
Speculative Verification: Exploiting Information Gain
to Refine Speculative Decoding

Abstract

LLMs have low GPU efficiency and high latency due to autoregressive decoding.1

Speculative decoding (SD) mitigates this using a small draft model to speculatively2

generate multiple tokens, which are then verified in parallel by a target model.3

However, when speculation accuracy is low, the overhead from rejected tokens can4

offset the benefits, limiting SD’s effectiveness, especially at large batch sizes.5

To address this, we propose Speculative Verification (SV), an efficient augmentation6

to SD that dynamically predicts speculation accuracy and adapts the verification7

length to maximize throughput. SV introduces a companion model – a small8

auxiliary model similar in size to the draft model – to estimate the alignment9

between draft and target model distributions. By maximizing the information gain10

from quantifying this alignment, SV refines verification decisions, reducing wasted11

computation on rejected tokens and improving decoding efficiency. Moreover,12

SV requires no modifications to the draft or target models and is compatible with13

existing SD variants.14

We extensively evaluated SV on publicly available LLMs across three NLP tasks15

using nine combinations of draft, companion, and target models, including 13B–16

72B target models and three types of variations: base (no finetuning), instruction-17

tuned, and task fine-tuned. Across all experiments and batch sizes (4–80), SV18

consistently outperforms both SD and standard decoding with the target model.19

It improves SD performance by up to 2×, with an average speedup of 1.4× in20

large-batch settings (batch sizes 32–80). These results demonstrate SV’s robustness,21

scalability, and practical utility for efficient LLM inference.22

1 Introduction23

Large Language Models (LLMs) are widely used across many application domains, but their size and24

computational cost make large-scale inference serving a significant challenge. In particular, LLMs25

rely on autoregressive decoding – generating one token at a time – so producing k tokens requires k26

sequential steps, leading to GPU underutilization and increased latency.27

Speculative Decoding (SD)[1] addresses this problem by using a small draft model to speculatively28

generate tokens, which are then verified in parallel by a larger target model. Because the draft model29

is fast and the target model can validate multiple tokens in a single forward pass, overall latency is30

reduced. However, when drafted tokens are rejected, both their verification and the recomputation31

incur additional overhead.32

SD’s effectiveness depends on speculation accuracy, i.e., the fraction of drafted tokens accepted by33

the target model. Low accuracy negates its benefits especially for scaled inference serving; if most34

drafted tokens are rejected, or only a portion for large batch sizes, the verification overhead makes SD35

slower than target decoding. Speculation accuracy depends on the alignment between the draft and36

target model distributions, which fluctuates due to model capability gaps and input context variations.37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Identifying when these distributions align allows for adjusting the speculation length to minimize38

verification overhead and optimize latency. However, predicting this alignment is challenging due39

to the complexity of LLM computation. A prior approach proposed tracking acceptance rates via a40

moving average[2], but our evaluation shows this method is ineffective.41

In this paper, we propose speculative verification (SV), an approach to reliably predict speculation42

accuracy and maintain SD’s performance gains. Building on an information-theoretic foundation, SV43

compares the draft model’s output distribution with that of a similarly-sized companion model. By44

quantifying the alignment of their distributions, SV estimates the likelihood that the target model45

will accept the drafted tokens. Using these estimates, SV dynamically adjusts the verification length,46

minimizing verification cost for tokens likely to be rejected. This reduces the overhead of misaligned47

speculation and enables SD to scale effectively for real-world inference serving.48

This paper contributes the concept of speculative verification (SV) and an optimized scheduling49

strategy for SV. Through extensive evaluation with publicly available LLMs across three NLP tasks,50

we show that our techniques improve performance by up to 2×, with an average speedup of 1.4× in51

large-batch settings (32–80).52

The rest of the paper is structured as follows. Section 2 provides background information and related53

work on SD. Section 3 examines uncertainty in speculation accuracy. Section 4 presents our proposed54

SV technique, and Section 5 details our optimized scheduling approach. Section 7 evaluates our55

methods, and Section 8 concludes the paper.56

2 Background and Related Work57

Speculative decoding (SD) reduces latency by using a small draft model to generate tokens spec-58

ulatively, which are then verified in parallel by the target model. While SD improves efficiency,59

misalignment between the models can result in frequent token rejections and wasted computation.60

Improving Alignment. To address distribution mismatches between the draft and target models,61

various alignment techniques have been proposed. DistillSpec[3] applies knowledge distillation62

to fine-tune draft models to better match the token distribution of target models. HRSS[4] further63

incorporates context information from the target model during distillation to improve alignment.64

Eagle[5, 6] trains draft models to detect misalignment and adjust the speculation length accordingly.65

Self-speculative models perform speculation using the target model itself, thereby improving align-66

ment. LayerSkip[7] and Kangaroo[8] use only the first few layers for drafting, while Medusa[9] uses67

the full target model with additional decoding heads to predict multiple tokens in parallel.68

Tiered Speculation and Pipelining. To reduce verification overhead, some approaches introduce69

mid-sized models to verify drafted tokens before final verification in the target model. Staged70

spec [10] propose drafting using the n-gram method, verifying the tokens in a small model, and then71

performing final verification in the target model. HSDDW [11] uses a mid-sized model to decide72

whether to draft additional tokens before verification in the target model.73

Using separate GPUs for drafting and verification with pipelining has recently been proposed to74

improve throughput. PEARL[12] allows drafting to continue speculatively on one GPU while75

previously drafted tokens are verified on another, assuming all are accepted. SPIN[13] runs multiple76

draft models in parallel on separate GPUs and selects the best output for verification.77

3 Uncertainty in Speculation Accuracy78

Since draft models are less capable than target models, their speculation accuracy is often inconsistent79

and uncertain [2, 13]. Predicting speculation accuracy could improve SD’s effectiveness, so we80

explored whether it can be inferred using only the draft model’s internal information. To investigate81

this, we ran SD on 128 prompts spanning two NLP tasks and analyzed the resulting speculation82

accuracy. Figure 1(a) shows a subset of the results for one representative query over 100 drafting-83

verification steps (draft length=5). The gray bars, representing the number of accepted tokens at each84

step, indicate that speculation accuracy fluctuates sharply and unpredictably across steps.85

To understand what causes these accuracy changes, we examined tokens before and after sharp86

changes in accuracy. However, these tokens do not share any commonality in their embeddings or87

2

Figure 1: Accepted tokens per SD steps (left) and throughput by acceptance length (right).

semantics (based on human interpretation). Moreover, we found that accuracy-changing positions88

often involve high-frequency tokens, such as stop words. This suggests that the observed fluctuations89

are not driven by meaning or context, which may explain why these positions tend to contain high-90

frequency tokens. A prior study proposed predicting speculation accuracy from recent history using a91

moving average [2], but as shown in the Figure 1, this estimation deviates significantly from actual92

speculation accuracy.93

This uncertainty in speculation accuracy leads to a significant waste of verification cost. If all drafted94

tokens are rejected, SD can be more expensive than target decoding with the target model. To quantify95

this inefficiency, we ran SD with speculation lengths of 5 and batch sizes of 4 to 32 (using the same96

draft and target model as before) and analyzed the throughput when 0–5 tokens are accepted. We97

also measured the average number of accepted tokens and the corresponding throughput as shown in98

Figure 1(b). Overall, more than 40% of verification was spent on rejected tokens, and 48% of SD99

steps were more expensive than target decoding (not shown in the Figure 1). We also observed that at100

larger batch sizes, SD’s already reduced performance gains are offset by the cost of running the draft101

model and by this verification overhead, which may result in overall performance degradation.102

Predicting speculation accuracy is difficult due to the inherent complexity of token generation in103

LLMs. Attention heads across layers serve different roles that vary with context [14, 15]. Some104

compute attention scores globally over many tokens, while others focus locally on a subset. A single105

attention head is reported to switch unpredictably between global and local computations [16], which106

we also observed. Furthermore, our analysis showed that mapping attention heads between the draft107

and target models does not provide useful signals for speculation accuracy – even heads that strongly108

correlate with those in the target model show no noticeable differences in attention patterns between109

accepted and rejected tokens (not shown due to space limit).110

From these preliminary analyses, we confirmed that predicting speculation accuracy based on the111

draft model’s inference process, attention patterns, and past accuracy is infeasible. This uncertainty112

in speculation accuracy poses a challenge for scaling up inference serving with SD.113

4 Introducing Speculative Verification114

To address speculation uncertainty in SD, we propose using additional information, as the draft model115

alone cannot reliably predict speculation accuracy. We extract this information from another LLM116

instance of similar size to the draft model. By comparing their token distributions, we aim to reduce117

uncertainty in token acceptance and enable SD for scalable inference serving.118

4.1 Information Gain for Efficient Speculation119

SD accelerates inference because the draft model’s token probability distribution is reasonably aligned120

with that of the target model. However, as discussed in Section 3, this alignment is inconsistent,121

3

leading to unpredictable speculation accuracy. If the accuracy could be predicted, we could adjust the122

speculation length dynamically to minimize wasted verification cost and maximize SD efficiency.123

To predict speculation accuracy, we introduce a small auxiliary model, i.e., a companion model,124

similar in size to or slightly larger than the draft model. We presume that both the draft and companion125

models are reasonably aligned with the target model – potentially distilled from it. We conjecture126

that the alignment of the draft and companion models indicates the alignment of the draft and target127

models. That is, if the probability distribution of the draft model for decoding a token is well aligned128

with the distribution of the companion model, it is likely that the distribution for the token also aligns129

well with that of the target model. Thus, by analyzing the alignment between the draft and companion130

models, we can accurately predict the acceptance of the drafted tokens.131

More formally, we exploit the information gain from knowing the distribution similarity between the132

draft and companion models to reduce the uncertainty in speculation accuracy. If a random variable133

X represents the speculation accuracy, i.e., the acceptance probability of a token generated by the134

draft model, and Y denotes the corresponding distribution for the token in the companion model, then135

the uncertainty of X is measured as the entropy H(X), and the conditional uncertainty is H(X|Y) –136

representing the remaining uncertainty of X given the value of Y .137

We aim to maximize the information gain I(X;Y) = H(X) − H(X|Y), i.e., the amount of138

uncertainty reduced in speculation accuracy when knowing the companion model’s distribution. We139

carefully choose Y – what to observe in the companion model’s distribution (details discussed in the140

next section) – so that we can accurately predict the acceptance probability of drafted tokens.141

With this prediction, we adjust the verification length (details in Section 5) to maximize SD’s efficiency.142

Because the companion model helps determine which tokens to verify or discard, we call this method143

speculative verification (SV in short). Note that SV differs significantly from staged SD [10], where144

an intermediate model performs rejection sampling on the draft model’s output. The staged approach145

assumes that the intermediate model is better aligned with the target model, but its effectiveness is146

inherently limited by the intermediate model’s capability.147

4.2 Indicators in Companion Model148

What should we observe and define as the conditioning random variable to minimize speculation149

uncertainty? The requirements are: (1) it must be strongly correlated with the acceptance probability150

of the drafted tokens, and (2) it must be simple to measure and quantify. We propose observing the151

joint condition of two variables: one (S) measures the distributional similarity between the draft and152

companion models, and the other (A) measures the draft token’s acceptance probability if we apply153

SD’s sampling with the companion model (even though SV does not use SD’s sampling mechanism).154

More formally, we define S =
∑

i∈vocab min (Pd(ti), Pc(ti)) and A = min
(
1, Pc(td)

Pd(td)

)
, where td155

is a drafted token, and Pd and Pc are the token distributions of the draft and companion models,156

respectively.157

The variable S indicates whether the draft and companion models are well aligned during the current158

decoding step. Our preliminary analysis confirmed that this alignment is strongly correlated with159

the alignment between the draft and target models. Specifically, we measured the similarity between160

the draft and companion models’ output token distributions (using a natural divergence metric as161

described in [1] for its computational efficiency) and evaluated its correlation with the similarity162

between the draft and target models’ distributions. Across three different draft-companion-target163

model groups, we observed strong correlations of 0.75, 0.87, and 0.82 (detailed in the appendix).164

However, close alignment of the distributions alone is insufficient to minimize speculation uncertainty,165

as they may still differ largely at the sampled (drafted) token probability. Thus, we incorporate the166

drafted token’s acceptance probability in the companion model as an additional conditioning variable.167

If this probability is high and the alignment indicated by S is strong, it indicates that the distributions168

are not only well aligned overall but also at the specific probability point of the drafted token.169

When jointly conditioning on these two continuous variables, we discretize them into sub-ranges using170

adaptive binning, ensuring each bin contains a similar number of observations. For S (distributional171

similarity), which ranges from 0 to 1, we divide the interval into 10–30 bins. For A (token acceptance172

probability in the companion model), we partition the probability range into 10–20 bins. We then173

perform a profiling run of speculative decoding using these discretized variables and compute the174

4

Figure 2: Example: selecting verification length in Speculative Verification.

Table 1: Notations for the random variables and probability distributions

Symbol Description

S Random variable for token distribution similarity of draft and companion models
A Random variable for a token’s acceptance probability in the target model
Ti Random variable for the token at the i’th decoding position in the draft model
P (Ti|S,A) Conditional probability of a token Ti accepted in the target model
N Random variable for the number of accepted tokens
γ Number of drafted tokens that is verified in the target model

average token acceptance probability for each bin combination. Conditioning on these variables to175

dynamically adjust verification length reduces speculation uncertainty (measured in entropy) by 34%176

and improves the target model’s acceptance rate by 20% (details in the evaluation section).177

5 Scheduling for Speculative Verification178

This section explains how to effectively utilize information from speculative verification to optimize179

scheduling and maximize effective throughput in terms of accepted tokens. We refer to this variant of180

throughput as goodput in this paper – the number of accepted tokens per unit time. To achieve high181

goodput, we must determine the optimal subset of drafted tokens to verify in the target model, i.e.,182

optimal verification length.183

We need to consider two factors to optimize verification length: 1) wasted computation on rejected184

tokens, and 2) GPU’s resource utilization for a given verification length. Our goal is to balance these185

factors – minimizing wasted computation while maximizing GPU resource utilization – to achieve186

optimal goodput. We do this by estimating the expected number of accepted tokens for each possible187

verification length and selecting the length that maximizes estimated goodput (i.e., the expected188

number of accepted tokens divided by verification latency) as shown in Figure 2(b).189

We first explain how to compute the expected number of accepted tokens for a given verification190

length. First, Table 1 defines the notations, where Ti represents the random variable for the i’th token191

in the draft model, P (Ti|S,A) denotes its conditional acceptance probability in the target model192

(given information from the companion model), N is the number of accepted tokens in the target193

model, and γ is the number of drafted tokens verified in the target model.194

The probability for N given γ is calculated as:195

Pγ(N) =

{
P (TN+1 ̸= tN+1)

∏N
i=1 P (Ti= ti) if N < γ,∏γ

i=1 P (Ti= ti) if N = γ

5

Figure 3: Runtime optimizations: Data-Parallel drafting and overlapping drafting with verification.

Then the expected number of accepted tokens with verification length γ is calculated as follows:196

E(N |γ) =
γ∑

i=1

i · Pγ(N = i)

Using the expected acceptance length E(N |γ), we calculate goodput based on the profiled latency197

for a given verification length γ. We then vary γ, compute the corresponding goodput, and select the198

verification length that maximizes it. Figure 2 illustrates this process of computing token acceptance199

probability, expected acceptance length, and the optimal γ for maximum goodput.200

We find the optimal γ by incrementally increasing it while goodput improves; once goodput declines,201

we revert to the previous γ as the optimal value. This approach works because goodput is concave202

with respect to the verification length. As we increase the verification length from a small value,203

latency grows slowly at first, since the GPU’s compute resources are not fully utilized. Once the204

verification length is large enough for full resource utilization, latency increases proportionally, but205

the expected acceptance length grows more slowly – the cumulative probability of accepted tokens206

diminishes as more drafted tokens are included.207

Scheduling for Batch Execution. To extend our approach to batch-level optimization, we apply208

the same goodput-based strategy used for single queries.We use a greedy algorithm that starts with an209

empty verification token sequences V and iteratively adds the token – regardless of which query it210

belongs to – that yields the greatest increase in expected acceptance length. This process continues as211

long as goodput improves and stops once it reaches its peak. While this approach may favor some212

queries over others, it avoids starvation: token acceptance rates drop sharply beyond a certain length,213

and verification always results in at least one accepted token per query, ensuring forward progress.214

6 Implementation215

We implemented canonical runtime optimizations for LLM inference in our system based on vLLM.216

Specifically, we implemented: 1) input tensor compaction, which allows verifying different token217

lengths for queries in the same batch without padding; 2) data-parallel drafting, in which multiple218

GPUs used for the target model’s tensor-parallel verification are also fully utilized for drafting and219

speculative verification as illustrated in Figure 3(a); and 3) CUDA graph execution, to minimize220

kernel launch overhead. While implementing the last one, we fixed a bug in FlashInfer[17] that221

caused incorrect KV-cache value scores when used with CUDA graph capture and padded inputs.222

We further optimize performance by overlapping the target model’s verification with the drafting and223

speculative verification of the next iteration, as illustrated in Figure 3(b). To enable this, we run the224

target and draft/companion models in separate processes using Nvidia’s Multi-Process Service (MPS),225

which allows them to share GPU resources. We configure MPS so that the draft/companion model226

uses a small fraction of the resources (30% by default), while the target model uses the remainder –227

or optionally all resources. Since this optimization involves running two micro-batches concurrently,228

we dynamically monitor the memory overhead of maintaining their contexts and adjust batch sizes229

accordingly. To accurately profile verification overhead, we measure it while the draft/companion230

models are running to capture interference effects, which remain consistent as their workload sizes231

(i.e., the number of tokens processed by the draft and companion models) are constant.232

6

Figure 4: Overall performance: three target models (displayed at top) and six tasks (above each plot).

7 Evaluation233

7.1 Evaluation Settings234

We evaluate SV’s performance improvements over both the baseline (decoding with the target model)235

and standard speculative decoding (SD). For the evaluation, we used two widely adopted public236

LLM families: Qwen [18] and Llama [19]. We tested base models (no fine-tuning), instruction-tuned237

models, and task-tuned models across three different target model sizes: 72B, 34B, and 13B. The238

evaluation covers three task types: conversation, code generation, and math (details in the appendix).239

7.2 Overall Performance Evaluation240

We first evaluated the token generation throughput of SV, comparing it to SD and target decoding241

with the target model. Using draft lengths of 5 and 7 tokens, we increased the batch size from 4,242

doubling up to 48 or 80 – the maximum supported within the GPU’s memory limits.243

Figure 4 shows results for a subset of models representative of others omitted due to space limits.244

In all experiments, SV outperforms both SD and target decoding. At the maximum supported245

batch sizes, SV is on average 1.3× faster than SD, with peak speedups reaching 2×. As batch size246

increases, SD’s performance gains decrease and can even fall below that of target decoding – in such247

cases, SV outperforms SD by a large margin. Moreover, for difficult tasks, such as GSM8K[20]248

and ChatGPT[21], where SD is known to perform poorly [11, 13], SV continues to deliver strong249

performance.250

7.3 Information Gain from Observing S and A251

In this section, we quantify the information gain in the random variable X , i.e., the acceptance252

probability of a drafted token in the target model, by comparing the token distributions of the draft253

and companion models. We observe two variables – S and A: S measures the distributional similarity254

between the two models, and A estimates the draft token’s acceptance probability based on the255

companion model, assuming SD’s sampling rule is applied.256

To measure the uncertainty of X (i.e., entropy) and the information gain from observing S and A,257

we perform inference using the Llama2 13B[22]/160M[23]/68M[23] models, applying SD on the258

ShareGPT[24] and HumanEvalPack[25] datasets. Specifically, we generate tokens using SD’s process259

with three draft lengths: 3, 5, and 7 tokens. For the drafted tokens, we observe S and A using the260

companion model, but do not apply SV’s optimization of verification lengths. We then use the target261

model to measure the acceptance probability of the drafted tokens based on SD’s acceptance rule.262

7

Table 2: Uncertainty in the acceptance probability of drafted tokens and the information gain from
observing S and A (measured with Llama2 13B/160M/68M on ShareGPT and HumanEvalPack).

Uncertainty Conditional Uncertainty Information Gain

Observation Resolution H(X) H(X|S) H(X|A) H(X|S,A) I(X;S,A)

chat code chat code chat code chat code chat code

5 (5×5 for {S,A}) 1.38 1.78 1.09 1.55 1.07 1.58 1.01 1.50 0.38 0.28
10 (10×10 for {S,A}) 1.38 1.78 1.04 1.53 1.05 1.57 0.97 1.48 0.41 0.31
20 (20×20 for {S,A}) 1.38 1.78 1.03 1.52 1.04 1.57 0.95 1.46 0.43 0.32
Adaptive Binning(272) 1.38 1.78 1.02 1.52 1.04 1.57 0.91 1.42 0.48 0.37

After evaluating acceptance, we repeat the drafting and verification steps following the standard SD263

procedure.264

Table 2 shows the uncertainty of X , the conditional uncertainties when observing S, A, and both, and265

the information gain from observing both variables. Since S and A are continuous, we discretize their266

ranges into equal-sized sub-ranges and report the corresponding conditional uncertainties at varying267

resolution levels (indicated in the leftmost column). We also include results using our adaptive268

binning approach, which assigns smaller bins where data points are denser (the bottom row). With269

adaptive binning, observing both S and A yields an information gain of 30–40% of the total entropy,270

indicating a strong relationship between these variables and X [26, 27, 28].271

Figure 5: Performance Breakdown: Prefill vs. Decoding (left) and Runtime Optimizations (right)

7.4 Performance Breakdown272

Prefill and Decoding Performance. We separately measured prefill throughput (processed to-273

kens/sec) and decoding goodput (generated tokens/sec) for SD and SV. Figure 5 shows results for274

Qwen 72B/1.5B/0.5B models. Due to the companion model’s overhead, SV’s prefill throughput is275

lower than SD’s. We partially mitigate this by skipping logit computations in the draft and companion276

models during prefill, which reduces overhead by 3–5%. Still, SV’s prefill throughput remains about277

10% lower than SD’s (30% lower than target decoding). However, during the decoding phases, SV278

outperforms both SD and target decoding, especially at larger batch sizes. At a batch size of 64, SV279

is 20% faster than SD, and at 80, it is 40% faster. Overall, SV achieves 20–35% higher throughput280

for batch sizes between 64 and 80.281

Runtime Optimization Breakdown. We also evaluated two major runtime optimizations: overlap-282

ping decoding with verification (OV) and data-parallel decoding (DP). We applied both optimizations283

to SD and SV and measured decoding goodput using Qwen 32B/1.5B/0.5B[29]. Figure 5(b) com-284

pares the goodput of SD and SV. For SD, applying OV degrades performance due to the high cost of285

verification; interference between verification and drafting reduces overall throughput.286

With SV, applying OV consistently improves performance, as SV reduces the verification cost and287

thereby mitigates interference between drafting and verification. Applying DP on top of OV provides288

additional gains only at large batch sizes. At smaller batch sizes, however, the synchronization289

overhead of the companion model (shown in Figure 3(a)) outweighs the benefits of parallelism.290

8

Figure 6: Effectiveness of SV: (a) Impact of draft and companion model selection; (b) sensitivity to
draft length and dataset; (c) compatibility with self-speculative decoding models.

7.5 Fairness in Verification Token Selection291

SV selects a subset of drafted tokens for verification and discards the rest to maximize goodput. As a292

result, some queries in a batch may consistently have few or no tokens selected for verification. While293

the target model’s verification guarantees progress by generating at least one token per query—thus294

preventing starvation—we still evaluate the fairness of SV’s verification token selection.295

For this analysis, we ran generation with 1024 inputs (draft length=5) and calculated the average296

number of tokens verified for each sequence. We then examined the five queries with the smallest297

average verification lengths. The detailed results are presented in the appendix A. Compared to the298

overall average of 4.1 tokens, these bottom five queries had an average of 2.9 tokens verified. Notably,299

39% of their steps involved verifying 4–5 tokens, while 47% involved 1–2 tokens, suggesting that300

token allocation remains fairly distributed even in these edge cases. This shows that SV’s token301

selection remains reasonably balanced across queries and does not result in substantial unfairness.302

7.6 Robustness and Generality of SV303

Effect of Draft/Companion Model Selection. Using Qwen2.5 32B as the target, we evaluated SD304

and SV with different draft/companion pairs: 1.5B/0.5B, 3B/0.5B, and 0.5B/Unsloth 0.5B. As shown305

in Figure 6(a), SV consistently outperforms SD, with up to 1.4× speedup at batch size 64.306

Effect of Draft Length and Datasets. We applied SD and SV with draft lengths from 5 to 13 on307

ShareGPT and HumanEvalPack, measuring goodput. As shown in Figure 6(b), SD’s performance308

varies significantly with draft length and dataset, while SV consistently delivers better results.309

Performance on SD Variants. We applied SV to self-speculative models (LayerSkip-34B/70B[30]),310

using 4 and 20 layers for drafting and next 4 and 5 layers for the companion. As shown in Figure311

6(c), SV reliably outperforms SD, though gains are smaller with larger draft models due to overhead.312

8 Conclusion313

We proposed Speculative Verification (SV) that improves speculative decoding (SD) by dynamically314

adjusting verification lengths based on predicted token acceptance. To estimate speculation accuracy315

without access to the target model, SV introduces a companion model and compares its token316

distribution with that of the draft model. We show that alignment between the draft and companion317

models strongly correlates with the draft–target alignment, enabling effective prediction of token318

acceptance.319

Building on this insight, SV adopts an information-theoretic framework to quantify alignment and320

guide verification decisions. This reduces wasted computation on rejected tokens and improves321

decoding efficiency, particularly at large batch sizes. Across nine model combinations, three NLP322

tasks, and batch sizes from 4 to 80, SV consistently outperforms both SD and standard decoding. It323

achieves up to 2× speedup over SD, with an average 1.4× gain in high-throughput scenarios.324

SV maintains fairness in verification across queries, works with various fine-tuning types, and is325

compatible with self-speculative decoding. These results demonstrate SV’s robustness, scalability,326

and practical utility for efficient LLM inference.327

9

References328

[1] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative329

decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.330

[2] Xiaoxuan Liu, Cade Daniel, Langxiang Hu, Woosuk Kwon, Zhuohan Li, Xiangxi Mo, Alvin Cheung,331

Zhijie Deng, Ion Stoica, and Hao Zhang. Optimizing speculative decoding for serving large language332

models using goodput. arXiv preprint arXiv:2406.14066, 2024.333

[3] Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv334

Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative decoding via335

knowledge distillation. In The Twelfth International Conference on Learning Representations, 2024.336

[4] Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations for337

speculative sampling. In The Thirteenth International Conference on Learning Representations, 2025.338

[5] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires339

rethinking feature uncertainty. In Forty-first International Conference on Machine Learning, 2024.340

[6] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language models341

with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024.342

[7] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas343

Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen, and Carole-Jean Wu.344

Layerskip: Enabling early exit inference and self-speculative decoding. In ACL (1), pages 12622–12642,345

2024.346

[8] Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Duyu Tang, Kai Han, and Yunhe Wang. Kangaroo:347

Lossless self-speculative decoding for accelerating LLMs via double early exiting. In The Thirty-eighth348

Annual Conference on Neural Information Processing Systems, 2024.349

[9] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.350

Medusa: Simple LLM inference acceleration framework with multiple decoding heads. In Forty-first351

International Conference on Machine Learning, 2024.352

[10] Benjamin Frederick Spector and Christopher Re. Accelerating LLM inference with staged speculative353

decoding. In Workshop on Efficient Systems for Foundation Models @ ICML2023, 2023.354

[11] Shensian Syu and Hung-yi Lee. Hierarchical speculative decoding with dynamic window. In Findings of355

the Association for Computational Linguistics: NAACL 2025, pages 8260–8273, 2025.356

[12] Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, Winston Hu, and Xiao Sun. Pearl: Parallel357

speculative decoding with adaptive draft length. In The Thirteenth International Conference on Learning358

Representations, 2025.359

[13] Fahao Chen, Peng Li, Tom H Luan, Zhou Su, and Jing Deng. Spin: Accelerating large language model360

inference with heterogeneous speculative models. arXiv preprint arXiv:2503.15921, 2025.361

[14] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at? an362

analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.363

[15] George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differentiation and364

specialization of attention heads via the refined local learning coefficient. arXiv preprint arXiv:2410.02984,365

2024.366

[16] Konstantin Donhauser, Charles Arnal, Mohammad Pezeshki, Vivien Cabannes, David Lopez-Paz, and367

Kartik Ahuja. Unveiling simplicities of attention: Adaptive long-context head identification. arXiv preprint368

arXiv:2502.09647, 2025.369

[17] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris370

Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and customizable371

attention engine for LLM inference serving. In Eighth Conference on Machine Learning and Systems,372

2025.373

[18] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,374

Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.375

[19] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,376

Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation377

language models. arXiv preprint arXiv:2302.13971, 2023.378

10

[20] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias379

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training380

verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.381

[21] Mohamed Rashad. Chatgpt prompts dataset. https://huggingface.co/datasets/MohamedRashad/382

ChatGPT-prompts, 2023.383

[22] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay384

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and385

fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.386

[23] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee387

Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large language model serving388

with tree-based speculative inference and verification. In Proceedings of the 29th ACM International389

Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3, pages390

932–949, 2024.391

[24] anon8231489123. Sharegpt vicuna unfiltered dataset. https://huggingface.co/datasets/392

anon8231489123/ShareGPT_Vicuna_unfiltered, 2023.393

[25] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam394

Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code large395

language models. arXiv preprint arXiv:2308.07124, 2023.396

[26] Stefano Panzeri and Alessandro Treves. Analytical estimates of limited sampling biases in different397

information measures. Network: Computation in neural systems, 7(1):87, 1996.398

[27] J Ross Quinlan. Improved use of continuous attributes in c4. 5. Journal of artificial intelligence research,399

4:77–90, 1996.400

[28] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw-hill New York, 1997.401

[29] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng402

Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.403

[30] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas404

Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early exit inference405

and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.406

[31] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,407

Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for code. arXiv408

preprint arXiv:2308.12950, 2023.409

[32] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language410

model. arXiv preprint arXiv:2401.02385, 2024.411

[33] AMD. AMD-Llama-135m: A 135M Parameter Language Model. https://huggingface.co/amd/412

AMD-Llama-135m, 2024.413

[34] Unsloth. Qwen2.5-0.5b. https://huggingface.co/unsloth/Qwen2.5-0.5B, 2024.414

[35] Meta AI (Facebook). Layerskip llama 2 70b. https://huggingface.co/facebook/415

layerskip-llama2-70B, 2024.416

[36] Meta AI (Facebook). Layerskip codellama 34b. https://huggingface.co/facebook/417

layerskip-codellama-34B, 2024.418

[37] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen419

Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv420

preprint arXiv:2108.07732, 2021.421

A Additional Experimental Data422

The detailed experimental results for Section 7.5 are shown in Table 3.423

11

https://huggingface.co/datasets/MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/amd/AMD-Llama-135m
https://huggingface.co/amd/AMD-Llama-135m
https://huggingface.co/amd/AMD-Llama-135m
https://huggingface.co/unsloth/Qwen2.5-0.5B
https://huggingface.co/facebook/layerskip-llama2-70B
https://huggingface.co/facebook/layerskip-llama2-70B
https://huggingface.co/facebook/layerskip-llama2-70B
https://huggingface.co/facebook/layerskip-codellama-34B
https://huggingface.co/facebook/layerskip-codellama-34B
https://huggingface.co/facebook/layerskip-codellama-34B

Table 3: Number of Steps by Verification Length from Worst/Best Case Requests

Cases Request ID Avg. Veri. Length γ=1 γ=2 γ=3 γ=4 γ=5

Worst Cases

125 2.85 6 8 3 4 6
390 2.88 5 3 4 1 5
141 2.90 3 3 0 2 3
121 3.00 1 1 1 1 1
441 3.11 5 8 4 1 10

Best Cases

274 4.96 0 0 0 2 43
44 4.95 0 0 0 1 19

211 4.94 0 0 1 1 47
419 4.91 0 1 0 0 43
62 4.89 0 0 2 1 43

B Limitations and Future Work424

Although we extensively evaluated our proposed methods, the experiments were limited to publicly425

available models, which may introduce model-specific biases that affect the results. In addition, we426

did not include experiments on reasoning tasks due to limited public availability. Public reasoning427

models with multiple size variants – required for speculative verification – were only released at428

the end of April 2025. We plan to evaluate SV on reasoning tasks and report the results in the final429

version of the paper.430

C Evaluation Settings in Detail431

Table 4: Hardware settings and model assignments for all tasks

Task Dataset GPU Architecture Size (T/C/D)†

Chat* ChatGPT, ShareGPT A100×4 Qwen2.5-Instruct 72B / 1.5B / 0.5B
Chat* ShareGPT A100×2 Qwen2.5-Instruct 32B / 1.5B / 0.5B
Chat* ShareGPT A100×2 Qwen2.5-Instruct 32B / 3B / 0.5B
Chat* ShareGPT A100×2 Qwen2.5-Instruct 32B / 1.5B / 0.5B**
Chat* ShareGPT A100×2 Qwen2.5-Instruct 32B / 0.5B** / 0.5B
Code* Humaneval, MBBP A100×2 CodeLlama / TinyLlama / AMDLlama 34B / 1.1B / 135M

Code, Math Humaneval, GSM8K A100×1 Llama2 13B / 160M / 68M

Chat ShareGPT A40×4 LayerSkip-Llama 70B / 70B(5)‡ / 70B(20)‡

Code* Humaneval A40×2 LayerSkip-CodeLlama 34B / 34B(4)‡ / 34B(4)‡

* Finetuned ** unsloth/Qwen2.5 † (Target, Companion, Draft) ‡ Layerskip with (N) layers

C.1 Hardware Environment432

All experiments were conducted across three distinct computing environments to accommodate the433

varying computational requirements of different models. For the largest models (Qwen2.5-72B-434

Instruct as target model), we utilized an Azure Cloud VM equipped with an AMD EPYC 7V13435

(Milan) 64-core processor and four NVIDIA A100 PCIe GPUs, each with 80GB VRAM. This436

system was configured with 2TB of RAM to handle the substantial memory requirements of these437

parameter-dense models. Medium-sized models (Qwen2.5 32B/1.5B/0.5B, CodeLlama 34B variants,438

and Llama2 13B variants) were deployed on a Runpod Cloud instance featuring an AMD EPYC439

7352 24-core processor paired with two NVIDIA A100 PCIe GPUs, each with 80GB VRAM, and440

200GB of system RAM. For the Layerskip experiments on Layerskip-Llama2-70B and Layerskip-441

CodeLlama-34B models, we employed a private computing resource with an AMD EPYC 7313442

16-core processor, four NVIDIA A40 GPUs, each with 48GB VRAM, and 500GB of system RAM.443

All systems ran Ubuntu 22.04 LTS with CUDA 12.4 to maintain environmental consistency across444

experimental platforms.445

12

C.2 LLM Models and hyperparameters446

To demonstrate the versatility and broad applicability of SV, we selected two widely-used open-source447

LLM families: the Qwen and Llama series. Our experimental design encompasses three dimensions448

of variation per family: base models (no fine-tuning), instruction-tuned models, and task-tuned449

models.450

Sampling Parameters For all models, we adhered to the sampling hyperparameters recommended451

in their respective Hugging Face repositories or official GitHub documentation. Specific values are452

shown in Table 5:453

Table 5: Sampling hyperparameters for each model series.

Model series top_k top_p temperature repetition_penalty

Qwen2.5/Qwen2.5 based models 20 0.8 0.7 1.05
Llama/Layerskip/Llama based models — 0.9 0.6 —

Models used in overall evaluations454

• Large-sized models: We employed the Qwen2.5-Instruct family [29] for large-sized evalua-455

tion in main experiments, we used the 72B variant as the target model, the 1.5B variant as456

the companion model, and the 0.5B variant as the draft model.457

• Mid-sized models: We selected the CodeLlama-34B [31] as target model for mid-scale458

experiments. and TinyLlama_v1.1_math_code (1.2B) [32] as the companion, and AMD-459

Llama-135M [33] as the draft.460

• Small-sized models: To cover smaller models, we included the Llama2-14B variant [22]461

as the target model, paired with a JackFram_llama-160m [23] as the companion, and462

JackFram_llama-68m [23] as the draft, which was specifically trained for speculation tasks463

with a reduced parameter size.464

Models used in other evaluations and analysis For additional analytical experiments in (7.4, 7.5,465

7.6), we utilized the 32B/1.5B/0.5B model sizes of Qwen2.5-Instruct family. To test robustness across466

fine-tuned variants, we incorporated the unsloth-fine-tuned version of Qwen2.5-Instruct models [34].467

We also evaluated Layerskip-Llama2-70B and Layerskip-CodeLlama-34B to assess performance468

of SV adopted on self-speculation techniques. The number of drafting layers was set to the default469

values specified by model providers in huggingface repository [35, 36].470

C.3 Dataset and pre-processing471

We evaluated our approach using three distinct task categories: dialogue, code generation, and472

mathematical reasoning. For all experiments, we maintained consistency by using identical randomly473

sampled subsets across different evaluation scenarios.474

For probability profile construction, we extracted 512 samples from training sets where available. For475

datasets without explicit train-test splits, we randomly sampled 512 instances. For goodput evaluation,476

we randomly selected between 128 and 256 samples from evaluation/test sets, carefully excluding477

any samples that appeared in the probability profile to prevent data leakage. These randomly sampled478

datasets remained constant across all experimental conditions to ensure fair comparisons.479

For dialogue evaluation, we utilized two comprehensive datasets: ShareGPT [24], a collection of480

human-assistant conversations extracted from various online sources, and ChatGPT Dataset [21],481

consisting of diverse dialogue prompts and responses.482

Our code generation evaluation encompassed six programming languages using the HumanEvalPack483

[25] benchmark, which includes Python, C++, Java, JavaScript, Rust, and Go. We constructed a484

balanced subset by randomly sampling tasks across all languages to ensure comprehensive coverage485

of different programming paradigms and syntactic structures. We also incorporated MBPP [37],486

which consists of approximately 1,000 crowd-sourced Python programming problems.487

13

To assess mathematical reasoning capabilities, we employed the GSM8K [20] dataset, which contains488

grade school math word problems that require multi-step reasoning to solve.489

These three task categories—dialogue, code generation, and mathematical reasoning—were selected490

to provide a thorough evaluation of model performance across domains requiring different cognitive491

abilities and knowledge representations.492

14

NeurIPS Paper Checklist493

1. Claims494

Question: Do the main claims made in the abstract and introduction accurately reflect the495

paper’s contributions and scope?496

Answer: [Yes]497

Justification: In the abstract and Section 1, we clearly demonstrate the contribution and498

scope of this paper.499

Guidelines:500

• The answer NA means that the abstract and introduction do not include the claims501

made in the paper.502

• The abstract and/or introduction should clearly state the claims made, including the503

contributions made in the paper and important assumptions and limitations. A No or504

NA answer to this question will not be perceived well by the reviewers.505

• The claims made should match theoretical and experimental results, and reflect how506

much the results can be expected to generalize to other settings.507

• It is fine to include aspirational goals as motivation as long as it is clear that these goals508

are not attained by the paper.509

2. Limitations510

Question: Does the paper discuss the limitations of the work performed by the authors?511

Answer: [Yes]512

Justification: We discuss the limitations of this work in B in appendix.513

Guidelines:514

• The answer NA means that the paper has no limitation while the answer No means that515

the paper has limitations, but those are not discussed in the paper.516

• The authors are encouraged to create a separate "Limitations" section in their paper.517

• The paper should point out any strong assumptions and how robust the results are to518

violations of these assumptions (e.g., independence assumptions, noiseless settings,519

model well-specification, asymptotic approximations only holding locally). The authors520

should reflect on how these assumptions might be violated in practice and what the521

implications would be.522

• The authors should reflect on the scope of the claims made, e.g., if the approach was523

only tested on a few datasets or with a few runs. In general, empirical results often524

depend on implicit assumptions, which should be articulated.525

• The authors should reflect on the factors that influence the performance of the approach.526

For example, a facial recognition algorithm may perform poorly when image resolution527

is low or images are taken in low lighting. Or a speech-to-text system might not be528

used reliably to provide closed captions for online lectures because it fails to handle529

technical jargon.530

• The authors should discuss the computational efficiency of the proposed algorithms531

and how they scale with dataset size.532

• If applicable, the authors should discuss possible limitations of their approach to533

address problems of privacy and fairness.534

• While the authors might fear that complete honesty about limitations might be used by535

reviewers as grounds for rejection, a worse outcome might be that reviewers discover536

limitations that aren’t acknowledged in the paper. The authors should use their best537

judgment and recognize that individual actions in favor of transparency play an impor-538

tant role in developing norms that preserve the integrity of the community. Reviewers539

will be specifically instructed to not penalize honesty concerning limitations.540

3. Theory assumptions and proofs541

Question: For each theoretical result, does the paper provide the full set of assumptions and542

a complete (and correct) proof?543

Answer: [Yes]544

15

Justification: In Section 4, 5, we have detailed the motivation and proofs of the formulas we545

presented.546

Guidelines:547

• The answer NA means that the paper does not include theoretical results.548

• All the theorems, formulas, and proofs in the paper should be numbered and cross-549

referenced.550

• All assumptions should be clearly stated or referenced in the statement of any theorems.551

• The proofs can either appear in the main paper or the supplemental material, but if552

they appear in the supplemental material, the authors are encouraged to provide a short553

proof sketch to provide intuition.554

• Inversely, any informal proof provided in the core of the paper should be complemented555

by formal proofs provided in appendix or supplemental material.556

• Theorems and Lemmas that the proof relies upon should be properly referenced.557

4. Experimental result reproducibility558

Question: Does the paper fully disclose all the information needed to reproduce the main ex-559

perimental results of the paper to the extent that it affects the main claims and/or conclusions560

of the paper (regardless of whether the code and data are provided or not)?561

Answer: [Yes]562

Justification: Based on the formulas, algorithms, descriptions, datasets, and experimental563

settings presented in this paper, one can implement the code and reproduce the experimental564

results as in this paper. Additionally, if the paper is accepted, we will consider releasing the565

code for the benefit of other researchers.566

Guidelines:567

• The answer NA means that the paper does not include experiments.568

• If the paper includes experiments, a No answer to this question will not be perceived569

well by the reviewers: Making the paper reproducible is important, regardless of570

whether the code and data are provided or not.571

• If the contribution is a dataset and/or model, the authors should describe the steps taken572

to make their results reproducible or verifiable.573

• Depending on the contribution, reproducibility can be accomplished in various ways.574

For example, if the contribution is a novel architecture, describing the architecture fully575

might suffice, or if the contribution is a specific model and empirical evaluation, it may576

be necessary to either make it possible for others to replicate the model with the same577

dataset, or provide access to the model. In general. releasing code and data is often578

one good way to accomplish this, but reproducibility can also be provided via detailed579

instructions for how to replicate the results, access to a hosted model (e.g., in the case580

of a large language model), releasing of a model checkpoint, or other means that are581

appropriate to the research performed.582

• While NeurIPS does not require releasing code, the conference does require all submis-583

sions to provide some reasonable avenue for reproducibility, which may depend on the584

nature of the contribution. For example585

(a) If the contribution is primarily a new algorithm, the paper should make it clear how586

to reproduce that algorithm.587

(b) If the contribution is primarily a new model architecture, the paper should describe588

the architecture clearly and fully.589

(c) If the contribution is a new model (e.g., a large language model), then there should590

either be a way to access this model for reproducing the results or a way to reproduce591

the model (e.g., with an open-source dataset or instructions for how to construct592

the dataset).593

(d) We recognize that reproducibility may be tricky in some cases, in which case594

authors are welcome to describe the particular way they provide for reproducibility.595

In the case of closed-source models, it may be that access to the model is limited in596

some way (e.g., to registered users), but it should be possible for other researchers597

to have some path to reproducing or verifying the results.598

16

5. Open access to data and code599

Question: Does the paper provide open access to the data and code, with sufficient instruc-600

tions to faithfully reproduce the main experimental results, as described in supplemental601

material?602

Answer: [No]603

Justification: For security reasons, we plan to postpone releasing the code until the paper604

is officially published. Once the paper is accepted, we will script every step we used605

—including data pre-processing and experiment execution— and make it publicly available606

so that other researchers can run it immediately.607

Guidelines:608

• The answer NA means that paper does not include experiments requiring code.609

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/610

public/guides/CodeSubmissionPolicy) for more details.611

• While we encourage the release of code and data, we understand that this might not be612

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not613

including code, unless this is central to the contribution (e.g., for a new open-source614

benchmark).615

• The instructions should contain the exact command and environment needed to run to616

reproduce the results. See the NeurIPS code and data submission guidelines (https:617

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.618

• The authors should provide instructions on data access and preparation, including how619

to access the raw data, preprocessed data, intermediate data, and generated data, etc.620

• The authors should provide scripts to reproduce all experimental results for the new621

proposed method and baselines. If only a subset of experiments are reproducible, they622

should state which ones are omitted from the script and why.623

• At submission time, to preserve anonymity, the authors should release anonymized624

versions (if applicable).625

• Providing as much information as possible in supplemental material (appended to the626

paper) is recommended, but including URLs to data and code is permitted.627

6. Experimental setting/details628

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-629

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the630

results?631

Answer: [Yes]632

Justification: In appendix C, we have provided detailed descriptions of the dataset sources,633

preprocessing methods, and sampling hyperparameters used for LLM inference, and in the634

appendix we specify which references were consulted to determine these values.635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The experimental setting should be presented in the core of the paper to a level of detail638

that is necessary to appreciate the results and make sense of them.639

• The full details can be provided either with the code, in appendix, or as supplemental640

material.641

7. Experiment statistical significance642

Question: Does the paper report error bars suitably and correctly defined or other appropriate643

information about the statistical significance of the experiments?644

Answer: [No]645

Justification: Due to the high cost of produce experimental results across various settings,646

we do not repeat the same experiments.647

Guidelines:648

• The answer NA means that the paper does not include experiments.649

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-650

dence intervals, or statistical significance tests, at least for the experiments that support651

the main claims of the paper.652

• The factors of variability that the error bars are capturing should be clearly stated (for653

example, train/test split, initialization, random drawing of some parameter, or overall654

run with given experimental conditions).655

• The method for calculating the error bars should be explained (closed form formula,656

call to a library function, bootstrap, etc.)657

• The assumptions made should be given (e.g., Normally distributed errors).658

• It should be clear whether the error bar is the standard deviation or the standard error659

of the mean.660

• It is OK to report 1-sigma error bars, but one should state it. The authors should661

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis662

of Normality of errors is not verified.663

• For asymmetric distributions, the authors should be careful not to show in tables or664

figures symmetric error bars that would yield results that are out of range (e.g. negative665

error rates).666

• If error bars are reported in tables or plots, The authors should explain in the text how667

they were calculated and reference the corresponding figures or tables in the text.668

8. Experiments compute resources669

Question: For each experiment, does the paper provide sufficient information on the com-670

puter resources (type of compute workers, memory, time of execution) needed to reproduce671

the experiments?672

Answer: [Yes]673

Justification: In appendix C, we provide the details of computer resources for reproducing674

the experiments.675

Guidelines:676

• The answer NA means that the paper does not include experiments.677

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,678

or cloud provider, including relevant memory and storage.679

• The paper should provide the amount of compute required for each of the individual680

experimental runs as well as estimate the total compute.681

• The paper should disclose whether the full research project required more compute682

than the experiments reported in the paper (e.g., preliminary or failed experiments that683

didn’t make it into the paper).684

9. Code of ethics685

Question: Does the research conducted in the paper conform, in every respect, with the686

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?687

Answer: [Yes]688

Justification: We affirm that the research presented in this paper fully complies with the689

NeurIPS Code of Ethics.690

Guidelines:691

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.692

• If the authors answer No, they should explain the special circumstances that require a693

deviation from the Code of Ethics.694

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-695

eration due to laws or regulations in their jurisdiction).696

10. Broader impacts697

Question: Does the paper discuss both potential positive societal impacts and negative698

societal impacts of the work performed?699

Answer: [NA]700

18

https://neurips.cc/public/EthicsGuidelines

Justification: : This paper aims to improve the inference efficiency of large launguage model701

serving system, without any negative societal impacts.702

Guidelines:703

• The answer NA means that there is no societal impact of the work performed.704

• If the authors answer NA or No, they should explain why their work has no societal705

impact or why the paper does not address societal impact.706

• Examples of negative societal impacts include potential malicious or unintended uses707

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations708

(e.g., deployment of technologies that could make decisions that unfairly impact specific709

groups), privacy considerations, and security considerations.710

• The conference expects that many papers will be foundational research and not tied711

to particular applications, let alone deployments. However, if there is a direct path to712

any negative applications, the authors should point it out. For example, it is legitimate713

to point out that an improvement in the quality of generative models could be used to714

generate deepfakes for disinformation. On the other hand, it is not needed to point out715

that a generic algorithm for optimizing neural networks could enable people to train716

models that generate Deepfakes faster.717

• The authors should consider possible harms that could arise when the technology is718

being used as intended and functioning correctly, harms that could arise when the719

technology is being used as intended but gives incorrect results, and harms following720

from (intentional or unintentional) misuse of the technology.721

• If there are negative societal impacts, the authors could also discuss possible mitigation722

strategies (e.g., gated release of models, providing defenses in addition to attacks,723

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from724

feedback over time, improving the efficiency and accessibility of ML).725

11. Safeguards726

Question: Does the paper describe safeguards that have been put in place for responsible727

release of data or models that have a high risk for misuse (e.g., pretrained language models,728

image generators, or scraped datasets)?729

Answer: [NA]730

Justification: This paper does not present any such risks.731

Guidelines:732

• The answer NA means that the paper poses no such risks.733

• Released models that have a high risk for misuse or dual-use should be released with734

necessary safeguards to allow for controlled use of the model, for example by requiring735

that users adhere to usage guidelines or restrictions to access the model or implementing736

safety filters.737

• Datasets that have been scraped from the Internet could pose safety risks. The authors738

should describe how they avoided releasing unsafe images.739

• We recognize that providing effective safeguards is challenging, and many papers do740

not require this, but we encourage authors to take this into account and make a best741

faith effort.742

12. Licenses for existing assets743

Question: Are the creators or original owners of assets (e.g., code, data, models), used in744

the paper, properly credited and are the license and terms of use explicitly mentioned and745

properly respected?746

Answer: [Yes]747

Justification: We have duly credited the creators or original owners of all assets used in748

this paper—including code, data, and models—and have clearly stated and respected their749

licenses and terms of use.750

Guidelines:751

• The answer NA means that the paper does not use existing assets.752

• The authors should cite the original paper that produced the code package or dataset.753

19

• The authors should state which version of the asset is used and, if possible, include a754

URL.755

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.756

• For scraped data from a particular source (e.g., website), the copyright and terms of757

service of that source should be provided.758

• If assets are released, the license, copyright information, and terms of use in the759

package should be provided. For popular datasets, paperswithcode.com/datasets760

has curated licenses for some datasets. Their licensing guide can help determine the761

license of a dataset.762

• For existing datasets that are re-packaged, both the original license and the license of763

the derived asset (if it has changed) should be provided.764

• If this information is not available online, the authors are encouraged to reach out to765

the asset’s creators.766

13. New assets767

Question: Are new assets introduced in the paper well documented and is the documentation768

provided alongside the assets?769

Answer: [NA]770

Justification: The paper does not release new assets771

Guidelines:772

• The answer NA means that the paper does not release new assets.773

• Researchers should communicate the details of the dataset/code/model as part of their774

submissions via structured templates. This includes details about training, license,775

limitations, etc.776

• The paper should discuss whether and how consent was obtained from people whose777

asset is used.778

• At submission time, remember to anonymize your assets (if applicable). You can either779

create an anonymized URL or include an anonymized zip file.780

14. Crowdsourcing and research with human subjects781

Question: For crowdsourcing experiments and research with human subjects, does the paper782

include the full text of instructions given to participants and screenshots, if applicable, as783

well as details about compensation (if any)?784

Answer: [NA]785

Justification: The paper does not include crowdsourcing experiments nor research with786

human subjects.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790

• Including this information in the supplemental material is fine, but if the main contribu-791

tion of the paper involves human subjects, then as much detail as possible should be792

included in the main paper.793

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,794

or other labor should be paid at least the minimum wage in the country of the data795

collector.796

15. Institutional review board (IRB) approvals or equivalent for research with human797

subjects798

Question: Does the paper describe potential risks incurred by study participants, whether799

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)800

approvals (or an equivalent approval/review based on the requirements of your country or801

institution) were obtained?802

Answer: [NA]803

Justification: This paper does not involve any crowdsourcing nor research with human804

subjects.805

20

paperswithcode.com/datasets

Guidelines:806

• The answer NA means that the paper does not involve crowdsourcing nor research with807

human subjects.808

• Depending on the country in which research is conducted, IRB approval (or equivalent)809

may be required for any human subjects research. If you obtained IRB approval, you810

should clearly state this in the paper.811

• We recognize that the procedures for this may vary significantly between institutions812

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the813

guidelines for their institution.814

• For initial submissions, do not include any information that would break anonymity (if815

applicable), such as the institution conducting the review.816

16. Declaration of LLM usage817

Question: Does the paper describe the usage of LLMs if it is an important, original, or818

non-standard component of the core methods in this research? Note that if the LLM is used819

only for writing, editing, or formatting purposes and does not impact the core methodology,820

scientific rigorousness, or originality of the research, declaration is not required.821

Answer: [No]822

Justification: In this work, any method development does not involve LLMs as any important,823

original, or non-standard components.824

Guidelines:825

• The answer NA means that the core method development in this research does not826

involve LLMs as any important, original, or non-standard components.827

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)828

for what should or should not be described.829

21

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Related Work
	Uncertainty in Speculation Accuracy
	Introducing Speculative Verification
	Information Gain for Efficient Speculation
	Indicators in Companion Model

	Scheduling for Speculative Verification
	Implementation
	Evaluation
	Evaluation Settings
	Overall Performance Evaluation
	Information Gain from Observing S and A
	Performance Breakdown
	Fairness in Verification Token Selection
	Robustness and Generality of SV

	Conclusion
	Additional Experimental Data
	Limitations and Future Work
	Evaluation Settings in Detail
	Hardware Environment
	LLM Models and hyperparameters
	Dataset and pre-processing

