theoretical results. Section 6
discuss and summarize our findings, offering insights and conclusions. Additional experiments are
in Appendix A and proofs of theorems are included in Appendices B-D.

2 RELATED WORK

Geometry of Neural Network Loss Landscapes Foundational studies characterize neural loss ge-
ometry via Hessians, including class-aligned high-curvature directions Fort and Jastrzebski (2019),
random-matrix perspectives on spectra and optimization Pennington et al. (2017), and connectivity
and double-descent phenomena Garipov et al. (2018); Singh et al. (2022); Draxler et al. (2019);
Nguyen et al. (2017), with flattening observed at large learning rates Wang et al. (2023). Our work
complements this line by showing how curvature of Transformer blocks changes with dataset size,
providing explicit second-order bounds that formalize landscape stabilization under data growth.
This links classical geometric insights to a data-scaling axis that was previously qualitative.

Hessian-Based Analysis and Generalization Prior Hessian analyses for fully connected and convo-
lutional networks reveal spectral structure and low effective rank with implications for convergence
and smoothness Kiselev and Grabovoy (2024); Meshkov et al. (2024). We extend these ideas to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Transformers by deriving explicit LayerNorm/FFN second derivatives and blockwise spectral-norm
bounds, thereby closing a missing piece in second-order geometry for this architecture.

Loss Landscapes in Transformers While Transformers Vaswani et al. (2017) have inspired curva-
ture analyses focused on attention Ormaniec et al. (2024) and studies of sample complexity, gen-
eralization, and stagewise dynamics Zhang et al. (2025b); Li et al. (2023); Hoogland et al. (2025),
a full-block second-order treatment has remained incomplete. We provide the missing LayerNor-
m/FFN Hessians and assemble a complete blockwise Hessian for a Transformer layer, aligning
theory with empirical curvature structure. This enables a principled account of how Transformer
curvature evolves with data and training.

Dataset Size and Loss Landscape Convergence Work on compute-optimal scaling and sample-
related flatness highlights the importance of balancing data and model size Hoffmann et al. (2022);
Wu et al. (2017), and visualization tools hint at stabilization thresholds without theory Xie et al.
(2024). Building on Hessian frameworks from other architectures Kiselev and Grabovoy (2024);
Meshkov et al. (2024) and attention derivatives Ormaniec et al. (2024), we derive a second-order
bound that decays as 1/k. This yields actionable diagnostics for curvature-aware training and data
budgeting in Transformers.

3 PRELIMINARIES

We adopt row-wise vectorization vecr(·) from Ormaniec et al. (2024); Noci et al. (2022). For a
matrix-valued function N : Rp×q → Rn×d differentiable w.r.t. weight matrices Wi ∈ Rpi×qi

and Wj ∈ Rpj×qj , the Jacobian is ∂N
∂Wi

:= ∂vecr(N)
∂vecr(Wi)⊤

∈ Rnd×piqi , and the Hessian block is

∂2N
∂Wi∂Wj

:=
∂vecr(

∂N
∂Wi

)

∂vecr(Wj)⊤
∈ R(nd·piqi)×pjqj . Key properties (e.g., for products, Kronecker, inverses,

Hadamard powers) are detailed in Appendix B.

Let fw(·) denote a neural network (here, a Self-Attention layer or full Transformer block) with
parameters w ∈ Ω. Given a twice-differentiable loss l(·, ·), the per-sample loss is li(w) :=

l(fw(xi),yi). The empirical loss over L = k samples is Lk(w) = 1
k

∑k
i=1 li(w), with Hessian

H(k)(w) = 1
k

∑k
i=1 ∇2

wli(w).
Assumption 1. At local minimum w∗, ∇Lk−1(w

∗) = ∇Lk(w
∗) = 0.

Our study on the feasibility of this assumption is in Appendix A.2.

Consider input embeddings X ∈ RL×dV . A single-head Self-Attention layer outputs
F(X) = A(X)XWV , (1)

where A(X) = softmax
(

XWQW⊤
KX⊤

√
dK

)
, and WQ,WK ∈ RdV ×dK , WV ∈ RdV ×dV .

Full Transformer block is:

LayerNorm
(

LayerNorm(X+ F(X)) + FFN(LayerNorm(X+ F(X)))
)

(2)

where FFN(·) is a fully connected block with a non-linear activation within it. LayerNorm for an in-
put matrix U ∈ Rm×n is LayerNorm(U)i,j = γj

Ui,j−µi√
σ2
i

+ βj , where µi =
1
m

∑m
j=1 Ui,j , σ2

i =

1
m

∑m
j=1(Ui,j − µi)

2. More details on a transformer block are in Section 4.2.

Assumption 2. For input matrices to LayerNorm (e.g., X + F(X), Y + FFN(Y)), the per-row
variances satisfy mini σ

2
i > 0.

It’s a technical assumption for the proof part simplification and numerical stability. The same ef-
fect can be achieved by adding some positive constant to the denominator, but it makes calculations
harder. In our case this assumption is required for X + F(X) and Y + FFN(Y), defined in Trans-
former block 5.

We use mean-squared error loss: l(·,Target) = 1
LdV

∥·−Target∥2F . Hessians decompose via Gauss-
Newton: for composite Lk ◦ fw,

∂2(Lk ◦ fw)

∂Wi∂Wj
=

∂fw
∂Wi

(·)⊤ ∂2Lk

∂f2
w

(fw(·)) ∂fw
∂Wj

(·) +
(
∂Lk

∂fw
(fw(·))⊗ Ipiqi

)
∂2fw

∂Wi∂Wj
(·) (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHOD

In this section, we derive generalized Hessian expressions for the self-attention layer and extend
them to a full transformer block, leveraging these to analyze the convergence of the loss function
surface as the dataset size increases. Our approach builds on the theoretical framework of Ormaniec
et al. (2024), adapting and generalizing their results.

4.1 HESSIAN OF THE SELF-ATTENTION LAYER

We begin by analyzing the Hessian of a single self-attention layer with parameters w =
{WQ,WK ,WV } as defined in Equation 1. The empirical loss is defined as:Lk(w) =
1
k

∑k
i=1 l(F(Xi),Targeti), where l(F(Xi),Targeti) is a Loss function defined above.

The Hessian of Lk with respect to the parameters w is:

H(k)(w) = ∇2
wLk(w) =

1

k

k∑
i=1

∇2
wli(w) =

1

k

k∑
i=1

Hi(w)

where Hk(w) is a hessian of the Self-Attention block for w being a pair of matrices from
{WQ,WK ,WV }. It can decomposed using the Gauss-Newton approximation 3:

Hk(Wi,Wj) =
∂2l

∂Wi∂Wj
= Ho(Wi,Wj) +Hf (Wi,Wj),

with Ho as the outer-product Hessian and Hf as the functional Hessian. The results for this decom-
position can be calculated according to Theorems 3.1-3.2 from Ormaniec et al. (2024).

Hessian’s norm estimation

Next, we introduce a theorem for estimation the spectral norm (Definition 1) of the Hessian for a
single Self-Attention block.
Theorem 1. Let ∥ · ∥2 be a spectral matrix norm, then for a single Self-Attention layer we have

∥Hi(w
∗)∥2 ≤ M

where

M = 3max

(
2L

dV
∥X∥22,

8

L3dV dK
∥WK∥22∥WV ∥22∥X∥62 +

12

dV dK

√
min(L, dV)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52,

4

LdV
√
dK

∥WV ∥2∥WK∥2∥X∥42 +
4
√
min(L, dV)

L2
√
dK

(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WK∥2∥X∥32,

8

L3dV dK
∥WK∥2∥WQ∥2∥WV ∥22∥X∥62+

+
4
√
min(L, dV)(L∥X∥2∥WV ∥2 + ∥Target∥2)

LdV
√
dK

∥WV ∥2
(
3L∥WK∥2∥WQ∥2∥X∥52 +

dV
L

∥X∥32
))

The proof is provided in Appendix C.1.

4.2 HESSIAN OF THE TRANSFORMER BLOCK

A transformer block extends the self-attention layer with a feed-forward network (FFN), residual
connections, and layer normalization. The output is:

Y = LayerNorm(X+ F(X)) (4)
Z = LayerNorm(Y + FFN(Y)), (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where FFN(Y) = σ(YW1 + b1)W2 + b2, with W1 ∈ RdV ×dff , W2 ∈ Rdff×dV , b1 ∈ Rdff ,
b2 ∈ RdV , and σ as the activation (e.g., ReLU). The LayerNorm(X) operation is defined as follows.
For an input matrix X ∈ RL×dV , we compute:

1. Feature-wise mean and variance:

µi =
1

dV

dV∑
j=1

Xi,j , σ2
i =

1

dV

dV∑
j=1

(Xi,j − µi)
2,

2. Normalized output with learnable parameters γ, β ∈ Rm:

LayerNorm(X)i,j = γj ·
Xi,j − µi√

σ2
i

+ βj .

The parameters are w = {WQ,WK ,WV ,W1,W2,b1,b2, γ, β}, where γ and β are the scale
and shift parameters of LayerNorm. For simplicity in Hessian analysis, one may assume γ and β
are fixed (e.g., γ = 1, β = 0), though they are typically learnable.
Theorem 2 (Jacobian of LayerNorm). Let X ∈ RL×dV . Define

M(X) = X− 1
dV

X1dV
1⊤
dV

, σ(X) = 1√
dV

(
M(X)◦21dV

)◦1/2
, P(X) = diag−1(σ(X)).

Then the Jacobian of
LayerNorm(X) = P(X)M(X)

with respect to X is

∂ LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
(
ILdV

− 1
dV

(IL ⊗ 1dV ×dV
)
)
+ (IL ⊗M(X)⊤)

∂P(X)

∂X
.

Theorem 3 (Hessian of LayerNorm). Let LayerNorm(X) = P(X)M(X) with Jacobian
∂LayerNorm

∂X = (P ⊗ IdV
)G + (IL ⊗M⊤)H, where G =

(
ILdV

− 1
dV

(IL ⊗ 1dV ×dV
)
)

is constant

and H = ∂P
∂X as in Theorem 2. The Hessian is

∂2LayerNorm
∂X2

= ((P(X)⊗ IdV
)⊗ ILdV

)
∂2M

∂X2
+
(
ILdV

⊗G⊤) ∂(P(X)⊗ IdV
)

∂X
+

+
(
(IL ⊗M⊤)⊗ ILdV

) ∂2P

∂X2
+
(
ILdV

⊗H⊤) ∂(IL ⊗M⊤)

∂X
,

where where ∂2M
∂X2 = 0, and other terms as derived in the proof.

Proofs and detailed versions for Theorems 2-3 are provided in Appendices C.2 - C.3.

Before providing calculations for the whole Transformer Block we need to introduce an activation
function matrix derivative.
Lemma 1 (ReLU derivative and Hessian). Let X ∈ Rm×n, almost everywhere the following holds:

∂ReLU(X)

∂X
= diag

(
vecr(1{X>0})

)
,

∂2ReLU(X)

∂X2
= 0.

The proof is in the Appendix D.

Thus, we calculate the derivatives and the Hessian of the proposed Transformer block representation
5 with respect to a square norm Loss, where we put b1,2 = 0 in FFN block for simplicity of
subsequent calculations and use ReLU as an activation layer.
Theorem 4 (Transformer block derivative). For Transformer block from 5 with S =
ReLU(YW1)W2 +Y and Z = LayerNorm(S):

∂Z

∂Wi
= JZ ·

{
Bi, i ∈ {1, 2}
JSY Gi, i ∈ {K,Q, V }

where JZ = ∂Z
∂S , Bi =

∂S
∂Wi

, JSY = ∂S
∂Y , Gi =

∂Y
∂Wi

.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

More detailed of the theorem and it’s proof can be found in Appendix C.4.

Theorem 5 (Hessian of the Transformer block 5). The Hessian blocks of the Transformer output Z
w.r.t. parameters (Wi,Wj) are

H
(i,j)
tr :=

∂2Z

∂Wi∂Wj
= (JZ ⊗ Ini

) ξij +
(
ILdV

⊗B⊤
i

)
HZBj (6)

with ξij := ∂
∂Wj

(
∂S

∂Wi

)
, JZ := ∂ LayerNorm(S)

∂S ,HZ := ∂2 LayerNorm(S)
∂S2 and Bi :=

∂S
∂Wi

, where

S := ReLU(YW1)W2 +Y

More detailed version of the theorem and the proof can be found in Appendix C.5.

We note that the theorem above is responsible for the ∂2fw
∂Wi∂Wj

part from the Hessian of the Loss
function decomposition 3. Therefore, the whole Transformer Hessian can be represented as:

∂2(L ◦ Z)
∂Wi∂Wj

=
∂Z

∂Wi

⊤ ∂2L
∂Z2

∂Z

∂Wj
+

(
∂L
∂Z

(Z(·))⊗ Ipiqi

)
H

(i,j)
tr , (7)

where L(·) = ∥ ·−Target∥22, it’s second derivative is 2
LdV

, and ∂L
∂Z (Z(·)) can be calculated similarly

to Rm from Theorem 3.2 Ormaniec et al. (2024), thus, Rtr
m = vecr(Z − Target)⊤ ⊗ Im, while

∂Z
∂Wi

, ∂Z
∂Wj

are from Theorem 4 and H
(i,j)
tr is from Theorem 5.

Therefore the transformer-block square-norm can be estimated according to the theorem

Theorem 6 (Spectral-norm estimate of the Transformer Hessian). Let H
(i,j)
tr denote the (i, j)-

th block of the Transformer Hessian from equation 12, where i, j ∈ {1, 2,K,Q, V } and ni =
dim(Wi). Then, for each pair (i, j),∥∥H(i,j)

tr

∥∥
2

≤ ∥JZ∥2 ∥ξij∥2 + ∥Bi∥2 ∥HZ∥2 ∥Bj∥2, (8)

where ξij =
∂

∂Wj

(
∂S

∂Wi

)
and Bi =

∂S
∂Wi

.

Explicit expressions for each bound are stated in the proof.

Furthermore, estimation for the whole transformer Hessian can be calculated as:

Let Htr be the full Hessian arranged as a mb × nb block-matrix with blocks H
(i,j)
tr , where mb =

nb = 5 (indexed by {1, 2,K,Q, V }). Then

∥Htr∥2 ≤
√
mbnb max

i,j

(
2

LdV
∥ ∂Z

∂Wi
∥2∥

∂Z

∂Wj
∥2 + ∥Rtr

m∥2∥H(i,j)
tr ∥2

)
. (9)

Since mb = nb = 5, we get ∥Htr∥2 ≤ 5 maxi,j(· · ·). We denote this estimation as Mtr.

The proof is provided in Appendix C.6.

4.3 CONVERGENCE OF THE LOSS FUNCTION SURFACE

Similarly to Kiselev and Grabovoy (2024) let us use second-order Taylor approximation for the
mentioned above loss functions at w∗. We suppose that decomposition to the second order will be
sufficient to study local behavior. The first-order term vanishes because the gradients ∇Lk(w

∗) and
∇Lk+1(w

∗) are zero according to Assumption 1:

Lk(w) ≈ Lk(w
∗) +

1

2
(w −w∗)⊤H(k)(w∗)(w −w∗), (10)

where we denoted the Hessian of Lk(w) with respect to parameters w at w∗ as H(k)(w∗).

Next, we consider difference of losses |Lk+1(w)− Lk(w)| while increasing the sequence length.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 7 (Convergence of Self-Attention and Transformer Blocks). For a single self-attention
block and a single transformer block 5 under the conditions that the loss function is bounded 0 ⩽
l(fw∗(xi),yi) ⩽ L, and the individual Hessians are bounded, the following holds:

|Lk+1(w)− Lk(w)| ⩽ 2L

k + 1
+

M ∥w −w∗∥22
(k + 1)

,

where for the self-attention block M can be directly calculated from Theorem 1 and for the trans-
former block M = Mtr is calculated according to Theorem 6.

It’s worth noting that M in the theorem above is not a constant in terms of increasing the sequence
length k, as soon as M as in a function of ∥X∥2 which changes during described process. For more
details see Appendix C.1 and C.6.

The proof is provided in Appendix C.7.

5 EXPERIMENTS
Transformer Block

Embedded Patches

Self-Attention

LayerNorm

FeedForward

LayerNorm

L×

Figure 2: Transformer archi-
tecture we use in our experi-
ments

To verify our theoretical estimates we conduct a comprehensive em-
pirical study. We follow the same Transformer architecture we used
in the main part of the paper, which is essentially post-norm (Lay-
erNorm is after Self-Attention/FeedForward).

In particular, we consider an image classification task, implement-
ing the Vision Transformer (ViT) architecture similar to Dosovit-
skiy et al. (2020), see Figure 2. Input image is patchified with linear
projection and then goes to Transformer Encoder, which contains L
Transformer Blocks, while its outputs is averaged to obtain classifi-
cation logits.

Hessian entries visualization. In this part we use a single Trans-
former block, which we train on a MNIST Deng (2012) dataset
(see 1). Firstly, we put just one batch from a train dataloader
to the initialized model and calculate the exact Hessian using
curvlinops Python package for an efficient Hessian linear op-
erator calculation. Visualizing it in a log-scale, in Figure 3 we em-
phasize the heterogenity in the magnitues of the entries.

dataset patch size hidden dim ff dim num blocks
MNIST 4 16 64 1

CIFAR-100 4 128 512 8

Table 1: Vision Transformer (ViT) architectures hyperparameters we use in our experiments

Hessian Hessian (Self-Attention)

6

5

4

3

2

1

Lo
ga

rit
hm

ic
ab

so
lu

te
 e

nt
rie

s

Figure 3: Hessian entries visualization for an initialized model with one Transformer Block. We
see the entire magnitudes’ heterogeneity, while the Values corresponding blocks have larger values.

7

https://curvlinops.readthedocs.io/en/latest/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We train the model for a number of epochs, obtaining pretty high accuracy on a validation dataset
(>50%), and then visualize the Hessian’s entries again, see Figure 4. One can see that each of the
Hessian’s blocks becomes more magnituted, however the Values-Values block exhibits the highest
one.

Hessian Hessian (Self-Attention)

6

5

4

3

2

1

0

1

Lo
ga

rit
hm

ic
ab

so
lu

te
 e

nt
rie

s

Figure 4: Hessian entries visualization for a model trained for a number of epochs with one Trans-
former Block. We see the entire magnitudes’ heterogeneity, while the Values-Values corresponding
block has the largest values.

This experiment shows exactly how the entire Transformer’s Hessian is organized, which allows
us to investigate each block part of it separately. In Appendix A.1 we continue this experiment by
providing Parameters blocks changing over training epochs figures.

Further, we calculate the matrices’ norms and their Hessians’ norms, and show them in Figure 5

0 200 400 600 800 1000

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Parameters norm
Queries
Keys
Values
LayerNorm
FeedForward

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40
Hessians norm

Queries
Keys
Values
LayerNorm
FeedForward

Figure 5: Parameters’ blocks norms and their Hessians’ norms, calculated exactly on one batch
containing 128 examples from the MNIST training dataset.

Results show that the highest magnitude corresponds to the Keys and Values, while the other blocks
exhibit much smaller absolute entries.

Loss landscape convergence. To further deep inside the dependence between loss function and its
Hessian, we conduct and experiment corresponding to Theorem 7. Here we employ the other model
configuration on a CIFAR-100 Krizhevsky (2009) dataset. Compared to similar one for a MNIST
dataset, this model have 8× more Transformer blocks and also 8× wider hidden layers. During
traning, it is also trained for a number of epochs to achieve >50% Accuracy on a validation dataset.
The results are in Figure 6. The experiment setup is as follows:

1. Train the model until convergence and save the parameters w∗ (model checkpoint);

2. Start from the empty dataset, add data batch-by-batch and calculate mean loss value over
the seen batches;

3. Calculate the absolute difference according to |Lk+1(w)− Lk(w)|.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Our code is available at https://anonymous.4open.science/r/transformer_
hessians/

6 DISCUSSION AND CONCLUSION

103 104 105 106

samples

10 5

10 4

10 3

10 2

Ab
so

lu
te

 lo
ss

es
 d

iff
er

en
ce

k 1

Loss landscape convergence

Figure 6: Absolute loss difference vs. the num-
ber of training samples in the dataset, plotted in
log-log scale. The blue line represents the EMA
of a desired dependency, while the gray one corre-
sponds to the linear trend.

This work fills a key gap in the second-order
analysis of Transformers by deriving explicit Ja-
cobians and Hessians for LayerNorm and FFN
in the vecr numerator-layout, and integrating
them into a full block-level curvature decom-
position. Theorems 2-3 and 4-5 yield end-
to-end expressions that are compatible with
Kronecker structure and commutation identi-
ties, while Theorems 1 and 6 provide spectral-
norm bounds that connect curvature to input
statistics, LayerNorm scales, and architectural
hyperparameters. A direct consequence is a
block-heterogeneous Hessian: Value- and Key-
related terms dominate through softmax deriva-
tives and input-dependent operators, FFN cur-
vature is controlled by the piecewise linearity of
ReLU, and LayerNorm contributes via per-row
variance. The empirical results (e.g., Figures 3
and 4) match these predictions, with Values - Values blocks exhibiting the largest magnitudes after
training.

The second-order Taylor expansion in Theorem 7 gives a compact convergence inequality,
|Lk+1(w) − Lk(w)| ≤ 2L/(k + 1) + M∥w − w∗∥22/(k + 1), where M is provided by our
Hessian bounds. This establishes a 1/(k + 1) decay of the local discrepancy between successive
empirical objectives when curvature is controlled, and explains the observed stabilization of the loss
landscape with increasing data. The loglog trend in Figure 6 follows this prediction, supporting the
claim that increasing data size stabilizes the local geometry of the Transformer objective. Finally,
the block-wise structure motivates curvature-aware training through per-block adaptation of learn-
ing rates, weight decay, or preconditioning, and provides a mechanistic rationale for switching from
data scaling to model scaling near curvature stationarity, consistent with compute-optimal policies
Kaplan et al. (2020); Hoffmann et al. (2022).

The analysis is local and assumes a shared minimizer for consecutive dataset sizes (Assumption 1).
The present theoretical derivation focuses on a single-head, post-normalization transformer block un-
der the mean-squared error loss. While extensions to multi-head attention, masking, and positional
encodings are technically feasible within the established calculus, they are omitted for brevity. It
should be emphasized that the underlying framework naturally generalizes to the cross-entropy loss,
a generalization that has been explicitly validated in our experimental section. A primary direction
for future work involves extending this analysis to deep, multi-layer transformer architectures.

REFERENCES

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017. URL https://arxiv.org/abs/1706.03762.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805. Pre-trained Transformer for NLP tasks.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Aravind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165. Large-scale
Transformer for few-shot learning.

9

https://anonymous.4open.science/r/transformer_hessians/
https://anonymous.4open.science/r/transformer_hessians/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL https:
//arxiv.org/abs/2010.11929. Vision Transformer for image recognition.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020. URL https://arxiv.org/
abs/2006.03677.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. URL https://arxiv.org/abs/2001.
08361.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. 2022. URL https://arxiv.org/abs/
2203.15556.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27), June 2024. ISSN
1091-6490. doi: 10.1073/pnas.2311878121. URL http://dx.doi.org/10.1073/pnas.
2311878121.

Raphael Poulain, Mehak Gupta, and Rahmatollah Beheshti. Few-shot learning with semi-supervised
transformers for electronic health records. In Zachary Lipton, Rajesh Ranganath, Mark Sendak,
Michael Sjoding, and Serena Yeung, editors, Proceedings of the 7th Machine Learning for
Healthcare Conference, volume 182 of Proceedings of Machine Learning Research, pages
853–873. PMLR, 05–06 Aug 2022. URL https://proceedings.mlr.press/v182/
poulain22a.html.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin ídek, Anna Potapenko, et al. Highly accu-
rate protein structure prediction with alphafold, 2021. URL https://www.nature.com/
articles/s41586-021-03819-2. Transformer-based protein structure prediction.

Zining Chen, Zhicheng Zhao, Fei Su, Xiaoqin Zhang, and Shijian Lu. Data-efficient generaliza-
tion for zero-shot composed image retrieval, 2025. URL https://arxiv.org/abs/2503.
05204.

Weronika Ormaniec, Felix Dangel, and Sidak Pal Singh. What does it mean to be a transformer? in-
sights from a theoretical hessian analysis. arXiv preprint arXiv:2410.10986, 2024. Self-Attention
Block decomposition.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
X6rqEpbnj3.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse,
2022. URL https://arxiv.org/abs/2206.03126.

Xingxuan Zhang, Haoran Wang, Jiansheng Li, Yuan Xue, Shikai Guan, Renzhe Xu, Hao Zou, Han
Yu, and Peng Cui. Understanding the generalization of in-context learning in transformers: An
empirical study. In The Thirteenth International Conference on Learning Representations, 2025a.
URL https://openreview.net/forum?id=yOhNLIqTEF.

Hongru Yang, Bhavya Kailkhura, Zhangyang Wang, and Yingbin Liang. Training dynamics of
transformers to recognize word co-occurrence via gradient flow analysis, 10 2024.

10

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2006.03677
https://arxiv.org/abs/2006.03677
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
http://dx.doi.org/10.1073/pnas.2311878121
http://dx.doi.org/10.1073/pnas.2311878121
https://proceedings.mlr.press/v182/poulain22a.html
https://proceedings.mlr.press/v182/poulain22a.html
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://arxiv.org/abs/2503.05204
https://arxiv.org/abs/2503.05204
https://openreview.net/forum?id=X6rqEpbnj3
https://openreview.net/forum?id=X6rqEpbnj3
https://arxiv.org/abs/2206.03126
https://openreview.net/forum?id=yOhNLIqTEF

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xingxuan Zhang, Haoran Wang, Jiansheng Li, Yuan Xue, Shikai Guan, Renzhe Xu, Hao Zou, Han
Yu, and Peng Cui. Understanding the generalization of in-context learning in transformers: An
empirical study, 2025b. URL https://arxiv.org/abs/2503.15579.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks
improve systematic generalization of transformers. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 619–634, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.49. URL https://aclanthology.org/2021.emnlp-main.49/.

Stanislav Fort and Stanislaw Jastrzebski. Emergent properties of the local geometry of neural loss
landscapes. Placeholder - replace with actual entry, 2019. Please provide full citation details.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem
solutions, 1998. URL https://www.sciencedirect.com/science/article/abs/
pii/S0888613X98000140. Analysis of vanishing gradient issues.

Sam McCandlish et al. An empirical model of large-batch training, 2018. URL https://arxiv.
org/abs/1812.06162. Empirical analysis of large-batch training dynamics.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster,
and Sham M. Kakade. How does critical batch size scale in pre-training? In The Thirteenth
International Conference on Learning Representations, 2025c. URL https://openreview.
net/forum?id=JCiF03qnmi.

Jeffrey Pennington et al. Placeholder for pennington et al. 2017. Placeholder - replace with actual
entry, 2017. Please provide full citation details.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. arXiv preprint arXiv:1802.10026,
2018. URL https://arxiv.org/abs/1802.10026.

Sidak Pal Singh et al. Phenomenology of double descent in finite-width neural networks. Place-
holder - replace with actual entry, 2022. Please provide full citation details.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essentially no
barriers in neural network energy landscape. arXiv preprint arXiv:1803.00885, 2019. URL
https://arxiv.org/abs/1803.00885.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. The loss surface of deep and
wide neural networks. arXiv preprint arXiv:1704.08045, 2017. URL https://arxiv.org/
abs/1704.08045.

Lei Wang et al. Instabilities of large learning rates in neural network training. Placeholder - replace
with actual entry, 2023. Please provide full citation details.

Nikita Kiselev and Andrey Grabovoy. Unraveling the hessian: A key to smooth convergence in loss
function landscapes. arXiv preprint arXiv:2409.11995, 2024. Upper bounds via Hessian for fully
connected neural networks.

Vladislav Meshkov, Nikita Kiselev, and Andrey Grabovoy. Convnets landscape convergence:
Hessian-based analysis of matricized networks, 2024. URL https://ieeexplore.ieee.
org/document/10899113. Upper bounds via Hessian for convolutional neural networks.

Hongkang Li, Meng Xu, Tianyang Wang, Shuai Yang, Feng Shen, Wei Xu, and Trevor Dar-
rell. A theoretical understanding of shallow vision transformers: Learning, generalization, and
sample complexity. OpenReview, 2023. URL https://openreview.net/forum?id=
jClGv3Qjhb.

Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
Murfet. Stagewise development in transformers and the geometry of the loss landscape. 2025.
URL https://openreview.net/forum?id=xEZiEhjTeq.

11

https://arxiv.org/abs/2503.15579
https://aclanthology.org/2021.emnlp-main.49/
https://www.sciencedirect.com/science/article/abs/pii/S0888613X98000140
https://www.sciencedirect.com/science/article/abs/pii/S0888613X98000140
https://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1812.06162
https://openreview.net/forum?id=JCiF03qnmi
https://openreview.net/forum?id=JCiF03qnmi
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.00885
https://arxiv.org/abs/1704.08045
https://arxiv.org/abs/1704.08045
https://ieeexplore.ieee.org/document/10899113
https://ieeexplore.ieee.org/document/10899113
https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=xEZiEhjTeq

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuhuai Wu et al. Towards understanding generalization of deep learning. Placeholder - replace with
actual entry, 2017. Please provide full citation details.

Tiankai Xie, Xiangyu Li, Yan Zhang, Yiming Wang, Hao Zhang, Mingyuan Liu, and Jie Zhang.
Losslens: Diagnostics for machine learning through loss landscape visual analytics. arXiv
preprint arXiv:2412.13321, 2024. URL https://arxiv.org/abs/2412.13321.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in Statistics
and Econometrics. Wiley, Chichester, 1988. ISBN 9780471915163.

Sidak Pal Singh, Gregor Bachmann, and Thomas Hofmann. Analytic insights into structure and rank
of neural network hessian maps, 2021. URL https://arxiv.org/abs/2106.16225.

Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook. https://www2.
imm.dtu.dk/pubdb/edoc/imm3274.pdf, 2012. Version November 15, 2012.

12

https://arxiv.org/abs/2412.13321
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://arxiv.org/abs/2106.16225
https://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf
https://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PARAMETERS BLOCKS CHANGING OVER TRAINING EPOCHS.

Here we continue the previous experiments, expanding the plots into separate parameters blocks
entries changing. Again, we employ the MNIST’s dataset version of our model (Figure 1). We log
the matrices entries, norms, and Hessians during the first 1000 training steps. As we can see on
Figures 7, 8, 9, 10, 11.

Step 0 Step 200 Step 400 Step 600 Step 800 Step 1000

6

5

4

3

2

1

0

Lo
ga

rit
hm

ic
ab

so
lu

te
 e

nt
rie

s

Figure 7: Queries entries visualization.

Step 0 Step 200 Step 400 Step 600 Step 800 Step 1000

6

5

4

3

2

1

0

Lo
ga

rit
hm

ic
ab

so
lu

te
 e

nt
rie

s

Figure 8: Keys entries visualization.

Step 0 Step 200 Step 400 Step 600 Step 800 Step 1000

6

5

4

3

2

1

0

Lo
ga

rit
hm

ic
ab

so
lu

te
 e

nt
rie

s
Figure 9: Values entries visualization.

Step 0 Step 200 Step 400 Step 600 Step 800 Step 1000

6

5

4

3

2

1

Lo
ga

rit
hm

ic
ab

so
lu

te
 e

nt
rie

s

Figure 10: LayerNorm entries visualization.

Step 0 Step 200 Step 400 Step 600 Step 800 Step 1000

5

4

3

2

Lo
ga

rit
hm

ic
ab

so
lu

te
 e

nt
rie

s

Figure 11: FeedForward entries visualization.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 ASSUMPTIONS VALIDATION

In this section we provide experimental validation of the assumptions stated in the text. Since
Assumption 2 is technical, we focus on empirically validating Assumption 1.

102 103 104 105 106

samples

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Gr

ad
ie

nt
 n

or
m

Assumption 1 (zeroing gradients)
mean
std

Figure 12: Validation of Assumption 1

Figure 12 presents the corresponding results, indicating that while Assumption 1 can be relaxed, its
validity increases with longer sequence lengths (i.e., a larger number of samples).

B APPENDIX / MATRIX CALCULUS PRELIMINARIES

B.1 BASIC MATRIX OPERATIONS PROPERTIES

First, we define the notations and rules that we actively use in the text.

Definition 1 (Matrix Norms). For a matrix A ∈ Rm×n:

∥A∥2 = σ1 (Spectral norm, largest singular value)

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =

√√√√ r∑
i=1

σ2
i (Frobenius norm)

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij | (Maximum absolute column sum)

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij | (Maximum absolute row sum)

∥A∥max = max
i,j

|aij | (Element-wise maximum, not a submultiplicative norm)

Definition 2 (Vectorization and Element-wise Operations). Let A be a matrix and v be a vector.

• vecr(A) denotes the row-wise vectorization of matrix A.

• A◦α denotes the element-wise α-power of matrix A, i.e., (A◦α)ij = (Aij)
α.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• diag(v) creates a diagonal matrix with vector v on its main diagonal.

Property 1 (Relation between vec and vecr). Let A ∈ Rm×n. The row-wise vectorization operator
vecr and the standard column-wise vectorization operator vec are related by the transpose:

vecr(A) = vec(A⊤)

Definition 3 (Commutation Matrix). The commutation matrix Km,n ∈ Rmn×mn is the unique
matrix such that for any matrix A ∈ Rm×n the following holds

Km,nvec(A) = vec(A⊤)

Using Property 1, we immediately have the relationship:

vecr(A) = Km,nvec(A) and vec(A) = Kn,mvecr(A)

since Kn,mKm,n = Imn.

From Magnus and Neudecker (1988) we utilize the property

Property 2 (Row-wise vectorization of matrix product). Let X,A,B be matrices with appropriate
dimensions, then

vecr(AXB) = (A⊗B⊤)vecr(X)

Property 3 (Row-wise vectorization of Hadamard product). Let A,B ∈ Rm×n. Then

vecr(A ◦B) = diag(vecr(A))vecr(B)

where ◦ denotes the Hadamard (element-wise) product. This result follows directly from Magnus
and Neudecker (1988), where the similar result was obtained for column-wise vectorization.

Proposition 1 (Identification Theorem for Row-wise Vectorization). Let F : Rm×n → Rp,q be a
differentiable matrix-valued function of a matrix X ∈ Rm×n. If the differential of F can be written
as

dvecr(F(X)) = J · dvecr(X)

for some matrix J ∈ Rpq×mn that does not depend on dX. Then J is the Jacobian matrix of the
transformation from X to F(X) with respect to row-wise vectorization. We denote this as:

∂F(X)

∂X
:=

∂vecr(F(X))

∂(vecr(X))⊤
= J

This is the vecr analogue of the fundamental Identification Theorem from Magnus and Neudecker
(1988) for column-wise vectorization.

Property 4 (Element-wise division). Let A ∈ Rm×n be a matrix and b ∈ Rm×1 be a vector. Then
for matrix C ∈ ∈ Rm×n, where ci,j =

ai,j

bi
is fulfilled that

C = diag−1(b)A

Proposition 2 (Spectral norm of 1L×L matrix). Let A = 1L×L (a matrix full of 1). Then its spectral
norm is

∥A∥2 = L

Proof. Using basic Linear Algebra properties, we obtain tr(A) = L and rank(A) = 1 =
dim(Im(X)). Therefore, using dim(Im(X)) + dim(Ker(X)) = L, we get dim(Ker(X)) = L− 1.
Thus, for i ∈ {2, . . . L} we get λi = 0 and for λ1 = L. Then, the only non-null singular value of
the matrix A is

√
L2 = L. Thus, we obtain that ∥A∥2 = L, according to Definition 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 MATRIX-VALUED FUNCTIONS DERIVATIVE PROPERTIES

Next, we introduce the properties for calculating the matrix-valued function derivative.

Property 5 (Matrix-Product derivative). Let X,A,B be matrices with appropriate dimensions, then

∂AXB

∂X
= A⊗B⊤

where A and B have no dependence on X.

Detailed proof of this statement can be found in Singh et al. (2021).

Property 6 (Kronecker-Product derivative). Let X ∈ Rn×q and Y ∈ Rp×r. Then

∂(X⊗Y)

∂X
= (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecrY) ,

and analogously
∂(X⊗Y)

∂Y
= (In ⊗Kp,q ⊗ Ir) (vecrX⊗ Ipr) .

The detailed proof is in Ormaniec et al. (2024).

From the properties above, we derive calculations for special cases which we use in this paper.

Proposition 3 (Matrix-valued functions multiplication derivative). Let A(X) ∈ Rp×r and B(X) ∈
Rr×q be matrix-valued functions of the matrix X, then

∂A(X)B(X)

∂X
= (A⊗ Iq)

∂B

∂X
+
(
Ip ⊗B⊤) ∂A

∂X

Proof. First, we apply a classic chain-rule for calculation a derivative of a complicated function and
then combine it with Property 5

∂A(X)B(X)

∂X
=

∂AB

∂B

∂B

∂X
+

∂AB

∂A

∂A

∂X
=

∂ABIq
∂B

∂B

∂X
+

∂IpAB

∂A

∂A

∂X
=

= (A⊗ Iq)
∂B

∂X
+
(
Ip ⊗B⊤) ∂A

∂X

Proposition 4 (Matrix-valued functions Kronecker product derivative). Let A(X) ∈ Rn×q and
B(X) ∈ Rp×r be matrix-valued functions of the matrix X, then

∂A(X)⊗B(X)

∂X
= (In ⊗Kp,q ⊗ Ir)

(
(vecrA⊗ Ipr)

∂B

∂X
+ (Inq ⊗ vecrB)

∂A

∂X

)
Proof. First, we apply a classic chain rule for calculating the derivative of a complicated function
and then combine it with Property 6

∂A(X)⊗B(X)

∂X
=

∂A⊗B

∂B

∂B

∂X
+

∂A⊗B

∂A

∂A

∂X
=

= (In ⊗Kp,q ⊗ Ir) (vecrA⊗ Ipr)
∂B

∂X
+ (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecrB)

∂A

∂X
=

= (In ⊗Kp,q ⊗ Ir)

(
(vecrA⊗ Ipr)

∂B

∂X
+ (Inq ⊗ vecrB)

∂A

∂X

)

Next, we develop the operations that we introduced above and derive calculations using vecr nota-
tion as we do in this paper.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proposition 5 (Derivative of the invert matrix). For an invertible square matrix D ∈ Rn×n, the
derivative of its inverse is

∂D−1

∂D
= −D−1 ⊗D−⊤.

Proof. This is a standard result in matrix calculus. The differential identity

d(D−1) = −D−1 (dD)D−1

appears in Petersen and Pedersen (2012) and in Magnus and Neudecker (1988). Applying the vecr
operator and using the property 2 yields

vecr(−D−1 (dD)D−1) = (−D−1 ⊗D−⊤)vecr(dD)

By the definition and the identification theorem from Property 1 we obtain

vecr(dD
−1) =

∂vecrD
−1

∂vecrD
vecr(dD)

Comparing two results we get ∂vecrD
−1

∂vecrD
= (−D−1 ⊗D−⊤)

Proposition 6 (Derivative of diag(·)). For v ∈ RL×1, the derivative of the diagonalization map is

∂diag(v)

∂v
=
(
e1 ⊗ e1 . . . eL ⊗ eL

)
,

where ei are the standard basis vectors in RL.

Proof. By Definition 2, diag(v) places entry vi at position (i, i) of the resulting diagonal matrix.

The derivative of diag(v) w.r.t. vi is the elementary matrix Eii = eie
⊤
i that has one in position (i, i)

and zeros elsewhere.

Applying the row-wise vectorization operator, we obtain

vecr(Ei,i) = ei ⊗ ei

by the standard Kroneckervec identity 2.

Stacking across i = 1, . . . , L, the Jacobian becomes

∂diag(v)

∂v
=
(
e1 ⊗ e1 . . . eL ⊗ eL

)
,

Proposition 7 (Derivative of the Hadamard square). For a matrix A ∈ Rm×n, the derivative of the
elementwise square is

∂A◦2

∂A
= 2 · diag

(
vecr(A)

)
.

Proof. By Definition 2, (A◦2)ij = (Aij)2. Differentiating elementwise gives d(A◦2) = 2A ◦ dA.
Applying the vecr operator and using Property 3, we obtain

vecr(d(A
◦2)) = 2diag(vecr(A))vecr(dA)

By the identification theorem from Property 1, this implies

∂A◦2

∂A
=

∂vecr(A
◦2)

∂vecr(A)
= 2 · diag

(
vecr(A)

)
which establishes the result.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proposition 8 (Derivative of the Hadamard root). For A ∈ Rm×n with positive entries, the deriva-
tive of the elementwise square root is

∂A◦ 1
2

∂A
= 1

2 diag
−1
(
vec

◦ 1
2

r (A)
)
.

Proof. Similarly to the proof of Proposition 7, we obtain d(A◦1/2) = 1
2A

◦−1/2 ◦ dA Thus, writing
in vectorized form gives

∂A◦ 1
2

∂A
=

∂vecr(A
◦ 1

2)

∂vecr(A)
= 1

2 diag
−1
(
vec

◦ 1
2

r (A)
)
.

Proposition 9 (Transposed Matrix derivative). Let A ∈ Rm×n, then the following holds:

∂A⊤

∂A
= Kn,m

Proof. Combining a similar property from Magnus and Neudecker (1988) for column-wise vector-
ization with the column-row connection rule 1 and 3 we obtain the theorem statement.

B.3 MATRIX NORM PROPERTIES

Similarly to Petersen and Pedersen (2012) we introduce a matrix norms table comparison.

Property 7 (Matrix norm inequalities). Let A ∈ Rm×n. Then the following inequalities hold
between different matrix norms:

X Y ∥A∥max ∥A∥1 ∥A∥∞ ∥A∥2 ∥A∥F

∥A∥max 1 1 1 1

∥A∥1 m m
√
m

√
m

∥A∥∞ n n
√
n

√
n

∥A∥2
√
mn

√
n

√
m 1

∥A∥F
√
mn

√
n

√
m

√
d

where d = rank(A). The table should be read as: for any two norms ∥ · ∥X and ∥ · ∥Y ,

∥A∥X ≤ c · ∥A∥Y

where c is the constant found at the intersection of row X and column Y .

Property 8 (Matrix sum norm). Let A and B be matrices from Rm×n, then

∥A+B∥2 ≤ ∥A∥2 + ∥B∥2 (11)

Property 9 (Kronecker product norm). Let A ∈ Rm×n and B ∈ Rp×q , then the following holds

∥A⊗B∥2 = ∥A∥2∥B∥2
Property 10 (Matrix product norm). Let A ∈ Rm×n and B ∈ Rn×q , then the following holds

∥AB∥2 ≤ ∥A∥2∥B∥2

The properties above can be found in Magnus and Neudecker (1988).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Property 11 (Block-matrix norm inequality). Let A ∈ Rm×n be a block-matrix, each block of
which is a matrix Bi,j , thus the following holds

∥A∥2 ≤
√
mnmax

i,j
∥Bi,j∥2

Note, if matrix A is block-diagonal, then the strict equality holds ∥A∥2 = max
i

∥Bi,i∥2.

Property 12 (Transposed matrix norm). Let A ∈ Rm×n, then

∥A∥2 = ∥A⊤∥2

C APPENDIX / PROOFS OF THE THEOREMS

C.1 PROOF OF THEOREM 1

Proof. From Lemma A.3 Noci et al. (2022) and using Properties 10 and 9

∥∂A
∂T

∥2 =
1

L
∥IL∥2∥IL − 1

L
1L×L∥2 ≤ 1

L

Here we used that 1
L1L×L is a projection matrix, therefore IL − 1

L1L×L is a projection matrix and
it’s norm is ∥IL − 1

L1L×L∥2 ≤ 1.

Next we estimate the Z1 norm, utilizing the same Properties 10 and 9

∥Z1∥2 ≤ ∥IL ⊗X⊤∥2∥
∂A

∂T
∥2∥X⊗X∥2 ≤ ∥X∥2

1

L
∥X∥22 =

1

L
∥X∥32

where we used Property 12 for ∥X∥2 = ∥X⊤∥2.

Now we calculate estimations for the outer-product Hessian part.

But before that we estimate ∥A∥2. This block itself is a row-wise softmax matrix. Thus, each
element Ai,j ≤ 1. Next we use Property 7 and obtain ∥A∥max ≤ ∥A∥2 ≤

√
LL∥A∥max =

L∥A∥max ≤ L. Therefore, the ∥M1∥2 = ∥AX∥2 ≤ L∥X∥2.

Thus, the ∥Ho(Wi,Wj)∥2 is estimated below:

∥Ho(WV ,WV)∥2 ≤ 2

LdV
∥M1∥221 ≤ 2

LdV
∥A∥22∥X∥22 ≤ 2

LdV
L2∥X∥22 =

2L

dV
∥X∥22

∥Ho(WQ,WQ)∥2 ≤ ∥ 2

LdV dK
(IdV

⊗W⊤
K)Z⊤

1 (IL ⊗WV W
⊤
V) Z1(IdV

⊗WK)∥2

≤ 2

LdV dK
∥WK∥22∥Z1∥22∥WV ∥22 ≤ 2

LdV dK
∥WK∥22∥WV ∥22

1

L2
∥X∥62 =

=
2

L3dV dK
∥WK∥22∥WV ∥22X∥62

∥Ho(WV ,WQ)∥2 ≤ 2

LdV
√
dK

∥M⊤
1 ⊗W⊤

V ∥2∥Z1∥2∥IdV
⊗WK∥2

≤ 2

LdV
√
dK

L∥X∥2∥WV ∥2
1

L
∥X∥32∥WK∥2

=
2

LdV
√
dK

∥WV ∥2∥WK∥2∥X∥42

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

∥Ho(WQ,WK)∥2 ≤ 2

LdV dK
∥(IdV

⊗W⊤
K)Z⊤

1 (IL ⊗WV W
⊤
V)Z1(WQ ⊗ IdV

)KdK , dV ∥2

≤ 2

L3dV dK
∥WK∥2∥WQ∥2∥WV ∥22∥X∥62

where we use Properties 10, 9 and ∥KdV dK
∥2 = 1, because Km,n is a commutation matrix from

Definition 3.

Next we derive functional-part estimation. First we provide analysis for Rm = vecr(F(X) −
Target)T ⊗ Im from Theorem 3.2 from Ormaniec et al. (2024). Since vecr(·) is a vectorization
procedure ∥vecr(F(X) − Target)∥2 = ∥F(X) − Target∥F ≤

√
rank(F(X)− Target)∥F(X) −

Target∥2 according to Property 7. Therefore, we obtain

∥Rm∥ ≤
√
rank(F(X)− Target)∥F(X)− Target∥2 ≤

√
rank(F(X)− Target)(∥A∥2∥X∥2∥WV ∥2 + ∥Target∥2)

≤
√

rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

where we used Properties 10, 8

Next we estimate the shuffling matrix norm, utilizing standard properties

∥S∥2 = ∥(IdV
⊗KdV ,dV

)(vecr(IdV
)⊗ IdV

)∥2 ≤ ∥vecr(IdV
)∥2 = ∥IdV

∥F =
√

dV

Next challenging part is computing bounds for ∥∂2A
∂T2 ∥2. In Lemma C1 from Ormaniec et al. (2024)

the a block form of this expression is provided:
∂2Ai,j

∂Ti,:∂Ti,:
= Ai,j

(
2Ai,:A

⊤
i,: +EL,L

j,j − diag(Ai,:)− ejA
⊤
i,: −Ai,:e

⊤
j

)
∈ RL×L,

where EL,L
j,j = eje

⊤
j ∈ RL×L therefore it contains only one non-zero element that equals 1 in (j, j)

position. Additionally, it’s explicitly said that the second derivative of the row-wise softmax has a
block-diagonal structure. Thus, we use block matrix Property 11:

∥∥∥∂2A
∂T2

∥∥∥
2
= maxi,j

∥∥∥ ∂2Ai,j

∂Ti,:∂Ti,:

∥∥∥
2
.

Thus, we conduct ∥ ∂2Ai,j

∂Ti,:∂Ti,:
∥2 estimation. As we stated before Ai,j ≤ 1. Now ∥Ai,:A

⊤
i,:∥2: as

soon as Ai,: is a row in a softmax matrix, values in it sum up to 1. Thus, we can use the vector-matrix
inequalities to obtain: ∥Ai,:A

⊤
i,:∥2 ≤ ∥Ai,:∥22 ≤ ∥Ai,:∥21 = 1. After that we conduct ∥Em,n

j,j ∥2 =

∥eje⊤j ∥2 ≤ 1. Then we estimate ∥diag(Ai,:)∥2. For diagonal matrices we can easily obtain that
∥diag(Ai,:)∥2 = max

j
Ai,j ≤ 1. Next we estimate ejA

⊤
i,: and Ai,:e

⊤
j norms: the matrices ejA⊤

i,:

and Ai,:e
⊤
j are rank-1 matrices with only one non-zero row and one non-zero column respectively,

containing elements of Ai,:. Their spectral norms can be estimated ∥Ai,:∥2 ≤ 1.

Therefore, we provide an estimation:

∥∂
2A

∂T2
∥2 ≤ 6

In this way we can easily obtain the ∥Z2∥2 estimation

∥Z2∥2 = ∥
(
IL ⊗X⊤ ⊗X⊤ ⊗X⊤) (∂2A/∂T2

)
(X⊗X) ∥2 ≤ ∥X∥52∥

∂2A

∂T2
∥2 ≤ 6∥X∥52

After that, we proceed to the estimation of the functional Hessian norms.
∥Hf(WV ,WV)∥2 = 0

∥Hf(WQ,WQ)∥2 =
2

LdV dK
∥RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (IdV

⊗WK) ∥2,

≤ 2

LdV dK
∥RdV dK

∥2∥WV ∥2∥WK∥2∥Z2∥2∥WK∥2

≤ 2

LdV dK
6
√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52 =

=
12

dV dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

∥Hf(WV ,WQ)∥2 =
2

LdV
√
dK

∥Rd2
V
(IL ⊗ S)Z1 (IdV

⊗WK) ∥2 ≤

≤ 2

LdV
√
dK

∥Rd2
V
∥2∥S∥2∥Z1∥2∥WK∥2 ≤

≤ 2

LdV
√
dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

√
dV

1

L
∥X∥32∥WK∥2 =

=
2
√

rank(F(X)− Target)
L2

√
dV dK

(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WK∥2∥X∥32

∥Hf(WQ,WK)∥ ≤ 2

LdV dK
∥RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (WQ ⊗ IdV

)KdK ,dV
∥2+

+
2

LdV
√
dK

∥RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S⊗ IdK
∥2 ≤

≤ 2

LdV dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥2∥WQ∥26∥X∥52+

+
2

LdV
√
dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2

1

L
∥X∥32

√
dV =

=
2
√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

LdV
√
dV dK

∥WV ∥2·

·
(
3L∥WK∥2∥WQ∥2∥X∥52 +

dV
L

∥X∥32
)
,

Therefore we can obtain the final hessian estimation according to Property 7, where we used number
of block equal to 3 from {K,Q, V }:

∥H(Wi,Wj)∥2 ≤ 3 max
i,j∈{Q,K,V }

(
∥Ho(Wi,Wj)∥2 + ∥Hf (Wi,Wj)∥2

)
And now after substituting results :

∥H(Wi,Wj)∥2 ≤

≤ 3max

(
2L

dV
∥X∥22,

2

L3dV dK
∥WK∥22∥WV ∥22∥X∥62 +

12

dV dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52,

2

LdV
√
dK

∥WV ∥2∥WK∥2∥X∥42 +
2
√
rank(F(X)− Target)

L2
√
dV dK

(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WK∥2∥X∥32,

2

L3dV dK
∥WK∥2∥WQ∥2∥WV ∥22∥X∥62+

+
2
√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

LdV
√
dV dK

∥WV ∥2
(
3L∥WK∥2∥WQ∥2∥X∥52 +

dV
L

∥X∥32
))

The obtained expression we denote as M . The obtained inequalities can be simplified by
rank(F(X)− Target) ≤ min(L, dV). That ends the proof.

C.2 PROOF OF THEOREM 2

Theorem 8 (Detailed version of Theorem 2). Let X ∈ RL×dV . Define

M(X) = X− 1
dV

X1dV
1⊤
dV

, σ(X) = 1√
dV

(
M(X)◦21dV

)◦1/2
, P(X) = diag−1(σ(X)).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Then the Jacobian of
LayerNorm(X) = P(X)M(X)

with respect to X is

∂ LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
(
ILdV

− 1
dV

(IL ⊗ 1dV ×dV
)
)
+ (IL ⊗M(X)⊤)

∂P(X)

∂X
.

Moreover,

∂P

∂X
= 1√

dV

(
−D−1⊗D−⊤

)(
e1⊗e1, . . . , eL⊗eL

)(
diag−1

(
vec1/2r (M◦21dV

)
)
(IL⊗1⊤

dV
)diag(vecr(M))∂M∂X

)
,

with D = diag(σ(X)).

Proof. We represent LayerNorm layer as

LayerNorm(X) = P(X)M(X)

where P(X) = D−1, where D = diag(σ(X)) and M(X) = (X−µ(X)1⊤
dV

) according to Property
4.

Using the matrix-product derivative rule from Property 3 we obtain:

∂LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
∂M

∂X
+ (IL ⊗M⊤)

∂P

∂X

Let’s start with ∂M
∂X . Using simple matrix calculus properties we can obtain M(X) = (X −

µ(X)1⊤
dV

) = (X− 1
dV

X1dV
1⊤
dV

) = (X− 1
dV

X1dV ×dV
). Thus, the derivative is

∂M

∂X
=

∂(X− 1
dV

X1dV ×dV
)

∂X
= (IL ⊗ IdV

)− 1

dV
(IL ⊗ 1dV ×dV

)

Next, we calculate the ∂P
∂X . First, we start with the transformation of σ(X) expression. We can

rewrite it in the matrix terms σ(X) = (1
dV

(X − µ(X)1⊤
dV

)◦21dV
)◦

1
2 = 1√

dV

(
M(X)◦21dV

)◦ 1
2 .

Here, ◦α operation is element-wise α-powering from Definition 2.

Therefore, we can apply chain rule and get

∂P

∂X
=

∂D−1

∂D

∂diag(σ(X))

∂σ(X)

∂σ(X)

∂X

Therefore, by utilizing Properties 7, 8 and 5 we can find

∂σ(X)

∂X
=

1√
dV

∂τ◦
1
2

∂τ

∂τ

∂Q

∂Q

∂X
,

Here τ = Q · 1L and Q = M◦2. Thus, we can continue calculations and obtain

∂σ(X)

∂X
=

1√
dV

∂τ◦
1
2

∂τ

∂Q · 1dV

∂Q

∂M◦2

∂M

∂M

∂X
=

=
1√
dV

1

2
diag−1(vec

◦ 1
2

r (τ))(IL ⊗ 1T
dV

)2 · diag(vecr(M))
∂M

∂X
=

=
1√
dV

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂X

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Therefore, by applying 5 and 6 for the first and second multiplier, we obtain

∂P

∂X
=

1√
dV

(
−D−1 ⊗D−⊤) (e1 ⊗ e1 . . . eL ⊗ eL

)
·(

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂X

)
Therefore, we found the first derivative of the LayerNorm function:

∂LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
∂M

∂X
+ (IL ⊗M⊤)

∂P

∂X
=

= (P(X)⊗ IdV
)
∂M

∂X
+

+ (IL ⊗M⊤)
1√
dV

(
−D−1 ⊗D−⊤) (e1 ⊗ e1 . . . eL ⊗ eL

)
·

·
(

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂X

)
where M(X) = (X − 1

dV
X1dV ×dV

), P(X) = diag−1(σ(X)) and ∂M
∂X = (IL ⊗ IdV

) − 1
dV

(IL ⊗
1dV ×dV

)

That ends the proof.

C.3 PROOF OF THEOREM 3

Proof. Now, we calculate the second derivative ∂2LayerNorm
∂X2 . Using the matrix product derivative

property 5, we obtain:

∂2LayerNorm
∂X2

= ((P(X)⊗ IdV
)⊗ ILdV

)
∂2M

∂X2
+

(
ILdV

⊗ (
∂M

∂X
)⊤
)

∂(P(X)⊗ IdV
)

∂X
+

+
(
(IL ⊗M⊤)⊗ ILdV

) ∂2P

∂X2
+

(
ILdV

⊗ (
∂P

∂X
)⊤
)

∂(IL ⊗M⊤)

∂X

Here, we have P ∈ RL×L, M ∈ RL×dV , ∂M
∂X ∈ RLdV ×LdV , ∂P

∂X ∈ RL2×LdV

Next, we can easily obtain, using Properties 6, 9:

∂2M

∂X2
= 0

∂(P(X)⊗ IdV
)

∂X
=

∂(P⊗ IL)

∂P

∂P

∂X
= (IL ⊗KL,L ⊗ IL) (IL2 ⊗ vecr(IL))

∂P

∂X
∂(IL ⊗M⊤)

∂X
=

∂(IL ⊗M⊤)

∂M⊤
∂M⊤

∂M

∂M

∂X
= (IL ⊗KdV ,L ⊗ IL) (vecr(IL)⊗ ILdV

)KdV ,L
∂M

∂X

Now, we analyze the second-order derivative of the P matrix. To derive correct calculations we
need to write the dimensions of each multiplier in the calculated first derivative out. Matrix D is a
diag(σ(X)), the size of vector σ(X) is L×1, therefore, D ∈ RL×L and the part

(
−D−1 ⊗D−⊤) ∈

RL2×L2

. Next, we note that the size of each basis vector ei is L×1, thus we obtain ei⊗ei ∈ RL2×1

and
(
e1⊗e1 . . . eL⊗eL

)
∈ RL2×L. As we discussed earlier, M(X) ∈ RL×dV , then M ·1dV

∈

RL×1, and we can derive the size of diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)), which is L× L. Next multipliers
are (IL ⊗ 1T

dV
) ∈ RL×LdV and diag(vecr(M)) ∈ RLdV ×LdV . The last one is ∂M

∂X , which we have
already calculated, it’s size is LdV × LdV . Therefore, the whole derivative ∂P

∂X is from RL2×LdV .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We start with ∂P
∂X = 1√

dV
A1(X) · B1(X), where A1 =

(
−D−1 ⊗D−⊤) and B1 is the other

multiplier.

Therefore, using Property 3 we obtain

∂2P

∂X2
=

1√
dV

∂A1(X) ·B1(X)

∂X
=

1√
dV

(A1 ⊗ ILdV
)
∂B1

∂X
+
(
IL2 ⊗B⊤

1

) ∂A1

∂X

Now we focus on calculating ∂A1

∂X on the current step. Utilising the rule 4 we can simply get:

∂A1

∂X
=

∂
(
−D−1 ⊗D−⊤)

∂X
= (IL ⊗KL,L ⊗ IL)

(
(IL2 ⊗ vecr(D

−⊤)) · ∂ −D−1

∂X
+

+ (vecr(−D−1)⊗ IL2) · ∂D
−⊤

∂X

)
By using the transposed matrix and the invert matrix derivative properties 9, 5, we obtain: ∂−D−1

∂X =
∂−D−1

∂D
∂D
∂X =

(
D−1 ⊗D−⊤) ∂D

∂X and ∂D−⊤

∂X = ∂D−⊤

∂D−1
∂D−1

∂D
∂D
∂X = KL,L

(
−D−1 ⊗D−⊤) ∂D

∂X ,
where we the ∂D

∂X as we calculated earlier, while computing the first LayerNorm’s derivative is
∂D
∂X =

(
e1⊗e1 . . . eL⊗eL

)(
diag−1(vec

◦ 1
2

r (M◦2 · 1dV
)) · (IL ⊗ 1T

dV
) · diag(vecr(M))∂M∂X

)
And now we proceed to the calculations of the remaining part derivative.

We first assign new A2 and B2 for clear calculations. We have B1 =
(
e1 ⊗ e1 . . . eL ⊗

eL

)(
diag−1(vec

◦ 1
2

r (M◦2 · 1dV
)) · (IL ⊗ 1T

dV
) · diag(vecr(M))∂M∂X

)
and we assign new A2 and

new B2 as A2 = diag−1(vec
◦ 1

2
r (M◦2 ·1dV

)), B2 = (IL⊗1T
dV

) ·diag(vecr(M))∂M∂X and we denote

E =
(
e1 ⊗ e1 . . . eL ⊗ eL

)
. Thus, B1 = EA2B2

While E is a constant matrix we can apply the simplified matrix product derivative rule 3 and obtain

∂B1

∂X
=

∂EA2B2

∂(A2B2)

∂A2B2

∂X
= (E⊗ ILdV

)
∂A2B2

∂X

= (E⊗ ILdV
)

(
(A2 ⊗ ILdV

)
∂B2

∂X
+ (IL ⊗B⊤

2)
∂A2

∂X

)
Now, we introduce the last A3 and B3 assignment. We represent B2 as B2 = JA3B3, where
J = (IL ⊗ 1T

dV
), A3 = diag(vecr(M)) and B3 = ∂M

∂X .

Similarly to the previous step we firstly apply simplified matrix product derivative rule 3 and get

∂B2

∂X
=

∂JA3B3

∂(A3B3)

∂A3B3

∂X
= (J⊗ ILdV

)
∂A3B3

∂X

= (J⊗ ILdV
)

(
(A3 ⊗ ILdV

)
∂B3

∂X
+ (ILdV

⊗B⊤
3)

∂A3

∂X

)
Where both Jacobian matrices can be found easily ∂A3

∂X = ∂diag(vecr(M))
∂X = ∂diag(v)

∂(v)
∂vecr(M)

∂M
∂M
∂X

Where we have already calculated ∂diag(v)
∂(v) =

(
e1 ⊗ e1 . . . eL ⊗ eL

)
according to the property

6, here ei ∈ RLdV ×1, additionally ∂vecr(M)
∂M is simply ILdV

. As for ∂B3

∂X for current B it is ∂B3

∂X =
∂2M
∂X2 = 0

The last step in our analysis is putting every part of our calculations together. In our notation we can
simplify the expression

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

∂2P

∂X2
=

1√
dV

(A1 ⊗ ILdV
)
∂B1

∂X
+
(
IL2 ⊗B⊤

1

) ∂A1

∂X

where ∂B1

∂X , ∂A1

∂X B1 and it’s definitions A1, B1 are given above.

The last step in the proof is simply combining all together and substituting all calculated derivatives
into the LayerNorm’s Hessian.

That ends the proof.

C.4 PROOF OF THEOREM 4

Theorem 9 (More detailed version of Theorem 4). The Transformer block is defined in 5

The derivative ∂Z
∂Wi

is as follows.

For i ∈ {1, 2}:

∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Wi
,

where

∂(FFN(Y) +Y)

∂Wi
=

{(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
, for i = 1

σ(YW1)⊗ IdV
, for i = 2

,

and ∂LayerNorm(FFN(Y)+Y)
∂(FFN(Y)+Y) can be calculated following Theorem 2 and is explicitly given in the proof

For i ∈ {K,Q, V }:

∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Y

∂Y

∂Wi
,

where

∂(FFN(Y) +Y)

∂Y
=
(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
IL ⊗W⊤

1

)
+ (IL ⊗ IdV

) ,

and ∂Y
∂Wi

= ∂LayerNorm(F(X)+X)
∂(F(X)+X)

∂F(X)
∂Wi

, with ∂F(X)
∂Wi

is calculated according to Lemma A.2 from Noci

et al. (2022) and ∂LayerNorm(F(X)+X)
∂(F(X)+X) is calculated according to Theorem 2.

Proof. It’s worth noting that in our notation X ∈ RL×dV ,Y ∈ RL×dV ,W1 ∈
RdV ×dff ,ReLU(YW1) ∈ RL×dff ,W2 ∈ Rdff×dV .

We consider the Transformer block as it’s defined in 5, explicitly:

Y = LayerNorm(F(X) +X),

Z = LayerNorm(FFN(Y) +Y),

We derive calculations for the first derivative of the whole transformer block ∂Z
∂Wi

.

For i ∈ {1, 2}:
∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Wi

where

∂(FFN(Y) +Y)

∂Wi
=

∂(FFN(Y))

∂Wi
=

∂ILσ(YW1)W2IdV

∂Wi

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Therefore, using Property 5:

for i = 2 :
∂ILσ(YW1)W2IdV

∂Wi
= σ(YW1)⊗ IdV

for i = 1 :
∂ILσ(YW1)W2IdV

∂Wi
=

∂σ(YW1)W2

∂σ(YW1)

∂σ(YW1)

∂YW1

∂YW1

∂W1

=
(
IL ⊗W⊤

2

) ∂σ(YW1)

∂YW1

(
IL ⊗W⊤

1

)
According to Lemma 1, we obtain

for i = 1 :
∂ILσ(YW1)W2IdV

∂Wi
=
(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
Thus for i ∈ {1, 2} the following holds:

∂(FFN(Y) +Y)

∂Wi
=

{(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
, for i = 1

σ(YW1)⊗ IdV
, for i = 2

and the whole Transformer block derivative can be calculated as:

∂Z

∂Wi
=

{
∂LayerNorm(FFN(Y)+Y)

∂(FFN(Y)+Y)

(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
, for i = 1

∂LayerNorm(FFN(Y)+Y)
∂(FFN(Y)+Y) σ(YW1)⊗ IdV

, for i = 2

where according to Theorem 2

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)
= (P(FFN(Y) +Y)⊗ IdV

)
∂M

∂(FFN(Y) +Y)
+

+ (IL ⊗M⊤)
1√
dV

(
−D−1 ⊗D−⊤) (e1 ⊗ e1 . . . eL ⊗ eL

)
·

·
(

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂(FFN(Y) +Y)

)
where M(FFN(Y)+Y) = ((FFN(Y)+Y)− 1

dV
(FFN(Y)+Y)1dV ×dV

), P((FFN(Y)+Y)) =

diag−1(σ(FFN(Y)+Y) and ∂M
∂(FFN(Y)+Y) = (IL⊗IdV

)− 1
dV

(IL⊗1dV ×dV
), and here σ is simply

calculated according to the LayerNorm definition.

Next, we derive calculations for i ∈ {K,Q, V }

∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Y

∂Y

∂Wi

Utilizing Property 5 and Lemma 1, we obtain:

∂(FFN(Y) +Y)

∂Y
=

∂FFN(Y)

∂Y
+

∂Y

∂Y
=

∂FFN(Y)

∂Y
+ (IL ⊗ IdV

) =
∂σ(YW1)W2

∂Y
+ (IL ⊗ IdV

) =

=
(
IL ⊗W⊤

2

) ∂σ(YW1)

∂YW1

∂YW1

∂Y
+ (IL ⊗ IdV

) =

=
(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
IL ⊗W⊤

1

)
+ (IL ⊗ IdV

)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

and for calculating ∂Y
∂Wi

we use Lemma A.2 from Noci et al. (2022):

∂F

∂WV
= softmax

(
XWQW

⊤
KX⊤

√
dK

)
X⊗ IdV

∂F

∂WQ
=
(
IL ⊗W⊤

V X
⊤) ∂A

∂M

(
X⊗XWK√

dK

)
,

where:
∂A

∂M
= blockdiag

(
∂Ai

∂M⊤
i

)
and ∂Ai

∂M⊤
i

= diag(Ai)−AiA
⊤
i , where Ai is the i-th row of A in a column vector format. Finally,

under the uniform-attention assumption it simplifies to:

∂A

∂M
=

1

n
IL ⊗

(
IL − 1

L
1L×L

)
Additionally, we can easily expand the result on WK , where we apply the property 9, therefore:

∂F

∂WK
=
(
IL ⊗W⊤

V X
⊤) ∂A

∂M

(
(XWQ ⊗X)KdV dK√

dk

)
,

Thus ∂Y
∂Wi

can be calculated as follows:

∂Y

∂Wi
=

∂LayerNorm(F(X) +X)

∂Wi
=

∂LayerNorm(F(X) +X)

∂(F(X) +X)

∂F(X)

∂Wi

where ∂F(X)
∂Wi

is calculated according to Lemma A.2 from Noci et al. (2022), which we mentioned

earlier above and ∂LayerNorm(F(X)+X)
∂(F(X)+X) is calculated according to Theorem 2.

Substituting the expressions ends the proof.

C.5 PROOF OF THEOREM 5

Theorem 10 (Detailed version of Theorem 5). Let X ∈ RL×dV , Y ∈ RL×dV , W1 ∈ RdV ×dff ,
W2 ∈ Rdff×dV , WQ,WK ∈ RdV ×dK , WV ∈ RdV ×dV . Define

S(Y,W1,W2) = σ(YW1)W2 +Y ∈ RL×dV , Z = LayerNorm(S) ∈ RL×dV ,

and abbreviate (according to Theorems 2–3):

JZ :=
∂ LayerNorm(S)

∂S
∈ RLdV ×LdV , HZ :=

∂2 LayerNorm(S)

∂S2
∈ R(LdV)2×LdV

Let further
Dσ := diag

(
vecr(1{YW1>0})

)
∈ RLdff×Ldff

from Lemma 1.

Define the residual-Jacobian

JSY :=
∂S

∂Y
= (IL ⊗W⊤

2)Dσ(IL ⊗W⊤
1) + (IL ⊗ IdV

) ∈ RLdV ×LdV ,

and for the first residual Y = LayerNorm(F(X) +X), set

JY :=
∂ LayerNorm(F(X) +X)

∂(F(X) +X)
∈ RLdV ×LdV , HY :=

∂2 LayerNorm(F(X) +X)

∂(F(X) +X)2
∈ R(LdV)2×LdV

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

calculated by Theorems 2–3.

Denote parameter sizes

n1 = dV dff , n2 = dffdV , nQ = nK = dV dK , nV = d2V .

Let the attention-side Jacobians (from Theorem 4, can be calculated according to Noci et al. (2022))
be

GV :=
∂F

∂WV
∈ RLdV ×nV , GQ :=

∂F

∂WQ
∈ RLdV ×nQ , GK :=

∂F

∂WK
∈ RLdV ×nK .

For i ∈ {1, 2} and k ∈ {K,Q, V }, define first-layer Jacobians

B1 :=
∂S

∂W1
= (IL ⊗W⊤

2)Dσ (Y ⊗ Idff
) ∈ RLdV ×n1 ,

B2 :=
∂S

∂W2
= σ(YW1)⊗ IdV

∈ RLdV ×n2 ,

Bk :=
∂S

∂Wk
= JSY JY Gk ∈ RLdV ×nk .

Then the Hessian blocks of the Transformer output Z w.r.t. parameters (Wi,Wj) are

H
(i,j)
tr :=

∂2Z

∂Wi∂Wj
= (JZ ⊗ Ini) ξij +

(
ILdV

⊗B⊤
i

)
HZBj (12)

with

ξij :=
∂

∂Wj

(
∂S

∂Wi

)
∈ R(LdV ·ni)×nj .

The second Jacobians ξij for all pairs (i, j) are given almost everywhere by:

1) Pure-FFN pairs:
ξ11 = 0(LdV ·n1)×n1

, ξ22 = 0(LdV ·n2)×n2
,

ξ12 =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ (Y ⊗ Idff
)
)
,

ξ21 =
(
IL ⊗W⊤

2

)
Dσ

(
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
.

Both ξ12 and ξ21 are (LdV ·n1)×n2 and (LdV ·n2)×n1 respectively. They agree almost everywhere
when pre- and post-composed in equation 12 (see symmetry discussion).

2) FFNattention pairs (k ∈ {K,Q, V }):

ξ1k =
(
(IL ⊗W⊤

2)Dσ ⊗ Ink

) (
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
(JY Gk) ,

ξ2k =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ(IL ⊗W⊤
1)JY Gk

)
.

Dimensions: ξ1k ∈ R(LdV ·n1)×nk and ξ2k ∈ R(LdV ·n2)×nk .

3) Pure-attention pairs (k, ℓ ∈ {K,Q, V }):

ξkℓ = (JSY ⊗ Ink
)
[(
ILdV

⊗G⊤
k

)
(HY Gℓ) + (JY ⊗ Ink

)Φkℓ

]
,

where Φkℓ :=
∂Gk

∂Wℓ
∈ R(LdV ·nk)×nℓ are second derivatives of the attention map F w.r.t. its weights.

The exact values are calculated in Lemma 2 basing on the results from Ormaniec et al. (2024). All
matrices are dimensionally consistent: ξkℓ ∈ R(LdV ·nk)×nℓ .

Finally, the Hessian block equation 12 has size H
(i,j)
tr ∈ R(LdV ·ni)×nj .

Moreover, all mixed blocks are symmetric almost everywhere:

H
(i,j)
tr = H

(j,i)
tr a.e.,

because (i) the only nonlinearities with potentially nonzero second differential are LayerNorm (han-
dled by HZ ,HY which are symmetric by construction in Theorem 3) and ReLU (whose Hessian
is zero a.e., Lemma 1), and (ii) all remaining mappings are multilinear in the parameters; thus,
by repeated applications of Proposition 3 and Proposition 6, the mixed-partials commute almost
everywhere.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Proof. We differentiate the Jacobian from Theorem 4 using Proposition 3 (matrix-product deriva-
tive), Proposition 6 (Kronecker-product derivative), Proposition 9, the Identification Theorem 1, and
Lemma 1.

Step 1. For any i ∈ {1, 2,K,Q, V } we have

∂Z

∂Wi
= JZ Bi, JZ ∈ RLdV ×LdV ,

where Bi :=
∂S

∂Wi
is given casewise by

B1 = (IL ⊗W⊤
2)Dσ (Y ⊗ Idff

) ∈ RLdV ×n1 , B2 = σ(YW1)⊗ IdV
∈ RLdV ×n2 ,

Bk = JSY JY Gk ∈ RLdV ×nk , k ∈ {K,Q, V },
with JSY = ∂S

∂Y = (IL ⊗W⊤
2)Dσ(IL ⊗W⊤

1) + (IL ⊗ IdV
) ∈ RLdV ×LdV , JY ∈ RLdV ×LdV and

Gk as in Theorem 4. By Proposition 3 and Theorem 3 we obtain the Hessian block

∂2Z

∂Wi∂Wj
= (JZ ⊗ Ini

) ξij +
(
ILdV

⊗B⊤
i

)
HZBj , ξij :=

∂Bi

∂Wj
∈ R(LdV ·ni)×nj .

Step 2: First-level Jacobians Bi (dimensions). From Theorem 4 and Lemma 1:

B1 = (IL ⊗W⊤
2)Dσ (Y ⊗ Idff

) ∈ RLdV ×n1 , B2 = σ(YW1)⊗ IdV
∈ RLdV ×n2 ,

where Dσ ∈ RLdff×Ldff , (Y ⊗ Idff
) ∈ RLdff×dV dff . For k ∈ {K,Q, V },

Bk = JSY JY Gk ∈ RLdV ×nk .

Step 3: Second Jacobians ξij for all pairs.

3.1) Pure-FFN pairs. - (1, 1): B1 depends on W1 only through σ(YW1), whose Hessian is zero
a.e. by Lemma 1, while YW1 is linear in W1 (Property 5). Hence ξ11 = 0 with the stated size.

- (2, 2): B2 is linear in W2 (Property 5), hence ξ22 = 0.

- (1, 2): Differentiate B2 = σ(YW1) ⊗ IdV
w.r.t. W1. Using Proposition 6 for ∂(X⊗Y)

∂X with
X = σ(YW1) and Y = IdV

, we get

∂B2

∂W1
=
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) ∂ vecr(σ(YW1))

∂W1
.

By Lemma 1 and Property 5, ∂ vecr(σ(YW1))
∂W1

= Dσ (Y ⊗ Idff
). Thus

ξ12 =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ (Y ⊗ Idff
)
)
.

- (2, 1): Differentiate B1 = (IL ⊗W⊤
2)Dσ (Y ⊗ Idff

) w.r.t. W2. Using Proposition 3 on the left
factor (IL ⊗W⊤

2) and Proposition 6 plus Proposition 9 for its derivative, we obtain

∂ vecr(B1)

∂W2
=
(
ILdV

⊗
(
(Y ⊗ Idff

)⊤D⊤
σ

)) ∂ vecr(IL ⊗W⊤
2)

∂W2
.

By Proposition 6 and Proposition 9,

∂ vecr(IL ⊗W⊤
2)

∂W2
=
(
IL ⊗KdV ,L ⊗ Idff

) (
vecr(IL)⊗ IdV dff

)
Kdff ,dV

.

Collecting,

ξ21 =
(
IL ⊗W⊤

2

)
Dσ

(
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
,

which is the stated form. (Both ξ12 and ξ21 are consistent and coincide almost everywhere when
inserted into equation 12; see symmetry below.)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

3.2) FFNattention pairs (1, k), (2, k) with k ∈ {K,Q, V }. - (1, k): B1 = (IL⊗W⊤
2)Dσ(Y⊗Idff

).
Almost everywhere ∂Dσ

∂Y = 0 by Lemma 1. Hence only the last factor varies with Wk. Using
Proposition 3 (with the first factors constant a.e.), and the chain rule through Y:

∂ vecr(Y ⊗ Idff
)

∂Wk
=

(
∂(Y ⊗ Idff

)

∂Y

)
∂ vecr(Y)

∂Wk
.

By Proposition 6 with X = Y and Y = Idff
,

∂(Y ⊗ Idff
)

∂Y
=
(
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
.

Also ∂ vecr(Y)
∂Wk

= JY Gk (Theorem 4 and Theorem 2). Therefore

ξ1k =
(
(IL ⊗W⊤

2)Dσ ⊗ Ink

) (
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
(JY Gk) .

- (2, k): B2 = σ(YW1) ⊗ IdV
. Differentiating the Kronecker product w.r.t. its first factor and

applying the chain rule through Y,

ξ2k =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ(IL ⊗W⊤
1)JY Gk

)
,

where we used Property 5 to write ∂(YW1)
∂Y = IL ⊗W⊤

1 and Lemma 1 for ∂σ(·)
∂(·) = Dσ .

3.3) Pure-attention pairs (k, ℓ) with k, ℓ ∈ {K,Q, V }. We start from Bk = JSY JY Gk. Almost
everywhere ∂JSY

∂Y = 0 because Dσ is piecewise constant (Lemma 1). Therefore,

∂ vecr(Bk)

∂Wℓ
= (JSY ⊗ Ink

)
∂ vecr(JY Gk)

∂Wℓ

by Proposition 3. Again by Proposition 3 with A(·) = JY and B(·) = Gk,

∂ vecr(JY Gk)

∂Wℓ
= (JY ⊗ Ink

)Φkℓ +
(
ILdV

⊗G⊤
k

) ∂ vecr(JY)

∂Wℓ
.

By Theorem 3 and the Identification Theorem 1, ∂ vecr(JY)
∂Wℓ

= HY Gℓ. Thus

ξkℓ = (JSY ⊗ Ink
)
[(
ILdV

⊗G⊤
k

)
(HY Gℓ) + (JY ⊗ Ink

)Φkℓ

]
.

It remains to specify Φkℓ :=
∂Gk

∂Wℓ
. Using the explicit Gk from Theorem 4 and only Proposition 3,

Proposition 6, and Proposition 9, we obtain the forms stated in the theorem. Under the uniform-
attention simplification (so ∂A

∂M is a constant matrix), GV does not depend on WQ,WK ,WV ; GQ

does not depend on WQ; GK does not depend on WK ; hence ΦV V = ΦV Q = ΦV K = ΦQQ =
ΦKK = 0; and the remaining mixed terms are given by differentiating the Kronecker factors using
Proposition 6 and the transpose dependence using Proposition 9, exactly as written.

Step 4: Symmetry of mixed partials. All nonlinearities that could obstruct symmetry are ReLU and
LayerNorm. ReLU has zero Hessian almost everywhere (Lemma 1), so its contribution to second
differentials vanishes a.e. LayerNorm Hessians HZ and HY are the derivatives of Jacobians w.r.t.
their inputs and enter symmetrically (Theorem 3). All remaining mappings are multilinear in param-
eters and matrices independent of (Wi,Wj); therefore, by repeated applications of Proposition 3
and Proposition 6, the mixed partials commute, giving H

(i,j)
tr = H

(j,i)
tr almost everywhere.

This completes the proof.

C.6 PROOF OF THEOREM 6

Proof. We start from the block formula equation 12:

H
(i,j)
tr =

(
JZ ⊗ Ini

)
ξij +

(
ILdV

⊗B⊤
i

)
HZ Bj .

Applying the matrix sum norm (Property 8) and the product norm (Property 10) together with the
Kronecker product norm (Property 9) yields∥∥H(i,j)

tr

∥∥
2
≤
∥∥JZ⊗Ini

∥∥
2
∥ξij∥2+

∥∥ILdV
⊗B⊤

i

∥∥
2
∥HZ∥2 ∥Bj∥2 = ∥JZ∥2 ∥ξij∥2+∥Bi∥2 ∥HZ∥2 ∥Bj∥2,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

establishing equation 8.

It remains to provide explicit operator-norm estimates for ∥Bi∥2 and ∥ξij∥2 used inside equation 8.
We rely on Properties 10, 9, 8, 7, 12, and the commutation properties (Definition 3). Throughout
we use ∥Km,n∥2 = 1 for commutation matrices, and the identities ∥vecr(Id)∥2 = ∥Id∥F =

√
d

(Property 7) and ∥Ip∥2 = 1.

As we’ve already shown in C.1: ∥∥∥∂A
∂T

∥∥∥
2
≤ 1

L
.

∥Z1∥2 = ∥(IL ⊗X⊤) (∂A/∂T) (X⊗X)∥2 ≤ ∥X∥2
1

L
∥X∥22 =

1

L
∥X∥32∥∥∥∂2A

∂T2

∥∥∥
2
≤ 6, ∥Z2∥2 ≤ ∥X∥52

∥∥∥∂2A

∂T2

∥∥∥
2
≤ 6∥X∥52,

∥A∥2 ≤
√
LL ∥A∥max = L.

Therefore ∥AX∥2 ≤ ∥A∥2∥X∥2 ≤ L∥X∥2 (Property 10).

We also use the attention curvature blocks Φkℓ from Lemma 2. Using Properties 10, 9 and the
bounds on ∥Z1∥2, ∥Z2∥2 above, we have (again similarly to C.1)

∥ΦV V ∥2 = 0,

∥ΦQQ∥2 ≤ 2

LdV dK
∥WV ∥2 ∥WK∥2 ∥Z2∥2 ∥WK∥2 ≤ 12

LdV dK
∥WV ∥2∥WK∥22∥X∥52,

∥ΦV Q∥2 ≤ 2

LdV
√
dK

∥IL ⊗ S∥2 ∥Z1∥2 ∥IdV
⊗WK∥2 ≤ 2

L2
√
dV dK

∥WK∥2∥X∥32,

∥ΦQK∥2 ≤ 2

LdV dK
∥WV ∥2∥WK∥2∥Z2∥2∥WQ∥2 +

2

LdV
√
dK

∥WV ∥2 ∥Z1∥2 ∥S∥2

≤ 12

LdV dK
∥WV ∥2∥WK∥2∥WQ∥2∥X∥52 +

2

L2
√
dV dK

∥WV ∥2∥X∥32,

and ∥ΦKQ∥2 is analogous by symmetry (Definition 3 and ∥Km,n∥2 = 1), while ∥ΦQV ∥2, ∥ΦKV ∥2
match ∥ΦV Q∥2 up to swapping roles.

Next we estimate each ∥Bi∥2 and ∥ξij∥2.

A) Bounds for ∥Bi∥2.

- B1 = (IL ⊗ W⊤
2)Dσ (Y ⊗ Idff

) (Theorem 5; Lemma 1). Using Properties 9, 10, 12, and
∥Dσ∥2 ≤ 1,

∥B1∥2 ≤ ∥IL ⊗W⊤
2 ∥2 ∥Dσ∥2 ∥Y ⊗ Idff

∥2 = ∥W2∥2 ∥Y∥2. (13)

- B2 = σ(YW1)⊗ IdV
(Theorem 5), hence

∥B2∥2 = ∥σ(YW1)∥2 (14)

by Property 9.

- For k ∈ {K,Q, V }: Bk = JSY JY Gk (Theorem 5), so

∥Bk∥2 ≤ ∥JSY ∥2 ∥JY ∥2 ∥Gk∥2 (15)

(Property 10). Here JSY = (IL ⊗W⊤
2)Dσ(IL ⊗W⊤

1) + (IL ⊗ IdV
) implies

∥JSY ∥2 ≤ ∥IL ⊗W⊤
2 ∥2 ∥Dσ∥2 ∥IL ⊗W⊤

1 ∥2 + ∥IL ⊗ IdV
∥2 = ∥W2∥2 ∥W1∥2 + 1, (16)

by Properties 8, 10, 9, 12, and ∥Dσ∥2 ≤ 1.

Furthermore, using the attention-Jacobian forms (Theorem 4) and Properties 10, 9:

∥GV ∥2 ≤ L∥X∥2, ∥GQ∥2 ≤ 1

L
√
dK

∥WV ∥2∥WK∥2∥X∥32, ∥GK∥2 ≤ 1

L
√
dK

∥WV ∥2∥WQ∥2∥X∥32.

(17)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

B) Bounds for ∥ξij∥2. Using the explicit formulas from Theorem 5, Properties 9, 10, 7, and
∥Km,n∥2 = 1:

B.1 Pure-FFN pairs:

∥ξ11∥2 = 0, (18)
∥ξ22∥2 = 0, (19)
∥ξ12∥2 ≤ ∥IL ⊗KdV ,dff

⊗ IdV
∥2 ∥ILdff

⊗ vecr(IdV
)∥2 ∥Dσ∥2 ∥Y ⊗ Idff

∥2
= 1 · ∥vecr(IdV

)∥2 · 1 · ∥Y∥2 =
√
dV ∥Y∥2, (20)

∥ξ21∥2 ≤ ∥IL ⊗W⊤
2 ∥2 ∥Dσ∥2 ∥IL ⊗Kdff ,dV

⊗ Idff
∥2 ∥ILdV

⊗ vecr(Idff
)∥2

= ∥W2∥2 · 1 · 1 · ∥vecr(Idff
)∥2 =

√
dff ∥W2∥2. (21)

B.2 FFNattention pairs (k ∈ {K,Q, V }):

∥ξ1k∥2 ≤ ∥(IL ⊗W⊤
2)Dσ ⊗ Ink

∥2 ∥IL ⊗Kdff ,dV
⊗ Idff

∥2 ∥ILdV
⊗ vecr(Idff

)∥2 ∥JY ∥2 ∥Gk∥2
≤ ∥W2∥2 · 1 · 1 ·

√
dff · ∥JY ∥2 ∥Gk∥2 =

√
dff ∥W2∥2 ∥JY ∥2 ∥Gk∥2, (22)

∥ξ2k∥2 ≤ ∥IL ⊗KdV ,dff
⊗ IdV

∥2 ∥ILdff
⊗ vecr(IdV

)∥2 ∥Dσ∥2 ∥IL ⊗W⊤
1 ∥2 ∥JY ∥2 ∥Gk∥2

≤ 1 ·
√

dV · 1 · ∥W1∥2 · ∥JY ∥2 · ∥Gk∥2 =
√
dV ∥W1∥2 ∥JY ∥2 ∥Gk∥2. (23)

B.3 Pure-attention pairs (k, ℓ ∈ {K,Q, V }):

ξkℓ =
(
JSY ⊗ Ink

)[(
ILdV

⊗G⊤
k

)
(HY Gℓ) +

(
JY ⊗ Ink

)
Φkℓ

]
.

Thus, by Properties 10, 9,

∥ξkℓ∥2 ≤ ∥JSY ∥2
(
∥ILdV

⊗G⊤
k ∥2 ∥HY ∥2 ∥Gℓ∥2+∥JY ∥2 ∥Φkℓ∥2

)
= ∥JSY ∥2

(
∥Gk∥2 ∥HY ∥2 ∥Gℓ∥2+∥JY ∥2 ∥Φkℓ∥2

)
.

(24)

C) Substituting into the block estimate equation 8. For each pair (i, j), we substitute the corre-
sponding ∥ξij∥2 from equation 18equation 24 and the ∥Bi∥2 from equation 13equation 15 (with
equation 16, equation 17) into∥∥H(i,j)

tr

∥∥
2
≤ ∥JZ∥2 ∥ξij∥2 + ∥Bi∥2 ∥HZ∥2 ∥Bj∥2.

This yields, for example:∥∥H(1,1)
tr

∥∥
2
≤ ∥JZ∥2 · 0 + ∥B1∥22∥HZ∥2 ≤ ∥HZ∥2 (∥W2∥2∥Y∥2)2,∥∥H(1,2)

tr

∥∥
2
≤ ∥JZ∥2

√
dV ∥Y∥2 + ∥HZ∥2 (∥W2∥2∥Y∥2) ∥σ(YW1)∥2,∥∥H(1,k)

tr

∥∥
2
≤ ∥JZ∥2

√
dff ∥W2∥2 ∥JY ∥2 ∥Gk∥2 + ∥HZ∥2 (∥W2∥2∥Y∥2) (∥JSY ∥2∥JY ∥2∥Gk∥2),∥∥H(k,ℓ)

tr

∥∥
2
≤ ∥JZ∥2 ∥JSY ∥2

(
∥Gk∥2 ∥HY ∥2 ∥Gℓ∥2 + ∥JY ∥2 ∥Φkℓ∥2

)
+ ∥HZ∥2 (∥JSY ∥2∥JY ∥2∥Gk∥2) (∥JSY ∥2∥JY ∥2∥Gℓ∥2),

etc., where we then use equation 16, equation 17, and the ∥Φkℓ∥2 bounds above to turn each right-
hand side into explicit functions of L, dV , dff , dK , and the spectral norms of X and the weight
matrices.

In the estimations above we calculate ∥Y∥2 and ∥S∥2 according to Proposition 10 and both HZ and
HY can be estimated by Lemma 4 with appropriate inputs and assumptions of σmin and σ′

min.

C.7 PROOF OF THEOREM 7

Proof.

|Lk+1(w)− Lk(w)| ⩽ 1

k + 1

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣+
32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

+
1

2(k + 1)
∥w −w∗∥22

∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

.

First Term

The first term is the difference in loss values at the optimal parameters w∗:

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣ .
Assume the loss function l(fw∗(xi),yi) is bounded, i.e., 0 ⩽ l(fw∗(xi),yi) ⩽ L, where L is a

constant. Then: - l(fw∗(xk+1),yk+1) ⩽ L, -
1

k

∑k
i=1 l(fw∗(xi),yi) ⩽ L.

Therefore

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣ ⩽ L+ L = 2L.

Thus, the contribution of the first term is:

1

k + 1

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣ ⩽ 2L

k + 1
.

Second Term

The second term involves the difference in Hessians:

∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

,

where Hk+1(w
∗) = ∇2

wl(fw∗(xk+1),yk+1) is the Hessian of the loss for the (k + 1)-th sample,

and
1

k

∑k
i=1 Hi(w

∗) = Hk(w
∗) is the Hessian of Lk, the empirical loss over the first k samples.

Rewrite the expression:

Hk(w
∗) =

1

k

k∑
i=1

Hi(w
∗),

Hk+1(w
∗)−Hk(w

∗) = Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗).

Evaluate the norm using the triangle inequality:

∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

⩽ ∥Hk+1(w
∗)∥2 +

1

k

∥∥∥∥∥
k∑

i=1

Hi(w
∗)

∥∥∥∥∥
2

.

Assume the individual Hessians are bounded, i.e., ∥Hi(w
∗)∥2 ⩽ M for some constant M . Then:

∥Hk+1(w
∗)∥2 ⩽ M ,

∥∥∥∑k
i=1 Hi(w

∗)
∥∥∥
2
⩽
∑k

i=1 ∥Hi(w
∗)∥2 ⩽ kM .

Thus:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

⩽ M +
1

k
· kM = M +M = 2M.

The contribution of the second term is:

1

2(k + 1)
∥w −w∗∥22 ∥Hk+1(w

∗)−Hk(w
∗)∥2 ⩽ 1

2(k + 1)
∥w −w∗∥22 ·2M =

M ∥w −w∗∥22
k + 1

.

Combining both terms:

|Lk+1(w)− Lk(w)| ⩽ 2L

k + 1
+

M ∥w −w∗∥22
k + 1

.

D ADDITIONAL THEORETICAL PROPERTIES

Lemma 2 (Attention second derivatives Φ from functional Hessian). Consider single-head scaled
dot-product attention

F(X) = A(T)XWV , T =
1√
dK

XWQW
⊤
KX⊤,

with X ∈ RL×dV , WQ,WK ∈ RdV ×dK , WV ∈ RdV ×dV . The attention map A(·) applies row-
wise softmax. We use row-wise vectorization vecr(·) and the commutation matrices Km,n from
Definition 3.

Define the generalized functional Hessian blocks (following Ormaniec et al. (2024) in our vecr
convention) by

Hf(Wi,Wj) =
(
∂ℓ
∂F ⊗ Ipiqi

) ∂2F

∂Wi∂Wj
,

where piqi is the size of Wi (e.g. pQqQ = dV dK), and ∂ℓ
∂F ∈ RL×dV is the loss gradient.

Specializing to the squared-error loss ℓ(F) = 1
2∥F −Target∥2F , one has ∂ℓ

∂F = F −Target and
the row-wise contraction matrix

Rm := vecr
(
F(X)−Target

)⊤ ⊗ Im ∈ Rm×(m·LdV).

Then for i ∈ {V,Q,K} with ni := piqi, the functional Hessian blocks can be factorized as

Hf(Wi,Wj) = Rni
Φij , Φij :=

∂2F

∂Wi∂Wj
∈ R(LdV ·ni)×nj .

In particular, the model-curvature blocks Φij (to be used in the Transformer Hessian) are obtained
from the corresponding expressions in (Ormaniec et al., 2024, Thm. 3.2) by removing the left con-
traction Rni .

We now list the explicit blocks needed in our derivation. Define the fixed reshaping operator

S :=
(
IdV

⊗KdV ,dV

) (
vecrIdV

⊗ IdV

)
∈ Rd2

V ×dV ,

and the softmax-derivative operators

Z1 := (IL⊗X⊤)(∂A/∂T)(X⊗X) ∈ RLdV ×d2
V ,Z2 :=

(
IL⊗X⊤⊗X⊤⊗X⊤) ∂2A

∂T2
(X⊗X) ∈ RLd3

V ×d2
V ,

where ∂2A
∂T2 denotes the (row-wise) softmax second derivative tensor arranged compatibly with vecr

and Kronecker products as above, and Z1 is the (first-order) softmax derivative linear operator

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

used in Ormaniec et al. (2024) (we keep the exact form as defined there; its size ensures dimensional
consistency below).

Then the pure attention second derivatives (model curvature) are:

ΦV V = 0(LdV ·d2
V)×d2

V
,

ΦQQ =
2

LdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2

(
IdV

⊗WK

)
∈ R(LdV ·dV dK)×dV dK ,

ΦV Q =
2

LdV
√
dK

(
IL ⊗ S

)
Z1

(
IdV

⊗WK

)
∈ R(LdV ·d2

V)×dV dK ,

ΦQK =
2

LdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2

(
WQ ⊗ IdV

)
KdK ,dV

+
2

LdV
√
dK

(
IdV

⊗W⊤
V ⊗ IdV

) (
Z1 ⊗ IdV

)
S⊗ IdK

∈ R(LdV ·dV dK)×dV dK .

Moreover, by symmetry of second derivatives, ΦKQ equals ΦQK with WQ,WK swapped and
commutation adjusted by K·,· (Definition 3). Analogous symmetric relations give ΦQV and ΦKV

from ΦV Q.

Proof. By definition of the generalized functional Hessian in Ormaniec et al. (2024),

Hf(Wi,Wj) =
(
∂ℓ
∂F ⊗ Ipiqi

) ∂2F

∂Wi∂Wj
.

For squared-error loss, ∂ℓ
∂F yields the contraction Rpiqi defined above; hence Hf(Wi,Wj) =

Rni
Φij with Φij = ∂2F

∂Wi∂Wj
. The explicit forms for Hf in (Ormaniec et al., 2024, Thm. 3.2)

then imply the above formulas for Φij by simply removing the leading contraction Rni
.

Lemma 3 (ReLU derivative and Hessian). Let X ∈ Rm×n, almost everywhere the following holds:

∂ReLU(X)

∂X
= diag

(
vecr(1{X>0})

)
,

∂2ReLU(X)

∂X2
= 0.

Proof. We start with the elementwise definition of the ReLU function:

ReLU(x) = max(0, x).

Thus, for each entry xij of X ∈ Rm×n, we have

∂ ReLU(xij)

∂xij
=


1 if xij > 0,

0 if xij < 0,

undefined (subgradient in [0, 1]) if xij = 0.

For the scalar case x ∈ R, the nondifferentiable set is {0}, which is a measure-zero subset of R. For
the matrix case, we identify X ∈ Rm×n with a point in Rmn. The nondifferentiable set is

N =
⋃
i,j

{X ∈ Rm×n : xij = 0}.

Each set {xij = 0} is a hyperplane of codimension 1 in Rmn, and therefore has Lebesgue measure
zero. Since N is a finite union of such hyperplanes, N also has measure zero. Thus, ReLU is
differentiable almost everywhere in Rm×n.

At differentiable points (X /∈ N), applying row-wise vectorization and the identification theorem
from Proposition 1 yields

vecr(dReLU(X)) = diag(vecr(1{X>0})) vecr(dX),

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

using Property 3 for the indicator matrix treated as a Hadamard multiplier and Property 6 for the
diagonal form. Therefore,

∂ReLU(X)

∂X
= diag

(
vecr(1{X>0})

)
.

Since the Jacobian is piecewise constant (its entries depend only on the sign of xij), its differential
vanishes almost everywhere:

d

(
∂ReLU(X)

∂X

)
= 0, X /∈ N .

Hence the Hessian is zero almost everywhere:

∂2ReLU(X)

∂X2
= 0.

This completes the proof.

Proposition 10 (Spectral-norm estimates for Y and S = Y + FFN(Y)). Let X ∈ RL×dV , Y =
LayerNorm(F(X) +X) ∈ RL×dV and

FFN(Y) = σ(YW1)W2, W1 ∈ RdV ×dff , W2 ∈ Rdff×dV ,

and set S = Y + FFN(Y) ∈ RL×dV . Then the following spectral-norm bounds hold:

∥Y∥2 ≤ ∥Y∥F =
√
LdV , (25)

∥FFN(Y)∥2 ≤
√
min(L, dff) ∥Y∥2 ∥W1∥2 ∥W2∥2, (26)

∥S∥2 ≤ ∥Y∥2 + ∥FFN(Y)∥2 ≤
√
LdV

(
1 +

√
min(L, dff) ∥W1∥2 ∥W2∥2

)
. (27)

Proof. We proceed using only the properties stated in the preliminaries.

1) Bound for ∥Y∥2. By the LayerNorm definition (Theorem 2), write

Y = P(S0)M(S0), S0 := F(X) +X,

where M(S0) = S0 − 1
dV

S01dV
1⊤
dV

and P = diag−1(σ) with σ = 1√
dV

(M◦21)◦1/2 applied row-
wise. For any row i, denote mi the i-th row of M and σi =

1√
dV

∥mi∥2. Then the i-th row of Y is
yi = mi/σi, so

∥yi∥22 =
∥mi∥22
σ2
i

=
∥mi∥22

(1/dV) ∥mi∥22
= dV .

Hence every row of Y has Euclidean norm
√
dV . Therefore,

∥Y∥2F =

L∑
i=1

∥yi∥22 = LdV , so ∥Y∥F =
√
LdV .

By the norm inequality ∥A∥2 ≤ ∥A∥F (Property 7), we obtain equation 25.

2) Bound for ∥FFN(Y)∥2. We estimate step-by-step using only matrix norm properties.

First,

∥FFN(Y)∥2 = ∥ReLU(YW1)W2∥2 ≤ ∥ReLU(YW1)∥2 ∥W2∥2 (Property 10).

Next, use ∥ · ∥2 ≤ ∥ · ∥F (Property 7) to get

∥ReLU(YW1)∥2 ≤ ∥ReLU(YW1)∥F .

By Definition 1, ∥ · ∥2F is the sum of squares. Entrywise σ(·) satisfies 0 ≤ σ(a) ≤ |a|, hence
σ(a)2 ≤ a2 for each entry a ∈ R. Therefore,

∥σ(YW1)∥F ≤ ∥YW1∥F .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Using the inequality ∥ · ∥F ≤
√
d ∥ · ∥2 with d = rank(·) from Property 7 (row X = ∥ · ∥F , column

Y = ∥ · ∥2), we obtain
∥YW1∥F ≤

√
rank(YW1) ∥YW1∥2.

Since YW1 ∈ RL×dff , rank(YW1) ≤ min(L, dff). Thus

∥YW1∥F ≤
√
min(L, dff) ∥YW1∥2 ≤

√
min(L, dff) ∥Y∥2 ∥W1∥2 (Property 10).

Collecting,

∥FFN(Y)∥2 ≤ ∥σ(YW1)∥F ∥W2∥2 ≤
√
min(L, dff) ∥Y∥2 ∥W1∥2 ∥W2∥2,

which is equation 26.

3) Bound for ∥S∥2. By the sum-norm inequality (Property 8),

∥S∥2 = ∥Y + FFN(Y)∥2 ≤ ∥Y∥2 + ∥FFN(Y)∥2.
Substituting equation 25 and equation 26 yields equation 27.

Lemma 4 (LayerNorm derivative and Hessian norm estimation). Let X ∈ Rm×n. Layer-
Norm derivative JLN(X) = ∂LayerNorm(X)

∂X is calculated according to Theorem 2 and its Hessian

HLN(X) = ∂2LayerNorm(X)
∂X2 is calculated as in Theorem 3. Then, the following estimation holds:

∥∥JLN(X)
∥∥
2
≤ 1

σmin
+

∥X∥22√
nσ3

min

, (28)

∥∥HLN(X)
∥∥
2
≤ ∥X∥2

σ3
min

(
1 +

√
m
n

)
+

∥X∥22√
nσ3

min

+
3 ∥X∥32
nσ5

min

. (29)

where σmin denotes min
i

∥Mi∥2, where M(X) = X (In − 1
n1n1

⊤
n)

Proof. We rely only on the properties established in the preliminaries and on Theorems 2–3.

1) LayerNorm Jacobian structure and bound. By Theorem 2 (with L→m, dV →n),

JLN(X) = (P⊗ In)G+ (Im ⊗M⊤)H,

where G = Imn − 1
n (Im ⊗ 1n×n), H = ∂P

∂X , and P = diag−1(σ). Using Properties 9, 10, 8,

∥JLN(X)∥2 ≤ ∥P⊗ In∥2 ∥G∥2 + ∥Im ⊗M⊤∥2 ∥H∥2 = ∥P∥2 ∥G∥2 + ∥M∥2 ∥H∥2.
We now bound each factor:

- ∥G∥2 ≤ 1 since 1
n1n×n is a projection, hence ∥In − 1

n1n×n∥2 ≤ 1 and Kronecker preserves the
spectral norm bound (Properties 10, 9, Proposition 2).

- ∥P∥2 = ∥D−1∥2 = 1/σmin, where D = diag(σ).

- ∥M∥2 ≤ ∥X∥2, because M(X) = X (In − 1
n1n1

⊤
n) and the right factor is a projector with norm

≤ 1 (Property 10).

- For ∥H∥2 =
∥∥ ∂P
∂X

∥∥
2
, Theorem 2 plus Propositions 5, 6, 7, 8 and Properties 10, 9 give (see the same

chain as in Theorem 2):∥∥∥ ∂P
∂X

∥∥∥
2
≤ 1√

n
∥D−1⊗D−⊤∥2

∥∥∥diag−1
(
vec◦1/2r (M◦21n)

)∥∥∥
2
∥Im⊗1⊤

n ∥2 ∥diag(vecr(M))∥2
∥∥∥∂M
∂X

∥∥∥
2
.

Using ∥D−1 ⊗D−⊤∥2 = ∥D−1∥22 = 1
σ2
min

,
∥∥diag−1(·)

∥∥
2
= 1

mini

√∑
v M2

i,v

= 1√
nσmin

,

∥Im ⊗ 1⊤∥2 =
√
n, ∥diag(vecr(M))∥2 = ∥M∥max ≤ ∥M∥2 (Property 7), and

∥∥∂M
∂X

∥∥
2
≤ 1

(projection), we obtain

∥H∥2 ≤ 1√
nσ2

min

· 1√
nσmin

·
√
n · ∥M∥2 · 1 ≤ ∥X∥2√

nσ3
min

.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Collecting the bounds gives equation 28:

∥JLN(X)∥2 ≤ 1

σmin
· 1 + ∥X∥2 ·

∥X∥2√
nσ3

min

=
1

σmin
+

∥X∥22√
nσ3

min

.

2) LayerNorm Hessian structure and bound. From Theorem 3 (with m,n), using ∂2M
∂X2 = 0,

HLN(X) = (Imn ⊗G⊤)
∂(P⊗ In)

∂X
+
(
(Im ⊗M⊤)⊗ Imn

) ∂2P

∂X2
+ (Imn ⊗H⊤)

∂(Im ⊗M⊤)

∂X
.

We bound the three terms separately with Properties 10, 9.

(i) First term. By Proposition 6,

∂(P⊗ In)

∂X
= (Im ⊗Kn,m ⊗ In) (Im2 ⊗ vecr(In))

∂P

∂X
,

therefore∥∥∥(Imn ⊗G⊤)
∂(P⊗ In)

∂X

∥∥∥
2
≤ ∥G∥2 ∥Im2 ⊗ vecr(In)∥2

∥∥∥ ∂P
∂X

∥∥∥
2
= 1 ·

√
n · ∥X∥2√

nσ3
min

=
∥X∥2
σ3
min

.

(ii) Second term. Using ∥Im ⊗M⊤∥2 = ∥M∥2 ≤ ∥X∥2 and the bound below for
∥∥ ∂2P
∂X2

∥∥
2
,∥∥∥((Im ⊗M⊤)⊗ Imn

) ∂2P

∂X2

∥∥∥
2
≤ ∥X∥2

∥∥∥ ∂2P

∂X2

∥∥∥
2
.

We now bound
∥∥ ∂2P
∂X2

∥∥
2

following the same chain as in the proof of Theorem 3: write ∂P
∂X =

1√
n
A1(X)EB1(X) and differentiate using Property 10, while bounding the factors with Propo-

sitions 5, 6, 7, 8 and Properties 10, 9, 7. This yields∥∥∥ ∂2P

∂X2

∥∥∥
2

≤ 1√
nσ3

min

∥X∥2 +
3

nσ5
min

∥X∥22.

Therefore, ∥∥∥((Im ⊗M⊤)⊗ Imn

) ∂2P

∂X2

∥∥∥
2
≤ ∥X∥22√

nσ3
min

+
3 ∥X∥32
nσ5

min

.

(iii) Third term. By Proposition 6 and Proposition 9,

∂(Im ⊗M⊤)

∂X
= (Im ⊗Kn,m ⊗ Im) (vecr(Im)⊗ Imn)

∂M

∂X
,

so∥∥∥(Imn⊗H⊤)
∂(Im ⊗M⊤)

∂X

∥∥∥
2
≤ ∥H∥2 ∥vecr(Im)⊗Imn∥2

∥∥∥∂M
∂X

∥∥∥
2
=

∥X∥2√
nσ3

min

·
√
m·1 =

√
m√
n

∥X∥2
σ3
min

.

Summing (i)(iii) with Property 8 yields equation 29:

∥HLN(X)∥2 ≤ ∥X∥2
σ3
min

+
(∥X∥22√

nσ3
min

+
3 ∥X∥32
nσ5

min

)
+

√
m√
n

∥X∥2
σ3
min

=
∥X∥2
σ3
min

(
1+
√

m
n

)
+

∥X∥22√
nσ3

min

+
3 ∥X∥32
nσ5

min

.

This completes the proof.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the course of this work, a Large Language Model (LLM) served as a general-purpose assistant for
text drafting and coding tasks. Its application facilitated the initial generation of code snippets and
the formulation and subsequent simplification of natural language explanations to ensure smooth
reading. Every piece of content produced with LLM assistance underwent careful scrutiny, editing,
and validation by the authors to guarantee its correctness and originality. The authors bear sole
responsibility for all material presented herein.

38

