
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLOSING THE CURVATURE GAP: FULL TRANS-
FORMER HESSIANS AND THEIR IMPLICATIONS FOR
SCALING LAWS

Anonymous authors
Paper under double-blind review

ABSTRACT

The lack of theoretical results for Layer Normalization and feedforward Hessians
has left a gap in the study of Transformer optimization landscapes. We address
this by deriving explicit second-order expressions for these components, thereby
completing the Hessian characterization of full Transformer blocks. Our results
generalize prior self-attention analyses and yield estimations for the role of each
sublayer in curvature propagation. We demonstrate how these Hessian structures
inform both convergence dynamics and the empirical scaling laws governing large-
model performance. Further, we propose a Taylor-expansionbased framework for
analyzing loss differences to quantify convergence trajectories. By extending Hes-
sian theory to the full Transformer architecture, this work establishes a new foun-
dation for theoretical and empirical investigations of optimization in large-scale
deep learning.

Keywords: Transformer Hessians, Layer Normalization, Scaling laws, Convergence dynamics,
Loss landscape, Optimization geometry.

1 INTRODUCTION

w∗

Lk(w)

Lk+1(w)

(a) Loss landscape convergence

H(k)(w∗) =
d2

dw2

LayerNorm

FeedForward

LayerNorm

Self-Attention

(b) Hessian-based Transformer analysis

Figure 1: Overview of our observations. Part (a) shows the loss function landscape, which is a
surface in the parameters space, and how it changes as the dataset size increases. Part (b) shows the
schematic view of a proposed method — carry out an analysis of a Transformer’s Hessian, which
greatly impacts on a loss landscape convergence, leading to a sample size determination framework.

Transformers Vaswani et al. (2017) have revolutionized deep learning, achieving state-of-the-art per-
formance across natural language processing Devlin et al. (2019); Brown et al. (2020), computer
vision Dosovitskiy et al. (2021); Wu et al. (2020), Their empirical success is underpinned by pre-
dictable improvements in model quality with increased dataset size, as described by neural scaling
laws Kaplan et al. (2020); Hoffmann et al. (2022); Bahri et al. (2024). However, many domains, such
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as medical imaging Poulain et al. (2022) and scientific discovery Jumper et al. (2021), face severe
data constraints where acquiring additional samples is costly or infeasible Chen et al. (2025). This
tension necessitates a rigorous theoretical understanding of how dataset size shapes the optimization
landscape and influences training dynamics.

Existing theoretical analyses of Transformer optimization landscapes are incomplete. While re-
cent studies have derived Hessian expressions for self-attention mechanisms Ormaniec et al. (2024);
Zhang et al. (2024), the full Transformer blockincluding LayerNorm and feed-forward networks
(FFNs)lacks a comprehensive theoretical characterization Noci et al. (2022); Zhang et al. (2025a).
These components critically influence optimization dynamics, such as gradient flow and conver-
gence rates Noci et al. (2022); Yang et al. (2024), and generalization behavior Zhang et al. (2025b);
Csordás et al. (2021). Without a complete curvature analysis, our understanding of Transformer
training dynamics, convergence properties, and scaling behavior remains limited Fort and Jastrzeb-
ski (2019).

In this work, we provide the first complete theoretical analysis of the Hessian for full Transformer
blocks, extending beyond prior self-attention analyses Ormaniec et al. (2024); Zhang et al. (2024) to
include explicit second-order expressions for LayerNorm and FFNs. Our analysis derives rigorous
bounds on how the loss landscape evolves with dataset size, offering a novel framework for under-
standing landscape stabilization in Transformers. These results have implications for optimization
challenges (e.g., vanishing gradients Hochreiter (1998)), scaling laws (e.g., compute-optimal train-
ing Kaplan et al. (2020); Hoffmann et al. (2022)), and critical batch size estimation McCandlish
et al. (2018); Zhang et al. (2025c).

Contributions. Our main contributions are:

• We derive the first full Hessian expressions for Transformer blocks, including explicit treat-
ment of LayerNorm and FFNs, filling a critical gap in prior analyses.

• We establish theoretical bounds on the loss landscapes evolution with dataset size, provid-
ing a rigorous framework for understanding landscape stabilization.

• We validate our theoretical predictions through experiments on Vision Transformers,
demonstrating practical relevance across data regimes.

Our work bridges theoretical deep learning and practical Transformer deployment, enabling new in-
sights into optimization difficulties, efficient scaling strategies, and future theoretical investigations
of large-scale deep learning.

Outline. The rest of the paper is organized as follows. In Section 2, we review related work, cate-
gorizing existing research into key topics and highlighting their main contributions. Section 3 intro-
duces the notation and presents preliminary calculations essential for our analysis. In Section 4, we
derive theoretical bounds for the norm of the Hessian matrix and the norm of the difference between
loss functions. Section 5 provides an empirical study validating these theoretical results. Section 6
discuss and summarize our findings, offering insights and conclusions. Additional experiments are
in Appendix A and proofs of theorems are included in Appendices B-D.

2 RELATED WORK

Geometry of Neural Network Loss Landscapes Foundational studies characterize neural loss ge-
ometry via Hessians, including class-aligned high-curvature directions Fort and Jastrzebski (2019),
random-matrix perspectives on spectra and optimization Pennington et al. (2017), and connectivity
and double-descent phenomena Garipov et al. (2018); Singh et al. (2022); Draxler et al. (2019);
Nguyen et al. (2017), with flattening observed at large learning rates Wang et al. (2023). Our work
complements this line by showing how curvature of Transformer blocks changes with dataset size,
providing explicit second-order bounds that formalize landscape stabilization under data growth.
This links classical geometric insights to a data-scaling axis that was previously qualitative.

Hessian-Based Analysis and Generalization Prior Hessian analyses for fully connected and convo-
lutional networks reveal spectral structure and low effective rank with implications for convergence
and smoothness Kiselev and Grabovoy (2024); Meshkov et al. (2024). We extend these ideas to
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Transformers by deriving explicit LayerNorm/FFN second derivatives and blockwise spectral-norm
bounds, thereby closing a missing piece in second-order geometry for this architecture.

Loss Landscapes in Transformers While Transformers Vaswani et al. (2017) have inspired curva-
ture analyses focused on attention Ormaniec et al. (2024) and studies of sample complexity, gen-
eralization, and stagewise dynamics Zhang et al. (2025b); Li et al. (2023); Hoogland et al. (2025),
a full-block second-order treatment has remained incomplete. We provide the missing LayerNor-
m/FFN Hessians and assemble a complete blockwise Hessian for a Transformer layer, aligning
theory with empirical curvature structure. This enables a principled account of how Transformer
curvature evolves with data and training.

Dataset Size and Loss Landscape Convergence Work on compute-optimal scaling and sample-
related flatness highlights the importance of balancing data and model size Hoffmann et al. (2022);
Wu et al. (2017), and visualization tools hint at stabilization thresholds without theory Xie et al.
(2024). Building on Hessian frameworks from other architectures Kiselev and Grabovoy (2024);
Meshkov et al. (2024) and attention derivatives Ormaniec et al. (2024), we derive a second-order
bound that decays as 1/k. This yields actionable diagnostics for curvature-aware training and data
budgeting in Transformers.

3 PRELIMINARIES

We adopt row-wise vectorization vecr(·) from Ormaniec et al. (2024); Noci et al. (2022). For a
matrix-valued function N : Rp×q → Rn×d differentiable w.r.t. weight matrices Wi ∈ Rpi×qi

and Wj ∈ Rpj×qj , the Jacobian is ∂N
∂Wi

:= ∂vecr(N)
∂vecr(Wi)⊤

∈ Rnd×piqi , and the Hessian block is

∂2N
∂Wi∂Wj

:=
∂vecr(

∂N
∂Wi

)

∂vecr(Wj)⊤
∈ R(nd·piqi)×pjqj . Key properties (e.g., for products, Kronecker, inverses,

Hadamard powers) are detailed in Appendix B.

Let fw(·) denote a neural network (here, a Self-Attention layer or full Transformer block) with
parameters w ∈ Ω. Given a twice-differentiable loss l(·, ·), the per-sample loss is li(w) :=

l(fw(xi),yi). The empirical loss over L = k samples is Lk(w) = 1
k

∑k
i=1 li(w), with Hessian

H(k)(w) = 1
k

∑k
i=1 ∇2

wli(w).
Assumption 1. At local minimum w∗, ∇Lk−1(w

∗) = ∇Lk(w
∗) = 0.

Our study on the feasibility of this assumption is in Appendix A.2.

Consider input embeddings X ∈ RL×dV . A single-head Self-Attention layer outputs
F(X) = A(X)XWV , (1)

where A(X) = softmax
(

XWQW⊤
KX⊤

√
dK

)
, and WQ,WK ∈ RdV ×dK , WV ∈ RdV ×dV .

Full Transformer block is:

LayerNorm
(

LayerNorm(X+ F(X)) + FFN(LayerNorm(X+ F(X)))
)

(2)

where FFN(·) is a fully connected block with a non-linear activation within it. LayerNorm for an in-
put matrix U ∈ Rm×n is LayerNorm(U)i,j = γj

Ui,j−µi√
σ2
i

+ βj , where µi =
1
m

∑m
j=1 Ui,j , σ2

i =

1
m

∑m
j=1(Ui,j − µi)

2. More details on a transformer block are in Section 4.2.

Assumption 2. For input matrices to LayerNorm (e.g., X + F(X), Y + FFN(Y)), the per-row
variances satisfy mini σ

2
i > 0.

It’s a technical assumption for the proof part simplification and numerical stability. The same ef-
fect can be achieved by adding some positive constant to the denominator, but it makes calculations
harder. In our case this assumption is required for X + F(X) and Y + FFN(Y), defined in Trans-
former block 5.

We use mean-squared error loss: l(·,Target) = 1
LdV

∥·−Target∥2F . Hessians decompose via Gauss-
Newton: for composite Lk ◦ fw,

∂2(Lk ◦ fw)

∂Wi∂Wj
=

∂fw
∂Wi

(·)⊤ ∂2Lk

∂f2
w

(fw(·)) ∂fw
∂Wj

(·) +
(
∂Lk

∂fw
(fw(·))⊗ Ipiqi

)
∂2fw

∂Wi∂Wj
(·) (3)

3
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4 METHOD

In this section, we derive generalized Hessian expressions for the self-attention layer and extend
them to a full transformer block, leveraging these to analyze the convergence of the loss function
surface as the dataset size increases. Our approach builds on the theoretical framework of Ormaniec
et al. (2024), adapting and generalizing their results.

4.1 HESSIAN OF THE SELF-ATTENTION LAYER

We begin by analyzing the Hessian of a single self-attention layer with parameters w =
{WQ,WK ,WV } as defined in Equation 1. The empirical loss is defined as:Lk(w) =
1
k

∑k
i=1 l(F(Xi),Targeti), where l(F(Xi),Targeti) is a Loss function defined above.

The Hessian of Lk with respect to the parameters w is:

H(k)(w) = ∇2
wLk(w) =

1

k

k∑
i=1

∇2
wli(w) =

1

k

k∑
i=1

Hi(w)

where Hk(w) is a hessian of the Self-Attention block for w being a pair of matrices from
{WQ,WK ,WV }. It can decomposed using the Gauss-Newton approximation 3:

Hk(Wi,Wj) =
∂2l

∂Wi∂Wj
= Ho(Wi,Wj) +Hf (Wi,Wj),

with Ho as the outer-product Hessian and Hf as the functional Hessian. The results for this decom-
position can be calculated according to Theorems 3.1-3.2 from Ormaniec et al. (2024).

Hessian’s norm estimation

Next, we introduce a theorem for estimation the spectral norm (Definition 1) of the Hessian for a
single Self-Attention block.
Theorem 1. Let ∥ · ∥2 be a spectral matrix norm, then for a single Self-Attention layer we have

∥Hi(w
∗)∥2 ≤ M

where

M = 3max

(
2L

dV
∥X∥22,

8

L3dV dK
∥WK∥22∥WV ∥22∥X∥62 +

12

dV dK

√
min(L, dV )(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52,

4

LdV
√
dK

∥WV ∥2∥WK∥2∥X∥42 +
4
√
min(L, dV )

L2
√
dK

(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WK∥2∥X∥32,

8

L3dV dK
∥WK∥2∥WQ∥2∥WV ∥22∥X∥62+

+
4
√
min(L, dV )(L∥X∥2∥WV ∥2 + ∥Target∥2)

LdV
√
dK

∥WV ∥2
(
3L∥WK∥2∥WQ∥2∥X∥52 +

dV
L

∥X∥32
))

The proof is provided in Appendix C.1.

4.2 HESSIAN OF THE TRANSFORMER BLOCK

A transformer block extends the self-attention layer with a feed-forward network (FFN), residual
connections, and layer normalization. The output is:

Y = LayerNorm(X+ F(X)) (4)
Z = LayerNorm(Y + FFN(Y)), (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where FFN(Y) = σ(YW1 + b1)W2 + b2, with W1 ∈ RdV ×dff , W2 ∈ Rdff×dV , b1 ∈ Rdff ,
b2 ∈ RdV , and σ as the activation (e.g., ReLU). The LayerNorm(X) operation is defined as follows.
For an input matrix X ∈ RL×dV , we compute:

1. Feature-wise mean and variance:

µi =
1

dV

dV∑
j=1

Xi,j , σ2
i =

1

dV

dV∑
j=1

(Xi,j − µi)
2,

2. Normalized output with learnable parameters γ, β ∈ Rm:

LayerNorm(X)i,j = γj ·
Xi,j − µi√

σ2
i

+ βj .

The parameters are w = {WQ,WK ,WV ,W1,W2,b1,b2, γ, β}, where γ and β are the scale
and shift parameters of LayerNorm. For simplicity in Hessian analysis, one may assume γ and β
are fixed (e.g., γ = 1, β = 0), though they are typically learnable.
Theorem 2 (Jacobian of LayerNorm). Let X ∈ RL×dV . Define

M(X) = X− 1
dV

X1dV
1⊤
dV

, σ(X) = 1√
dV

(
M(X)◦21dV

)◦1/2
, P(X) = diag−1(σ(X)).

Then the Jacobian of
LayerNorm(X) = P(X)M(X)

with respect to X is

∂ LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
(
ILdV

− 1
dV

(IL ⊗ 1dV ×dV
)
)
+ (IL ⊗M(X)⊤)

∂P(X)

∂X
.

Theorem 3 (Hessian of LayerNorm). Let LayerNorm(X) = P(X)M(X) with Jacobian
∂LayerNorm

∂X = (P ⊗ IdV
)G + (IL ⊗M⊤)H, where G =

(
ILdV

− 1
dV

(IL ⊗ 1dV ×dV
)
)

is constant

and H = ∂P
∂X as in Theorem 2. The Hessian is

∂2LayerNorm
∂X2

= ((P(X)⊗ IdV
)⊗ ILdV

)
∂2M

∂X2
+
(
ILdV

⊗G⊤) ∂(P(X)⊗ IdV
)

∂X
+

+
(
(IL ⊗M⊤)⊗ ILdV

) ∂2P

∂X2
+
(
ILdV

⊗H⊤) ∂(IL ⊗M⊤)

∂X
,

where where ∂2M
∂X2 = 0, and other terms as derived in the proof.

Proofs and detailed versions for Theorems 2-3 are provided in Appendices C.2 - C.3.

Before providing calculations for the whole Transformer Block we need to introduce an activation
function matrix derivative.
Lemma 1 (ReLU derivative and Hessian). Let X ∈ Rm×n, almost everywhere the following holds:

∂ReLU(X)

∂X
= diag

(
vecr(1{X>0})

)
,

∂2ReLU(X)

∂X2
= 0.

The proof is in the Appendix D.

Thus, we calculate the derivatives and the Hessian of the proposed Transformer block representation
5 with respect to a square norm Loss, where we put b1,2 = 0 in FFN block for simplicity of
subsequent calculations and use ReLU as an activation layer.
Theorem 4 (Transformer block derivative). For Transformer block from 5 with S =
ReLU(YW1)W2 +Y and Z = LayerNorm(S):

∂Z

∂Wi
= JZ ·

{
Bi, i ∈ {1, 2}
JSY Gi, i ∈ {K,Q, V }

where JZ = ∂Z
∂S , Bi =

∂S
∂Wi

, JSY = ∂S
∂Y , Gi =

∂Y
∂Wi

.

5
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More detailed of the theorem and it’s proof can be found in Appendix C.4.

Theorem 5 (Hessian of the Transformer block 5). The Hessian blocks of the Transformer output Z
w.r.t. parameters (Wi,Wj) are

H
(i,j)
tr :=

∂2Z

∂Wi∂Wj
= (JZ ⊗ Ini

) ξij +
(
ILdV

⊗B⊤
i

)
HZBj (6)

with ξij := ∂
∂Wj

(
∂S

∂Wi

)
, JZ := ∂ LayerNorm(S)

∂S ,HZ := ∂2 LayerNorm(S)
∂S2 and Bi :=

∂S
∂Wi

, where

S := ReLU(YW1)W2 +Y

More detailed version of the theorem and the proof can be found in Appendix C.5.

We note that the theorem above is responsible for the ∂2fw
∂Wi∂Wj

part from the Hessian of the Loss
function decomposition 3. Therefore, the whole Transformer Hessian can be represented as:

∂2(L ◦ Z)
∂Wi∂Wj

=
∂Z

∂Wi

⊤ ∂2L
∂Z2

∂Z

∂Wj
+

(
∂L
∂Z

(Z(·))⊗ Ipiqi

)
H

(i,j)
tr , (7)

where L(·) = ∥ ·−Target∥22, it’s second derivative is 2
LdV

, and ∂L
∂Z (Z(·)) can be calculated similarly

to Rm from Theorem 3.2 Ormaniec et al. (2024), thus, Rtr
m = vecr(Z − Target)⊤ ⊗ Im, while

∂Z
∂Wi

, ∂Z
∂Wj

are from Theorem 4 and H
(i,j)
tr is from Theorem 5.

Therefore the transformer-block square-norm can be estimated according to the theorem

Theorem 6 (Spectral-norm estimate of the Transformer Hessian). Let H
(i,j)
tr denote the (i, j)-

th block of the Transformer Hessian from equation 12, where i, j ∈ {1, 2,K,Q, V } and ni =
dim(Wi). Then, for each pair (i, j),∥∥H(i,j)

tr

∥∥
2

≤ ∥JZ∥2 ∥ξij∥2 + ∥Bi∥2 ∥HZ∥2 ∥Bj∥2, (8)

where ξij =
∂

∂Wj

(
∂S

∂Wi

)
and Bi =

∂S
∂Wi

.

Explicit expressions for each bound are stated in the proof.

Furthermore, estimation for the whole transformer Hessian can be calculated as:

Let Htr be the full Hessian arranged as a mb × nb block-matrix with blocks H
(i,j)
tr , where mb =

nb = 5 (indexed by {1, 2,K,Q, V }). Then

∥Htr∥2 ≤
√
mbnb max

i,j

(
2

LdV
∥ ∂Z

∂Wi
∥2∥

∂Z

∂Wj
∥2 + ∥Rtr

m∥2∥H(i,j)
tr ∥2

)
. (9)

Since mb = nb = 5, we get ∥Htr∥2 ≤ 5 maxi,j(· · · ). We denote this estimation as Mtr.

The proof is provided in Appendix C.6.

4.3 CONVERGENCE OF THE LOSS FUNCTION SURFACE

Similarly to Kiselev and Grabovoy (2024) let us use second-order Taylor approximation for the
mentioned above loss functions at w∗. We suppose that decomposition to the second order will be
sufficient to study local behavior. The first-order term vanishes because the gradients ∇Lk(w

∗) and
∇Lk+1(w

∗) are zero according to Assumption 1:

Lk(w) ≈ Lk(w
∗) +

1

2
(w −w∗)⊤H(k)(w∗)(w −w∗), (10)

where we denoted the Hessian of Lk(w) with respect to parameters w at w∗ as H(k)(w∗).

Next, we consider difference of losses |Lk+1(w)− Lk(w)| while increasing the sequence length.

6
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Theorem 7 (Convergence of Self-Attention and Transformer Blocks). For a single self-attention
block and a single transformer block 5 under the conditions that the loss function is bounded 0 ⩽
l(fw∗(xi),yi) ⩽ L, and the individual Hessians are bounded, the following holds:

|Lk+1(w)− Lk(w)| ⩽ 2L

k + 1
+

M ∥w −w∗∥22
(k + 1)

,

where for the self-attention block M can be directly calculated from Theorem 1 and for the trans-
former block M = Mtr is calculated according to Theorem 6.

It’s worth noting that M in the theorem above is not a constant in terms of increasing the sequence
length k, as soon as M as in a function of ∥X∥2 which changes during described process. For more
details see Appendix C.1 and C.6.

The proof is provided in Appendix C.7.

5 EXPERIMENTS
Transformer Block

Embedded Patches

Self-Attention

LayerNorm

FeedForward

LayerNorm

L×

Figure 2: Transformer archi-
tecture we use in our experi-
ments

To verify our theoretical estimates we conduct a comprehensive em-
pirical study. We follow the same Transformer architecture we used
in the main part of the paper, which is essentially post-norm (Lay-
erNorm is after Self-Attention/FeedForward).

In particular, we consider an image classification task, implement-
ing the Vision Transformer (ViT) architecture similar to Dosovit-
skiy et al. (2020), see Figure 2. Input image is patchified with linear
projection and then goes to Transformer Encoder, which contains L
Transformer Blocks, while its outputs is averaged to obtain classifi-
cation logits.

Hessian entries visualization. In this part we use a single Trans-
former block, which we train on a MNIST Deng (2012) dataset
(see 1). Firstly, we put just one batch from a train dataloader
to the initialized model and calculate the exact Hessian using
curvlinops Python package for an efficient Hessian linear op-
erator calculation. Visualizing it in a log-scale, in Figure 3 we em-
phasize the heterogenity in the magnitues of the entries.

dataset patch size hidden dim ff dim num blocks
MNIST 4 16 64 1

CIFAR-100 4 128 512 8

Table 1: Vision Transformer (ViT) architectures hyperparameters we use in our experiments

Hessian Hessian (Self-Attention)

6

5

4

3

2

1

Lo
ga

rit
hm

ic 
ab

so
lu

te
 e

nt
rie

s

Figure 3: Hessian entries visualization for an initialized model with one Transformer Block. We
see the entire magnitudes’ heterogeneity, while the Values corresponding blocks have larger values.
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We train the model for a number of epochs, obtaining pretty high accuracy on a validation dataset
(>50%), and then visualize the Hessian’s entries again, see Figure 4. One can see that each of the
Hessian’s blocks becomes more magnituted, however the Values-Values block exhibits the highest
one.

Hessian Hessian (Self-Attention)
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Figure 4: Hessian entries visualization for a model trained for a number of epochs with one Trans-
former Block. We see the entire magnitudes’ heterogeneity, while the Values-Values corresponding
block has the largest values.

This experiment shows exactly how the entire Transformer’s Hessian is organized, which allows
us to investigate each block part of it separately. In Appendix A.1 we continue this experiment by
providing Parameters blocks changing over training epochs figures.

Further, we calculate the matrices’ norms and their Hessians’ norms, and show them in Figure 5
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Figure 5: Parameters’ blocks norms and their Hessians’ norms, calculated exactly on one batch
containing 128 examples from the MNIST training dataset.

Results show that the highest magnitude corresponds to the Keys and Values, while the other blocks
exhibit much smaller absolute entries.

Loss landscape convergence. To further deep inside the dependence between loss function and its
Hessian, we conduct and experiment corresponding to Theorem 7. Here we employ the other model
configuration on a CIFAR-100 Krizhevsky (2009) dataset. Compared to similar one for a MNIST
dataset, this model have 8× more Transformer blocks and also 8× wider hidden layers. During
traning, it is also trained for a number of epochs to achieve >50% Accuracy on a validation dataset.
The results are in Figure 6. The experiment setup is as follows:

1. Train the model until convergence and save the parameters w∗ (model checkpoint);

2. Start from the empty dataset, add data batch-by-batch and calculate mean loss value over
the seen batches;

3. Calculate the absolute difference according to |Lk+1(w)− Lk(w)|.

8
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Our code is available at https://anonymous.4open.science/r/transformer_
hessians/

6 DISCUSSION AND CONCLUSION
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Figure 6: Absolute loss difference vs. the num-
ber of training samples in the dataset, plotted in
log-log scale. The blue line represents the EMA
of a desired dependency, while the gray one corre-
sponds to the linear trend.

This work fills a key gap in the second-order
analysis of Transformers by deriving explicit Ja-
cobians and Hessians for LayerNorm and FFN
in the vecr numerator-layout, and integrating
them into a full block-level curvature decom-
position. Theorems 2-3 and 4-5 yield end-
to-end expressions that are compatible with
Kronecker structure and commutation identi-
ties, while Theorems 1 and 6 provide spectral-
norm bounds that connect curvature to input
statistics, LayerNorm scales, and architectural
hyperparameters. A direct consequence is a
block-heterogeneous Hessian: Value- and Key-
related terms dominate through softmax deriva-
tives and input-dependent operators, FFN cur-
vature is controlled by the piecewise linearity of
ReLU, and LayerNorm contributes via per-row
variance. The empirical results (e.g., Figures 3
and 4) match these predictions, with Values - Values blocks exhibiting the largest magnitudes after
training.

The second-order Taylor expansion in Theorem 7 gives a compact convergence inequality,
|Lk+1(w) − Lk(w)| ≤ 2L/(k + 1) + M∥w − w∗∥22/(k + 1), where M is provided by our
Hessian bounds. This establishes a 1/(k + 1) decay of the local discrepancy between successive
empirical objectives when curvature is controlled, and explains the observed stabilization of the loss
landscape with increasing data. The loglog trend in Figure 6 follows this prediction, supporting the
claim that increasing data size stabilizes the local geometry of the Transformer objective. Finally,
the block-wise structure motivates curvature-aware training through per-block adaptation of learn-
ing rates, weight decay, or preconditioning, and provides a mechanistic rationale for switching from
data scaling to model scaling near curvature stationarity, consistent with compute-optimal policies
Kaplan et al. (2020); Hoffmann et al. (2022).

The analysis is local and assumes a shared minimizer for consecutive dataset sizes (Assumption 1).
The present theoretical derivation focuses on a single-head, post-normalization transformer block un-
der the mean-squared error loss. While extensions to multi-head attention, masking, and positional
encodings are technically feasible within the established calculus, they are omitted for brevity. It
should be emphasized that the underlying framework naturally generalizes to the cross-entropy loss,
a generalization that has been explicitly validated in our experimental section. A primary direction
for future work involves extending this analysis to deep, multi-layer transformer architectures.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PARAMETERS BLOCKS CHANGING OVER TRAINING EPOCHS.

Here we continue the previous experiments, expanding the plots into separate parameters blocks
entries changing. Again, we employ the MNIST’s dataset version of our model (Figure 1). We log
the matrices entries, norms, and Hessians during the first 1000 training steps. As we can see on
Figures 7, 8, 9, 10, 11.
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Figure 7: Queries entries visualization.
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Figure 8: Keys entries visualization.
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Figure 9: Values entries visualization.
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Figure 10: LayerNorm entries visualization.
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Figure 11: FeedForward entries visualization.
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A.2 ASSUMPTIONS VALIDATION

In this section we provide experimental validation of the assumptions stated in the text. Since
Assumption 2 is technical, we focus on empirically validating Assumption 1.
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Figure 12: Validation of Assumption 1

Figure 12 presents the corresponding results, indicating that while Assumption 1 can be relaxed, its
validity increases with longer sequence lengths (i.e., a larger number of samples).

B APPENDIX / MATRIX CALCULUS PRELIMINARIES

B.1 BASIC MATRIX OPERATIONS PROPERTIES

First, we define the notations and rules that we actively use in the text.

Definition 1 (Matrix Norms). For a matrix A ∈ Rm×n:

∥A∥2 = σ1 (Spectral norm, largest singular value)

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =

√√√√ r∑
i=1

σ2
i (Frobenius norm)

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij | (Maximum absolute column sum)

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij | (Maximum absolute row sum)

∥A∥max = max
i,j

|aij | (Element-wise maximum, not a submultiplicative norm)

Definition 2 (Vectorization and Element-wise Operations). Let A be a matrix and v be a vector.

• vecr(A) denotes the row-wise vectorization of matrix A.

• A◦α denotes the element-wise α-power of matrix A, i.e., (A◦α)ij = (Aij)
α.
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• diag(v) creates a diagonal matrix with vector v on its main diagonal.

Property 1 (Relation between vec and vecr). Let A ∈ Rm×n. The row-wise vectorization operator
vecr and the standard column-wise vectorization operator vec are related by the transpose:

vecr(A) = vec(A⊤)

Definition 3 (Commutation Matrix). The commutation matrix Km,n ∈ Rmn×mn is the unique
matrix such that for any matrix A ∈ Rm×n the following holds

Km,nvec(A) = vec(A⊤)

Using Property 1, we immediately have the relationship:

vecr(A) = Km,nvec(A) and vec(A) = Kn,mvecr(A)

since Kn,mKm,n = Imn.

From Magnus and Neudecker (1988) we utilize the property

Property 2 (Row-wise vectorization of matrix product). Let X,A,B be matrices with appropriate
dimensions, then

vecr(AXB) = (A⊗B⊤)vecr(X)

Property 3 (Row-wise vectorization of Hadamard product). Let A,B ∈ Rm×n. Then

vecr(A ◦B) = diag(vecr(A))vecr(B)

where ◦ denotes the Hadamard (element-wise) product. This result follows directly from Magnus
and Neudecker (1988), where the similar result was obtained for column-wise vectorization.

Proposition 1 (Identification Theorem for Row-wise Vectorization). Let F : Rm×n → Rp,q be a
differentiable matrix-valued function of a matrix X ∈ Rm×n. If the differential of F can be written
as

dvecr(F(X)) = J · dvecr(X)

for some matrix J ∈ Rpq×mn that does not depend on dX. Then J is the Jacobian matrix of the
transformation from X to F(X) with respect to row-wise vectorization. We denote this as:

∂F(X)

∂X
:=

∂vecr(F(X))

∂(vecr(X))⊤
= J

This is the vecr analogue of the fundamental Identification Theorem from Magnus and Neudecker
(1988) for column-wise vectorization.

Property 4 (Element-wise division). Let A ∈ Rm×n be a matrix and b ∈ Rm×1 be a vector. Then
for matrix C ∈ ∈ Rm×n, where ci,j =

ai,j

bi
is fulfilled that

C = diag−1(b)A

Proposition 2 (Spectral norm of 1L×L matrix). Let A = 1L×L (a matrix full of 1). Then its spectral
norm is

∥A∥2 = L

Proof. Using basic Linear Algebra properties, we obtain tr(A) = L and rank(A) = 1 =
dim(Im(X)). Therefore, using dim(Im(X)) + dim(Ker(X)) = L, we get dim(Ker(X)) = L− 1.
Thus, for i ∈ {2, . . . L} we get λi = 0 and for λ1 = L. Then, the only non-null singular value of
the matrix A is

√
L2 = L. Thus, we obtain that ∥A∥2 = L, according to Definition 1.
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B.2 MATRIX-VALUED FUNCTIONS DERIVATIVE PROPERTIES

Next, we introduce the properties for calculating the matrix-valued function derivative.

Property 5 (Matrix-Product derivative). Let X,A,B be matrices with appropriate dimensions, then

∂AXB

∂X
= A⊗B⊤

where A and B have no dependence on X.

Detailed proof of this statement can be found in Singh et al. (2021).

Property 6 (Kronecker-Product derivative). Let X ∈ Rn×q and Y ∈ Rp×r. Then

∂(X⊗Y)

∂X
= (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecrY) ,

and analogously
∂(X⊗Y)

∂Y
= (In ⊗Kp,q ⊗ Ir) (vecrX⊗ Ipr) .

The detailed proof is in Ormaniec et al. (2024).

From the properties above, we derive calculations for special cases which we use in this paper.

Proposition 3 (Matrix-valued functions multiplication derivative). Let A(X) ∈ Rp×r and B(X) ∈
Rr×q be matrix-valued functions of the matrix X, then

∂A(X)B(X)

∂X
= (A⊗ Iq)

∂B

∂X
+
(
Ip ⊗B⊤) ∂A

∂X

Proof. First, we apply a classic chain-rule for calculation a derivative of a complicated function and
then combine it with Property 5

∂A(X)B(X)

∂X
=

∂AB

∂B

∂B

∂X
+

∂AB

∂A

∂A

∂X
=

∂ABIq
∂B

∂B

∂X
+

∂IpAB

∂A

∂A

∂X
=

= (A⊗ Iq)
∂B

∂X
+
(
Ip ⊗B⊤) ∂A

∂X

Proposition 4 (Matrix-valued functions Kronecker product derivative). Let A(X) ∈ Rn×q and
B(X) ∈ Rp×r be matrix-valued functions of the matrix X, then

∂A(X)⊗B(X)

∂X
= (In ⊗Kp,q ⊗ Ir)

(
(vecrA⊗ Ipr)

∂B

∂X
+ (Inq ⊗ vecrB)

∂A

∂X

)
Proof. First, we apply a classic chain rule for calculating the derivative of a complicated function
and then combine it with Property 6

∂A(X)⊗B(X)

∂X
=

∂A⊗B

∂B

∂B

∂X
+

∂A⊗B

∂A

∂A

∂X
=

= (In ⊗Kp,q ⊗ Ir) (vecrA⊗ Ipr)
∂B

∂X
+ (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecrB)

∂A

∂X
=

= (In ⊗Kp,q ⊗ Ir)

(
(vecrA⊗ Ipr)

∂B

∂X
+ (Inq ⊗ vecrB)

∂A

∂X

)

Next, we develop the operations that we introduced above and derive calculations using vecr nota-
tion as we do in this paper.
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Proposition 5 (Derivative of the invert matrix). For an invertible square matrix D ∈ Rn×n, the
derivative of its inverse is

∂D−1

∂D
= −D−1 ⊗D−⊤.

Proof. This is a standard result in matrix calculus. The differential identity

d(D−1) = −D−1 (dD)D−1

appears in Petersen and Pedersen (2012) and in Magnus and Neudecker (1988). Applying the vecr
operator and using the property 2 yields

vecr(−D−1 (dD)D−1) = (−D−1 ⊗D−⊤)vecr(dD)

By the definition and the identification theorem from Property 1 we obtain

vecr(dD
−1) =

∂vecrD
−1

∂vecrD
vecr(dD)

Comparing two results we get ∂vecrD
−1

∂vecrD
= (−D−1 ⊗D−⊤)

Proposition 6 (Derivative of diag(·)). For v ∈ RL×1, the derivative of the diagonalization map is

∂diag(v)

∂v
=
(
e1 ⊗ e1 . . . eL ⊗ eL

)
,

where ei are the standard basis vectors in RL.

Proof. By Definition 2, diag(v) places entry vi at position (i, i) of the resulting diagonal matrix.

The derivative of diag(v) w.r.t. vi is the elementary matrix Eii = eie
⊤
i that has one in position (i, i)

and zeros elsewhere.

Applying the row-wise vectorization operator, we obtain

vecr(Ei,i) = ei ⊗ ei

by the standard Kroneckervec identity 2.

Stacking across i = 1, . . . , L, the Jacobian becomes

∂diag(v)

∂v
=
(
e1 ⊗ e1 . . . eL ⊗ eL

)
,

Proposition 7 (Derivative of the Hadamard square). For a matrix A ∈ Rm×n, the derivative of the
elementwise square is

∂A◦2

∂A
= 2 · diag

(
vecr(A)

)
.

Proof. By Definition 2, (A◦2)ij = (Aij)2. Differentiating elementwise gives d(A◦2) = 2A ◦ dA.
Applying the vecr operator and using Property 3, we obtain

vecr(d(A
◦2)) = 2diag(vecr(A))vecr(dA)

By the identification theorem from Property 1, this implies

∂A◦2

∂A
=

∂vecr(A
◦2)

∂vecr(A)
= 2 · diag

(
vecr(A)

)
which establishes the result.
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Proposition 8 (Derivative of the Hadamard root). For A ∈ Rm×n with positive entries, the deriva-
tive of the elementwise square root is

∂A◦ 1
2

∂A
= 1

2 diag
−1
(
vec

◦ 1
2

r (A)
)
.

Proof. Similarly to the proof of Proposition 7, we obtain d(A◦1/2) = 1
2A

◦−1/2 ◦ dA Thus, writing
in vectorized form gives

∂A◦ 1
2

∂A
=

∂vecr(A
◦ 1

2 )

∂vecr(A)
= 1

2 diag
−1
(
vec

◦ 1
2

r (A)
)
.

Proposition 9 (Transposed Matrix derivative). Let A ∈ Rm×n, then the following holds:

∂A⊤

∂A
= Kn,m

Proof. Combining a similar property from Magnus and Neudecker (1988) for column-wise vector-
ization with the column-row connection rule 1 and 3 we obtain the theorem statement.

B.3 MATRIX NORM PROPERTIES

Similarly to Petersen and Pedersen (2012) we introduce a matrix norms table comparison.

Property 7 (Matrix norm inequalities). Let A ∈ Rm×n. Then the following inequalities hold
between different matrix norms:

X Y ∥A∥max ∥A∥1 ∥A∥∞ ∥A∥2 ∥A∥F

∥A∥max 1 1 1 1

∥A∥1 m m
√
m

√
m

∥A∥∞ n n
√
n

√
n

∥A∥2
√
mn

√
n

√
m 1

∥A∥F
√
mn

√
n

√
m

√
d

where d = rank(A). The table should be read as: for any two norms ∥ · ∥X and ∥ · ∥Y ,

∥A∥X ≤ c · ∥A∥Y

where c is the constant found at the intersection of row X and column Y .

Property 8 (Matrix sum norm). Let A and B be matrices from Rm×n, then

∥A+B∥2 ≤ ∥A∥2 + ∥B∥2 (11)

Property 9 (Kronecker product norm). Let A ∈ Rm×n and B ∈ Rp×q , then the following holds

∥A⊗B∥2 = ∥A∥2∥B∥2
Property 10 (Matrix product norm). Let A ∈ Rm×n and B ∈ Rn×q , then the following holds

∥AB∥2 ≤ ∥A∥2∥B∥2

The properties above can be found in Magnus and Neudecker (1988).
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Property 11 (Block-matrix norm inequality). Let A ∈ Rm×n be a block-matrix, each block of
which is a matrix Bi,j , thus the following holds

∥A∥2 ≤
√
mnmax

i,j
∥Bi,j∥2

Note, if matrix A is block-diagonal, then the strict equality holds ∥A∥2 = max
i

∥Bi,i∥2.

Property 12 (Transposed matrix norm). Let A ∈ Rm×n, then

∥A∥2 = ∥A⊤∥2

C APPENDIX / PROOFS OF THE THEOREMS

C.1 PROOF OF THEOREM 1

Proof. From Lemma A.3 Noci et al. (2022) and using Properties 10 and 9

∥∂A
∂T

∥2 =
1

L
∥IL∥2∥IL − 1

L
1L×L∥2 ≤ 1

L

Here we used that 1
L1L×L is a projection matrix, therefore IL − 1

L1L×L is a projection matrix and
it’s norm is ∥IL − 1

L1L×L∥2 ≤ 1.

Next we estimate the Z1 norm, utilizing the same Properties 10 and 9

∥Z1∥2 ≤ ∥IL ⊗X⊤∥2∥
∂A

∂T
∥2∥X⊗X∥2 ≤ ∥X∥2

1

L
∥X∥22 =

1

L
∥X∥32

where we used Property 12 for ∥X∥2 = ∥X⊤∥2.

Now we calculate estimations for the outer-product Hessian part.

But before that we estimate ∥A∥2. This block itself is a row-wise softmax matrix. Thus, each
element Ai,j ≤ 1. Next we use Property 7 and obtain ∥A∥max ≤ ∥A∥2 ≤

√
LL∥A∥max =

L∥A∥max ≤ L. Therefore, the ∥M1∥2 = ∥AX∥2 ≤ L∥X∥2.

Thus, the ∥Ho(Wi,Wj)∥2 is estimated below:

∥Ho(WV ,WV )∥2 ≤ 2

LdV
∥M1∥221 ≤ 2

LdV
∥A∥22∥X∥22 ≤ 2

LdV
L2∥X∥22 =

2L

dV
∥X∥22

∥Ho(WQ,WQ)∥2 ≤ ∥ 2

LdV dK
(IdV

⊗W⊤
K)Z⊤

1 (IL ⊗WV W
⊤
V ) Z1(IdV

⊗WK)∥2

≤ 2

LdV dK
∥WK∥22∥Z1∥22∥WV ∥22 ≤ 2

LdV dK
∥WK∥22∥WV ∥22

1

L2
∥X∥62 =

=
2

L3dV dK
∥WK∥22∥WV ∥22X∥62

∥Ho(WV ,WQ)∥2 ≤ 2

LdV
√
dK

∥M⊤
1 ⊗W⊤

V ∥2∥Z1∥2∥IdV
⊗WK∥2

≤ 2

LdV
√
dK

L∥X∥2∥WV ∥2
1

L
∥X∥32∥WK∥2

=
2

LdV
√
dK

∥WV ∥2∥WK∥2∥X∥42
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∥Ho(WQ,WK)∥2 ≤ 2

LdV dK
∥(IdV

⊗W⊤
K)Z⊤

1 (IL ⊗WV W
⊤
V )Z1(WQ ⊗ IdV

)KdK , dV ∥2

≤ 2

L3dV dK
∥WK∥2∥WQ∥2∥WV ∥22∥X∥62

where we use Properties 10, 9 and ∥KdV dK
∥2 = 1, because Km,n is a commutation matrix from

Definition 3.

Next we derive functional-part estimation. First we provide analysis for Rm = vecr(F(X) −
Target)T ⊗ Im from Theorem 3.2 from Ormaniec et al. (2024). Since vecr(·) is a vectorization
procedure ∥vecr(F(X) − Target)∥2 = ∥F(X) − Target∥F ≤

√
rank(F(X)− Target)∥F(X) −

Target∥2 according to Property 7. Therefore, we obtain

∥Rm∥ ≤
√
rank(F(X)− Target)∥F(X)− Target∥2 ≤

√
rank(F(X)− Target)(∥A∥2∥X∥2∥WV ∥2 + ∥Target∥2)

≤
√

rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

where we used Properties 10, 8

Next we estimate the shuffling matrix norm, utilizing standard properties

∥S∥2 = ∥(IdV
⊗KdV ,dV

)(vecr(IdV
)⊗ IdV

)∥2 ≤ ∥vecr(IdV
)∥2 = ∥IdV

∥F =
√

dV

Next challenging part is computing bounds for ∥∂2A
∂T2 ∥2. In Lemma C1 from Ormaniec et al. (2024)

the a block form of this expression is provided:
∂2Ai,j

∂Ti,:∂Ti,:
= Ai,j

(
2Ai,:A

⊤
i,: +EL,L

j,j − diag(Ai,:)− ejA
⊤
i,: −Ai,:e

⊤
j

)
∈ RL×L,

where EL,L
j,j = eje

⊤
j ∈ RL×L therefore it contains only one non-zero element that equals 1 in (j, j)

position. Additionally, it’s explicitly said that the second derivative of the row-wise softmax has a
block-diagonal structure. Thus, we use block matrix Property 11:

∥∥∥∂2A
∂T2

∥∥∥
2
= maxi,j

∥∥∥ ∂2Ai,j

∂Ti,:∂Ti,:

∥∥∥
2
.

Thus, we conduct ∥ ∂2Ai,j

∂Ti,:∂Ti,:
∥2 estimation. As we stated before Ai,j ≤ 1. Now ∥Ai,:A

⊤
i,:∥2: as

soon as Ai,: is a row in a softmax matrix, values in it sum up to 1. Thus, we can use the vector-matrix
inequalities to obtain: ∥Ai,:A

⊤
i,:∥2 ≤ ∥Ai,:∥22 ≤ ∥Ai,:∥21 = 1. After that we conduct ∥Em,n

j,j ∥2 =

∥eje⊤j ∥2 ≤ 1. Then we estimate ∥diag(Ai,:)∥2. For diagonal matrices we can easily obtain that
∥diag(Ai,:)∥2 = max

j
Ai,j ≤ 1. Next we estimate ejA

⊤
i,: and Ai,:e

⊤
j norms: the matrices ejA⊤

i,:

and Ai,:e
⊤
j are rank-1 matrices with only one non-zero row and one non-zero column respectively,

containing elements of Ai,:. Their spectral norms can be estimated ∥Ai,:∥2 ≤ 1.

Therefore, we provide an estimation:

∥∂
2A

∂T2
∥2 ≤ 6

In this way we can easily obtain the ∥Z2∥2 estimation

∥Z2∥2 = ∥
(
IL ⊗X⊤ ⊗X⊤ ⊗X⊤) (∂2A/∂T2

)
(X⊗X) ∥2 ≤ ∥X∥52∥

∂2A

∂T2
∥2 ≤ 6∥X∥52

After that, we proceed to the estimation of the functional Hessian norms.
∥Hf(WV ,WV )∥2 = 0

∥Hf(WQ,WQ)∥2 =
2

LdV dK
∥RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (IdV

⊗WK) ∥2,

≤ 2

LdV dK
∥RdV dK

∥2∥WV ∥2∥WK∥2∥Z2∥2∥WK∥2

≤ 2

LdV dK
6
√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52 =

=
12

dV dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52
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∥Hf(WV ,WQ)∥2 =
2

LdV
√
dK

∥Rd2
V
(IL ⊗ S)Z1 (IdV

⊗WK) ∥2 ≤

≤ 2

LdV
√
dK

∥Rd2
V
∥2∥S∥2∥Z1∥2∥WK∥2 ≤

≤ 2

LdV
√
dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

√
dV

1

L
∥X∥32∥WK∥2 =

=
2
√

rank(F(X)− Target)
L2

√
dV dK

(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WK∥2∥X∥32

∥Hf(WQ,WK)∥ ≤ 2

LdV dK
∥RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (WQ ⊗ IdV

)KdK ,dV
∥2+

+
2

LdV
√
dK

∥RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S⊗ IdK
∥2 ≤

≤ 2

LdV dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥2∥WQ∥26∥X∥52+

+
2

LdV
√
dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2

1

L
∥X∥32

√
dV =

=
2
√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

LdV
√
dV dK

∥WV ∥2·

·
(
3L∥WK∥2∥WQ∥2∥X∥52 +

dV
L

∥X∥32
)
,

Therefore we can obtain the final hessian estimation according to Property 7, where we used number
of block equal to 3 from {K,Q, V }:

∥H(Wi,Wj)∥2 ≤ 3 max
i,j∈{Q,K,V }

(
∥Ho(Wi,Wj)∥2 + ∥Hf (Wi,Wj)∥2

)
And now after substituting results :

∥H(Wi,Wj)∥2 ≤

≤ 3max

(
2L

dV
∥X∥22,

2

L3dV dK
∥WK∥22∥WV ∥22∥X∥62 +

12

dV dK

√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WV ∥2∥WK∥22∥X∥52,

2

LdV
√
dK

∥WV ∥2∥WK∥2∥X∥42 +
2
√
rank(F(X)− Target)

L2
√
dV dK

(L∥X∥2∥WV ∥2 + ∥Target∥2)∥WK∥2∥X∥32,

2

L3dV dK
∥WK∥2∥WQ∥2∥WV ∥22∥X∥62+

+
2
√
rank(F(X)− Target)(L∥X∥2∥WV ∥2 + ∥Target∥2)

LdV
√
dV dK

∥WV ∥2
(
3L∥WK∥2∥WQ∥2∥X∥52 +

dV
L

∥X∥32
))

The obtained expression we denote as M . The obtained inequalities can be simplified by
rank(F(X)− Target) ≤ min(L, dV ). That ends the proof.

C.2 PROOF OF THEOREM 2

Theorem 8 (Detailed version of Theorem 2). Let X ∈ RL×dV . Define

M(X) = X− 1
dV

X1dV
1⊤
dV

, σ(X) = 1√
dV

(
M(X)◦21dV

)◦1/2
, P(X) = diag−1(σ(X)).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Then the Jacobian of
LayerNorm(X) = P(X)M(X)

with respect to X is

∂ LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
(
ILdV

− 1
dV

(IL ⊗ 1dV ×dV
)
)
+ (IL ⊗M(X)⊤)

∂P(X)

∂X
.

Moreover,

∂P

∂X
= 1√

dV

(
−D−1⊗D−⊤

)(
e1⊗e1, . . . , eL⊗eL

)(
diag−1

(
vec1/2r (M◦21dV

)
)
(IL⊗1⊤

dV
)diag(vecr(M))∂M∂X

)
,

with D = diag(σ(X)).

Proof. We represent LayerNorm layer as

LayerNorm(X) = P(X)M(X)

where P(X) = D−1, where D = diag(σ(X)) and M(X) = (X−µ(X)1⊤
dV

) according to Property
4.

Using the matrix-product derivative rule from Property 3 we obtain:

∂LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
∂M

∂X
+ (IL ⊗M⊤)

∂P

∂X

Let’s start with ∂M
∂X . Using simple matrix calculus properties we can obtain M(X) = (X −

µ(X)1⊤
dV

) = (X− 1
dV

X1dV
1⊤
dV

) = (X− 1
dV

X1dV ×dV
). Thus, the derivative is

∂M

∂X
=

∂(X− 1
dV

X1dV ×dV
)

∂X
= (IL ⊗ IdV

)− 1

dV
(IL ⊗ 1dV ×dV

)

Next, we calculate the ∂P
∂X . First, we start with the transformation of σ(X) expression. We can

rewrite it in the matrix terms σ(X) = ( 1
dV

(X − µ(X)1⊤
dV

)◦21dV
)◦

1
2 = 1√

dV

(
M(X)◦21dV

)◦ 1
2 .

Here, ◦α operation is element-wise α-powering from Definition 2.

Therefore, we can apply chain rule and get

∂P

∂X
=

∂D−1

∂D

∂diag(σ(X))

∂σ(X)

∂σ(X)

∂X

Therefore, by utilizing Properties 7, 8 and 5 we can find

∂σ(X)

∂X
=

1√
dV

∂τ◦
1
2

∂τ

∂τ

∂Q

∂Q

∂X
,

Here τ = Q · 1L and Q = M◦2. Thus, we can continue calculations and obtain

∂σ(X)

∂X
=

1√
dV

∂τ◦
1
2

∂τ

∂Q · 1dV

∂Q

∂M◦2

∂M

∂M

∂X
=

=
1√
dV

1

2
diag−1(vec

◦ 1
2

r (τ))(IL ⊗ 1T
dV

)2 · diag(vecr(M))
∂M

∂X
=

=
1√
dV

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂X

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Therefore, by applying 5 and 6 for the first and second multiplier, we obtain

∂P

∂X
=

1√
dV

(
−D−1 ⊗D−⊤) (e1 ⊗ e1 . . . eL ⊗ eL

)
·(

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂X

)
Therefore, we found the first derivative of the LayerNorm function:

∂LayerNorm(X)

∂X
= (P(X)⊗ IdV

)
∂M

∂X
+ (IL ⊗M⊤)

∂P

∂X
=

= (P(X)⊗ IdV
)
∂M

∂X
+

+ (IL ⊗M⊤)
1√
dV

(
−D−1 ⊗D−⊤) (e1 ⊗ e1 . . . eL ⊗ eL

)
·

·
(

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂X

)
where M(X) = (X − 1

dV
X1dV ×dV

), P(X) = diag−1(σ(X)) and ∂M
∂X = (IL ⊗ IdV

) − 1
dV

(IL ⊗
1dV ×dV

)

That ends the proof.

C.3 PROOF OF THEOREM 3

Proof. Now, we calculate the second derivative ∂2LayerNorm
∂X2 . Using the matrix product derivative

property 5, we obtain:

∂2LayerNorm
∂X2

= ((P(X)⊗ IdV
)⊗ ILdV

)
∂2M

∂X2
+

(
ILdV

⊗ (
∂M

∂X
)⊤
)

∂(P(X)⊗ IdV
)

∂X
+

+
(
(IL ⊗M⊤)⊗ ILdV

) ∂2P

∂X2
+

(
ILdV

⊗ (
∂P

∂X
)⊤
)

∂(IL ⊗M⊤)

∂X

Here, we have P ∈ RL×L, M ∈ RL×dV , ∂M
∂X ∈ RLdV ×LdV , ∂P

∂X ∈ RL2×LdV

Next, we can easily obtain, using Properties 6, 9:

∂2M

∂X2
= 0

∂(P(X)⊗ IdV
)

∂X
=

∂(P⊗ IL)

∂P

∂P

∂X
= (IL ⊗KL,L ⊗ IL) (IL2 ⊗ vecr(IL))

∂P

∂X
∂(IL ⊗M⊤)

∂X
=

∂(IL ⊗M⊤)

∂M⊤
∂M⊤

∂M

∂M

∂X
= (IL ⊗KdV ,L ⊗ IL) (vecr(IL)⊗ ILdV

)KdV ,L
∂M

∂X

Now, we analyze the second-order derivative of the P matrix. To derive correct calculations we
need to write the dimensions of each multiplier in the calculated first derivative out. Matrix D is a
diag(σ(X)), the size of vector σ(X) is L×1, therefore, D ∈ RL×L and the part

(
−D−1 ⊗D−⊤) ∈

RL2×L2

. Next, we note that the size of each basis vector ei is L×1, thus we obtain ei⊗ei ∈ RL2×1

and
(
e1⊗e1 . . . eL⊗eL

)
∈ RL2×L. As we discussed earlier, M(X) ∈ RL×dV , then M ·1dV

∈

RL×1, and we can derive the size of diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)), which is L× L. Next multipliers
are (IL ⊗ 1T

dV
) ∈ RL×LdV and diag(vecr(M)) ∈ RLdV ×LdV . The last one is ∂M

∂X , which we have
already calculated, it’s size is LdV × LdV . Therefore, the whole derivative ∂P

∂X is from RL2×LdV .
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We start with ∂P
∂X = 1√

dV
A1(X) · B1(X), where A1 =

(
−D−1 ⊗D−⊤) and B1 is the other

multiplier.

Therefore, using Property 3 we obtain

∂2P

∂X2
=

1√
dV

∂A1(X) ·B1(X)

∂X
=

1√
dV

(A1 ⊗ ILdV
)
∂B1

∂X
+
(
IL2 ⊗B⊤

1

) ∂A1

∂X

Now we focus on calculating ∂A1

∂X on the current step. Utilising the rule 4 we can simply get:

∂A1

∂X
=

∂
(
−D−1 ⊗D−⊤)

∂X
= (IL ⊗KL,L ⊗ IL)

(
(IL2 ⊗ vecr(D

−⊤)) · ∂ −D−1

∂X
+

+ (vecr(−D−1)⊗ IL2) · ∂D
−⊤

∂X

)
By using the transposed matrix and the invert matrix derivative properties 9, 5, we obtain: ∂−D−1

∂X =
∂−D−1

∂D
∂D
∂X =

(
D−1 ⊗D−⊤) ∂D

∂X and ∂D−⊤

∂X = ∂D−⊤

∂D−1
∂D−1

∂D
∂D
∂X = KL,L

(
−D−1 ⊗D−⊤) ∂D

∂X ,
where we the ∂D

∂X as we calculated earlier, while computing the first LayerNorm’s derivative is
∂D
∂X =

(
e1⊗e1 . . . eL⊗eL

)(
diag−1(vec

◦ 1
2

r (M◦2 · 1dV
)) · (IL ⊗ 1T

dV
) · diag(vecr(M))∂M∂X

)
And now we proceed to the calculations of the remaining part derivative.

We first assign new A2 and B2 for clear calculations. We have B1 =
(
e1 ⊗ e1 . . . eL ⊗

eL

)(
diag−1(vec

◦ 1
2

r (M◦2 · 1dV
)) · (IL ⊗ 1T

dV
) · diag(vecr(M))∂M∂X

)
and we assign new A2 and

new B2 as A2 = diag−1(vec
◦ 1

2
r (M◦2 ·1dV

)), B2 = (IL⊗1T
dV

) ·diag(vecr(M))∂M∂X and we denote

E =
(
e1 ⊗ e1 . . . eL ⊗ eL

)
. Thus, B1 = EA2B2

While E is a constant matrix we can apply the simplified matrix product derivative rule 3 and obtain

∂B1

∂X
=

∂EA2B2

∂(A2B2)

∂A2B2

∂X
= (E⊗ ILdV

)
∂A2B2

∂X

= (E⊗ ILdV
)

(
(A2 ⊗ ILdV

)
∂B2

∂X
+ (IL ⊗B⊤

2 )
∂A2

∂X

)
Now, we introduce the last A3 and B3 assignment. We represent B2 as B2 = JA3B3, where
J = (IL ⊗ 1T

dV
), A3 = diag(vecr(M)) and B3 = ∂M

∂X .

Similarly to the previous step we firstly apply simplified matrix product derivative rule 3 and get

∂B2

∂X
=

∂JA3B3

∂(A3B3)

∂A3B3

∂X
= (J⊗ ILdV

)
∂A3B3

∂X

= (J⊗ ILdV
)

(
(A3 ⊗ ILdV

)
∂B3

∂X
+ (ILdV

⊗B⊤
3 )

∂A3

∂X

)
Where both Jacobian matrices can be found easily ∂A3

∂X = ∂diag(vecr(M))
∂X = ∂diag(v)

∂(v)
∂vecr(M)

∂M
∂M
∂X

Where we have already calculated ∂diag(v)
∂(v) =

(
e1 ⊗ e1 . . . eL ⊗ eL

)
according to the property

6, here ei ∈ RLdV ×1, additionally ∂vecr(M)
∂M is simply ILdV

. As for ∂B3

∂X for current B it is ∂B3

∂X =
∂2M
∂X2 = 0

The last step in our analysis is putting every part of our calculations together. In our notation we can
simplify the expression

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

∂2P

∂X2
=

1√
dV

(A1 ⊗ ILdV
)
∂B1

∂X
+
(
IL2 ⊗B⊤

1

) ∂A1

∂X

where ∂B1

∂X , ∂A1

∂X B1 and it’s definitions A1, B1 are given above.

The last step in the proof is simply combining all together and substituting all calculated derivatives
into the LayerNorm’s Hessian.

That ends the proof.

C.4 PROOF OF THEOREM 4

Theorem 9 (More detailed version of Theorem 4). The Transformer block is defined in 5

The derivative ∂Z
∂Wi

is as follows.

For i ∈ {1, 2}:

∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Wi
,

where

∂(FFN(Y) +Y)

∂Wi
=

{(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
, for i = 1

σ(YW1)⊗ IdV
, for i = 2

,

and ∂LayerNorm(FFN(Y)+Y)
∂(FFN(Y)+Y) can be calculated following Theorem 2 and is explicitly given in the proof

For i ∈ {K,Q, V }:

∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Y

∂Y

∂Wi
,

where

∂(FFN(Y) +Y)

∂Y
=
(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
IL ⊗W⊤

1

)
+ (IL ⊗ IdV

) ,

and ∂Y
∂Wi

= ∂LayerNorm(F(X)+X)
∂(F(X)+X)

∂F(X)
∂Wi

, with ∂F(X)
∂Wi

is calculated according to Lemma A.2 from Noci

et al. (2022) and ∂LayerNorm(F(X)+X)
∂(F(X)+X) is calculated according to Theorem 2.

Proof. It’s worth noting that in our notation X ∈ RL×dV ,Y ∈ RL×dV ,W1 ∈
RdV ×dff ,ReLU(YW1) ∈ RL×dff ,W2 ∈ Rdff×dV .

We consider the Transformer block as it’s defined in 5, explicitly:

Y = LayerNorm(F(X) +X),

Z = LayerNorm(FFN(Y) +Y),

We derive calculations for the first derivative of the whole transformer block ∂Z
∂Wi

.

For i ∈ {1, 2}:
∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Wi

where

∂(FFN(Y) +Y)

∂Wi
=

∂(FFN(Y))

∂Wi
=

∂ILσ(YW1)W2IdV

∂Wi
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Therefore, using Property 5:

for i = 2 :
∂ILσ(YW1)W2IdV

∂Wi
= σ(YW1)⊗ IdV

for i = 1 :
∂ILσ(YW1)W2IdV

∂Wi
=

∂σ(YW1)W2

∂σ(YW1)

∂σ(YW1)

∂YW1

∂YW1

∂W1

=
(
IL ⊗W⊤

2

) ∂σ(YW1)

∂YW1

(
IL ⊗W⊤

1

)
According to Lemma 1, we obtain

for i = 1 :
∂ILσ(YW1)W2IdV

∂Wi
=
(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
Thus for i ∈ {1, 2} the following holds:

∂(FFN(Y) +Y)

∂Wi
=

{(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
, for i = 1

σ(YW1)⊗ IdV
, for i = 2

and the whole Transformer block derivative can be calculated as:

∂Z

∂Wi
=

{
∂LayerNorm(FFN(Y)+Y)

∂(FFN(Y)+Y)

(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
Y ⊗ Idff

)
, for i = 1

∂LayerNorm(FFN(Y)+Y)
∂(FFN(Y)+Y) σ(YW1)⊗ IdV

, for i = 2

where according to Theorem 2

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)
= (P(FFN(Y) +Y)⊗ IdV

)
∂M

∂(FFN(Y) +Y)
+

+ (IL ⊗M⊤)
1√
dV

(
−D−1 ⊗D−⊤) (e1 ⊗ e1 . . . eL ⊗ eL

)
·

·
(

diag−1(vec
◦ 1

2
r (M◦2 · 1dV

)) · (IL ⊗ 1T
dV

) · diag(vecr(M))
∂M

∂(FFN(Y) +Y)

)
where M(FFN(Y)+Y) = ((FFN(Y)+Y)− 1

dV
(FFN(Y)+Y)1dV ×dV

), P((FFN(Y)+Y)) =

diag−1(σ(FFN(Y)+Y) and ∂M
∂(FFN(Y)+Y) = (IL⊗IdV

)− 1
dV

(IL⊗1dV ×dV
), and here σ is simply

calculated according to the LayerNorm definition.

Next, we derive calculations for i ∈ {K,Q, V }

∂Z

∂Wi
=

∂LayerNorm(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂(FFN(Y) +Y)

∂Y

∂Y

∂Wi

Utilizing Property 5 and Lemma 1, we obtain:

∂(FFN(Y) +Y)

∂Y
=

∂FFN(Y)

∂Y
+

∂Y

∂Y
=

∂FFN(Y)

∂Y
+ (IL ⊗ IdV

) =
∂σ(YW1)W2

∂Y
+ (IL ⊗ IdV

) =

=
(
IL ⊗W⊤

2

) ∂σ(YW1)

∂YW1

∂YW1

∂Y
+ (IL ⊗ IdV

) =

=
(
IL ⊗W⊤

2

)
diag

(
vecr(1{X>0})

) (
IL ⊗W⊤

1

)
+ (IL ⊗ IdV

)
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and for calculating ∂Y
∂Wi

we use Lemma A.2 from Noci et al. (2022):

∂F

∂WV
= softmax

(
XWQW

⊤
KX⊤

√
dK

)
X⊗ IdV

∂F

∂WQ
=
(
IL ⊗W⊤

V X
⊤) ∂A

∂M

(
X⊗XWK√

dK

)
,

where:
∂A

∂M
= blockdiag

(
∂Ai

∂M⊤
i

)
and ∂Ai

∂M⊤
i

= diag(Ai)−AiA
⊤
i , where Ai is the i-th row of A in a column vector format. Finally,

under the uniform-attention assumption it simplifies to:

∂A

∂M
=

1

n
IL ⊗

(
IL − 1

L
1L×L

)
Additionally, we can easily expand the result on WK , where we apply the property 9, therefore:

∂F

∂WK
=
(
IL ⊗W⊤

V X
⊤) ∂A

∂M

(
(XWQ ⊗X)KdV dK√

dk

)
,

Thus ∂Y
∂Wi

can be calculated as follows:

∂Y

∂Wi
=

∂LayerNorm(F(X) +X)

∂Wi
=

∂LayerNorm(F(X) +X)

∂(F(X) +X)

∂F(X)

∂Wi

where ∂F(X)
∂Wi

is calculated according to Lemma A.2 from Noci et al. (2022), which we mentioned

earlier above and ∂LayerNorm(F(X)+X)
∂(F(X)+X) is calculated according to Theorem 2.

Substituting the expressions ends the proof.

C.5 PROOF OF THEOREM 5

Theorem 10 (Detailed version of Theorem 5). Let X ∈ RL×dV , Y ∈ RL×dV , W1 ∈ RdV ×dff ,
W2 ∈ Rdff×dV , WQ,WK ∈ RdV ×dK , WV ∈ RdV ×dV . Define

S(Y,W1,W2) = σ(YW1)W2 +Y ∈ RL×dV , Z = LayerNorm(S) ∈ RL×dV ,

and abbreviate (according to Theorems 2–3):

JZ :=
∂ LayerNorm(S)

∂S
∈ RLdV ×LdV , HZ :=

∂2 LayerNorm(S)

∂S2
∈ R(LdV )2×LdV

Let further
Dσ := diag

(
vecr(1{YW1>0})

)
∈ RLdff×Ldff

from Lemma 1.

Define the residual-Jacobian

JSY :=
∂S

∂Y
= (IL ⊗W⊤

2 )Dσ(IL ⊗W⊤
1 ) + (IL ⊗ IdV

) ∈ RLdV ×LdV ,

and for the first residual Y = LayerNorm(F(X) +X), set

JY :=
∂ LayerNorm(F(X) +X)

∂(F(X) +X)
∈ RLdV ×LdV , HY :=

∂2 LayerNorm(F(X) +X)

∂(F(X) +X)2
∈ R(LdV )2×LdV
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calculated by Theorems 2–3.

Denote parameter sizes

n1 = dV dff , n2 = dffdV , nQ = nK = dV dK , nV = d2V .

Let the attention-side Jacobians (from Theorem 4, can be calculated according to Noci et al. (2022))
be

GV :=
∂F

∂WV
∈ RLdV ×nV , GQ :=

∂F

∂WQ
∈ RLdV ×nQ , GK :=

∂F

∂WK
∈ RLdV ×nK .

For i ∈ {1, 2} and k ∈ {K,Q, V }, define first-layer Jacobians

B1 :=
∂S

∂W1
= (IL ⊗W⊤

2 )Dσ (Y ⊗ Idff
) ∈ RLdV ×n1 ,

B2 :=
∂S

∂W2
= σ(YW1)⊗ IdV

∈ RLdV ×n2 ,

Bk :=
∂S

∂Wk
= JSY JY Gk ∈ RLdV ×nk .

Then the Hessian blocks of the Transformer output Z w.r.t. parameters (Wi,Wj) are

H
(i,j)
tr :=

∂2Z

∂Wi∂Wj
= (JZ ⊗ Ini) ξij +

(
ILdV

⊗B⊤
i

)
HZBj (12)

with

ξij :=
∂

∂Wj

(
∂S

∂Wi

)
∈ R(LdV ·ni)×nj .

The second Jacobians ξij for all pairs (i, j) are given almost everywhere by:

1) Pure-FFN pairs:
ξ11 = 0(LdV ·n1)×n1

, ξ22 = 0(LdV ·n2)×n2
,

ξ12 =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ (Y ⊗ Idff
)
)
,

ξ21 =
(
IL ⊗W⊤

2

)
Dσ

(
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
.

Both ξ12 and ξ21 are (LdV ·n1)×n2 and (LdV ·n2)×n1 respectively. They agree almost everywhere
when pre- and post-composed in equation 12 (see symmetry discussion).

2) FFNattention pairs (k ∈ {K,Q, V }):

ξ1k =
(
(IL ⊗W⊤

2 )Dσ ⊗ Ink

) (
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
(JY Gk) ,

ξ2k =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ(IL ⊗W⊤
1 )JY Gk

)
.

Dimensions: ξ1k ∈ R(LdV ·n1)×nk and ξ2k ∈ R(LdV ·n2)×nk .

3) Pure-attention pairs (k, ℓ ∈ {K,Q, V }):

ξkℓ = (JSY ⊗ Ink
)
[(
ILdV

⊗G⊤
k

)
(HY Gℓ) + (JY ⊗ Ink

)Φkℓ

]
,

where Φkℓ :=
∂Gk

∂Wℓ
∈ R(LdV ·nk)×nℓ are second derivatives of the attention map F w.r.t. its weights.

The exact values are calculated in Lemma 2 basing on the results from Ormaniec et al. (2024). All
matrices are dimensionally consistent: ξkℓ ∈ R(LdV ·nk)×nℓ .

Finally, the Hessian block equation 12 has size H
(i,j)
tr ∈ R(LdV ·ni)×nj .

Moreover, all mixed blocks are symmetric almost everywhere:

H
(i,j)
tr = H

(j,i)
tr a.e.,

because (i) the only nonlinearities with potentially nonzero second differential are LayerNorm (han-
dled by HZ ,HY which are symmetric by construction in Theorem 3) and ReLU (whose Hessian
is zero a.e., Lemma 1), and (ii) all remaining mappings are multilinear in the parameters; thus,
by repeated applications of Proposition 3 and Proposition 6, the mixed-partials commute almost
everywhere.
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Proof. We differentiate the Jacobian from Theorem 4 using Proposition 3 (matrix-product deriva-
tive), Proposition 6 (Kronecker-product derivative), Proposition 9, the Identification Theorem 1, and
Lemma 1.

Step 1. For any i ∈ {1, 2,K,Q, V } we have

∂Z

∂Wi
= JZ Bi, JZ ∈ RLdV ×LdV ,

where Bi :=
∂S

∂Wi
is given casewise by

B1 = (IL ⊗W⊤
2 )Dσ (Y ⊗ Idff

) ∈ RLdV ×n1 , B2 = σ(YW1)⊗ IdV
∈ RLdV ×n2 ,

Bk = JSY JY Gk ∈ RLdV ×nk , k ∈ {K,Q, V },
with JSY = ∂S

∂Y = (IL ⊗W⊤
2 )Dσ(IL ⊗W⊤

1 ) + (IL ⊗ IdV
) ∈ RLdV ×LdV , JY ∈ RLdV ×LdV and

Gk as in Theorem 4. By Proposition 3 and Theorem 3 we obtain the Hessian block

∂2Z

∂Wi∂Wj
= (JZ ⊗ Ini

) ξij +
(
ILdV

⊗B⊤
i

)
HZBj , ξij :=

∂Bi

∂Wj
∈ R(LdV ·ni)×nj .

Step 2: First-level Jacobians Bi (dimensions). From Theorem 4 and Lemma 1:

B1 = (IL ⊗W⊤
2 )Dσ (Y ⊗ Idff

) ∈ RLdV ×n1 , B2 = σ(YW1)⊗ IdV
∈ RLdV ×n2 ,

where Dσ ∈ RLdff×Ldff , (Y ⊗ Idff
) ∈ RLdff×dV dff . For k ∈ {K,Q, V },

Bk = JSY JY Gk ∈ RLdV ×nk .

Step 3: Second Jacobians ξij for all pairs.

3.1) Pure-FFN pairs. - (1, 1): B1 depends on W1 only through σ(YW1), whose Hessian is zero
a.e. by Lemma 1, while YW1 is linear in W1 (Property 5). Hence ξ11 = 0 with the stated size.

- (2, 2): B2 is linear in W2 (Property 5), hence ξ22 = 0.

- (1, 2): Differentiate B2 = σ(YW1) ⊗ IdV
w.r.t. W1. Using Proposition 6 for ∂(X⊗Y)

∂X with
X = σ(YW1) and Y = IdV

, we get

∂B2

∂W1
=
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) ∂ vecr(σ(YW1))

∂W1
.

By Lemma 1 and Property 5, ∂ vecr(σ(YW1))
∂W1

= Dσ (Y ⊗ Idff
). Thus

ξ12 =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ (Y ⊗ Idff
)
)
.

- (2, 1): Differentiate B1 = (IL ⊗W⊤
2 )Dσ (Y ⊗ Idff

) w.r.t. W2. Using Proposition 3 on the left
factor (IL ⊗W⊤

2 ) and Proposition 6 plus Proposition 9 for its derivative, we obtain

∂ vecr(B1)

∂W2
=
(
ILdV

⊗
(
(Y ⊗ Idff

)⊤D⊤
σ

)) ∂ vecr(IL ⊗W⊤
2 )

∂W2
.

By Proposition 6 and Proposition 9,

∂ vecr(IL ⊗W⊤
2 )

∂W2
=
(
IL ⊗KdV ,L ⊗ Idff

) (
vecr(IL)⊗ IdV dff

)
Kdff ,dV

.

Collecting,

ξ21 =
(
IL ⊗W⊤

2

)
Dσ

(
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
,

which is the stated form. (Both ξ12 and ξ21 are consistent and coincide almost everywhere when
inserted into equation 12; see symmetry below.)
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3.2) FFNattention pairs (1, k), (2, k) with k ∈ {K,Q, V }. - (1, k): B1 = (IL⊗W⊤
2 )Dσ(Y⊗Idff

).
Almost everywhere ∂Dσ

∂Y = 0 by Lemma 1. Hence only the last factor varies with Wk. Using
Proposition 3 (with the first factors constant a.e.), and the chain rule through Y:

∂ vecr(Y ⊗ Idff
)

∂Wk
=

(
∂(Y ⊗ Idff

)

∂Y

)
∂ vecr(Y)

∂Wk
.

By Proposition 6 with X = Y and Y = Idff
,

∂(Y ⊗ Idff
)

∂Y
=
(
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
.

Also ∂ vecr(Y)
∂Wk

= JY Gk (Theorem 4 and Theorem 2). Therefore

ξ1k =
(
(IL ⊗W⊤

2 )Dσ ⊗ Ink

) (
IL ⊗Kdff ,dV

⊗ Idff

) (
ILdV

⊗ vecr(Idff
)
)
(JY Gk) .

- (2, k): B2 = σ(YW1) ⊗ IdV
. Differentiating the Kronecker product w.r.t. its first factor and

applying the chain rule through Y,

ξ2k =
(
IL ⊗KdV ,dff

⊗ IdV

) (
ILdff

⊗ vecr(IdV
)
) (

Dσ(IL ⊗W⊤
1 )JY Gk

)
,

where we used Property 5 to write ∂(YW1)
∂Y = IL ⊗W⊤

1 and Lemma 1 for ∂σ(·)
∂(·) = Dσ .

3.3) Pure-attention pairs (k, ℓ) with k, ℓ ∈ {K,Q, V }. We start from Bk = JSY JY Gk. Almost
everywhere ∂JSY

∂Y = 0 because Dσ is piecewise constant (Lemma 1). Therefore,

∂ vecr(Bk)

∂Wℓ
= (JSY ⊗ Ink

)
∂ vecr(JY Gk)

∂Wℓ

by Proposition 3. Again by Proposition 3 with A(·) = JY and B(·) = Gk,

∂ vecr(JY Gk)

∂Wℓ
= (JY ⊗ Ink

)Φkℓ +
(
ILdV

⊗G⊤
k

) ∂ vecr(JY )

∂Wℓ
.

By Theorem 3 and the Identification Theorem 1, ∂ vecr(JY )
∂Wℓ

= HY Gℓ. Thus

ξkℓ = (JSY ⊗ Ink
)
[(
ILdV

⊗G⊤
k

)
(HY Gℓ) + (JY ⊗ Ink

)Φkℓ

]
.

It remains to specify Φkℓ :=
∂Gk

∂Wℓ
. Using the explicit Gk from Theorem 4 and only Proposition 3,

Proposition 6, and Proposition 9, we obtain the forms stated in the theorem. Under the uniform-
attention simplification (so ∂A

∂M is a constant matrix), GV does not depend on WQ,WK ,WV ; GQ

does not depend on WQ; GK does not depend on WK ; hence ΦV V = ΦV Q = ΦV K = ΦQQ =
ΦKK = 0; and the remaining mixed terms are given by differentiating the Kronecker factors using
Proposition 6 and the transpose dependence using Proposition 9, exactly as written.

Step 4: Symmetry of mixed partials. All nonlinearities that could obstruct symmetry are ReLU and
LayerNorm. ReLU has zero Hessian almost everywhere (Lemma 1), so its contribution to second
differentials vanishes a.e. LayerNorm Hessians HZ and HY are the derivatives of Jacobians w.r.t.
their inputs and enter symmetrically (Theorem 3). All remaining mappings are multilinear in param-
eters and matrices independent of (Wi,Wj); therefore, by repeated applications of Proposition 3
and Proposition 6, the mixed partials commute, giving H

(i,j)
tr = H

(j,i)
tr almost everywhere.

This completes the proof.

C.6 PROOF OF THEOREM 6

Proof. We start from the block formula equation 12:

H
(i,j)
tr =

(
JZ ⊗ Ini

)
ξij +

(
ILdV

⊗B⊤
i

)
HZ Bj .

Applying the matrix sum norm (Property 8) and the product norm (Property 10) together with the
Kronecker product norm (Property 9) yields∥∥H(i,j)

tr

∥∥
2
≤
∥∥JZ⊗Ini

∥∥
2
∥ξij∥2+

∥∥ILdV
⊗B⊤

i

∥∥
2
∥HZ∥2 ∥Bj∥2 = ∥JZ∥2 ∥ξij∥2+∥Bi∥2 ∥HZ∥2 ∥Bj∥2,
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establishing equation 8.

It remains to provide explicit operator-norm estimates for ∥Bi∥2 and ∥ξij∥2 used inside equation 8.
We rely on Properties 10, 9, 8, 7, 12, and the commutation properties (Definition 3). Throughout
we use ∥Km,n∥2 = 1 for commutation matrices, and the identities ∥vecr(Id)∥2 = ∥Id∥F =

√
d

(Property 7) and ∥Ip∥2 = 1.

As we’ve already shown in C.1: ∥∥∥∂A
∂T

∥∥∥
2
≤ 1

L
.

∥Z1∥2 = ∥(IL ⊗X⊤) (∂A/∂T) (X⊗X)∥2 ≤ ∥X∥2
1

L
∥X∥22 =

1

L
∥X∥32∥∥∥∂2A

∂T2

∥∥∥
2
≤ 6, ∥Z2∥2 ≤ ∥X∥52

∥∥∥∂2A

∂T2

∥∥∥
2
≤ 6∥X∥52,

∥A∥2 ≤
√
LL ∥A∥max = L.

Therefore ∥AX∥2 ≤ ∥A∥2∥X∥2 ≤ L∥X∥2 (Property 10).

We also use the attention curvature blocks Φkℓ from Lemma 2. Using Properties 10, 9 and the
bounds on ∥Z1∥2, ∥Z2∥2 above, we have (again similarly to C.1)

∥ΦV V ∥2 = 0,

∥ΦQQ∥2 ≤ 2

LdV dK
∥WV ∥2 ∥WK∥2 ∥Z2∥2 ∥WK∥2 ≤ 12

LdV dK
∥WV ∥2∥WK∥22∥X∥52,

∥ΦV Q∥2 ≤ 2

LdV
√
dK

∥IL ⊗ S∥2 ∥Z1∥2 ∥IdV
⊗WK∥2 ≤ 2

L2
√
dV dK

∥WK∥2∥X∥32,

∥ΦQK∥2 ≤ 2

LdV dK
∥WV ∥2∥WK∥2∥Z2∥2∥WQ∥2 +

2

LdV
√
dK

∥WV ∥2 ∥Z1∥2 ∥S∥2

≤ 12

LdV dK
∥WV ∥2∥WK∥2∥WQ∥2∥X∥52 +

2

L2
√
dV dK

∥WV ∥2∥X∥32,

and ∥ΦKQ∥2 is analogous by symmetry (Definition 3 and ∥Km,n∥2 = 1), while ∥ΦQV ∥2, ∥ΦKV ∥2
match ∥ΦV Q∥2 up to swapping roles.

Next we estimate each ∥Bi∥2 and ∥ξij∥2.

A) Bounds for ∥Bi∥2.

- B1 = (IL ⊗ W⊤
2 )Dσ (Y ⊗ Idff

) (Theorem 5; Lemma 1). Using Properties 9, 10, 12, and
∥Dσ∥2 ≤ 1,

∥B1∥2 ≤ ∥IL ⊗W⊤
2 ∥2 ∥Dσ∥2 ∥Y ⊗ Idff

∥2 = ∥W2∥2 ∥Y∥2. (13)

- B2 = σ(YW1)⊗ IdV
(Theorem 5), hence

∥B2∥2 = ∥σ(YW1)∥2 (14)

by Property 9.

- For k ∈ {K,Q, V }: Bk = JSY JY Gk (Theorem 5), so

∥Bk∥2 ≤ ∥JSY ∥2 ∥JY ∥2 ∥Gk∥2 (15)

(Property 10). Here JSY = (IL ⊗W⊤
2 )Dσ(IL ⊗W⊤

1 ) + (IL ⊗ IdV
) implies

∥JSY ∥2 ≤ ∥IL ⊗W⊤
2 ∥2 ∥Dσ∥2 ∥IL ⊗W⊤

1 ∥2 + ∥IL ⊗ IdV
∥2 = ∥W2∥2 ∥W1∥2 + 1, (16)

by Properties 8, 10, 9, 12, and ∥Dσ∥2 ≤ 1.

Furthermore, using the attention-Jacobian forms (Theorem 4) and Properties 10, 9:

∥GV ∥2 ≤ L∥X∥2, ∥GQ∥2 ≤ 1

L
√
dK

∥WV ∥2∥WK∥2∥X∥32, ∥GK∥2 ≤ 1

L
√
dK

∥WV ∥2∥WQ∥2∥X∥32.

(17)
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B) Bounds for ∥ξij∥2. Using the explicit formulas from Theorem 5, Properties 9, 10, 7, and
∥Km,n∥2 = 1:

B.1 Pure-FFN pairs:

∥ξ11∥2 = 0, (18)
∥ξ22∥2 = 0, (19)
∥ξ12∥2 ≤ ∥IL ⊗KdV ,dff

⊗ IdV
∥2 ∥ILdff

⊗ vecr(IdV
)∥2 ∥Dσ∥2 ∥Y ⊗ Idff

∥2
= 1 · ∥vecr(IdV

)∥2 · 1 · ∥Y∥2 =
√
dV ∥Y∥2, (20)

∥ξ21∥2 ≤ ∥IL ⊗W⊤
2 ∥2 ∥Dσ∥2 ∥IL ⊗Kdff ,dV

⊗ Idff
∥2 ∥ILdV

⊗ vecr(Idff
)∥2

= ∥W2∥2 · 1 · 1 · ∥vecr(Idff
)∥2 =

√
dff ∥W2∥2. (21)

B.2 FFNattention pairs (k ∈ {K,Q, V }):

∥ξ1k∥2 ≤ ∥(IL ⊗W⊤
2 )Dσ ⊗ Ink

∥2 ∥IL ⊗Kdff ,dV
⊗ Idff

∥2 ∥ILdV
⊗ vecr(Idff

)∥2 ∥JY ∥2 ∥Gk∥2
≤ ∥W2∥2 · 1 · 1 ·

√
dff · ∥JY ∥2 ∥Gk∥2 =

√
dff ∥W2∥2 ∥JY ∥2 ∥Gk∥2, (22)

∥ξ2k∥2 ≤ ∥IL ⊗KdV ,dff
⊗ IdV

∥2 ∥ILdff
⊗ vecr(IdV

)∥2 ∥Dσ∥2 ∥IL ⊗W⊤
1 ∥2 ∥JY ∥2 ∥Gk∥2

≤ 1 ·
√

dV · 1 · ∥W1∥2 · ∥JY ∥2 · ∥Gk∥2 =
√
dV ∥W1∥2 ∥JY ∥2 ∥Gk∥2. (23)

B.3 Pure-attention pairs (k, ℓ ∈ {K,Q, V }):

ξkℓ =
(
JSY ⊗ Ink

)[(
ILdV

⊗G⊤
k

)
(HY Gℓ) +

(
JY ⊗ Ink

)
Φkℓ

]
.

Thus, by Properties 10, 9,

∥ξkℓ∥2 ≤ ∥JSY ∥2
(
∥ILdV

⊗G⊤
k ∥2 ∥HY ∥2 ∥Gℓ∥2+∥JY ∥2 ∥Φkℓ∥2

)
= ∥JSY ∥2

(
∥Gk∥2 ∥HY ∥2 ∥Gℓ∥2+∥JY ∥2 ∥Φkℓ∥2

)
.

(24)

C) Substituting into the block estimate equation 8. For each pair (i, j), we substitute the corre-
sponding ∥ξij∥2 from equation 18equation 24 and the ∥Bi∥2 from equation 13equation 15 (with
equation 16, equation 17) into∥∥H(i,j)

tr

∥∥
2
≤ ∥JZ∥2 ∥ξij∥2 + ∥Bi∥2 ∥HZ∥2 ∥Bj∥2.

This yields, for example:∥∥H(1,1)
tr

∥∥
2
≤ ∥JZ∥2 · 0 + ∥B1∥22∥HZ∥2 ≤ ∥HZ∥2 (∥W2∥2∥Y∥2)2,∥∥H(1,2)

tr

∥∥
2
≤ ∥JZ∥2

√
dV ∥Y∥2 + ∥HZ∥2 (∥W2∥2∥Y∥2) ∥σ(YW1)∥2,∥∥H(1,k)

tr

∥∥
2
≤ ∥JZ∥2

√
dff ∥W2∥2 ∥JY ∥2 ∥Gk∥2 + ∥HZ∥2 (∥W2∥2∥Y∥2) (∥JSY ∥2∥JY ∥2∥Gk∥2),∥∥H(k,ℓ)

tr

∥∥
2
≤ ∥JZ∥2 ∥JSY ∥2

(
∥Gk∥2 ∥HY ∥2 ∥Gℓ∥2 + ∥JY ∥2 ∥Φkℓ∥2

)
+ ∥HZ∥2 (∥JSY ∥2∥JY ∥2∥Gk∥2) (∥JSY ∥2∥JY ∥2∥Gℓ∥2),

etc., where we then use equation 16, equation 17, and the ∥Φkℓ∥2 bounds above to turn each right-
hand side into explicit functions of L, dV , dff , dK , and the spectral norms of X and the weight
matrices.

In the estimations above we calculate ∥Y∥2 and ∥S∥2 according to Proposition 10 and both HZ and
HY can be estimated by Lemma 4 with appropriate inputs and assumptions of σmin and σ′

min.

C.7 PROOF OF THEOREM 7

Proof.

|Lk+1(w)− Lk(w)| ⩽ 1

k + 1

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣+
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+
1

2(k + 1)
∥w −w∗∥22

∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

.

First Term

The first term is the difference in loss values at the optimal parameters w∗:

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣ .
Assume the loss function l(fw∗(xi),yi) is bounded, i.e., 0 ⩽ l(fw∗(xi),yi) ⩽ L, where L is a

constant. Then: - l(fw∗(xk+1),yk+1) ⩽ L, -
1

k

∑k
i=1 l(fw∗(xi),yi) ⩽ L.

Therefore

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣ ⩽ L+ L = 2L.

Thus, the contribution of the first term is:

1

k + 1

∣∣∣∣∣l(fw∗(xk+1),yk+1)−
1

k

k∑
i=1

l(fw∗(xi),yi)

∣∣∣∣∣ ⩽ 2L

k + 1
.

Second Term

The second term involves the difference in Hessians:

∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

,

where Hk+1(w
∗) = ∇2

wl(fw∗(xk+1),yk+1) is the Hessian of the loss for the (k + 1)-th sample,

and
1

k

∑k
i=1 Hi(w

∗) = Hk(w
∗) is the Hessian of Lk, the empirical loss over the first k samples.

Rewrite the expression:

Hk(w
∗) =

1

k

k∑
i=1

Hi(w
∗),

Hk+1(w
∗)−Hk(w

∗) = Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗).

Evaluate the norm using the triangle inequality:

∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

⩽ ∥Hk+1(w
∗)∥2 +

1

k

∥∥∥∥∥
k∑

i=1

Hi(w
∗)

∥∥∥∥∥
2

.

Assume the individual Hessians are bounded, i.e., ∥Hi(w
∗)∥2 ⩽ M for some constant M . Then:

∥Hk+1(w
∗)∥2 ⩽ M ,

∥∥∥∑k
i=1 Hi(w

∗)
∥∥∥
2
⩽
∑k

i=1 ∥Hi(w
∗)∥2 ⩽ kM .

Thus:
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∥∥∥∥∥Hk+1(w
∗)− 1

k

k∑
i=1

Hi(w
∗)

∥∥∥∥∥
2

⩽ M +
1

k
· kM = M +M = 2M.

The contribution of the second term is:

1

2(k + 1)
∥w −w∗∥22 ∥Hk+1(w

∗)−Hk(w
∗)∥2 ⩽ 1

2(k + 1)
∥w −w∗∥22 ·2M =

M ∥w −w∗∥22
k + 1

.

Combining both terms:

|Lk+1(w)− Lk(w)| ⩽ 2L

k + 1
+

M ∥w −w∗∥22
k + 1

.

D ADDITIONAL THEORETICAL PROPERTIES

Lemma 2 (Attention second derivatives Φ from functional Hessian). Consider single-head scaled
dot-product attention

F(X) = A(T)XWV , T =
1√
dK

XWQW
⊤
KX⊤,

with X ∈ RL×dV , WQ,WK ∈ RdV ×dK , WV ∈ RdV ×dV . The attention map A(·) applies row-
wise softmax. We use row-wise vectorization vecr(·) and the commutation matrices Km,n from
Definition 3.

Define the generalized functional Hessian blocks (following Ormaniec et al. (2024) in our vecr
convention) by

Hf(Wi,Wj) =
(
∂ℓ
∂F ⊗ Ipiqi

) ∂2F

∂Wi∂Wj
,

where piqi is the size of Wi (e.g. pQqQ = dV dK), and ∂ℓ
∂F ∈ RL×dV is the loss gradient.

Specializing to the squared-error loss ℓ(F) = 1
2∥F −Target∥2F , one has ∂ℓ

∂F = F −Target and
the row-wise contraction matrix

Rm := vecr
(
F(X)−Target

)⊤ ⊗ Im ∈ Rm×(m·LdV ).

Then for i ∈ {V,Q,K} with ni := piqi, the functional Hessian blocks can be factorized as

Hf(Wi,Wj) = Rni
Φij , Φij :=

∂2F

∂Wi∂Wj
∈ R(LdV ·ni)×nj .

In particular, the model-curvature blocks Φij (to be used in the Transformer Hessian) are obtained
from the corresponding expressions in (Ormaniec et al., 2024, Thm. 3.2) by removing the left con-
traction Rni .

We now list the explicit blocks needed in our derivation. Define the fixed reshaping operator

S :=
(
IdV

⊗KdV ,dV

) (
vecrIdV

⊗ IdV

)
∈ Rd2

V ×dV ,

and the softmax-derivative operators

Z1 := (IL⊗X⊤)(∂A/∂T)(X⊗X) ∈ RLdV ×d2
V ,Z2 :=

(
IL⊗X⊤⊗X⊤⊗X⊤) ∂2A

∂T2
(X⊗X) ∈ RLd3

V ×d2
V ,

where ∂2A
∂T2 denotes the (row-wise) softmax second derivative tensor arranged compatibly with vecr

and Kronecker products as above, and Z1 is the (first-order) softmax derivative linear operator
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used in Ormaniec et al. (2024) (we keep the exact form as defined there; its size ensures dimensional
consistency below).

Then the pure attention second derivatives (model curvature) are:

ΦV V = 0(LdV ·d2
V )×d2

V
,

ΦQQ =
2

LdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2

(
IdV

⊗WK

)
∈ R(LdV ·dV dK)×dV dK ,

ΦV Q =
2

LdV
√
dK

(
IL ⊗ S

)
Z1

(
IdV

⊗WK

)
∈ R(LdV ·d2

V )×dV dK ,

ΦQK =
2

LdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2

(
WQ ⊗ IdV

)
KdK ,dV

+
2

LdV
√
dK

(
IdV

⊗W⊤
V ⊗ IdV

) (
Z1 ⊗ IdV

)
S⊗ IdK

∈ R(LdV ·dV dK)×dV dK .

Moreover, by symmetry of second derivatives, ΦKQ equals ΦQK with WQ,WK swapped and
commutation adjusted by K·,· (Definition 3). Analogous symmetric relations give ΦQV and ΦKV

from ΦV Q.

Proof. By definition of the generalized functional Hessian in Ormaniec et al. (2024),

Hf(Wi,Wj) =
(
∂ℓ
∂F ⊗ Ipiqi

) ∂2F

∂Wi∂Wj
.

For squared-error loss, ∂ℓ
∂F yields the contraction Rpiqi defined above; hence Hf(Wi,Wj) =

Rni
Φij with Φij = ∂2F

∂Wi∂Wj
. The explicit forms for Hf in (Ormaniec et al., 2024, Thm. 3.2)

then imply the above formulas for Φij by simply removing the leading contraction Rni
.

Lemma 3 (ReLU derivative and Hessian). Let X ∈ Rm×n, almost everywhere the following holds:

∂ReLU(X)

∂X
= diag

(
vecr(1{X>0})

)
,

∂2ReLU(X)

∂X2
= 0.

Proof. We start with the elementwise definition of the ReLU function:

ReLU(x) = max(0, x).

Thus, for each entry xij of X ∈ Rm×n, we have

∂ ReLU(xij)

∂xij
=


1 if xij > 0,

0 if xij < 0,

undefined (subgradient in [0, 1]) if xij = 0.

For the scalar case x ∈ R, the nondifferentiable set is {0}, which is a measure-zero subset of R. For
the matrix case, we identify X ∈ Rm×n with a point in Rmn. The nondifferentiable set is

N =
⋃
i,j

{X ∈ Rm×n : xij = 0}.

Each set {xij = 0} is a hyperplane of codimension 1 in Rmn, and therefore has Lebesgue measure
zero. Since N is a finite union of such hyperplanes, N also has measure zero. Thus, ReLU is
differentiable almost everywhere in Rm×n.

At differentiable points (X /∈ N ), applying row-wise vectorization and the identification theorem
from Proposition 1 yields

vecr(dReLU(X)) = diag(vecr(1{X>0})) vecr(dX),
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using Property 3 for the indicator matrix treated as a Hadamard multiplier and Property 6 for the
diagonal form. Therefore,

∂ReLU(X)

∂X
= diag

(
vecr(1{X>0})

)
.

Since the Jacobian is piecewise constant (its entries depend only on the sign of xij), its differential
vanishes almost everywhere:

d

(
∂ReLU(X)

∂X

)
= 0, X /∈ N .

Hence the Hessian is zero almost everywhere:

∂2ReLU(X)

∂X2
= 0.

This completes the proof.

Proposition 10 (Spectral-norm estimates for Y and S = Y + FFN(Y)). Let X ∈ RL×dV , Y =
LayerNorm(F(X) +X) ∈ RL×dV and

FFN(Y) = σ(YW1)W2, W1 ∈ RdV ×dff , W2 ∈ Rdff×dV ,

and set S = Y + FFN(Y) ∈ RL×dV . Then the following spectral-norm bounds hold:

∥Y∥2 ≤ ∥Y∥F =
√
LdV , (25)

∥FFN(Y)∥2 ≤
√
min(L, dff ) ∥Y∥2 ∥W1∥2 ∥W2∥2, (26)

∥S∥2 ≤ ∥Y∥2 + ∥FFN(Y)∥2 ≤
√
LdV

(
1 +

√
min(L, dff ) ∥W1∥2 ∥W2∥2

)
. (27)

Proof. We proceed using only the properties stated in the preliminaries.

1) Bound for ∥Y∥2. By the LayerNorm definition (Theorem 2), write

Y = P(S0)M(S0), S0 := F(X) +X,

where M(S0) = S0 − 1
dV

S01dV
1⊤
dV

and P = diag−1(σ) with σ = 1√
dV

(M◦21)◦1/2 applied row-
wise. For any row i, denote mi the i-th row of M and σi =

1√
dV

∥mi∥2. Then the i-th row of Y is
yi = mi/σi, so

∥yi∥22 =
∥mi∥22
σ2
i

=
∥mi∥22

(1/dV ) ∥mi∥22
= dV .

Hence every row of Y has Euclidean norm
√
dV . Therefore,

∥Y∥2F =

L∑
i=1

∥yi∥22 = LdV , so ∥Y∥F =
√
LdV .

By the norm inequality ∥A∥2 ≤ ∥A∥F (Property 7), we obtain equation 25.

2) Bound for ∥FFN(Y)∥2. We estimate step-by-step using only matrix norm properties.

First,

∥FFN(Y)∥2 = ∥ReLU(YW1)W2∥2 ≤ ∥ReLU(YW1)∥2 ∥W2∥2 (Property 10).

Next, use ∥ · ∥2 ≤ ∥ · ∥F (Property 7) to get

∥ReLU(YW1)∥2 ≤ ∥ReLU(YW1)∥F .

By Definition 1, ∥ · ∥2F is the sum of squares. Entrywise σ(·) satisfies 0 ≤ σ(a) ≤ |a|, hence
σ(a)2 ≤ a2 for each entry a ∈ R. Therefore,

∥σ(YW1)∥F ≤ ∥YW1∥F .
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Using the inequality ∥ · ∥F ≤
√
d ∥ · ∥2 with d = rank(·) from Property 7 (row X = ∥ · ∥F , column

Y = ∥ · ∥2), we obtain
∥YW1∥F ≤

√
rank(YW1) ∥YW1∥2.

Since YW1 ∈ RL×dff , rank(YW1) ≤ min(L, dff ). Thus

∥YW1∥F ≤
√
min(L, dff ) ∥YW1∥2 ≤

√
min(L, dff ) ∥Y∥2 ∥W1∥2 (Property 10).

Collecting,

∥FFN(Y)∥2 ≤ ∥σ(YW1)∥F ∥W2∥2 ≤
√
min(L, dff ) ∥Y∥2 ∥W1∥2 ∥W2∥2,

which is equation 26.

3) Bound for ∥S∥2. By the sum-norm inequality (Property 8),

∥S∥2 = ∥Y + FFN(Y)∥2 ≤ ∥Y∥2 + ∥FFN(Y)∥2.
Substituting equation 25 and equation 26 yields equation 27.

Lemma 4 (LayerNorm derivative and Hessian norm estimation). Let X ∈ Rm×n. Layer-
Norm derivative JLN(X) = ∂LayerNorm(X)

∂X is calculated according to Theorem 2 and its Hessian

HLN(X) = ∂2LayerNorm(X)
∂X2 is calculated as in Theorem 3. Then, the following estimation holds:

∥∥JLN(X)
∥∥
2
≤ 1

σmin
+

∥X∥22√
nσ3

min

, (28)

∥∥HLN(X)
∥∥
2
≤ ∥X∥2

σ3
min

(
1 +

√
m
n

)
+

∥X∥22√
nσ3

min

+
3 ∥X∥32
nσ5

min

. (29)

where σmin denotes min
i

∥Mi∥2, where M(X) = X (In − 1
n1n1

⊤
n )

Proof. We rely only on the properties established in the preliminaries and on Theorems 2–3.

1) LayerNorm Jacobian structure and bound. By Theorem 2 (with L→m, dV →n),

JLN(X) = (P⊗ In)G+ (Im ⊗M⊤)H,

where G = Imn − 1
n (Im ⊗ 1n×n), H = ∂P

∂X , and P = diag−1(σ). Using Properties 9, 10, 8,

∥JLN(X)∥2 ≤ ∥P⊗ In∥2 ∥G∥2 + ∥Im ⊗M⊤∥2 ∥H∥2 = ∥P∥2 ∥G∥2 + ∥M∥2 ∥H∥2.
We now bound each factor:

- ∥G∥2 ≤ 1 since 1
n1n×n is a projection, hence ∥In − 1

n1n×n∥2 ≤ 1 and Kronecker preserves the
spectral norm bound (Properties 10, 9, Proposition 2).

- ∥P∥2 = ∥D−1∥2 = 1/σmin, where D = diag(σ).

- ∥M∥2 ≤ ∥X∥2, because M(X) = X (In − 1
n1n1

⊤
n ) and the right factor is a projector with norm

≤ 1 (Property 10).

- For ∥H∥2 =
∥∥ ∂P
∂X

∥∥
2
, Theorem 2 plus Propositions 5, 6, 7, 8 and Properties 10, 9 give (see the same

chain as in Theorem 2):∥∥∥ ∂P
∂X

∥∥∥
2
≤ 1√

n
∥D−1⊗D−⊤∥2

∥∥∥diag−1
(
vec◦1/2r (M◦21n)

)∥∥∥
2
∥Im⊗1⊤

n ∥2 ∥diag(vecr(M))∥2
∥∥∥∂M
∂X

∥∥∥
2
.

Using ∥D−1 ⊗D−⊤∥2 = ∥D−1∥22 = 1
σ2
min

,
∥∥diag−1(·)

∥∥
2
= 1

mini

√∑
v M2

i,v

= 1√
nσmin

,

∥Im ⊗ 1⊤∥2 =
√
n, ∥diag(vecr(M))∥2 = ∥M∥max ≤ ∥M∥2 (Property 7), and

∥∥∂M
∂X

∥∥
2
≤ 1

(projection), we obtain

∥H∥2 ≤ 1√
nσ2

min

· 1√
nσmin

·
√
n · ∥M∥2 · 1 ≤ ∥X∥2√

nσ3
min

.
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Collecting the bounds gives equation 28:

∥JLN(X)∥2 ≤ 1

σmin
· 1 + ∥X∥2 ·

∥X∥2√
nσ3

min

=
1

σmin
+

∥X∥22√
nσ3

min

.

2) LayerNorm Hessian structure and bound. From Theorem 3 (with m,n), using ∂2M
∂X2 = 0,

HLN(X) = (Imn ⊗G⊤)
∂(P⊗ In)

∂X
+
(
(Im ⊗M⊤)⊗ Imn

) ∂2P

∂X2
+ (Imn ⊗H⊤)

∂(Im ⊗M⊤)

∂X
.

We bound the three terms separately with Properties 10, 9.

(i) First term. By Proposition 6,

∂(P⊗ In)

∂X
= (Im ⊗Kn,m ⊗ In) (Im2 ⊗ vecr(In))

∂P

∂X
,

therefore∥∥∥(Imn ⊗G⊤)
∂(P⊗ In)

∂X

∥∥∥
2
≤ ∥G∥2 ∥Im2 ⊗ vecr(In)∥2

∥∥∥ ∂P
∂X

∥∥∥
2
= 1 ·

√
n · ∥X∥2√

nσ3
min

=
∥X∥2
σ3
min

.

(ii) Second term. Using ∥Im ⊗M⊤∥2 = ∥M∥2 ≤ ∥X∥2 and the bound below for
∥∥ ∂2P
∂X2

∥∥
2
,∥∥∥((Im ⊗M⊤)⊗ Imn

) ∂2P

∂X2

∥∥∥
2
≤ ∥X∥2

∥∥∥ ∂2P

∂X2

∥∥∥
2
.

We now bound
∥∥ ∂2P
∂X2

∥∥
2

following the same chain as in the proof of Theorem 3: write ∂P
∂X =

1√
n
A1(X)EB1(X) and differentiate using Property 10, while bounding the factors with Propo-

sitions 5, 6, 7, 8 and Properties 10, 9, 7. This yields∥∥∥ ∂2P

∂X2

∥∥∥
2

≤ 1√
nσ3

min

∥X∥2 +
3

nσ5
min

∥X∥22.

Therefore, ∥∥∥((Im ⊗M⊤)⊗ Imn

) ∂2P

∂X2

∥∥∥
2
≤ ∥X∥22√

nσ3
min

+
3 ∥X∥32
nσ5

min

.

(iii) Third term. By Proposition 6 and Proposition 9,

∂(Im ⊗M⊤)

∂X
= (Im ⊗Kn,m ⊗ Im) (vecr(Im)⊗ Imn)

∂M

∂X
,

so∥∥∥(Imn⊗H⊤)
∂(Im ⊗M⊤)

∂X

∥∥∥
2
≤ ∥H∥2 ∥vecr(Im)⊗Imn∥2

∥∥∥∂M
∂X

∥∥∥
2
=

∥X∥2√
nσ3

min

·
√
m·1 =

√
m√
n

∥X∥2
σ3
min

.

Summing (i)(iii) with Property 8 yields equation 29:

∥HLN(X)∥2 ≤ ∥X∥2
σ3
min

+
( ∥X∥22√

nσ3
min

+
3 ∥X∥32
nσ5

min

)
+

√
m√
n

∥X∥2
σ3
min

=
∥X∥2
σ3
min

(
1+
√

m
n

)
+

∥X∥22√
nσ3

min

+
3 ∥X∥32
nσ5

min

.

This completes the proof.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the course of this work, a Large Language Model (LLM) served as a general-purpose assistant for
text drafting and coding tasks. Its application facilitated the initial generation of code snippets and
the formulation and subsequent simplification of natural language explanations to ensure smooth
reading. Every piece of content produced with LLM assistance underwent careful scrutiny, editing,
and validation by the authors to guarantee its correctness and originality. The authors bear sole
responsibility for all material presented herein.
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