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Speculative Verification: Exploiting Information Gain
to Refine Speculative Decoding

Abstract

LLMs have low GPU efficiency and high latency due to autoregressive decoding.
Speculative decoding (SD) mitigates this using a small draft model to speculatively
generate multiple tokens, which are then verified in parallel by a target model.
However, when speculation accuracy is low, the overhead from rejected tokens can
offset the benefits, limiting SD’s effectiveness, especially at large batch sizes.

To address this, we propose Speculative Verification (SV), an efficient augmentation
to SD that dynamically predicts speculation accuracy and adapts the verification
length to maximize throughput. SV introduces a companion model — a small
auxiliary model similar in size to the draft model — to estimate the alignment
between draft and target model distributions. By maximizing the information gain
from quantifying this alignment, SV refines verification decisions, reducing wasted
computation on rejected tokens and improving decoding efficiency. Moreover,
SV requires no modifications to the draft or target models and is compatible with
existing SD variants.

We extensively evaluated SV on publicly available LLMs across three NLP tasks
using nine combinations of draft, companion, and target models, including 13B—
72B target models and three types of variations: base (no finetuning), instruction-
tuned, and task fine-tuned. Across all experiments and batch sizes (4-80), SV
consistently outperforms both SD and standard decoding with the target model.
It improves SD performance by up to 2x, with an average speedup of 1.4x in
large-batch settings (batch sizes 32—80). These results demonstrate SV’s robustness,
scalability, and practical utility for efficient LLM inference.

1 Introduction

Large Language Models (LLMs) are widely used across many application domains, but their size and
computational cost make large-scale inference serving a significant challenge. In particular, LLMs
rely on autoregressive decoding — generating one token at a time — so producing k tokens requires &
sequential steps, leading to GPU underutilization and increased latency.

Speculative Decoding (SD)[[1]] addresses this problem by using a small draft model to speculatively
generate tokens, which are then verified in parallel by a larger target model. Because the draft model
is fast and the target model can validate multiple tokens in a single forward pass, overall latency is
reduced. However, when drafted tokens are rejected, both their verification and the recomputation
incur additional overhead.

SD’s effectiveness depends on speculation accuracy, i.e., the fraction of drafted tokens accepted by
the target model. Low accuracy negates its benefits especially for scaled inference serving; if most
drafted tokens are rejected, or only a portion for large batch sizes, the verification overhead makes SD
slower than target decoding. Speculation accuracy depends on the alignment between the draft and
target model distributions, which fluctuates due to model capability gaps and input context variations.
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Identifying when these distributions align allows for adjusting the speculation length to minimize
verification overhead and optimize latency. However, predicting this alignment is challenging due
to the complexity of LLM computation. A prior approach proposed tracking acceptance rates via a
moving average[2]], but our evaluation shows this method is ineffective.

In this paper, we propose speculative verification (SV), an approach to reliably predict speculation
accuracy and maintain SD’s performance gains. Building on an information-theoretic foundation, SV
compares the draft model’s output distribution with that of a similarly-sized companion model. By
quantifying the alignment of their distributions, SV estimates the likelihood that the target model
will accept the drafted tokens. Using these estimates, SV dynamically adjusts the verification length,
minimizing verification cost for tokens likely to be rejected. This reduces the overhead of misaligned
speculation and enables SD to scale effectively for real-world inference serving.

This paper contributes the concept of speculative verification (SV) and an optimized scheduling
strategy for SV. Through extensive evaluation with publicly available LLMs across three NLP tasks,
we show that our techniques improve performance by up to 2, with an average speedup of 1.4x in
large-batch settings (32—80).

The rest of the paper is structured as follows. Section[2]provides background information and related
work on SD. Section[3|examines uncertainty in speculation accuracy. Section[d] presents our proposed
SV technique, and Section[5| details our optimized scheduling approach. Section[7] evaluates our
methods, and Section([8|concludes the paper.

2 Background and Related Work

Speculative decoding (SD) reduces latency by using a small draft model to generate tokens spec-
ulatively, which are then verified in parallel by the target model. While SD improves efficiency,
misalignment between the models can result in frequent token rejections and wasted computation.

Improving Alignment. To address distribution mismatches between the draft and target models,
various alignment techniques have been proposed. DistillSpec[3] applies knowledge distillation
to fine-tune draft models to better match the token distribution of target models. HRSS[4]] further
incorporates context information from the target model during distillation to improve alignment.
Eagle[5} 6] trains draft models to detect misalignment and adjust the speculation length accordingly.

Self-speculative models perform speculation using the target model itself, thereby improving align-
ment. LayerSkip[7] and Kangaroo[8] use only the first few layers for drafting, while Medusa[9] uses
the full target model with additional decoding heads to predict multiple tokens in parallel.

Tiered Speculation and Pipelining. To reduce verification overhead, some approaches introduce
mid-sized models to verify drafted tokens before final verification in the target model. Staged
spec [10] propose drafting using the n-gram method, verifying the tokens in a small model, and then
performing final verification in the target model. HSDDW [[11] uses a mid-sized model to decide
whether to draft additional tokens before verification in the target model.

Using separate GPUs for drafting and verification with pipelining has recently been proposed to
improve throughput. PEARL[12] allows drafting to continue speculatively on one GPU while
previously drafted tokens are verified on another, assuming all are accepted. SPIN[13]] runs multiple
draft models in parallel on separate GPUs and selects the best output for verification.

3 Uncertainty in Speculation Accuracy

Since draft models are less capable than target models, their speculation accuracy is often inconsistent
and uncertain [2| [13]]. Predicting speculation accuracy could improve SD’s effectiveness, so we
explored whether it can be inferred using only the draft model’s internal information. To investigate
this, we ran SD on 128 prompts spanning two NLP tasks and analyzed the resulting speculation
accuracy. Figure[T[a) shows a subset of the results for one representative query over 100 drafting-
verification steps (draft length=5). The gray bars, representing the number of accepted tokens at each
step, indicate that speculation accuracy fluctuates sharply and unpredictably across steps.

To understand what causes these accuracy changes, we examined tokens before and after sharp
changes in accuracy. However, these tokens do not share any commonality in their embeddings or
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Figure 1: Accepted tokens per SD steps (left) and throughput by acceptance length (right).

semantics (based on human interpretation). Moreover, we found that accuracy-changing positions
often involve high-frequency tokens, such as stop words. This suggests that the observed fluctuations
are not driven by meaning or context, which may explain why these positions tend to contain high-
frequency tokens. A prior study proposed predicting speculation accuracy from recent history using a
moving average [2], but as shown in the Figure[I] this estimation deviates significantly from actual
speculation accuracy.

This uncertainty in speculation accuracy leads to a significant waste of verification cost. If all drafted
tokens are rejected, SD can be more expensive than target decoding with the target model. To quantify
this inefficiency, we ran SD with speculation lengths of 5 and batch sizes of 4 to 32 (using the same
draft and target model as before) and analyzed the throughput when 0-5 tokens are accepted. We
also measured the average number of accepted tokens and the corresponding throughput as shown in
Figure 1(b). Overall, more than 40% of verification was spent on rejected tokens, and 48% of SD
steps were more expensive than target decoding (not shown in the Figure[T). We also observed that at
larger batch sizes, SD’s already reduced performance gains are offset by the cost of running the draft
model and by this verification overhead, which may result in overall performance degradation.

Predicting speculation accuracy is difficult due to the inherent complexity of token generation in
LLMs. Attention heads across layers serve different roles that vary with context [[14} [15]. Some
compute attention scores globally over many tokens, while others focus locally on a subset. A single
attention head is reported to switch unpredictably between global and local computations [[16], which
we also observed. Furthermore, our analysis showed that mapping attention heads between the draft
and target models does not provide useful signals for speculation accuracy — even heads that strongly
correlate with those in the target model show no noticeable differences in attention patterns between
accepted and rejected tokens (not shown due to space limit).

From these preliminary analyses, we confirmed that predicting speculation accuracy based on the
draft model’s inference process, attention patterns, and past accuracy is infeasible. This uncertainty
in speculation accuracy poses a challenge for scaling up inference serving with SD.

4 Introducing Speculative Verification

To address speculation uncertainty in SD, we propose using additional information, as the draft model
alone cannot reliably predict speculation accuracy. We extract this information from another LLM
instance of similar size to the draft model. By comparing their token distributions, we aim to reduce
uncertainty in token acceptance and enable SD for scalable inference serving.

4.1 Information Gain for Efficient Speculation

SD accelerates inference because the draft model’s token probability distribution is reasonably aligned
with that of the target model. However, as discussed in Section[3] this alignment is inconsistent,
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leading to unpredictable speculation accuracy. If the accuracy could be predicted, we could adjust the
speculation length dynamically to minimize wasted verification cost and maximize SD efficiency.

To predict speculation accuracy, we introduce a small auxiliary model, i.e., a companion model,
similar in size to or slightly larger than the draft model. We presume that both the draft and companion
models are reasonably aligned with the target model — potentially distilled from it. We conjecture
that the alignment of the draft and companion models indicates the alignment of the draft and target
models. That is, if the probability distribution of the draft model for decoding a token is well aligned
with the distribution of the companion model, it is likely that the distribution for the token also aligns
well with that of the target model. Thus, by analyzing the alignment between the draft and companion
models, we can accurately predict the acceptance of the drafted tokens.

More formally, we exploit the information gain from knowing the distribution similarity between the
draft and companion models to reduce the uncertainty in speculation accuracy. If a random variable
X represents the speculation accuracy, i.e., the acceptance probability of a token generated by the
draft model, and Y denotes the corresponding distribution for the token in the companion model, then
the uncertainty of X is measured as the entropy H (X ), and the conditional uncertainty is H (X |Y) -
representing the remaining uncertainty of X given the value of Y.

We aim to maximize the information gain I(X;Y) = H(X) — H(X|Y), i.e., the amount of
uncertainty reduced in speculation accuracy when knowing the companion model’s distribution. We
carefully choose Y — what to observe in the companion model’s distribution (details discussed in the
next section) — so that we can accurately predict the acceptance probability of drafted tokens.

With this prediction, we adjust the verification length (details in Section[5) to maximize SD’s efficiency.
Because the companion model helps determine which tokens to verify or discard, we call this method
speculative verification (SV in short). Note that SV differs significantly from staged SD [10], where
an intermediate model performs rejection sampling on the draft model’s output. The staged approach
assumes that the intermediate model is better aligned with the target model, but its effectiveness is
inherently limited by the intermediate model’s capability.

4.2 Indicators in Companion Model

What should we observe and define as the conditioning random variable to minimize speculation
uncertainty? The requirements are: (1) it must be strongly correlated with the acceptance probability
of the drafted tokens, and (2) it must be simple to measure and quantify. We propose observing the
joint condition of two variables: one (S) measures the distributional similarity between the draft and
companion models, and the other (A) measures the draft token’s acceptance probability if we apply
SD’s sampling with the companion model (even though SV does not use SD’s sampling mechanism).

More formally, we define S = >, ., min (Pu(t;), P(t;)) and A = min (1 P“(td)), where 4

7 Py(ta)
is a drafted token, and P, and P, are the token distributions of the draft and companion models,
respectively.

The variable S indicates whether the draft and companion models are well aligned during the current
decoding step. Our preliminary analysis confirmed that this alignment is strongly correlated with
the alignment between the draft and target models. Specifically, we measured the similarity between
the draft and companion models’ output token distributions (using a natural divergence metric as
described in [[1] for its computational efficiency) and evaluated its correlation with the similarity
between the draft and target models’ distributions. Across three different draft-companion-target
model groups, we observed strong correlations of 0.75, 0.87, and 0.82 (detailed in the appendix).

However, close alignment of the distributions alone is insufficient to minimize speculation uncertainty,
as they may still differ largely at the sampled (drafted) token probability. Thus, we incorporate the
drafted token’s acceptance probability in the companion model as an additional conditioning variable.
If this probability is high and the alignment indicated by .S is strong, it indicates that the distributions
are not only well aligned overall but also at the specific probability point of the drafted token.

When jointly conditioning on these two continuous variables, we discretize them into sub-ranges using
adaptive binning, ensuring each bin contains a similar number of observations. For .S (distributional
similarity), which ranges from 0 to 1, we divide the interval into 10-30 bins. For A (token acceptance
probability in the companion model), we partition the probability range into 10-20 bins. We then
perform a profiling run of speculative decoding using these discretized variables and compute the
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Figure 2: Example: selecting verification length in Speculative Verification.

Table 1: Notations for the random variables and probability distributions

Symbol Description
S Random variable for token distribution similarity of draft and companion models
A Random variable for a token’s acceptance probability in the target model

Lo

; Random variable for the token at the ’th decoding position in the draft model
(T;|S, A)  Conditional probability of a token T; accepted in the target model

Random variable for the number of accepted tokens

Number of drafted tokens that is verified in the target model

2 =y

average token acceptance probability for each bin combination. Conditioning on these variables to
dynamically adjust verification length reduces speculation uncertainty (measured in entropy) by 34%
and improves the target model’s acceptance rate by 20% (details in the evaluation section).

5 Scheduling for Speculative Verification

This section explains how to effectively utilize information from speculative verification to optimize
scheduling and maximize effective throughput in terms of accepted tokens. We refer to this variant of
throughput as goodput in this paper — the number of accepted tokens per unit time. To achieve high
goodput, we must determine the optimal subset of drafted tokens to verify in the target model, i.e.,
optimal verification length.

We need to consider two factors to optimize verification length: 1) wasted computation on rejected
tokens, and 2) GPU’s resource utilization for a given verification length. Our goal is to balance these
factors — minimizing wasted computation while maximizing GPU resource utilization — to achieve
optimal goodput. We do this by estimating the expected number of accepted tokens for each possible
verification length and selecting the length that maximizes estimated goodput (i.e., the expected
number of accepted tokens divided by verification latency) as shown in Figure[2(b).

We first explain how to compute the expected number of accepted tokens for a given verification
length. First, Tablem defines the notations, where T represents the random variable for the 7’th token
in the draft model, P(T;|S, A) denotes its conditional acceptance probability in the target model
(given information from the companion model), N is the number of accepted tokens in the target
model, and + is the number of drafted tokens verified in the target model.

The probability for N given v is calculated as:

P(Ty 1 #tn4) [Tny P(Ti=t;) if N <,

P,(N) =
v(N) L, P(T;=t,) if N =~
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Then the expected number of accepted tokens with verification length -y is calculated as follows:

~

E(NR) =i Py(N =)
=1

Using the expected acceptance length F(N|v), we calculate goodput based on the profiled latency
for a given verification length . We then vary -, compute the corresponding goodput, and select the
verification length that maximizes it. Figure[2]illustrates this process of computing token acceptance
probability, expected acceptance length, and the optimal + for maximum goodput.

We find the optimal v by incrementally increasing it while goodput improves; once goodput declines,
we revert to the previous -y as the optimal value. This approach works because goodput is concave
with respect to the verification length. As we increase the verification length from a small value,
latency grows slowly at first, since the GPU’s compute resources are not fully utilized. Once the
verification length is large enough for full resource utilization, latency increases proportionally, but
the expected acceptance length grows more slowly — the cumulative probability of accepted tokens
diminishes as more drafted tokens are included.

Scheduling for Batch Execution. To extend our approach to batch-level optimization, we apply
the same goodput-based strategy used for single queries.We use a greedy algorithm that starts with an
empty verification token sequences V' and iteratively adds the token — regardless of which query it
belongs to — that yields the greatest increase in expected acceptance length. This process continues as
long as goodput improves and stops once it reaches its peak. While this approach may favor some
queries over others, it avoids starvation: token acceptance rates drop sharply beyond a certain length,
and verification always results in at least one accepted token per query, ensuring forward progress.

6 Implementation

We implemented canonical runtime optimizations for LLM inference in our system based on vLLM.
Specifically, we implemented: 1) input tensor compaction, which allows verifying different token
lengths for queries in the same batch without padding; 2) data-parallel drafting, in which multiple
GPUs used for the target model’s tensor-parallel verification are also fully utilized for drafting and
speculative verification as illustrated in FigureEka); and 3) CUDA graph execution, to minimize
kernel launch overhead. While implementing the last one, we fixed a bug in FlashInfer[17] that
caused incorrect KV-cache value scores when used with CUDA graph capture and padded inputs.

We further optimize performance by overlapping the target model’s verification with the drafting and
speculative verification of the next iteration, as illustrated in FigureEkb). To enable this, we run the
target and draft/companion models in separate processes using Nvidia’s Multi-Process Service (MPS),
which allows them to share GPU resources. We configure MPS so that the draft/companion model
uses a small fraction of the resources (30% by default), while the target model uses the remainder —
or optionally all resources. Since this optimization involves running two micro-batches concurrently,
we dynamically monitor the memory overhead of maintaining their contexts and adjust batch sizes
accordingly. To accurately profile verification overhead, we measure it while the draft/companion
models are running to capture interference effects, which remain consistent as their workload sizes
(i.e., the number of tokens processed by the draft and companion models) are constant.
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7 Evaluation

7.1 Evaluation Settings

We evaluate SV’s performance improvements over both the baseline (decoding with the target model)
and standard speculative decoding (SD). For the evaluation, we used two widely adopted public
LLM families: Qwen [18]] and Llama [19]. We tested base models (no fine-tuning), instruction-tuned
models, and task-tuned models across three different target model sizes: 72B, 34B, and 13B. The
evaluation covers three task types: conversation, code generation, and math (details in the appendix).

7.2 Overall Performance Evaluation

We first evaluated the token generation throughput of SV, comparing it to SD and target decoding
with the target model. Using draft lengths of 5 and 7 tokens, we increased the batch size from 4,
doubling up to 48 or 80 — the maximum supported within the GPU’s memory limits.

Figure [ shows results for a subset of models representative of others omitted due to space limits.
In all experiments, SV outperforms both SD and target decoding. At the maximum supported
batch sizes, SV is on average 1.3 faster than SD, with peak speedups reaching 2 x. As batch size
increases, SD’s performance gains decrease and can even fall below that of target decoding — in such
cases, SV outperforms SD by a large margin. Moreover, for difficult tasks, such as GSM8K[20]
and ChatGPTJ[21]], where SD is known to perform poorly [11}[13], SV continues to deliver strong
performance.

7.3 Information Gain from Observing S and A

In this section, we quantify the information gain in the random variable X, i.e., the acceptance
probability of a drafted token in the target model, by comparing the token distributions of the draft
and companion models. We observe two variables — .S and A: S measures the distributional similarity
between the two models, and A estimates the draft token’s acceptance probability based on the
companion model, assuming SD’s sampling rule is applied.

To measure the uncertainty of X (i.e., entropy) and the information gain from observing .S and A,
we perform inference using the Llama2 13B[22]]/160M][23]]/68M[23]] models, applying SD on the
ShareGPT][24]] and HumanEvalPack[235]] datasets. Specifically, we generate tokens using SD’s process
with three draft lengths: 3, 5, and 7 tokens. For the drafted tokens, we observe S and A using the
companion model, but do not apply SV’s optimization of verification lengths. We then use the target
model to measure the acceptance probability of the drafted tokens based on SD’s acceptance rule.
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Table 2: Uncertainty in the acceptance probability of drafted tokens and the information gain from
observing .S and A (measured with Llama2 13B/160M/68M on ShareGPT and HumanEvalPack).

Uncertainty Conditional Uncertainty Information Gain
Observation Resolution H(X) H(X|S) H(X|A) H(X|S, A) I(X;S,A)
chat code chat code chat code chat code chat code

5(5x5 for {S, A}) 1.38 1.78 1.09 155 1.07 158 1.01 1.50 0.38 0.28
10 (10x10 for {S, A}) 138 1.78 1.04 153 1.05 1.57 0.97 148 041 0.31
20 (20x20 for {S, A}) 138 1.78 1.03 1.52 1.04 157 095 1.46 0.43 0.32
Adaptive Binning(272) 1.38 1.78 1.02 1.52 1.04 157 091 142 0.48 0.37

After evaluating acceptance, we repeat the drafting and verification steps following the standard SD
procedure.

Table shows the uncertainty of X, the conditional uncertainties when observing .S, A, and both, and
the information gain from observing both variables. Since S and A are continuous, we discretize their
ranges into equal-sized sub-ranges and report the corresponding conditional uncertainties at varying
resolution levels (indicated in the leftmost column). We also include results using our adaptive
binning approach, which assigns smaller bins where data points are denser (the bottom row). With
adaptive binning, observing both .S and A yields an information gain of 30-40% of the total entropy,
indicating a strong relationship between these variables and X [26, 27, 28]
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Figure 5: Performance Breakdown: Prefill vs. Decoding (left) and Runtime Optimizations (right)

7.4 Performance Breakdown

Prefill and Decoding Performance. We separately measured prefill throughput (processed to-
kens/sec) and decoding goodput (generated tokens/sec) for SD and SV. Figure[5|shows results for
Qwen 72B/1.5B/0.5B models. Due to the companion model’s overhead, SV’s prefill throughput is
lower than SD’s. We partially mitigate this by skipping logit computations in the draft and companion
models during prefill, which reduces overhead by 3—5%. Still, SV’s prefill throughput remains about
10% lower than SD’s (30% lower than target decoding). However, during the decoding phases, SV
outperforms both SD and target decoding, especially at larger batch sizes. At a batch size of 64, SV
is 20% faster than SD, and at 80, it is 40% faster. Overall, SV achieves 20-35% higher throughput
for batch sizes between 64 and 80.

Runtime Optimization Breakdown. We also evaluated two major runtime optimizations: overlap-
ping decoding with verification (OV) and data-parallel decoding (DP). We applied both optimizations
to SD and SV and measured decoding goodput using Qwen 32B/1.5B/0.5B[29]. Figure[5[b) com-
pares the goodput of SD and SV. For SD, applying OV degrades performance due to the high cost of
verification; interference between verification and drafting reduces overall throughput.

With SV, applying OV consistently improves performance, as SV reduces the verification cost and
thereby mitigates interference between drafting and verification. Applying DP on top of OV provides
additional gains only at large batch sizes. At smaller batch sizes, however, the synchronization
overhead of the companion model (shown in Figure [3(a)) outweighs the benefits of parallelism.
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(d) SV on Self-Speculative Model

Figure 6: Effectiveness of SV: (a) Impact of draft and companion model selection; (b) sensitivity to
draft length and dataset; (c) compatibility with self-speculative decoding models.

7.5 Fairness in Verification Token Selection

SV selects a subset of drafted tokens for verification and discards the rest to maximize goodput. As a
result, some queries in a batch may consistently have few or no tokens selected for verification. While
the target model’s verification guarantees progress by generating at least one token per query—thus
preventing starvation—we still evaluate the fairness of SV’s verification token selection.

For this analysis, we ran generation with 1024 inputs (draft length=5) and calculated the average
number of tokens verified for each sequence. We then examined the five queries with the smallest
average verification lengths. The detailed results are presented in the appendix[A] Compared to the
overall average of 4.1 tokens, these bottom five queries had an average of 2.9 tokens verified. Notably,
39% of their steps involved verifying 4-5 tokens, while 47% involved 1-2 tokens, suggesting that
token allocation remains fairly distributed even in these edge cases. This shows that SV’s token
selection remains reasonably balanced across queries and does not result in substantial unfairness.

7.6 Robustness and Generality of SV

Effect of Draft/Companion Model Selection. Using Qwen2.5 32B as the target, we evaluated SD
and SV with different draft/companion pairs: 1.5B/0.5B, 3B/0.5B, and 0.5B/Unsloth 0.5B. As shown
in Figure[6[a), SV consistently outperforms SD, with up to 1.4 x speedup at batch size 64.

Effect of Draft Length and Datasets. We applied SD and SV with draft lengths from 5 to 13 on
ShareGPT and HumanEvalPack, measuring goodput. As shown in Figure[6[b), SD’s performance
varies significantly with draft length and dataset, while SV consistently delivers better results.

Performance on SD Variants. We applied SV to self-speculative models (LayerSkip-34B/70B[30]),
using 4 and 20 layers for drafting and next 4 and 5 layers for the companion. As shown in Figure
[6lc), SV reliably outperforms SD, though gains are smaller with larger draft models due to overhead.

8 Conclusion

We proposed Speculative Verification (SV) that improves speculative decoding (SD) by dynamically
adjusting verification lengths based on predicted token acceptance. To estimate speculation accuracy
without access to the target model, SV introduces a companion model and compares its token
distribution with that of the draft model. We show that alignment between the draft and companion
models strongly correlates with the draft—target alignment, enabling effective prediction of token
acceptance.

Building on this insight, SV adopts an information-theoretic framework to quantify alignment and
guide verification decisions. This reduces wasted computation on rejected tokens and improves
decoding efficiency, particularly at large batch sizes. Across nine model combinations, three NLP
tasks, and batch sizes from 4 to 80, SV consistently outperforms both SD and standard decoding. It
achieves up to 2x speedup over SD, with an average 1.4x gain in high-throughput scenarios.

SV maintains fairness in verification across queries, works with various fine-tuning types, and is
compatible with self-speculative decoding. These results demonstrate SV’s robustness, scalability,
and practical utility for efficient LLM inference.
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Table 3: Number of Steps by Verification Length from Worst/Best Case Requests

Cases RequestID  Avg. Veri. Length ~=1 ~=2 ~=3 ~=4 ~=5

125 2.85 6 8 3 4 6
390 2.88 5 3 4 1 5
Worst Cases 141 2.90 3 3 0 2 3
121 3.00 1 1 1 1 1
441 3.11 5 8 4 1 10
274 4.96 0 0 0 2 43
44 4.95 0 0 0 1 19
Best Cases 211 4.94 0 0 1 1 47
419 4.91 0 1 0 0 43
62 4.89 0 0 2 1 43

B Limitations and Future Work

Although we extensively evaluated our proposed methods, the experiments were limited to publicly
available models, which may introduce model-specific biases that affect the results. In addition, we
did not include experiments on reasoning tasks due to limited public availability. Public reasoning
models with multiple size variants — required for speculative verification — were only released at
the end of April 2025. We plan to evaluate SV on reasoning tasks and report the results in the final
version of the paper.

C Evaluation Settings in Detail

Table 4: Hardware settings and model assignments for all tasks

Task Dataset GPU Architecture Size (T/C/D)T
Chat*  ChatGPT, ShareGPT A100x4 Qwen?2.5-Instruct 72B/1.5B/0.5B
Chat* ShareGPT A100x2 Qwen2.5-Instruct 32B/1.5B/0.5B
Chat* ShareGPT A100x2 Qwen2.5-Instruct 32B/3B/0.5B
Chat* ShareGPT A100x2 Qwen?2.5-Instruct 32B/1.5B/0.5B**
Chat* ShareGPT A100x2 Qwen2.5-Instruct 32B/0.5B**/0.5B
Code* Humaneval, MBBP A100x2 CodeLlama / TinyLlama / AMDLIlama 34B/1.1B/135M
Code, Math Humaneval, GSM8K A100x 1 Llama2 13B/ 160M / 68M
Chat ShareGPT A40x4 LayerSkip-Llama 70B / 70B(5)* / 70B(20)*
Code* Humaneval A40x2 LayerSkip-CodeLlama 34B / 34B(4)* / 34B(4)}

* Finetuned  ** unsloth/Qwen2.5 T (Target, Companion, Draft) ¥ Layerskip with (N) layers

C.1 Hardware Environment

All experiments were conducted across three distinct computing environments to accommodate the
varying computational requirements of different models. For the largest models (Qwen2.5-72B-
Instruct as target model), we utilized an Azure Cloud VM equipped with an AMD EPYC 7V13
(Milan) 64-core processor and four NVIDIA A100 PCle GPUs, each with 80GB VRAM. This
system was configured with 2TB of RAM to handle the substantial memory requirements of these
parameter-dense models. Medium-sized models (Qwen2.5 32B/1.5B/0.5B, CodeLlama 34B variants,
and Llama2 13B variants) were deployed on a Runpod Cloud instance featuring an AMD EPYC
7352 24-core processor paired with two NVIDIA A100 PCIe GPUs, each with 80GB VRAM, and
200GB of system RAM. For the Layerskip experiments on Layerskip-Llama2-70B and Layerskip-
CodeLlama-34B models, we employed a private computing resource with an AMD EPYC 7313
16-core processor, four NVIDIA A40 GPUs, each with 48GB VRAM, and 500GB of system RAM.
All systems ran Ubuntu 22.04 LTS with CUDA 12.4 to maintain environmental consistency across
experimental platforms.
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C.2 LLM Models and hyperparameters

To demonstrate the versatility and broad applicability of SV, we selected two widely-used open-source
LLM families: the Qwen and Llama series. Our experimental design encompasses three dimensions
of variation per family: base models (no fine-tuning), instruction-tuned models, and task-tuned
models.

Sampling Parameters For all models, we adhered to the sampling hyperparameters recommended
in their respective Hugging Face repositories or official GitHub documentation. Specific values are
shown in Table

Table 5: Sampling hyperparameters for each model series.

Model series top_k top_p temperature repetition_penalty
Qwen2.5/Qwen2.5 based models 20 0.8 0.7 1.05
Llama/Layerskip/Llama based models — 0.9 0.6 —

Models used in overall evaluations

» Large-sized models: We employed the Qwen2.5-Instruct family [29] for large-sized evalua-
tion in main experiments, we used the 72B variant as the target model, the 1.5B variant as
the companion model, and the 0.5B variant as the draft model.

* Mid-sized models: We selected the CodeLlama-34B [31] as target model for mid-scale
experiments. and TinyLlama_v1.1_math_code (1.2B) [32] as the companion, and AMD-
Llama-135M [33] as the draft.

¢ Small-sized models: To cover smaller models, we included the Llama2-14B variant [22]
as the target model, paired with a JackFram_llama-160m [23]] as the companion, and
JackFram_llama-68m [23] as the draft, which was specifically trained for speculation tasks
with a reduced parameter size.

Models used in other evaluations and analysis For additional analytical experiments in (7.4]
[7.6), we utilized the 32B/1.5B/0.5B model sizes of Qwen2.5-Instruct family. To test robustness across
fine-tuned variants, we incorporated the unsloth-fine-tuned version of Qwen2.5-Instruct models [34].

We also evaluated Layerskip-Llama2-70B and Layerskip-Codel.lama-34B to assess performance
of SV adopted on self-speculation techniques. The number of drafting layers was set to the default
values specified by model providers in huggingface repository [35] [36]].

C.3 Dataset and pre-processing

We evaluated our approach using three distinct task categories: dialogue, code generation, and
mathematical reasoning. For all experiments, we maintained consistency by using identical randomly
sampled subsets across different evaluation scenarios.

For probability profile construction, we extracted 512 samples from training sets where available. For
datasets without explicit train-test splits, we randomly sampled 512 instances. For goodput evaluation,
we randomly selected between 128 and 256 samples from evaluation/test sets, carefully excluding
any samples that appeared in the probability profile to prevent data leakage. These randomly sampled
datasets remained constant across all experimental conditions to ensure fair comparisons.

For dialogue evaluation, we utilized two comprehensive datasets: ShareGPT [24], a collection of
human-assistant conversations extracted from various online sources, and ChatGPT Dataset [21]],
consisting of diverse dialogue prompts and responses.

Our code generation evaluation encompassed six programming languages using the HumanEvalPack
[25]] benchmark, which includes Python, C++, Java, JavaScript, Rust, and Go. We constructed a
balanced subset by randomly sampling tasks across all languages to ensure comprehensive coverage
of different programming paradigms and syntactic structures. We also incorporated MBPP [37]],
which consists of approximately 1,000 crowd-sourced Python programming problems.
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To assess mathematical reasoning capabilities, we employed the GSMS8K [20] dataset, which contains
grade school math word problems that require multi-step reasoning to solve.

These three task categories—dialogue, code generation, and mathematical reasoning—were selected
to provide a thorough evaluation of model performance across domains requiring different cognitive

abilities and knowledge representations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and Section[I] we clearly demonstrate the contribution and
scope of this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of this work in[B]in appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In Section ] 5] we have detailed the motivation and proofs of the formulas we
presented.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Based on the formulas, algorithms, descriptions, datasets, and experimental
settings presented in this paper, one can implement the code and reproduce the experimental
results as in this paper. Additionally, if the paper is accepted, we will consider releasing the
code for the benefit of other researchers.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: For security reasons, we plan to postpone releasing the code until the paper
is officially published. Once the paper is accepted, we will script every step we used
—including data pre-processing and experiment execution— and make it publicly available
so that other researchers can run it immediately.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In appendix [C} we have provided detailed descriptions of the dataset sources,
preprocessing methods, and sampling hyperparameters used for LLM inference, and in the
appendix we specify which references were consulted to determine these values.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the high cost of produce experimental results across various settings,
we do not repeat the same experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In appendix [C] we provide the details of computer resources for reproducing
the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We affirm that the research presented in this paper fully complies with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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11.

12.

Justification: : This paper aims to improve the inference efficiency of large launguage model
serving system, without any negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not present any such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have duly credited the creators or original owners of all assets used in
this paper—including code, data, and models—and have clearly stated and respected their
licenses and terms of use.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not include crowdsourcing experiments nor research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing nor research with human
subjects.
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806 Guidelines:

807 * The answer NA means that the paper does not involve crowdsourcing nor research with
808 human subjects.

809 * Depending on the country in which research is conducted, IRB approval (or equivalent)
810 may be required for any human subjects research. If you obtained IRB approval, you
811 should clearly state this in the paper.

812 * We recognize that the procedures for this may vary significantly between institutions
813 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
814 guidelines for their institution.

815 * For initial submissions, do not include any information that would break anonymity (if
816 applicable), such as the institution conducting the review.

817 16. Declaration of LLM usage

818 Question: Does the paper describe the usage of LLMs if it is an important, original, or
819 non-standard component of the core methods in this research? Note that if the LLM is used
820 only for writing, editing, or formatting purposes and does not impact the core methodology,
821 scientific rigorousness, or originality of the research, declaration is not required.

822 Answer:

823 Justification: In this work, any method development does not involve LLMs as any important,
824 original, or non-standard components.

825 Guidelines:

826 * The answer NA means that the core method development in this research does not
827 involve LLMs as any important, original, or non-standard components.

828 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
829 for what should or should not be described.
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