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Abstract

In Simulation-based Inference, the goal is to solve
the inverse problem when the likelihood is only
known implicitly. Neural Posterior Estimation
commonly fits a normalized density estimator as
a surrogate model for the posterior. This formu-
lation cannot easily fit unnormalized surrogates
because it optimizes the Kullback-Leibler diver-
gence. We propose to optimize a generalized
Kullback-Leibler divergence that accounts for the
normalization constant in unnormalized distribu-
tions. The objective recovers Neural Posterior Es-
timation when the model class is normalized and
unifies it with Neural Ratio Estimation, combin-
ing both into a single objective. We investigate a
hybrid model that offers the best of both worlds
by learning a normalized base distribution and a
learned ratio. We also present benchmark results.

1. Simulation-based Inference
Consider this motivating example: Your task is to infer the
mass ratio of a binary black hole system θo from observed
gravitational wave strain data xo of their merger. Numeri-
cal simulation can map from hypothetical mass ratio θ to
simulated gravitational wave strain data x using general rel-
ativity, but the inverse map is unspecified and intractable.
Simulation-based Inference (SBI) approaches this problem
probabilistically (Cranmer et al., 2020; Sisson et al., 2018).

Although we cannot evaluate the density, we assume the sim-
ulator samples from conditional distribution p(x |θ). Once
we specify a prior p(θ), the inverse amounts to estimating
posterior p(θ |xo) where θ represents simulator input pa-
rameters and x the simulated output observation. In our
amortized approach, we learn a surrogate model q(θ |x)
that approximates the posterior for any x ∼ p(x), which we
assume includes xo, while limiting excessive simulation.
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Figure 1. A proposed posterior surrogate model q(θ |x) consisting
of two components: (1) An easy-to-sample-from base distribution
bv(θ |x) that approximates the posterior p(θ |x) better than the
prior p(θ). (2) A density ratio estimated by a flexible energy-based
model exp ρw that reduces the density of the base distribution
when exp ρw(θ,x) < 1 and increases it when exp ρw(θ,x) ≥ 1.
We train the surrogate by minimizing the generalized Kullback-
Leibler divergence. Rejection sampling is easy as bv is close to q.

1.1. Limitations of Simulation-based Inference Methods

Neural Posterior Estimation (NPE) (Papamakarios & Mur-
ray, 2016) learns a surrogate posterior by solving an opti-
mization problem for normalized q̃(θ |x) in model class F̃ :

q̃∗(θ |x) ∈ argmin
q̃(θ |x)∈F

Ep(x) [KL(p(θ |x) ∥ q̃(θ |x))]

= argmin
q̃(θ |x)∈F

Ep(x,θ) [− ln q̃(θ |x)] ,
(1)

where KL denotes the Kullback-Leibler divergence. Al-
though practical (Dax et al., 2021), likelihood-based NPE
suffers from model choice limitations. The conditional
distribution is restricted to inflexible distributions param-
eterized by Mixture Density Networks (Bishop, 1994) or
Normalizing Flows (Papamakarios et al., 2019a) that re-
quire special consideration for multi-modality (Huang et al.,
2018; Cornish et al., 2020) and high-dimensionality (Kong
& Chaudhuri, 2020; Reyes-González & Torre, 2023).

Methods that perform NPE, but with an unnormalized sur-
rogate q(θ |x) have recently been developed. Ramesh et al.
(2021) proposed an adversarial objective in their method
GATSBI, but training can be unstable (Salimans et al., 2016).
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There has also been work on score-based training using
sequential proposals (Sharrock et al., 2022) or a flexible
number of observations x(1)

o , . . .x
(N)
o (Geffner et al., 2022).

These methods require Langevin dynamics for sampling and
it is non-trivial to evaluate their (unnormalized) density.

Neural Ratio Estimation (NRE) (Thomas et al., 2016; Her-
mans et al., 2020; Durkan et al., 2019; Miller et al., 2022)
approximates the likelihood-to-evidence ratio p(x | θ)

p(x) . It can
fit marginals (Miller et al., 2021), proving useful in practice
(Cole et al., 2021; Bhardwaj et al., 2023). However, it is not
a variational estimate of the posterior (Poole et al., 2019)
and suffers from saturation effects (Rhodes et al., 2020).

Alternatives We focus on NPE and NRE, but other approx-
imation techniques exist. Approximate Bayesian Computa-
tion employs a similarity kernel between summary statistics
of simulations T (x) and an observation T (xo) to draw sam-
ples from an approximate posterior (Sisson et al., 2018).

Estimating the likelihood p(x |θ) is another approach
(Wood, 2010; Papamakarios et al., 2019b; Pacchiardi &
Dutta, 2022), but it requires modeling the complex genera-
tive process and sampling may be non-trivial. Glaser et al.
(2022) propose maximum likelihood estimation to learn an
unnormalized, energy-based model for p(x |θ). It is simi-
lar to our proposed Posterior-to-Prior Ratio surrogate; how-
ever, Glaser et al. (2022) use a particle approximation of
the gradient of the log partition function for training while
we avoid this step by minimizing our proposed objective (6)
that does not contain the log partition function.

1.2. One Objective, Three Models: General Surrogates

We overcome the aforementioned issues with NPE by propos-
ing to optimize the Generalized KL-Divergence instead. It
enables fitting (unnormalized) surrogate models based on ei-
ther: a normalized density model, a posterior-to-prior ratio,
or a hybrid model with advantages of both. The first case
recovers NPE and the hybrid model is visualized in Figure 1.
Hybrid models have generative applications in energy-based
modeling (Arbel et al., 2021) and can help reduce the vari-
ance in estimating mutual information (Federici et al., 2023).

We derive the Generalized KL-Divergence from the so-
called φ-divergences (Rényi, 1961; Csiszár, 1963; Ali &
Silvey, 1966). Our objective, the divergence between condi-
tionals taken in expectation over p(x), is identified with a
lower bound to the average KL-Divergence called Tractable
Unnormalized version of the Barber and Agakov lower
bound on Mutual Information (Poole et al., 2019; Barber &
Agakov, 2003; Nguyen et al., 2010; Nowozin et al., 2016;
Belghazi et al., 2018).

Contribution We provide a unification of two methods,
NPE and NRE, by proposing the average Generalized KL-
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Figure 2. The integrand ϕ in the Generalized Kullback-Leibler Di-
vergence. Its non-negativity leads to Gibbs’ equality in the objec-
tive on (unnormalized) probability distributions and the optimum
is unique because ϕ(r) = 0 only when r = 1, i.e., when p = q.

divergence as an objective for SBI. This formulation enables
training a hybrid model, which is novel to SBI. We support
the objective and hybrid model with benchmark results.

2. Generalized Kullback-Leibler Divergence
Definition 1 (The Generalized KL-divergence). Let p(θ)
and q(θ) be (unnormalized) probability distributions. We
define the Generalized KL-divergence of q(θ) w.r.t. p(θ) by:

GKL(p(θ) ∥ q(θ)) :=
∫

ϕ

(
q(θ)

p(θ)

)
p(θ) dθ, (2)

ϕ (r) := − ln r + r − 1. (3)

The central properties of the Generalized KL-divergence are
that (a) Gibbs’ inequality: GKL(p(θ) ∥ q(θ)) ≥ 0 holds,
even in the case of unnormalized probability distributions,
and (b) GKL(p(θ) ∥ q(θ)) = 0 if and only if p(θ) = q(θ)
p(θ)-almost surely. These properties imply that we can op-
timize the objective over a flexible model class (unnormal-
ized distributions) using the variational principle. The di-
vergence is general because for normalized p(θ), q(θ) it re-
duces to the original KL-divergence. Proof in Appendix A.

Let Zp :=
∫
p(θ) dθ and Zq :=

∫
q(θ) dθ be normalizing

constants. When GKL(p(θ)∥q(θ)) = 0, p(θ) = q(θ) and
Zp = Zq. When KL(p(θ)/Zp∥q(θ)/Zq) = 0, p(θ)/Zp =
q(θ)/Zq, but we do not necessarily have Zp = Zq! (Both
are p(θ)-almost surely.) In this way GKL, is “stronger”.
We present an inequality between these divergences:

Zp · KL(p(θ)/Zp ∥ q(θ)/Zq) ≤ GKL(p(θ) ∥ q(θ)). (4)

Proof in Appendix A.
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2.1. Application to Simulation-based Inference

Assume we have a fixed simulator given by the conditional
distribution p(x |θ); we can sample from the joint distri-
bution θi ∼ p(θ), xi ∼ p(x |θi); and we aim to learn the
posterior distribution p(θ |x) for any x within the support
of p(x). We thus aim to solve this minimization problem,
using some model class F of (unnormalized) distributions:

q(θ |x) ∈ argmin
q(θ |x)∈F

Ep(x) [GKL (p(θ |x)∥q(θ |x))] (5)

The objective function, given the above modelling choices,
can be simplified according to Equation (6) where C de-
notes all terms not dependent on q(θ |x). The objective is
estimated and optimized on mini-batches of samples, but the
exact formula depends on how we choose to model q(θ |x).

We present three options for q(θ |x): A normalized den-
sity estimator, an energy-based model that estimates the
posterior-to-prior ratio p(θ |x)

p(θ) , and a hybrid model that uses
a normalized density as a base distribution and an energy-
based model to fit a posterior-to-base-distribution ratio. The
first of these techniques is exactly NPE from SBI; the second
produces a ratio, similar to NRE, but uses the Generalized
KL-divergence objective; and the hybrid is novel within SBI.

Normalized Density Surrogate Consider the parameteri-
zation q(θ |x) := bv(θ |x) where bv is a normalized den-
sity estimator like a normalizing flow, or normal distribution
with weights v. In this case, Ep(x)

[∫
q(θ |x) dθ

]
= 1, so

it becomes part of C and is no longer involved in optimiza-
tion. Here the objective becomes identical to NPE, like Equa-
tion (1). We sample m = 1, . . . ,M data points as follows:

θm ∼ p(θ), xm ∼ p(x |θm),

to estimate the loss function as

1

M

M∑
m=1

[− ln bv(θm |xm)] . (7)

Drawing samples θ̂ ∼ q(θ |xo) from this model is as simple
as sampling from the density estimator.

Posterior-to-Prior Energy-based Ratio Surrogate Con-
sider the parameterization q(θ |x) := exp(ρw(θ,x)) · p(θ)
where ρw is a scalar, parametric function, like a neural net-
work, with weights w. Since this surrogate is not necessarily
normalized, we must consider all terms in Equation (6) for
optimization, except C. We sample additional data like so:

θ′
m ∼ p(θ), x′

m ∼ p(x |θ′
m),

and combine with above samples to approximate the loss

1

M

M∑
m=1

[−ρw(θm,xm) + exp (ρw(θm,x′
m))] . (8)

θ′
m is merely used to sample x′

m; it does not appear in
the objective directly. x′

m may bootstrapped by permut-
ing index m. Accurately estimating Ep(x) [Zw(x)] :=

Ep(x)

[∫
exp(ρw(θ,x))p(θ) dθ

]
may require many sam-

ples from p(θ)p(x); however, we used a single sample
(θ′

m,x′
m) as an unbiased estimate. This inaccuracy may

contribute to the low-quality fit observed in Section 3; how-
ever, investigation is left for future work.

Since estimates of the log-partition function are biased
in maximum likelihood training of energy-based models
(Glaser et al., 2022), the gradient of the log-partition func-
tion ∇w Ep(x) [logZw(x)] is approximated by sampling
(Song & Kingma, 2021, Equation (4)). Since the log-
partition function does not appear in our objective (6), we
can do an unbiased Monte Carlo estimate of Ep(x) [Zw(x)]
and take gradients using automatic differentiation. Without
an improved proposal, as in the hybrid surrogate, this term
in our objective has high variance (Federici et al., 2023).

This surrogate is generally not normalized and drawing sam-
ples θ̂ ∼ q(θ |xo) requires additional computation. In low
dimensions, rejection sampling from p(θ) can be tractable;
otherwise, Markov-chain Monte Carlo (MCMC) becomes
necessary. We did MCMC to draw samples in Section 3.

Hybrid Surrogate Consider parameterizing q(θ |x) :=
exp(ρw(θ,x)) · bv(θ |x). This surrogate is not necessar-
ily normalized. We propose to estimate the relevant term in
Equation (6) using Monte Carlo samples from the normal-
ized base distribution. We simplify the term suggestively:

Ep(x)

[∫
q(θ |x) dθ

]
= Ebv(θ |x) p(x) [exp(ρw(θ,x))] .

We found that taking gradients on both ρw and bv did not
facilitate learning. Instead, take samples θ̃m ∼ bv(θ |xm)
without applying the reparameterization trick: Given para-
metric invertible function fbv of normalizing flow bv then,

ϵm ∼ N (θ | 0, I), θ̃m := fbv (ϵ;xm), ∇vfbv := 0.

This amounts to first fitting the base distribution for one
gradient step bv , followed by fitting the log ratio ρw. Given
the data points sampled above, we estimate the loss function

1

M

M∑
m=1

[
− ln bv(θm |xm)− ρw(θm,xm)

+ exp(ρw(θ̃m,xm))

]
.

(9)

We estimate Ep(x)

[∫
exp(ρw(θ,x))bv(θ |x) dθ

]
using a

single sample (θ̃m,xm), similarly to the ratio surrogate.

When sampling θ̂ ∼ q(θ |xo), we leverage the bv(θ |x)
distribution as a proposal and perform rejection sampling
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Ep(x) [GKL (p(θ |x) ∥ q(θ |x))] =
∫∫ (

− ln q(θ |x) + ln p(θ |x) + q(θ |x)
p(θ |x)

− 1

)
p(θ,x) dθ dx

= Ep(θ,x) [− ln q(θ |x)] + Ep(x)

[∫
q(θ |x) dθ

]
+ C

(6)

according to exp(ρw(θ,x)). Since bv(θ |x) is close to
q(θ |x), this results in a tractable percentage of accepted
samples. It was effective for all experiments in Section 3,
but high-dimensional surrogates may require alternatives.

3. Experiments
It has become standard in the SBI literature to measure the
exactness of the surrogate against a tractable posterior as a
function of simulation budget, despite failing to represent
the practitioner’s setting (Hermans et al., 2022). Lueckmann
et al. (2021) collected ten priors and simulators, each with
ten parameter-observation pairs and 10,000 samples from
the corresponding likelihood-based posterior, to create the
so-called Simulation-based Inference Benchmark. The pa-
rameters range between two- and ten-dimensional while the
simulations range between two- and 100-dimensional. The
benchmark measures the five-fold cross-validated Classifier
Two-Sample Test (C2ST) (Friedman, 2003; Lopez-Paz &
Oquab, 2017) accuracy by comparing samples from the pos-
terior and the surrogate at simulation budgets between 103

and 105 joint samples. Classification accuracies of 0.5 indi-
cate that either the surrogate is indistinguishable from the
posterior from the given samples, or that the classifier does
not have the capacity to tell the distributions apart. p-values
and E-values (Pandeva et al., 2022) are not considered.

Experiments were done with a Neural Spline Flow (NSF)-
based normalized density surrogate (Durkan et al., 2019), a
posterior-to-prior ratio-based surrogate, and a hybrid surro-
gate which trained a ratio against a Masked Autoregressive
Flow (MAF)-based density estimator (Papamakarios et al.,
2017). Following (Delaunoy et al., 2023), we appended an
unconditional bijection from the final distribution layer to
the prior support in all normalizing flows. We found that it
increased training stability when the prior p(θ) was uniform.

Results We report C2ST results across 8 tasks, all afore-
mentioned models, and several architectures in Figure 3. We
averaged over ten random seeds per plotted point to create
the 95% confidence intervals with an approximately 76 node-
day computational cost for all runs across all hyperparam-
eters. Architecture and training details are in Appendix B,
including Figure 4 that shows additional results for ratio
big and hybrid that correspond to the same model, but with
varied neural network hyperparameter choices. Addition-
ally, for the hybrid models, we report the C2ST for samples

from either the base distribution bv(θ |x) or the full hybrid
model exp ρw(θ,x)bv(θ |x) in Figure 6. It diagnoses how
much each component contributes to the overall surrogate.

The hybrid big model was generally more accurate than
flow or ratio, although there were exceptions: In Gaussian
Linear and SLCP Distractors the ratio or flow models were
better. Ratio was very sensitive to neural network size and
cannot be trusted to solve Gaussian Linear accurately with
arbitrary neural network design. SLCP has a complex shape
and may have benefited from using a Neural Spline Flow
as the base distribution for hybrid big. Two Moons features
extreme multi-modality allowing hybrid big to shine: The
base distribution bv(θ |x) left a typical narrow tail connect-
ing each moon, but the ratio exp ρw(θ,x) erased this tail
density. A visualization of an example surrogate and refer-
ence posterior can be found in Figure 5.

4. Conclusion
We proposed to use the Generalized KL-divergence, in ex-
pectation over p(x), as an objective for SBI, connected it to
NPE, proposed estimating the posterior-to-prior ratio using
this objective, and proposed a natural hybrid model class
for SBI. We evaluated the exactness of fits empirically on
eight benchmark problems at three simulation budgets, rep-
resenting over two months of computation time. Our conclu-
sion was that the increased flexibility of our objective and
the hybrid model was generally beneficial in comparison to
flow, i.e. NPE, but especially for Two Moons that features a
multi-modal posterior. Fitting the ratio alone, with our ob-
jective, was very sensitive to neural network hyperparameter
choices, emphasizing the importance of the hybrid model.

In the hybrid model, one must choose a variational family
for the base distribution bv(θ |x). The base distribution
must be more tightly concentrated than the prior to see
improvement in performance, while also covering the entire
posterior mass. In scientific settings, a conditional normal
distribution with mean and covariance estimated by neural
networks should be effective in most situations (without
long-tailed posteriors). For the benchmark, we choose MAF
since it was flexible and unlikely to exclude posterior mass.

In Section 2 and our experiments, we used a single sample to
estimate Ep(x) [Zw(x)]. As a Monte Carlo estimate, it has
a variance ∝ 1

N where N represents the number of samples
in the estimate. The constant of proportionality may be
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Figure 3. The C2ST accuracy and 95% confidence intervals are plotted versus simulation budget for three surrogate models on eight
benchmark tasks. We estimate the exactness of the surrogate model against tractable posterior samples. Lower values indicate either a better
fit, or limitations of the C2ST itself. The flow architecture trains a Normalized Density Surrogate Model that optimizes Equation (7) and
is equivalent to NPE. The ratio architecture trains the Posterior-to-Prior Energy-based Ratio Surrogate Model that optimizes Equation (8).
Finally, the hybrid big architecture trains a Hybrid Surrogate Model that optimizes Equation (9).

very large, meaning that a single sample is insufficiently
accurate. Investing the quantitative effect of the number of
contrastive samples on learning has been left to future work,
although we expect that it might have a significant effect for
the ratio surrogate. A theoretical analysis of the variance of
Ep(x) [Zw(x)] is offered in Federici et al. (2023) along with
experiments in estimating the mutual information using a
varied number of so-called “negative” samples.

A natural follow-up work would extend our method to the so-
called sequential case, where we train the surrogate estima-
tor in a sequence of rounds. In each round, simulation data
is drawn such that the current posterior estimate focuses at-
tention on x which are “close” to an observation-of-interest
xo. We plan to use the flexibility of our objective by updat-
ing the sampling distribution pn(θ,x) across n rounds.

Broader impact
The primary application of SBI is to solve the inverse prob-
lem on observations using high-fidelity simulation data. The
broader societal impact is therefore limited to which simula-
tors are considered for application.

Since SBI does not rely on likelihoods, it can be challeng-
ing to determine whether surrogates are overfit and provide
inaccurate certainty about estimated parameters. We empha-
size rigorous statistical testing to confirm results from SBI
to avoid drawing inaccurate conclusions.
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A. Generalized Kullback-Leibler Divergence Details
We continue directly from Section 2 with a formulation of Gibbs’ inequality as a Theorem. Since the Generalized KL-
Divergence is a ϕ-divergence, this is review for our specific divergence choice.

Theorem 1 (Gibbs’ inequality for the Generalized KL-Divergence). We always have the inequality:

GKL(p(θ) ∥ q(θ)) ≥ 0. (10)

Furthermore, the equality GKL(p(θ) ∥ q(θ)) = 0 holds if and only if p(θ) = q(θ) for p(θ)-almost-all points θ, in other
words, if they are equal inside the support of p(θ).

Proof. Consider the following function ϕ : (0,∞) → R given by:

ϕ(r) := − ln(r) + r − 1, (11)

with the additional setting ϕ(0) := ϕ(∞) := ∞. It always holds that ϕ(r) ≥ 0, with equality if and only if r = 1. So,
for any non-negative measurable function R ≥ 0 we have:

∫
ϕ(R(z)) p(z) dz ≥ 0 with equality if and only if R(z) = 1

p(z)-almost-surely. Our case follows from z = θ, R(z) = q(θ)
p(θ) and p(z) = p(θ).

Remark 1. 1. The above equality holds for unnormalized probability distributions, not just up to normalizing constants.

2. For normalized probability distributions p1(θ) and p2(θ) we recover the classical KL-divergence:

GKL(p1(θ) ∥ p2(θ)) = Ep1(θ)

[
ln

p1(θ)

p2(θ)

]
=: KL(p1(θ) ∥ p2(θ)). (12)

In this sense, the Generalized KL-divergence is a real generalization of the classical KL-divergence.

Our general Gibbs’ inequality now allows us to formulate a generalization of the classical minimal (relative) entropy
principle (Kullback & Leibler, 1951; Shore & Johnson, 1980; Cover, 1999):

Principle (The principle of minimal Generalized KL-divergence). Let p(θ) be an underlying “true,” given probability
distribution that we want to approximate with a(n unnormalized) probability distribution q(θ) from a certain model class F ,
expressing certain prior knowledge or constraints.

Then the principle of minimal Generalized KL-divergence expresses that one should choose that q(θ) from F that has
minimal Generalized KL-divergence to p(θ), i.e. one should choose:

q∗(θ) ∈ argmin
q(θ)∈F

GKL(p(θ) ∥ q(θ)). (13)

Finally, we prove Equation (4):

Zp · KL(p(θ)/Zp ∥ q(θ)/Zq) = Zp

∫
p(θ)

Zp
ln

p(θ)/Zp

q(θ)/Zq
dθ

= −
∫

p(θ) ln
p(θ)

q(θ)
dθ + Zp ln

Zq

Zp

≤ −
∫

p(θ) ln
p(θ)

q(θ)
dθ + Zp

(
Zq

Zp
− 1

)
= −

∫
p(θ) ln

p(θ)

q(θ)
dθ + Zq − Zp

= −
∫

p(θ) ln
p(θ)

q(θ)
dθ +

∫
q(θ) dθ −

∫
p(θ) dθ

= −
∫

p(θ)

(
ln

p(θ)

q(θ)
+

q(θ)

p(θ)
− 1

)
dθ

= GKL(p(θ) ∥ q(θ)).

(14)
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B. Experimental Details
In this section we include more information about the tasks, hyperparameters that we chose, and a few more results.

B.1. Simulation-based Inference Benchmark Task Details

We provide a short summary of all of the inference tasks we consdiered from the SBI benchmark by Lueckmann et al. (2021).

Bernoulli GLM This task is a generalized linear model. The likelihood is Bernoulli distributed. The data is a 10-
dimensional sufficient statistic from an 100-dimensional vector. The posterior is 10-dimensional with only one mode.

Bernoulli GLM Raw This is the same task as above, but instead the entire 100-dimensional observation is shown to the
inference method rather than the summary statistic.

Gaussian Linear A simple task with a Gaussian distributed prior and a Gaussian likelihood over the mean. Both have a
Σ = 0.1 · I covariance matrix. The posterior is also Gaussian. It is performed in 10-dimensions for the observations
and parameters.

Gaussian Linear Uniform This is the same as the task above, but instead the prior over the mean is a 10-dimensional
uniform distribution from -1 to 1 in every dimension.

Gaussian Mixture This task occurs in the ABC literature often. Infer the common mean of a mixture of Gaussians where
one has covariance matrix Σ = 1.0 · I and the other Σ = 0.01 · I . It occurs in two dimensions.

SLCP A task which has a very simple non-spherical Gaussian likelihood, but a complex posterior over the five parameters
which, via a non-linear function, define the mean and covariance of the likelihood. There are five parameters each with
a uniform prior from -3 to 3. The data is four-dimensional but we take two samples from it.

SLCP with Distractors This is the same as above but instead the data is concatenated with 92 dimensions of Gaussian noise.

Two Moons This task exhibits a crescent shape posterior with bi-modality–two of the attributes often used to stump MCMC
samplers. Both the data and parameters are two dimensional. The prior is uniform from -1 to 1.

B.2. Hyperparameters

In this section we report the hyperparameters for each of our models in Table 1. AdamW is an optimizer introduced by
Loshchilov & Hutter (2017). LWCR stands for Linear Warmup Cosine Annealing. NSF stands for Neural Spline Flow and
MAF stands for Masked Autoregressive Flow.

B.3. Further Results

We present results from the ratio big and hybrid models, along with repeated presentation of previous results, in Figure 4.
We break the hybrid model into parts and show results based on taking samples directly from the underlying normalized base
distribution bv(θ |x) and compare that to samples from the full hybrid model exp ρw(θ,x)bv(θ |x). Qualitative results on
a observation x9 from Two Moons is plotted in Figure 5, and quantitative results across tasks are plotted in Figure 6.
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Table 1. Hyperparameters

Model Name flow ratio ratio big hybrid hybrid big

Batch size 16384 16384 16384 16384 16384
Embedding Net ResNet ResNet ResNet
Embedding Net Hidden Dim [64] [64] [64]
Embedding Net Activation gelu gelu gelu
Embedding Net Normalization Layer Norm Layer Norm Layer Norm
Flow NSF MAF MAF
Flow Num Transforms 5 5 5
Flow Num Bins 8
Flow Hidden Dim [64] [64] [64]
Flow Activation relu relu relu
Ratio Estimator ResNet ResNet ResNet ResNet
Ratio Estimator Hidden Dim [128] [256, 256] [128] [256, 256]
Ratio Estimator Activation gelu gelu gelu gelu
Ratio Estimator Normalization Layer Norm Layer Norm Layer Norm Layer Norm
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning Rate 0.001 0.001 0.001 0.001 0.001
Weight Decay 0.001 0.001 0.001 0.001 0.001
amsgrad True True True True True
LR Schedule LWCA LWCA LWCA LWCA LWCA
LR Schedule Warmup Percent 0.100 0.100 0.100 0.100 0.100
LR Schedule Starting LR 1e-8 1e-8 1e-8 1e-8 1e-8
LR Schedule eta 1e-8 1e-8 1e-8 1e-8 1e-8
Early Stopping True True True True True
Early Stop Minimum Delta 0.003 0.003 0.003 0.003 0.003
Early Stop Patience 322 322 322 322 322



Simulation-based Inference with the Generalized Kullback-Leibler Divergence

0.5
0.6
0.7
0.8
0.9
1.0

flow ratio ratio big hybrid

bernoulli glm

hybrid big

0.5
0.6
0.7
0.8
0.9
1.0 bernoulli glm

raw

0.5
0.6
0.7
0.8
0.9
1.0 gaussian linear

0.5
0.6
0.7
0.8
0.9
1.0 gaussian linear

uniform

0.5
0.6
0.7
0.8
0.9
1.0 gaussian m

ixture

0.5
0.6
0.7
0.8
0.9
1.0

slcp

0.5
0.6
0.7
0.8
0.9
1.0 slcp distractors

103 104 105
0.5
0.6
0.7
0.8
0.9
1.0

103 104 105 103 104 105 103 104 105 103 104 105

two m
oons

Budget (simulations)

Cl
as

sif
ie

r T
wo

-S
am

pl
e 

Te
st

 (a
cc

ur
ac

y)

Model & Architecture
flow
ratio
ratio big
hybrid
hybrid big

Figure 4. The C2ST accuracy and 95% confidence intervals are plotted versus simulation budget for five surrogate models on eight
benchmark tasks. We estimate the exactness of the surrogate model against tractable posterior samples. Lower values indicate either a
better fit, or limitations of the C2ST itself. Details about model hyperparameters can be found in Table 1.
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Figure 5. Two corner plots of the posterior and surrogate densities for Two Moons x9. In both figures, the same reference posterior is drawn
in red. The black lines represent different parts of the same hybrid surrogate. On the left, the samples come from density estimator bv(θ |x).
On the right, samples come from the full hybrid model exp ρw(θ,x)bv(θ |x). The ratio estimator improves the shape significantly.
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Figure 6. The C2ST accuracy and 95% confidence intervals are plotted versus simulation budget for two hybrid surrogate models on eight
benchmark tasks. We estimate the exactness of the surrogate model against tractable posterior samples. The analysis was performed
on samples from the same hybrid model, but the dotted line represents samples from only the normalized conditional density estimator
bv(θ |x) while the solid line represents samples from the full hybrid surrogate exp ρw(θ,x)bv(θ |x). Lower values indicate either a
better fit, or limitations of the C2ST itself. Details about model hyperparameters can be found in Table 1.


